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SUMMARY

A recent approach to the numerical solution of the steady Euler equations
is to embed the first-order Euler system in a second-order system and then to
recapture the original solution by imposing additional boundary conditions.
Initial development of this approach and computational experimentation with it
have been based on heuristic physical reasoning. This has led to the con-
struction of a relaxation procedure for the solution of two-dimensional steady
flow problems. 1In the present report the theoretical justification for the
embedding approach is addressed. It is proven that, with the appropriate
choice of embedding operator and additional boundary conditions, the solution
to the embedded system is exactly the one to the original Euler equations.
Hence, solving the embedded version of the Euler equations will not produce
extraneous solutions.

INTRODUCTION

In the development of numerical solution procedures for the steady Euler
equations, the common approach is to replace the steady equations by their un-
steady counterparts and then to seek a temporally-asymptotic steady solution,
either in real time ([1], [2]) or in pseudo time ([3] - [5]). Due to the dif-
ficulties associated with the numerical solution of a direct finite difference
representation of the steady Euler equations, relatively few departures from
this approach are to be found in the literature. Steger and Lomax [6] devel-
oped an iterative procedure for solving a nonconservation form of the steady
Euler equations for subcritical flow with small shear. Desideri and Lomax [7]
investigated preconditioning procedures on the matrix system arising from the
finite differencing of the Euler equations. Bruneau, Chattot, Laminie and
Guiu-Roux [8] have used a variational approach to transform the Euler equa-
tions into an equivalent second-order system. Preliminary numerical results
have been presented for two-dimensional internal flows. Recently, Jespersen
[9] has made significant progress toward adapting multigrid techniques to the
solution of the Euler equations and has presented results for transonic flows
over airfoils.

*Summer Faculty Fellow at Lewis Research Center, 1982-1983 (work partially
funded by NASA Grant NAG3-339).
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Johnson [10] - [12] proposed a surrogate-equation technique, in which the
first order steady Euler equations are embedded in a second order system of
equations. The solution of the original Euler equations is then recaptured by
imposing appropriate additional boundary conditions on the embedded system.
The advantages of such an approach are that the difficulties of solving the
direct difference representation of the steady Euler equations can be bypassed
and the resulting second-order embedded system can be solved by a variety of
well-proven numerical procedures. Initial development of this approach and
computational experimentation with it have been based on heuristic physical
reasoning. This has led to the construction of a relaxation procedure for the
solution of two-dimensional steady flow problems. A11 the numerical results
in [10] - [12] suggest that this is a viable and potentially more economical
approach than the alternative of solving the unsteady equations of motion.

In this report the theoretical justification for the embedding approach is
addressed. It is proven that, with the appropriate choice of embedding opera-
tor and additional boundary conditions, the solution to the embedded system is
exactly the one to the original Euler equations. Hence, solving the embedded
version of the Euler equations will not produce extraneous solutions. The
following section contains the proof for the two-dimensional Euler equations
and shows that for the Cauchy-Riemann equations a similar result follows im-
mediately. Generalizations to three dimensions and to other systems of par-
tial differential equations are mentioned subsequently.

EMBEDDING PROCEDURE
The steady Euler equations can be written in vector form as
fx+gy=0 (1)

where x and y are Cartesian coordinates,

pu PV
pU2 + p pUV
f = uv and g = 2
(€ + p)u ey P
(E + p)v

Here p, p, u, v, and E denote respectively the density, static pressure,
velocity components in the x and y directions, and the total energy per unit
volume. Furthermore

CE=p e+ 1/2 (42 + v2)]

where the specific internal energy e is related to the pressure and density by
the gas law

P =1(y-1pe

with y denoting the ratio of specific heats.




By Euler's theorem on homogeneous functions, f and g can be expressed (see,
for example, [13], [14]) as f = Aw and g = Bw, where A and B are the Jacobian
matrices

_ af _ 29
A= P and B = P
We have
i 0 -1 0 0 7
3—5!u2+3%v2 (y - 3)u (y - 1)v 1 -y
A= - uv -V -u 0
Ll—i—“- s (1 - Yud « VY - 3% + 1—;—‘(3u2 cv) (y-Duw —yu
and
i 0 0 -1 0
uv -v -u 0
B=—§—51v2+l—£-lu2 o (y-Nu  (y-3)v 1 -
I%E + (1 - Y)v(u2 + v2) (y - Duv - 1% + I—-5-—]—(3v2 + uz) -V
Now, Eq. (1) can be written as
a_ 8 -
ax (Aw) + ay (Bw) = 0
or
a_ 3. -
[ax (A ) + ay(B )] w=020 (2)
Let L denote the differential operator
a_ 9_
L = % (A ) + ay (8 ) (3)




Then the Euler equations become
lw=0 (4)

Now, Tet L* be the formal adjoint operator to L defined by

T3 T3
* - _ —_— —_—
L* = (? ox B ay) (5)

where AT and BT are the transposes fo A and B respectively. We may then
consider the Euler equations (4) as embedded in the second-order system

L* lw = 0 (6)

Let D be a bounded closed region with a piecewise smooth boundary. For
simplicity of argument, assume that Eq. (6) is defined in a domain containing D.

aD

RN

We now show that with an additional condition on the boundary, aD, of D, solu-
tions of Eq. (6) are also solutions of Eq. (4).

