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ABSTRACT

Origins of spectral methods, especially their relation to the Method of

Weighted Residuals, are surveyed. Basic Fourier, Chebyshev, and Legendre

spectral concepts are reviewed, and demonstrated through application to simple

model problems. Both collocation and tau methods are considered. These

techniques are then applied to a number of difficult, nonlinear problems of

hyperbolic, parabolic, elliptic, and mixed type. Fluid-dynamical applications

are emphasized.
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INTRODUCTION

Spectral methods may be viewed as an extreme development of the class of

dlscretlzation schemes known by the generic name of the method of weighted

residuals (MWR) [I]. The key elements of the M_R are the trial functions

(also called the expansion or approximating functions) and the test functions

(also known as weight functions). The trial functions are used as the basis

functions for a truncated series expansion of the solution, which, when

substituted into the differential equation, produces the resldual. The test

functions are used to enforce the minimization of the residual.

The choice of trial functions is what distinguishes the spectral methods

from the finite element and finite difference methods. The trial functions

for spectral methods are infinitely dlfferentiable global functions.

(Typically they are tensor products of the elgenfunctlons of singular Sturm-

Liouville problems.) In the case of finite element methods, the domain is

divided into small elements, and a trial function is specified in each

element. The trial functions are thus local in character, and well-sulted for

handling complex geometries. The finite difference trial functions are

likewise local.

The choice of test function distinguishes between the Galerkln,

collocation, and tau approaches. In the Galerkin approach, the test functions

are the same as the trial functions, whereas in the collocation approach the

test functions are translated Dirac delta functions. In other words, the

Galerkln approach is equivalent to a least squares approximation, whereas the

• collocation approach requires the differential equation to be satisfied

exactly at the collocation points. Spectral tau methods are close to Galerkin

methods but they differ in the treatment of boundary conditions.



The collocation approach is the simplest of the _'R, and appears to have

been first used by Slater [2] in his study of electronic energy bands in

metals. A few years later, Barta [3] applied this method to the problem of i

the torsion of a square prism. Frazer, et al. [4] developed it as a general

method for solving ordinary differential equations. They used a variety of

trial functions and an arbitrary distribution of collocation points. The work

of Lanczos [5] established for the first time that a proper choice of trial

functions and distribution of collocation points is crucial to the accuracy of

the solution. Perhaps he should be credited with laying down the foundation

of the orthogonal collocation method. This method was revived by Clenshaw [6],

Clenshaw and Norton [7], and Wright [8]. These studies involved application

of Chebyshev polynomial expansions to initial value problems. Villadsen and

Stewart [9] developed this method for boundary value problems.

The earliest investigations of the spectral collocation method to partial

differential equations were those of Kreiss and Oliger [I0] (who called it the

Fourier method) and Orszag [II] (who termed it pseudospectral). This approach

is especially attractive because of the ease with which it can be applied to

variable coefficient and even nonlinear problems. The essential details will

be furnished below.

The Galerkin approach is perhaps the most esthetically pleasing of the

MWR since the trial functions and the test functions are the same. Indeed,

the first serious application of spectral methods to PDE's -- that of

Silberman [12] for meteorological modelling -- used the Galerkin approach.

However, spectral Galerkin methods only became practical for high resolution

calculations of nonlinear problems after Orszag [13] and Eliasen, et al. [14]

developed a transform method for evaluating convolution sums arising from

quadratic nonlinearities. Even in this case spectral collocation methods



retain a factor of 2 in speed. For more complicated nonlinear terms high

resolution spectral Galerkin methods are still impractical.

The tau approach is the most difficult to rationalize within the context

of the HR. Lanczos [5] developed the spectral tau method as a modification

of the Galerkin method for problems with non-periodic boundary conditions.

Although it too, is difficult to apply to nonlinear problems, it has proven

quite useful for constant coefficient problems or subproblems, e.g., for semi-

implicit time-stepplng algorithms.

The following discussion of spectral methods for PDE's will be organized

around the three basic types of systems -- hyperbolic, parabolic, and elliptic

--with an additional section for a difficult, nonlinear problem of mixed

type. Simple, one-dimensional, linear examples will be provided to illustrate

the basic principles and details of the algorithms; two-dimensional, nonlinear

examples drawn from fluid dynamical applications will also be furnished to

demonstrate the power of the method. The focus will be on collocation

methods, although some discussion of tau methods is provided.

II. RYPERBOLIC EQUATIONS

Linear hyperbolic equations are perhaps the simplest setting for

describing spectral collocation methods. Both Fourier and Chebyshev schemes

have found wide application. This section will first present the fundamentals

of both approaches and then illustrate them on a nonlinear fluid dynamics

problem involving shock waves.



Basic Fourier Spectral Concepts.

The potential accuracy of spectral methods derives from their use of

suitable hlgh-order interpolation formulae for approximating derivatives. An

elementary example is provided by the model problem

ut + ux = O, (I)

with periodic boundary conditions on [0,2_] and the initial condition

u(x,O) = sin(_ cos x). (21

The exact solution

u(x,tl = sln[_ cos(x-t)] (31

has the Fourier expansion

ikx (41u(x,t)= _k(t)e ,
k=-_o

where the Fourier coefficients

_k(t ) = stn(k__) jk(_ ) e-Ikt (5)

and Jk(t) is the Bessel function of order k. The asymptotic properties of

the Bessel functions imply that

kP_k(t I + 0 as k + _ (6)
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for all positive integers p. As a result, the truncated Fourier series

NI2-1 ikx

UN(X,t ) = _ uk(t ) e (7)
k-- -N/2+I

converges faster than any finite power of I/N. This property is often

referred to as exponential convergence. A straightforward integration-by-

parts argument [15] may be used to show that it applies to any periodic and

infinitely dlfferentiable solution.

