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SUMMARY

A recentapproachto the numericalsolutionof the steady Euler equations
Is to embed the flrst-orderEuler system in a second-ordersystem and then to
recapturethe original solutionby imposingadditionalboundaryconditions.
Initialdevelopmentof this approachand computationalexperimentationwlth It
have been based on heuristicphysicalreasoning. This has led to the con-
structlonof a relaxationprocedurefor the solutionof two-dlmenslonalsteady

o flow problems. In the presentreport the theoreticalJustificationfor the
embeddingapproach is addressed. It is proven that, with the appropriate
choice of embeddingoperatorand additionalboundaryconditions,the solution
to the embedded system is exactlythe one to the originalEuler equations.
Hence, solvingthe embeddedversionof the Euler equationswill not produce
extraneoussolutions.

INTRODUCTION

In the developmentof numericalsolutionproceduresfor the steady Euler
equations,the common approachis to replacethe steadyequationsby their un-
steady counterpartsand then to seek a temporally-asymptotlcsteady solution,
either in real tlme ([1], [2]) or in pseudo time ([3] - [5]). Due to the dlf-
flcultlesassociatedwith the numericalsolutionof a direct finite difference
representationof the steady Euler equations,relativelyfew departuresfrom
this approachare to be found in the literature. Steger and Lomax [6] devel-
oped an Iteratlveprocedurefor solvinga nonconservatlonform of the steady
Euler equationsfor subcrltlcalflowwith small shear. Deslderland Lomax [7]
investigatedprecondltlon_ngprocedureson the matrix systemarisingfrom the
finitedifferencingof the Euler equations. Bruneau,Chattot,Lamlnleand
Gulu-Roux[8] have used a variationalapproachto transformthe Euler equa-
tions into an equivalentsecond-ordersystem. Preliminarynumericalresults
have been presentedfor two-dlmenslonalinternalflows. Recently,Jespersen
[9] has made significantprogresstoward adaptingmultlgrldtechniquesto the
solutionof the Euler equationsand has presentedresultsfor transonicflows
over airfoils.
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Johnson [10] - [12] proposed a surrogate-equation technique, in which the
first order steady Euler equations are embeddedIn a second order system of
equations. The solutton of the original Euler equations is then recaptured by
imposing appropriate additional boundary conditions on the embeddedsystem.
The advantages of such an approach are that the difficulties of solving the
direct difference representation of the steady Euler equations can be bypassed
and the resulting second-order embeddedsystem can be solved by a variety of
well-proven numerical procedures. Inttial development of this approach and
computational experimentation with it have been based on heuristic physical
reasoning. This has led to the construction of a relaxation procedure for the
solutton of two-dimensional steady flow problems. All the numerical results
in [10] : [12] suggest that this is a viable and potentially more economical
approach than the alternative of solving the unsteady equations of motion.

In this report the theoretical Justification for the embedding approach is
addressed. It is proven that, with the appropriate choice of embedding opera-
tor and addltlonal boundary conditions, the solutton to the embeddedsystem is
exactly the one to the original Euler equations. Hence, solving the embedded
version of the Euler equations will not produce extraneous solutions. The
following section contains the proof for the two-dimensional Euler equations
and shows that for the Cauchy-Rtemannequations a similar result follows im-
mediately. Generalizations to three dimensions and to other systems of par-
tlal differential equations are mentioned subsequently.

EMBEDDINGPROCEDURE

The steadyEuler equationscan be written in vector form as

fx + gy = 0 (1)

where x and y are Cartesiancoordinates,

FPU2 l and g = F_v ]pu +P/f

ipuv / Ipv2+pI
L(E+ p)uj L(E+ p)vJ

Here p, p, u, v, and E denote respectively the density, static pressure,
velocity components in the x and y directions, and the total energy per unit
volume. Furthermore

E = p [e + I/2 (u2 + v2)]

where the specific internalenergy e Is relatedto the pressureand densityby
the gas law

p = (y - l)pe

with y denotingthe ratio of specificheats.



Let

w=r,:l
Lo j

By Euler's theorem on homogeneousfunctions, f and g can be expressed (see,
for example, [13], [14]) as f = Aw and g = Bw, where A and B are the Jacobian
matrtces

af and B _ agA _ aw aw

We have

0 -l 0 0

3-y u2 l-y v2
2 + 2 (y - 3)u (y- l)v 1 - y

A = - uv -v -u 0

yEu
. (I - y,u,u2 * v2, - + (,3u2 + v2,_ (y - l)uv -yu
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and

0 0 -l 0
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-Y 3)v lB = 3-y v2 1 2
- 2 . 2 u (y - l)u (y - - y

yvE
* (I - y)V(U2 . v2) (y - 1)uv _ yE + v _Ij______(3v2 + u2) -yv
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Now, Eq. (1) can be written as

a 8
(Aw) + _-_(Bw) = 0

or

[° °°I_-_x(A) + _-_y( ) w = 0 (2)

Let L denote the differentialoperator

B a

L = _-_(A) + _-_(B) (3)



Then the Euler equations become

Lw= 0 (4)

Now, let L* be the formal adJolnt operator to L defined by

L* IAT a BT _-_I
: - + (s)

where AT and BT are the transposesfo A and B respectively. We may then
considerthe Euler equations(4) as embeddedin the second-ordersystem

L* Lw = 0 (6)

Let D be a boundedclosed regionwith a plecewisesmooth boundary. For
simplicityof argument,assume that Eq. (6) is defined in a domain containingD.

aD

We now show that with an additionalconditionon the boundary,BD, of D, solu-
tlons of Eq. (6) are also solutionsof Eq. (4).