Theorem Let L and L* be defined as in (3) and (5) respectively. If w is a
solution of

L* lw = 0 in D
and satisfies the additional requirement

lw=20 on abD,
then 1t is also a solution of

lw =20 in D.

Proof Let (-, denote the Euclidean inner product in four-dimensional
space. It can be shown that (see Appendix A for details) for any w,

(Lw, Lw) - (w, L*Lw) = g; (Aw, Lw) + %y (Bw, Lw) (7




Integrating over D and using Green's theorem, we obtain

ff((Lw, lw) - (w, L*Lw)) dxdy
4 ;

=ff<%; (Aw, Lw) + g—y— (Bw, Lw)> dxdy : (8)
D

=f((Aw, Lw)dy - (Bw, Lw)dx)
aD

Here the 1ine integral in the last expression of Eq. (8) 1s evaluated in the
counterclockwise direction over the closed contour 3D. Now, if w satisfies
the hypotheses of the theorem, i.e. L*Lw = 0 in 0 and Lw = 0 on aD, then

Eq. (8) reduces to
ff(Lw, Lw)dxdy = 0
D

This implies that

(Lw, Lw) = 0
in D and hence
lw = 0
in D.
Q.E.D.
Now, consider the special case of the Cauchy-Riemann equations
Uy + Vy = 0 (9)
Vg - Uy = 0 (10)
Let
u v
el
v -u
and rewrite Eqs. (9) and (10) in vector form
fx + gy =0 (1

If we choose




then we have

and
B - 29 _ 0 1
w -1 0
Eqg. (11) can then be expressed as
3_ a_ -
ax (Aw) + ay (Bw) =0

or

a_ 9 -
[ax (A ) + ay (8 )] w=20
Hence, 1f we again use L to denote the differential operator

a_ . )
L=5c (A )+ ay (B ) (12)

the Cauchy-Riemann equations can also be written as
lw =0 (13)
Let

Ta_ Ta_
L* = - <f ax * B a;> (14)

Then Eq. (13) can be considered as embedded in
L*lw = 0 (15)

Note that a few simple matrix multiplications will reduce Eq. (15) to
T Wt T, W= 0 | (16)

which demonstrates simply the well-known fact that Egs. (9) and (10) are em-
bedded in the second-order system (16).

Now, let D be the same region as defined previously. Then the introduc-
tion of the differential operators L and L* for the Cauchy-Riemann equations
suggests the following immediate consequence of the previous theorem.

Corollary If w is a solution of Eq. (16) in D and if, on the boundary of D,
1t satisfies Eqs. (9) and (10), then it is also a solution of Eqs. (9) and
(10) in D.




Thus if one wishes to obtain the unique solution to a boundary value prob-
lem of the Cauchy-Riemann equations (9) and (10), one can also solve Eq. (16)
together with the original boundary conditions and the additional requirement
that Eqs. (9) and (10) be satisfied on the boundary.*

GENERALIZATIONS

Genera]izaf1on of the result discussed above to the three-dimensional
steady Euler equations is straightforward. Suppose the equations of motion
are expressed as

fx + gy + hz =0

This can then be written as
a_ 9 a_ =
[ax(A R TIPSt )]q-o
and hence the operator L can be introduced

a_ 9_ a_
L=gx (A ) x5 (B )+ 57 (C)
The further details are analogous to the case of two dimensions.

The embedding concept can be used on any partial differential equations
expressible in the form

Lg =0 or Lg=f
However, we shall not pursue this idea further here.

In Desidery and Lomax [7], preconditioning matrices are investigated. In
our Eq. (6), L* may be considered as a preconditioning operator. Hence, the
embedding method is a preconditioning procedure for the continuous model,
while Desideri and Lomax's approach is one for the corresponding discrete
model.

Based on the mathematical formulation presented here, two-dimensional
steady Euler solvers are currently being developed. A detailed description of
this work, including numerical results, will be presented in a forthcoming
report.

" CONCLUSIONS

It has been proven that, for the numerical solution of the two-dimensional
steady Euler equations, one can solve a second-order embedded system together

*The authors understand that Dr. T. N. Phil1lips of ICASE - NASA Langley Re-
search Center has recently obtained a similar result for the non-homogeneous
Cauchy-Riemann equations.




with appropriate additional boundary conditions. This provides a theoretical
Justification for the recent computational experimentation with the surrogate-
equation technique.

The proof presented here is extendible to three dimensions and the embed-

ding technique is applicable to a wider class of partial differential equa-
tions than the Euler equations of motion considered here.
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APPENDIX A

Derivation of Eq.(7) For any differentiable vector-valued functions U and V,

we have
U v
gx’ V) - - . gx * gx (v, v

and

%, v) = - (v, %}+ g;(u v)

Hence, we have

<I.w, Lw) = (g—x (Aw) + %; (Bw), Lw)

<-g—x (Aw), Lw) + (g—y— (Bw), Lw)

= - (Aw, %; (Lw)) + g—x (Au, Lw) - <Bw, g; (Lw)) + :_y (Bw, Lw)

W AT 2 ) s & G, ) -, 8T 3y (L) + 5 Cow, Lw)
= (w, -<AT 2.8 ﬁ)m))f & (an )+ 3 Gaw, L)

= (w, L*Lw) + g—x (Aw, Lw) + ‘g—; <Bw, Lw)

This is Eq. (7).
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