The standard collocation points are

x. = _ j=0, I,''',N-I. (8)
3 N

Let uj denote the approximation to u(xj), where the time dependence has

been suppressed. Then the spatial discretizatlon of Eq. (I) is

(9)
Bt ffi_--__j ,

where the right-hand-side is determined as follows. First, compute the

discrete Fourier coefficients

i N-I -ikxj N N + 1 "'" N I. (i0)
=-- _ uj e , k= 2' 2 ' ' -2-

Uk N J=O

Then the interpolatingfunction

N/2-1

_(x) = Z uk eikx (11)
k= -N/2

can be differentiatedanalyticallyto obtain



N12-I elkXj
k= -N/2+l

(The term involving k = -N/2 makes a purely imaginary contribution to the

sum and hence has been dropped.) Note that each derivative approximation uses

all available information about the function values. The sums in Eqs. (10)

and (12) can be obtained in O(N _n N) operations via the Fast Fourier

Transform (FFT) •

An illustration of the superior accuracy available from the spectral

method for this problem is provided in Table l. Shown there are the maximum

errors at t = 1 for the truncated series and for the spectral collocation

method as well as for second-order and fourth-order finite difference

methods. The time discretization was the classical fourth-order Runge-Kutta

method. In all cases the time-step was chosen so small that the temporal

discretization error was negligible. Because the solution is infinitely

smooth, the convergence of the spectral method on this problem is more rapid

than any finite power of I/N. (The error for the N = 64 spectral result is

Table I. Maximum Error for a I-D Periodic Problem

2nd-Order 4th-Order

Truncated Fourier Finite Finite
N Series Spectral Difference Difference

8 9.87 (-2) 1.62 (-I) I.II (0) 9.62 (-I)

16 2.55 (-4) 4.97 (-4) 6.13 (-i) 2.36 (-i)

32 1.05 (-ii) 1.03 (-II) 1.99 (-I) 2.67 (-2)

64 6.22 (-13) 9.55 (-12) 5.42 (-2) 1.85 (-3)

128 1.37 (-2) 1.18 (-4)
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so small that it is swamped by the round-off error of these single precision

CDC Cyber 175 calculations.) In most practical applications the benefit of

the spectral method is not the extraordinary accuracy available for large N

but rather the small size of N necessary for a moderately accurate solution.

Basic Chebyshev Spectral Concepts

Spectral methods for non-perlodlc problems can also exhibit exponential

convergence. A simple example is again provided by Eq. (I) but now on the

interval [-I,I] with initial condition u(x,0) and boundary condition

u(-l,t). Since this is not a periodic problem, a spectral method based upon

F6urler series in x would exhibit extremely slow convergence. However,

rapid convergence as well as efficient algorithms can be attained for spectral

methods based upon Chebyshev polynomials. These are defined on [-I,I] by

Tn(X) = cos (n cos-Ix). (13)

The function

u(x,t) = sin c_(x-t) (14)

is one solution to Eq. (I). It has the Chebyshev expansion

oo

u(x,t) = _ UL(t) Tn(X), (15)n=O

where

__2 sin (_-_- c_t) Jn(c_r)_n(t) = c (16)
n

with



2 n=O

= I " (17)Cn I n _ I

The truncated series

N

UN(X,t) = _ L(t) Tn(X ) (18)
n=O

converges at an exponential rate. Note that this result holds whether or

not a is an integer. In contrast, the Fourier coefficients of u(x,t) are

-- i i_t sin _(a+k) i -fa_t sin _(a-k) (19)Uk(t) : _ e _+k - 2--_e a-k "

For non-integer a these decay extremely slowly.

The change of variables

x = cos e, (20)

the definition

v(O,t) : u(cos 8,t), (21)

and Eq. (13) reduce Eq. (15) to

oo

v(0,t) : _ U--n(t)cos nO. (22)
n=O

Thus, the Chebyshev coefficients of u(x,t) are precisely the Fourier

coefficients of v(0,t). This new function is automatically periodic. If

u(x,t) is infinitely differentiable (in x), then v(0,t) will be infinitely

differentlable (in 0). Hence, straightforward integration-by-parts arguments

lead to the conclusion that the Chebyshev coefficients of an infinitely



dlfferentiable function will decay exponentially fast. Note that this holds

regardless of the boundary conditions.

A Chebyshev spectral method makes use of the interpolating function

N

_(X) = _ u n Tn(X)" (23)
n=0

The standard collocation points are

. xj= cosN .1 = 0, 1, • • ",N. (24)

Thus,
N ^

uj= Y.u cosn!lnffi0 n N ' (25)

where uj is the approximation to u(xj). The inverse relation is

N
A

Un = _2_ Z cj-I uj cos
Nc--nJffi0 N ' n = 0,1,'",N (26)

where

cj = • (27)
1 ' j 1; N-1

The analytic derivative of this function is

a_ N
--= Z ;_) _n(X)' (28)
ax n=0

where



i0

^(I)
u = 0
N+I

^(1)
u = 0 (29) -
N

_ ^(I) ^(i)
Cn u n = un+ 2 + 2(n+l)Un+l, n N-I,N-2, "'',0.

(See [15] for the derivation of this recursion relation.) The Chebyshev

spectral derivatives at the collocation points are

8u N _Jn

__ I = y.  1)cos--. (30)
3x J n=O N

Special versions of the FFT may be used for evaluating the sums in Eqs. (26)

and (30). The total cost for a Chebyshev spectral derivative is thus

O(N £n N).

The tlme-stepplng scheme for Eq. (I) nmst use the boundary conditions to

update uN (at x = -i) and the approximate derivatives from Eq. (30) to

update uj for J=0,1,'",N-I. Note that no special formula is required for

the derivative at J = 0 (or x = +I).

Results pertaining to c = 2.5 at t = i for a truncated Chebyshev

series, a Chebyshev spectral method, a Fourier spectral method, and a second-

order finite difference method are given in Table II. For this non-perlodlc

problem Fourier spectral methods are quite inappropriate, but the Chebyshev

spectral method is far superior to the finite difference method.

The Chebyshev collocation points are the extreme points of TN(X ). Note

that they are not evenly distributed in x, but rather are clustered near the

endpoints. The smallest mesh size scales as I/N2. While this distribution

contributes to the quality of the Chebyshev approximation and permits the use
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of the FFT in evaluating the series, it also places a severe time-step

limitation on explicit methods for evolution equations.

Table II. Maximum Error for a 1-D Dirlchlet Problem

Truncated Chebyshev Fourier Finite

N Series Spectral Spectral Difference

4 1.24 (0) 1.49 (0) 1.85 (0) 1.64 (0)

8 1.25 (-I) 6.92 (-i) 1.92 (0) 1.73 (0)

16 7.03 (-6) 1.50 (-4) 2.27 (0) 1.23 (0)

32 1.65 (-13) 3.45 (-ii) 2.28 (0) 3.34 (-I)

64 1.79 (-13) 9.55 (-Ii) 2.27 (0) 8.44 (-2)

i Application to Two-dimenslonal, Supersonic Flow

Spectral methods have recently been applied successfully to the nonlinear

hyperbolic system of equations which describes a two-dimensional inviscid gas

[16,17]. The most serious complication over the simple model problems

discussed above occurs when shock waves are present. If the shock occurs in

the interior of the domain, then the truncated series for the discontinuous

flow variables converges very slowly. Elaborate filtering strategies appear

necessary to extract useful information from a calculation of such a situation

[17,18]. This difficulty disappears, however, when the shock occurs at the

boundary of the domain, as in shock-fltting as opposed to shock-capturing

calculations.