Theorem Let L and L* be definedas in (3) and (5) respectively. If w is a
solutionof

L* Lw = 0 In D

and satisfiesthe additionalrequirement

Lw = 0 on BD,

then It Is also a solutionof

Lw = 0 in D.

Proof Let (.,.)denote the Euclideaninner productin four-dlmenslonal
space. It can be shown that (see AppendixA for details) for any w,

a a
(Lw, Lw) - (w, L*Lw) = _-_(Aw, Lw) + _-_(Bw, lw) (7)



Integratingover D and using Green'stheorem,we obtain

D_f((Lw, Lw) - (w, L*Lw))dxdy

= a (Aw, Lw) + _-_(Bw, Lw) dxdy (B)

=f((Aw, Lw)dy - (Bw, Lw)dx)
aD

Here the llne integralin the last expressionof Eq. (8) is evaluatedIn the
counterclockwisedirectionover the closed contour aD. Now, if w satisfies
the hypothesesof the theorem,i.e. L*Lw = 0 in D and Lw = 0 on aD, then
Eq. (B) reducesto

D_I(Lw, Lw)dxdy=
0

This impliesthat

(Lw, Lw} = 0

in D and hence

Lw = 0

in D.

Q.E.D.

Now, considerthe specialcase of the Cauchy-Riemannequations

ux + Vy = 0 (9)

vx - Uy = 0 (lO)

Let

'=[:],
and rewriteEqs. (9) and 110) in vector form

fx + gy = 0 (ll)

If we choose

w_f



then we have
i

aw

and

;]ow
Eq. (11) can then be expressed as

a a
_-_ lAw) + _-_ (Bw) = 0

or

Hence, If we again use L to denote the dlfferentlal operator

a a
L = _-_(A) + _-_(B) (12)

the Cauchy-Riemannequationscan also be writtenas

Lw = 0 (13)

Let

= - (14)

Then Eq. (13) can be consideredas embedded in

L*Lw = 0 (15)

Note that a few simplematrix multiplicationswill reduce Eq. (15) to

a2 a2
-- w + -- w = 0 (16)
ax2 By2

which demonstratessimply the well-knownfact that Eqs. (g) and (lO) are em-
bedded In the second-ordersystem (16).

Now, let D be the same region as definedpreviously. Then the Introduc-
tlon of the differentialoperatorsL and L* for the Cauchy-Riemannequations
suggeststhe followingimmediateconsequenceof the previoustheorem.

Corollary If w is a solutionof Eq. (16) in D and if, on the boundaryof D,
It satisfiesEqs. (9) and (lO), then it Is also a solutionof Eqs. (9) and
(lO) in D.
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Thus if one wishes to obtain the unique solutton to a boundary value prob-
lem of the Cauchy-Rtemannequations (9) and (10), one can also solve Eq. (16)
together with the original boundary conditions and the additional requirement
that Eqs. (9) and (lO) be satisfied on the boundary.*

• GENERALIZATIONS

Generalizationof the resultdiscussedabove to the three-dlmenslonal
steady Euler equationsis straightforward. Supposethe equationsof motion
are expressedas

fx . gy + hz = 0

This can then be written as

a (A) + _-_(B ) + _-_(C q = 0

and hence the operator L can be introduced

a a a
L = _-_(A ) + _-_ (B) + _-_ (C )

The further details are analogous to the case of two dimensions.

The embedding concept can be used on any partial differential equations
expressible in the form

Lq = 0 or Lq = f

However, we shall not pursue this idea further here.

In Deslderl and Lomax[7], preconditioning matrices are investigated. In
our Eq. (6), L* may be considered as a preconditioning operator. Hence, the
embedding method is a preconditioning procedure for the continuous model,
whtle Desidert and Lomax's approach is one for the corresponding discrete
model.

Based on the mathematicalformulationpresentedhere, two-dlmenslonal
steady Euler solversare currentlybeing developed. A detaileddescriptionof
this work, includingnumericalresults,will be presentedin a forthcoming
report.

CONCLUSIONS

It has been proven that, for the numericalsolutionof the two-dlmenslonal
steady Euler equations,one can solve a second-orderembedded systemtogether

*The authorsunderstandthat Dr. T. N. Phillipsof ICASE - NASA LangleyRe-
search Center has recentlyobtaineda similarresult for the non-homogeneous
Cauchy-Riemannequations.



with appropriate additional boundary conditions. Thls provides a theoretical
Justification for the recent computational experimentation with the surrogate-
equation technique.

The proof presented here Is extendible to three dimensions and the embed-
ding technique is applicable to a wider class of partial differential equa-
tions than the Euler equations of motion considered here.
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APPENDIXA

Derivationof Eq.(7) For any dlfferentlablevector-valuedfunctionsU and V,
we have

<_.v><_ovo=- ;;>._<o.v>
and

°<u,v><_,v>:_<o,_>+_
Hence, we have

8

<_w.,w>=<_x(Aw_+_ (_w_.,,>

(a a= _;(Aw),Lw>.<_;(Bw),Lw>

=-<_w._(,w_>+_°<Aw.,w>-<_w._(,w_>,_ <_w.,w>

<W, AT a a=- _ (,w_>._ <_w._w>-<w.__ (_w_>._°<_w.,_>

<W, (AT 8 BT _) a 8 <Bw, Lw>= - _;. ,w>._;<Aw._w>,;;

=<w,_,,w>.°;;<_w,,w>.°_;<_w,_w>
This is Eq. (7).
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