A schematic of the type of spectral shock-fltted calculations described

below is illustrated in Fig. i. At time t ffi0 an infinite, normal shock



12

at x = 0 separates a rapidly moving, uniform fluid on the left from the

fluid on the right which is in a quiescent state except for some specified

fluctuation. The initial conditions are chosen so that in the absence of any

fluctuation the shock moves uniformly in the positive x-dlrection with a Mach

number (relative to the fluid on the right) denoted by Ms. In the presence

of fluctuations the shock front will develop ripples. The shape of the shock

is described by the function Xs(Y,t). The numerical calculations are used to

determine the state of the fluid in the region between the shock front and

some suitable left boundary XL(t) and also to determine the motion and shape

of the shock front itself.

.Figure I is taken from a shock/turbulence calculation [19] in which the

downstream fluctuation is a plane vorticlty wave that is periodic in y with

period y£. Because of the initial value nature of the calculation, the fluid

motion behind the shock is not periodic in x, as Fig. 1 makes abundantly

clear. The interesting physical domain is given by

XL(t) _ x _ Xs(Y,t)

0 _ y _ y£ (31)

t _ 0.

The change of variables
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x- XL(t)
X =

xs(y,t) - XL(t)

Y = y/y£ (32)

T = t

producesthe computationaldomain

O(X( 1

0 • Y • i (33)

T> 0.

The fluid motion is modeled by the two-dlmenslonalEuler equations. In

terms of the computationalcoordinatesthese are

QT + B QX + C Qy = 0, (34)

where Q ffi(p,u,v,S)T,

u Tx Tx 0
x y

a 2
--x u 0 0

B ffi Y2 x (35)

TXy o u o
0 o 0 u

and



- O"
V YYx YYy

a 2 ,-
--Y V 0 0

C = y x
a2 . (36)
--Y 0 V 0
Y Y

0 0 0 V

The contravariant velocity components are given by

U = X + uX + vX
t x y

and (37)

V = Y + uY + vY .
t x y

A subscript denotes partial differentiation with respect to the indicated

variable. P, a, and S are all normalized by reference conditions at

downstream infinity; u and v are velocity components in the x and y

directions, both scaled by the characteristic velocity defined by the square

root of the pressure-density ratio at downstream infinity. A value y = 1.4

has been used.

Let n denote the time level and At the time increment. The time

discretization of Eq. (34) is

= [i - AtLn]Q n (38)

Qn+l = ! [qn + (i - AtL)Q] (39)2

where L denotes the spatial discretization of BSX + C_y. The solution

Q has the Cbebyshev - Fourier series expansion
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M N/2-1

Q(X,Y,T) = p=0_" q=-N/2_ Qpq(T) Tp(_)e 2_iqY, (40)

where _ = 2X-I. The derivatives QX and Qy are approximated by

M N/2-1 .... 2_iqY

QX-- 2 Y _ ^(l'0)(T)_p_je , (41)
p=0 q =-N/2 _pq

M N/2-1

Qy = 27 _ _ Q(0'I)(T)_ (_)e2_iqY, (42)
p--0 q=-N/2 pq P

(1,0) .

where Qpq is computed from Qpq in a manner analogous to Eq. (29), and

Q(0,1) = i q %q. (43)Pq

As a general rule the correct numerical boundary conditions for a

spectral method are the same as the correct analytical boundary conditions.

The global nature of the approximation avoids the need for special

differentiation formulae at boundaries. At the same time spectral methods are

quite unforgiving of incorrect boundary conditions. The inherent dissipation

of these methods is so low that boundary errors quickly contaminate the entire

solution. In many fluid dynamical applications the computational region must

be terminated at some finite, artificial boundary. The difficulty at

"artificial" boundaries is that analytically correct, fully nonlinear boundary

conditions for systems are seldom known. One example of a workable artificial

boundary condition for the Euler equations is given in Ref. [20].

The most critical part of the calculation is the treatment of the shock

front. The shock-fltting approach used here is desirable because it avoids

the severe post-shock oscillations that plague shock-capturing methods. The

time derivative of th_ Ranklne-Hugoniot relations provides an equation for the
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shock acceleration. This equation is integrated to update the shock position

(see [20] for details). This method is a generalization of the finite

difference method developed by Pao and Salas [21] for their study of the

shock/vortex interaction.

The nonlinear interaction of plane waves with shocks was examined at

length in [19]. The numerical method used there was similar to the one

described above but employed second-order finite differences in place of the

present Chebyshev-Fourier spectral discretization. Detailed comparisons were

made in [19] with the predictions of linear theory [22]. The linear results

turned out to be surprisingly robust, remaining valid at very low (but still

supersonic) Mach numbers and at very high incident wave amplitudes. The only

substantial disagreement occurred for incident waves whose wave fronts were

nearly perpendicular to the shock front. This type of shock-turbulence

interaction is a useful test of the spectral technique because the method can

be calibrated in the regions for which linear theory has been shown to be

valid.

The most reliable numerical results can be obtained for the acoustic

responses to acoustic waves. Unlike the vorticity responses, these require no

differentiation of the flow variables, thus eliminating one extra source of

error. Moreover, the acoustic reponse stretches much further behind the shock

than the vorticity response, thus providing greater statistical reliability.

Vorticity response results are reported in [23]. The incident pressure wave

is taken to be

i(kl.x-it)

where _I = (kl,x,kl,y)', _ = Msal kl,x + aI k I and A_ is the amplitude. In
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terms of the incidence angle 01, _i = (kl cos 01,k I sin 01). The llnearized

transmitted acoustic wave can be expressed in the same manner with all

subscripts changed from I to 2. The amplification coefficient for the

transmitted acoustic wave is then the ratio

AI/A{. (4S)

Figure 2 indicates the transmission coefficient extracted from the

computation. At each fixed value of X we perform a Fourier analysis in Y

of the pressure. The Fourier coefflcient for q = 1 provides the amplitude

Ai. In order to reduce the transients that would accompany an abrupt start of

the calculation at full wave amplitude, an extra factor of s(t) is inserted

into Eq. (44), where

3(t/ts 2 - 2(t/ts )3 0 _ t < ts
s(t) = _ . (46)

"[ 1 t > t
s

The start-up time ts is some multiple (typically 1/2) of the tlme it takes

the shock to encounter one full wavelength (in the x-direction) of the

incident wave. The ratio A_/A[ is plotted in Fig. 2 as a function of the

mean value of the physical coordinate x corresponding to X. The start-up

time for this Mach 3 case is ts = 0.56. The average of the x-dependent

responses between the start-up interval and the shock produces the computed

transmission coefficient. The standard deviation of the individual responses

serves as an error estimate.

The dependence upon incidence angle of the acoustic transmission

coefficient for A{ = 0.001 and Ms = 3 waves is displayed in Fig. 3. As is

discussed in [19], linear theory is quite reliable at angles below, say,
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45° . Figure 3 contains results from both spectral and finite difference

calculations. The finite difference results were obtained with the same

second-order MacCormac k°s method that was described in [19] except that

periodic boundary conditions (rather than stretching) were employed in the y-

direction. The finite difference grid was 64 x 16 and these calculations used

a CFL number of 0.70. The spectral grid was 32 x 8,and the CFL number was

0.50. Figure 3 shows that both methods produce the same results. A head-to-

head comparison of both methods for the 91 = i0° case is provided in Table

III. The "exact" value is taken from llnear theory [22]. Since the amplitude

of the incident acoustic wave is so small, it should come as no surprise that

four points in the y-directlon suffice for the spectral calculation. Note

that the standard deviations are substantially smaller for the spectral

method. These results suggest that the spectral method requires only half as

many grid points in each coordinate direction.

Table III. Grid Dependence of Acoustic Transmission Coefficient

Finite Chebyshev-

Grid Difference Fourier Spectral

16 × 4 6.403 ± 2.652 7.257 ± 0.587

16 × 8 6.427 ± 2.626 7.257 ± 0.587

32 x 4 7.105 _ 0.453 7.158 _ 0.022

32 x 8 7.134 _ 0.471 7.158 ± 0.022

32 x 16 7.139 ± 0.497 7.158 ± 0.022

64 x 16 7.163 ± 0.078 7.157 ± 0.017

128 x 16 7.152 ± 0.022

"exact" 7.156 7.156
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III. PARABOLIC EQUATIONS

The nonlinear, parabolic system formed by the incompressible, Navier-

Stokes equations was the focus of much of the early development and

application of spectral methods to large-scale fluid dynamical problems.

Fourier spectral methods have been the obvious choice for the simulation of

homogeneous, Isotroplc turbulence [24]. For shear flows, however, non-

periodic boundary conditions are required. So far, Chebyshev spectral methods

have been favored for these applications [25-27]. Nevertheless, Legendre

spectral methods are a viable alternative and of late they have been

attracting some attention. This section will present a discussion of the

implementation of Legendre spectral methods and will then compare them with

Chebyshev spectral methods for the one-dlmensional heat equation. This

section will close with a description of a promising semi-lmpllcittime-

stepping scheme for the Navier-Stokes equations.

Basic Legendre Spectral Concepts

A Legendre spectral method on [-I,I] makes uses of the interpolating

function
N ^

_(x) = I un Pn(X) (47)
n=O

where Pn(X) is the Legendre polynomial of degree n. Closed form expres-

sions for these polynomials are well-known, albeit clumsy. The computational-

ly preferred way to evaluate the polynomials is through the recursion relation

P0(x) = I

PI(X) = x

and for n ) 2

n Pn(X) = (2n-l)XPn_l(X)- (n-l)Pn_2(x). (48)
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Unlike the case with Fourier and Chebyshev collocation methods, there is

no tidy expression for the Legendre collocation points. Appeal must be made

to the theory of numerical quadrature [28]. The presence of boundary

conditions at both endpoints makes it desirable to include -I and +I in

the set of collocation points. Subject to this constraint, the most accurate

quadrature formula for the discrete Legendre coefficients is the Gauss-Lobatto

rule
^ ^ N

un = Cn j_0 wj Pn(Xj) uj, n = 0,1,''',N (49)

w

where x0 ffi+I, xN = -I and xj for 1 _ J _ N-I are the roots of

P_(x). The weights are

1 (50)

wj = N2(xj 'N(N+I)P )

and

^ _2n+l n = 0,1,''',N-I

c = I • (51)n N n=N

The interior collocation points must be determined numerically. This

quadrature rule yields the exact Legendre coefficientsif u(x) is any

polynomialof degree less than N. Its inverserelationis

uj = _ u Pn(Xj)" (52)n=0 n
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The analytic derivative of the interpolating function in Eq. (47) is

_= nn=O

where

_i(1)
+i =0

£) = 0 (54)

I u(1) I ^(i) + n = N-I,N-2,''',0.
2n+l n = 2n'--'_Un+2 Un+l

Since fast transform techniques are not available for the Legendre basis

there is no particular advantage to computing B_/Bxlj by applyingfunctions,

Eqs. (49), (54) and (53) rather than by following Eq. (49) with

N

_}u'I = l u Pn(Xj). (55)@x J n=0 n

In fact, for a collocation method it is faster still to perform this entire

process by a single matrix-vector multiplication. For that matter the

Chebyshev collocation differentiation operator may also be represented by a

matrix. Timing studies [29] on the CDC Cyber 175 have indicated that even for

N = 16, the Chebyshev matrix-multlply differentiation procedure is

substantially faster than one based on assembly language fast transforms.

Moreover, the matrlx-multlply procedure does not suffer the sort of speed

degradation that afflicts the transform procedure whenever N is not an

integral power of 2.
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The heat equation

_u _2u
- -- (56)

_t 3x 2

is the natural parabolic linear model problem. The spatial domain is [-I,I],

the initial condition is

u(x,0) " sin _x (57)

and the boundary conditions are

u(-l,t)= 0
(58)

u(+l,t)- 0.

The exact solution is then

_2 t
u(x,0) = e sin _x. (59)

The time differencing is again the classical fourth-order Runge-Kutta scheme.

In addition to spectral collocation and series truncation solutions, we

will also present spectral tau results. Let _n(t) for n=O,l,''',N

denote the Legendre coefficients of the tau approximation to u(x,t). The

semi-discrete tau equations are

m

du
n --(2)

a u , n = 0,1,''',N-2 (60)
dt n

with
N

>_ u a 0
n

n_.0

n even

(61)"
N

-o.
n,,1

n odd

|
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The Legendre coefficients of the approximation to the second spatial

derivative _2)(t) can be obtained from _n(t) by two applications of the

recursion relation in Eq. (54). In this tau approximation the dynamical

equations for the two hlghest-order coefficients are dropped in favor of the

equations for the boundary conditions. Equation (61) follows from the

property

P (_I) = (_I) n. (62)
n

Since the Chebyshev polynomials also satisfy Eq. (62), the Chebyshev tau

equations for Eq. (56) are the same as Eqs. (60) and (61). Of course, Eq.

(29) is invoked for the derivative coefficients instead of Eq. (54).

The results at t = I are given in Tables IV and V. The maximum errors

shown there have been boosted up by the factor e_2 so that they represent

relative errors. On the whole the collocation results are the best.

Moreover, except for the truncated series results, the Legendre approximations

are superior to the Chebyshev ones. Lanczos [30] has discussed some

circumstances under which Legendre approximations are superior to Chebyshev

ones. It goes almost without saying that finite difference results are far

inferior to any of these spectral approximations.
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Table IV. Max_uum Error for Legendre Approx_mations to the

Heat Equation

N Truncated Series Tau Collocation

8 6.65 (-4) 6.85 (-4) 2.40 (-5)

10 1.72 (-5) 1.07 (-5) 1.50 (-7)

12 3.06 (-7) 1.54 (-7) 1.38 (-9)

14 3.50 (-9) 1.86 (-9) 4.81 (-10)

16 3.88 (-11) 1.15 (-10) 9.98 (-11)

Table V. Haxtmum Error for Chebyshev Approximations to the

Heat Equation

N Truncated Series Tau Collocation

8 2.44 (-4) 1.61 (-3) 4.58 (-4)

I0 5.76 (-6) 2.12 (-5) 8.25 (-6)

12 9.42 (-8) 3.19 (-7) 1.01 (-7)

14 1.14 (-9) 3.35 (-9) I.I0 (-9)

16 1.05 (-ii) 8.39 (-ii) 2.09 (-ii)

The time-st_p restriction for explicit Legendre or Chehyshev methods for

the heat equation is very severe, scaling as I/N4. This can pose quite a

barrier to large-scale calculations for which a relative accuracy of 0.1% or

so will suffice. Fortunately, many large-scale calculations can be split into

one-dimensional, inhomogeneous counterparts of Eq. (56) and efficient implicit

schemes are available for this linear, constant coefficient equation. They

rely on reducing the Legendre (or Chebyshev) tau equations to a system which
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is nearly tridiagonal. The Legendre tau equations for a Crank-Nicolson

temporal discretization of Eq. (56) are

2_en+ 2 Xen+4 _
- +[I- +(2n-l) (2n-3) Un-2 (2n-l) (2n+3) (2n+3)(2n+5) Un+2

I -- 2en+2 -- en+4 --

ffi(2n-l)(2n-3) fn-2 - (2n-l)(2n+3) fn + (2n+3)(2n+5) fn+2

n = 2,3,..-,N, (63)

the coefficients the left-
where % = -At/2 with At the time-step, un

on

hand side are at t + At,

¥ = (t)+ in n _ At ), (64)

and

i 0< n_ N
en (65)

0 n>N

Equatlon (63) for even n plus the first of Eqs. (61) form a linear system

which is tridlagonal except for the boundary condition equation. This is

cheap to invert. The odd coefficients display a similar structure• The

Chebyshev tau version of Eq. (63) is available in [15] and [31].

Application to Channel Flow

Several three-dimensional Navier-Stokes algorithms have been developed

which incorporate the quasi-tridiagonal structure of the Chebyshev tau

equations for the second derivative in seml-impliclt schemes which treat the
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constant coefficient diffusion term implicitly [25-27]. In practice this

device has permitted tlme-steps several orders of magnitude larger than the

expllcft diffusion limit. Unfortunately, the quasi-tridlagonal structure is

lost even for a linear, variable viscosity coefficient. An effective

iteratlve scheme for this more general case has recently been proposed I. This

approach will be described here in its two-dlmenslonal setting.

The rotation form equations for two-dlmensional channel flow are

ut - v(v x- Uy) + Px = (_Ux)x + (BUy)y

vt + u(v x- Uy) + Py ffi(_Vx)x + (_Vy)y (66)

ux + Vy = 0,

with periodic boundary conditions in x and no-sllp boundary conditions at

y = _i. The variable P denotes the total pressure. The viscosity B is

presumed to depend upon y.

A useful dlscretlzatlon employs Fourier series in x and Chebyshev

series in y. The pressure gradient term and the incompressibility constraint

are best handled implicitly. So, too, are the vertical diffusion terms

because of the fine mesh-spaclng near the wall. The variable viscosity

prevents the standard Polsson equation for the pressure from decoupllng from

the velocities in the diffusion term. The algorithm described in [26] appears

IMalik, M. R., High Technology Corp., Hampton, VA; Zang, T. A., College of

William and Mary, Williamsburg, VA and Hussaini, M. Y., ICASE, NASA Langley
Research Center, Hampton, VA., 1982, in preparation.
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to be a good starting point. A Crank-Nicolson approach is used for the

impllclt terms and Adams-Bashforth for the remainder. After a Fourier

transform in x, the equations for each wavenumber k have the following

implicit structure

^ ^
u- I/2At(_Uy)y +I/2Atl ....

-1/2 .... (67)v At(_ y)y + At y

U ^
ik + Vy = 0.

Fourier transformed variables are denoted by hats, the subscript y denotes a

Chebyshev spectral derivative, and At is the time increment.

The algorithm in [26] was devised for constant viscosity, in which case

the Eqs. (67) can be reduced to essentially a block-trldlagonal form. This

cannot be done in the present, more general situation. We advocate solving

these equations iteratlvely after applying a finite difference pre-

conditioning.

The interesting physical problems have high Reynolds number, i.e., low

viscosity. Thus the first derivative terms in Eqs. (67) predominate. The

effective pre-condltlonlng of them is crucial. Four possibilities have been

considered. The elgenvalues of pre-condltloned iterations for the model

scalar problem ux = f with periodic boundary conditions on [0,2_] are

given for each possibility In Table VI. The term aAx Is the product of a

wavenumber _ and the grid spacing Ax. It falls in the range

0 _ l_Axl _ _. For the staggered grid case the discrete Eqs. (67) are

modified so that the velocities and the momentum equations are defined at the

cell faces yj = cos(_J/N), J=0,1,.-.,N, whereas the pressure and the
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continuity equation are defined at the cell centers yj _1/2= cos(_(J-I/2)/N),

J=I,-.-,N. Fast cosine transforms enable interpolation between cell faces

and cell centers to be implemented efficiently. The staggered grid for the

Navler-Stokes equations has the advantage that no artificial boundary

condition is required for the pressure at the walls.

The actual elgenvalues for pre-condltloned iterations of Eqs. (67) are

displayed in Fig. 4. The model problem estimates the elgenvalue trends

surprisingly well considering that it is Just a scalar equation, has only

first derivative terms and uses Fourier series rather than Chebyshev

polynomials.

The preceding results indicate that the staggered grid leads to the most

effective treatment of the first derivative terms. The condition number of

the pre-condltloned system is reasonably small and no resolution is lost by a

high mode cut-off. (Although it is possible to devise a hlgh-mode cut-off

which avoids the small elgenvalues shown in the figures, some of the spectral

resolution is thereby lost.) A simple and effective iteratlve scheme for this

system with its complex elgenvalues is a minimum residual method. At a

Reynolds number of 7500 each iteration reduces the residual by almost an order

of magnitude.

Table VII presents a comparison of the accuracy of the Chebyshev

dlscretlzatlon in y. The two codes are otherwise identical. The initial

condition consisted of Polseuille flow plus a small amount of a linearly

unstable elgenmode. The table compares the computed growth rate of this

perturbation with the theoretical, linear result after I00 tlme-steps.
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Table VI. Pre-condftioned Eigenvalues for a One-d/mensional

First Derivative Model Problem

PRE-CONDITIONING EIGENVALUES

Central Differences aAx
sin (tAx)

-i(aax/2) anx/2
One-sidedDifferences e sini(aAx)/2))

I aAx

High Mode Cut-off sin(aAx) 0 < laAxl ((2_/3)
0 < laAxl

(=Ax)/2
Staggered Grid sini(aAx)/2)

Table VII. Percent Error in Growth Rate

N Finite Difference Spectral

8 4470 3210

16 337 74.5

32 147 0.097

64 39.5 0.071

128 i0.0

256 2.4
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IV. ELLIPTIC EQUATIONS

Fruitful nonlinear applications of spectral methods developed the latest

for equations of elliptic type. Unlike hyperbolic or parabolic equations, for

which explicit schemes can often be tolerated, elllplc equations virtually

require implicit iteratlve schemes in practical situations. It was only a few

years ago that Morcholsne [32] and Orszag [33] proposed preconditioning the

spectral collocation equations by finite difference operators. More recently

still, effective spectral multigrld iteratlve methods have been developed

[34,35] and applied to the nonlinear potential flow problem of fluid dynamics

[29]. These developments will be described in this section.

Polsson's Equation

As usual the discussion will begin with a linear model problem, but this

time in two spatial dimensions. That problem is the Polsson's equation

D2u D2u

+ 2 = f (68)
_x2 _y

on the square [-I,I] x [-i,i] with homogeneous Dirichlet boundary

conditions. The choice

f(x,y) = -2_ 2 sin _x sin _y (69)

corresponds to the analytical solution

u(x,y) = sin _x sin _y. (70)

Both Chebyshev and Legendre spectral methods are appropriate for this

problem. Direct solution schemes for the Chebyshev tau method have been



31

described in [31]. The same schemes also work for the Legendre tau method

with straightforward modifications. They are basically of an alternating

direction implicit (ADI) nature and rely on the quasi-tridiagonal form of the

constant coefficient, one-dimensional problem. Haidvogel and Zang [31] report

comparisons of the Chebyshev tau method with finite difference methods on

numerous problems. They discuss both computational efficiency and accuracy.

These direct solution schemes cannot feasibly be extended to spectral

collocation methods because the collocation equations for the one-dimensional

components cannot be represented by sparse matrices. However, an ADI

iterative scheme based on finite difference preconditioning is an efficient

method for obtaining an approximate solution. The description of this scheme

in its general nonlinear setting begins by writing the spectral collocation

equations as

M(U) = O. (71)

Define the Jacobian

BM
J(U) = -_ (U). (72)

In many cases the Jacobian can be split into the sum of two operators

Jx(U) and Jy(U), each involving derivatives in only the one coordinate

direction indicated by the subscript. The most straightforward ADI method is

[cI - Jx(V)][ctI - Jy(V)]AV ,=aM(V), (73)

with the approximate solution V updated by

V + V + mAY. (74)



32

This is just the Douglas-Gunn version of ADI [36]. The term approximate

factorization is commonly used for this type of scheme for the nonlinear

potential flow problem [37]. This particular scheme is referred to as AFI.

For second-order spatial discretlzations the term [al - Jx(V)] leads to a

set of tridiagonal systems, one for each value of y. The second left-hand

side factor produces another set of tridiagonal systems. For spectral

discretizations, however, these systems are full; hence, Eq. (73) is still

relatively expensive to invert. A compromise is to replace Jx and Jy with

their second-order finite difference analogs, denoted by H and H
x y'

respectively:

[el - H (V)][aI - H (V)]AV = aM(V). (75)
x y

The spectral approximate factorlzation scheme consists of Eqs. (74) and

(75). The choice of the iteration parameters is discussed in [29].

Table VIII. Maximum Error for Chebyshev Approximations to

Polsson's Equation

N Truncated Series Tau Collocation

8 2.88 (-4) 2.79 (-3) 1.17 (-4)

i0 6.79 (-6) 5.26 (-5) 2.33 (-6)

12 1.09 (-7) 8.86 (-7) 3.12 (-8)

14 1.34 (-9) 1.09 (-8) 3.27 (-i0)

16 1.19 (-II) 9.15 (-II) 2.73 (-12)



33

The results for the simple model problem are presented in Tables VIII and

IX. The trends are the same as they were for the heat equation: the

collocation method is more accurate than tau and Legendre polynomials are more

accurate than Chebyshev. (Since it is not practical to design a spectral

method for PDE's using truncated series, those results have been ignored in

this comparison.)

Table IX. Haximum Error for Legendre Approximations to

Poisson's Equation

N Truncated Series Tau Collocation

8 6.04 (-4) 1.55 (-3) 1.77 (-5)

I0 1.69 (-5) 3.40 (-5) 2.48 (-7)

12 3.05 (-7) 6.05 (-7) 2.27 (-9)

14 3.82 (-9) 6.98 (-9) 1.99 (-Ii)

16 3.85 (-II) 6.37 (-II) 3.06 (-I0)

Spectral Multlgrid Methods

! Iterative schemes for spectral collocation equations, such as AFI, can be

accelerated dramatically by applying multigrid concepts. This technique has

been extensively developed for finite difference and finite element

discretlzations [39] and has recently been applied to spectral discretizations

[34,35,29]. Briefly put, multigrid methods take advantage of a property

shared by a wide variety of relaxation schemes - potential efficient reduction

of the hlgh-frequency error components but unavoidable slow reduction of the

low-frequency components.
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The fundamentals of spectral multigrid are perhaps easiest to grasp for

the simple model problem

d2u_ - f (76)

dx 2

on [0,2_] with periodic boundary conditions. The Fourier approximation to

the left-hand side of Eq. (76) at the collocation points is

N/2-1 ipxj . (77)
I p2 _p e

p= -N/2+I

The spectral approximation to Eq. (76) may be expressed as

LU = F, (78)

where

U ffi (u0,ul,...,UN_l), (79)

F ffi(f0,fl,''',fN_l), (80)

and L represents the Fourier spectral approximation to - d2/dx 2.

A Richardson's iterative scheme for solving Eq. (78) is

V + V + m(F - LV), (81)

where m is a relaxation parameter. On the right side of the replacement

symbol (+) V represents the current approximation to U, and on the left it

represents the updated approximation. The eigenfunctions of L are
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2_iJp/N (82)
 j(p)= e

with the corresponding elgenvalues

%(p) p2= , (83)

where J = 0,1,'-',N-I and p = - N/2+I,'",N/2-1. The index p has a

natural interpretationas the frequencyof the elgenfunctlon.

The error at any stage of the iteratlve process is V - U; it can be

resolved into an expansionin the elgenvectors of L. Each iterationreduces

the p'th error componentto 9(lp) times its previousvalue, where

v(x) = 1 - _. (84)

The optimal choice of _ results from minimizing I_(_)I for

£ [lmln,lmax], where lmln I and lmax = N2/4" (One need not worry about

the p = 0 elgenfunction since it corresponds to the mean level of the

solution, which is at one's disposal for this problem.) The optimal

relaxation parameter for this slngle-grld procedure is

2 (85)_SG = _ + "
max lmin

It producesthe spectralradius

max min (86)
PSG = _ + •

max Xmin
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Unfortunately, PSG = i - 8/N 2 , which implies that 0(N 2) iterations are

required to achieve convergence.

This slow convergence is the outcome of balancing the damping of the

lowest-frequency eigenfunction with that of the highest-frequency one in the

minimax problem described after Eq. (84). The multigrid approach takes

advantage of the fact that the low-frequency modes (IPl < N/4) can be

represented Just as well on coarser grids. It settles for balancing the

mlddle-frequency eigenfunction (IPl = N/4) with the highest-frequency one

(IPl = N/2), and hence damps effectively only those modes which cannot be

resolved on coarser grids. In Eqs. (85) and (86), Xmin is replaced with

Xmid = X(N/4). The optimal relaxation parameter in this context is

2= (87)
MG k + _'mld"max

The multigrid smoothing factor

max mid (88)
_MG = _ +

max mid

measures the damping rate of the hlgh-frequency modes. In this example

_MG = 0.60, independent of N. The price of this effective damping of the

hlgh-frequency errors is that the low-frequency errors are hardly damped at

all. Table X compares the single-grld and multlgrid damping factors for N =

64. However, on a grid with N/2 collocation points, the modes for

IPl E [N/8, N/4] are now the high-frequency ones. They get damped on this

grid. Still coarser grids can be used until relaxations are so cheap that one

can afford to damp all the remaining modes, or even to solve the discrete

equations exactly. For the case illustrated in Table X the hlgh-frequency
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error reduction in the multigrid context is roughly 250 times as fast as the

single-grid reduction for N = 64.

Let us consider Just the interplay between two grids. A general,

nonlinear fine-grid problem can be written

Lf(u f) = Ff. (89)

The shift to the coarse grid occurs after the fine-grid approximation Vf has

been sufficiently smoothed by the relaxation process, i.e., after the high-

frequency content of the error Vf - Uf has been sufficiently reduced. The

related coarse-grld problem is

LC(u c) = Fc, (90)

where

Fc = R[Ff _ Lf(vf)]+ LC(Rvf). (91)

The restriction operator R interpolates a function from the fine grid to the

coarse grid. The coarse-grid operator and solution are denoted by Lc and

Uc, respectively. After an adequate approximation Vc to the coarse-grld

problem has been obtained, the fine-grid approximation is corrected via

Vf + Vf + p(vc _ RVf). (92)

The prolongation operator P interpolates a function from the coarse grid to

the fine grid.
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A complete multigrid algorithm requires specific choices of the

interpolation operators, the coarse-grid operators, and the relaxation

schemes. These issues are discussed at length in [34,35,29] for both Fourier

and Chebyshev multigrid methods. Numerous linear, variable coefficient

examples are also provided there. The more interesting nonlinear examples

from [29] are the subject of the remainder of this paper.

Table X. Damplng Factors for N = 64

p Single-Grld Multigrid

I .9980 .9984

2 .9922 .9938

4 .9688 .9750

8 .8751 .9000

12 .7190 .7750

16 .5005 .6000

20 .2195 .3750

24 .1239 .I000

28 .5298 .2250

32 .9980 .6000

Application to Two-Dimensional Potential Flow

Until the recent work of Streett [38], the discretlzation procedures for

the potential equation were invariably based on low-order finite difference or

finite element methods. Streett used a spectral discretizatlon of the full

potential equation and obtained its solution by a slngle-grld iterative tech-

nique. The application of spectral multigrid techniques by Streett, et al.
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[29] produced a dramatic acceleration of the iterative scheme. Even in its

relatively primitive state the spectral multigrid scheme is competitive, and

in some cases unequivocally more efficient, than standard finite difference

schemes.

After a conformal mapping from the surface of an airfoil to a circle the

potential equation becomes

p 8G

where G is the reduced potential, R and 0 are the computational polar

coordinates, and P is the fluid density. The reduced potential is periodic

in 0 and it satisfies

_G
---- 0 at R = I, (94)
_R

G + 0 as R + m, (95)

and the Kutta condition. The density is given by the isentroplc relation

I

p [I _-I ---2 2 q2 i)]_-i (96)= - M%(qr + - ;2

the ratio of specific heats is denoted by y, and M is the Mach number at

infinity. The velocity components in the physical (r,8) plane are

1 8#

qr
(97)

qo = RH aO'
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and the Jacoblan between the complex physical plane (z = re18) and the

complex computational plane (o = Re18) is

Idz I (98)H ffi3"J"

Further details are provided in [38].

The spectral method employs a Fourier series representation in 8.

Constant grid spacing in G corresponds to a convenient dense spacing in the

physical plane at the leading and trailing edges. The domain in R (with a

large, but finite outer cutoff) is mapped onto the standard Chebyshev domain

[-I,I] by an analytical stretching transformation that clusters the

collocation points near the airfoil surface. The stretching is so severe that

the ratio of the largest-to-smallest radial intervals is typically greater

than I000.

The flow past an NACA 0012 airfoil at 4° angle of attack and a freestream

Mach number of 0.5 is a challenging subsonic and thus elliptic case.

Nevertheless, the spectral solution on a relatively coarse grid captures all

the essential details of the flow. The surface pressure coefficient from the

spectral code MGAFSP [29] using 16 points in the radial (R) direction, and 32

points in the azimuthal (8) direction is displayed in Fig. 5. The symbols

denote the solution at the collocation points. For comparison, the result

from the finite difference, multlgrid, approximate factorlzatlon code FL036

[40] is shown as a solid llne. The grid used in the benchmark finite

difference calculation is so fine (64 x 384 points) that the truncation error

is well below plotting accuracy. The FL036 and MGAFSP results are identical

to plotting accuracy. The spectral computation on this mesh yields a llft

coefficient with truncation error less than 10-4. Spectral solutions on a
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16 × 32 grid are thus of more than adequate resolution and accuracy for

subsonic flows.

In Fig. 6 are shown convergence histories from FL036, MGAFSP, and the

finite difference, approximate factorlzatlon, slngle-grld code TAIR [41].

Meshes which yield approximately equivalent accuracy were chosen. The surface

pressure results are the same to plotting accuracy, the llft coefficient is

converged in the third decimal place, and the predicted drag coefficient is

less than .001. (Actually, the spectral result is an order of magnitude more

accurate than these limits, but the TAIR result barely meets them.) Figure 7

demonstrates the improvement produced by the spectral multlgrid scheme over

the spectral slngle-grld method (AFSP). There is well over an order-of-

magnitude gain in efficiency.

V. A MIXED EQUATION

The potentialflow problemis much more difficultwhenever the flow field

contains both supersonic (hyperbolic) and subsonic (elliptic) regions.

Nevertheless,the spectralmultlgrldalgorithmthat succeededfor the subsonic

flow case requires only a minor modificationin order to succeed for the

transonic(mixed)problemas well.

The most expedient technique for dealing with the mixed elliptic-

hyperbolic nature of the transonicproblem is to use the artificial density

approach of Hafez, et al. [42]. The originalartificialdensityis

4-

--p - t1(Sp (99)

with
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- (lOO)

where M Is the local Math number and 6p is an upwind flrst-order

(undivided) difference. The spectral calculations employed a hlgher-order

artificial density formula. The spectral method also required a weak

filtering technique to deal wlth some hlgh-frequency oscillations generated by

the shock. Details are available in [38].

Flow Past an Airfoil

A lifting transonic case is provided by the NACA 0012 airfoil at

M = 0.75 and 2° angle of attack. A shock appears only on the upper surface

for these conditions and is rather strong for a potential calculation; the

normal Mach number ahead of the shock is about 1.36. Lifting transonic cases

are especially difficult for spectral methods since the solution will always

have significant content in the entire frequency spectrum: the shock

populates the highest frequencies of the grid and the llft is predominantly on

the scale of the entire domain. An iterative scheme therefore must be able to

damp error components across the spectrum.

Surface pressure distributions from MGAFSP, TAIR, and FL036 are shown in

Fig. 8. The respective computational grids are 18 x 64, 30 x 149, and

32 x 192. The latter two are the default grids for the production finite

difference codes. Spectral results obtained by trigonometrically

interpolating the 18 x 64 grid results onto a much finer grid are included

alongside the results at the collocation points. This reveals the wealth of

detail that is provided by the rather coarse spectral grid. The shock

predicted by TAIR is far more rounded and smeared than that of FL036,

reflecting the coarser mesh and larger artificial viscosity used in the
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former. The TAIR result shown is also only correct to one decimal place in

llft as compared with a finer-grid result. Convergence histories for these

three cases are shown in Fig. 9 along with the results for MGAFSP on a coarser

grid (16 x 48).

Flow Past a Circular Cylinder

The MGAFSP code has recently been used by us for an extremely accurate

determination of the critical freestream Mach number at which the potential

flow past a circular cylinder first develops a supersonic region. This

spectral calculation represents an alternative to the asymptotic series method

employed by van Dyke and Guttmann [43] to arrive at the estimate

Mcrit= .39823780 • .00000001.

The spectral multigrid potential code was used to determine the critical

Mach number on several grids. On each of these grids calculations were

performed at a half-dozen or so freestream Mach numbers. For each case the

maximum local Mach number was determined from the computed solution. Then an

extrapolation procedure was employed to ascertain what freestream Mach number

produced a maximum local Mach number of unity. This value was recorded as the

critical Mach number for that particular grid. An estimate of the extra-

polation error was made to ensure consistency. These results are given in

Table XI.

Finally, these grld-dependent calculations of the critical freestream

Maeh number were extrapolated to the limit of infinite numerical resolution.

The best result was obtained by assuming slxth-order convergence. The final

estimate of the critical freestream Mach number is

Mcrlt = .3982415 _ .0000002. The difference between this estimate and the one

by van Dyke and Guttmann is more than an order-of-magnitude greater than the
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estimated errors. Nevertheless, the agreement of the two estimates to better

than one part in 105 is remarkable in itself.

Note that the convergence rate of the spectral multlgrld potential result

(at least slxth-order) pertains to a quantity (critical freestream Mach

number) which requires the fundamental solution (the potential) to be first

differentiated and then extrapolated. Moreover, the MGAFSP code is so

efficient thatall of the requisite calculations consumed less than 20 minutes

of CPU time on the CDC Cyber 175 and were performed on grids with no more than

2000 points.

A comparable calculation by existing finite difference codes would likely

exhibit only flrst-order convergence. It would be far more expensive both in

terms of CPU time and storage, surely exceeding the central memory of a

machine such as the CDC Cyber 175. Here then is an example which firmly

establishes the utility of spectral methods for nonlinear, multi-dlmenslonal

problems.

Table XI. Grld-dependent _Itlcal Freestream Mach Numbers

Grid Mcrlt Error Estimate

14 x 32 .398289 .000048

18 × 40 .3982514 .0000099

22 × 48 .3982450 .0000035

30 x 64 .3982422 .0000007
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Figure Captions

Fig. 1 Typical shock-fltted tlme-dependent flow model in the physical

plane.

Fig. 2 Post-shock dependence of the pressure response to a pressure wave

incident at I0° to a Mach 3 shock. The solid line is the linear

theory prediction. The circles are the spectral solution.

Fig. 3 Dependence on incident angle of the pressure response to a 0.1%

amplitude pressure wave incident on a Mach S shock. The solid line

is the linear theory result. Circles are spectral solutions;

squares are finite difference solutions.

Fig. 4. Eigenvalues of the pre-conditloned matrices for semi-lmplicit

channel flow when the streamwise wave number k = 5. The grid is

32 x 17, the Reynolds number is 7500 and the CFL number is 0.I0.

Note the different scale used for the central differences pre-

conditioning results.

Fig. 5. Spectral (triangles) and finite difference (solid llne) surface
i

pressures for a subcrltical flow.

Fig. 6. Maximum residual versus machine time for a subsonic flow.

Fig. 7. Error in llft versus machine time for a subsonic flow from single-

grid (AFSP) and multigrid (MGAFSP) spectral schemes.



Fig. 8. Surface pressures for a transonic flow.

Fig. 9. Maximum residual versus machine time for a transonic flow.
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