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ABSTRACT

2 new Gauss-Newton algorithm is presented for solving non-
linear least squares problems. The problem statement may
include simple bounds or more general constraints on the
unknowns. The algorithm uses a trust region that allows the
objective function to increase with logic for retreating to
best values. The computations for the linear problem are
done using a least squares system solver that allows for
simple bounds and linear constraints. The trust region
limits are defined by a box around the current point. 1In
its current form the algorithm is effective only for prob-
lems with small residuals, linear constraints and dense
Jacobian matrices. Results on a set of test problems are
encouraging.

The research of this author was carried out at the Jet Pro-
pulsion Laboratory, California Institute of Technology,
under contract with the National Aeronautics and Space
*dministration.
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Introduction

The constrained nonlinear least squares problem which we consider is
stated as follows.

Problem CNLLS
Let f(x) be a differentiable mapping of a rectangular

domain T = {E:aj <Xy < Bj,r] = l1,...,N} intc RM, and g (x)

(1) be a differentiable mapping of T into RL. Find an % ET,
- , . M |
aj < gj(x) < By, i=1,...,L, such that HE(x)N2 =] f£j(x)

i=1

1>

is minimized at x =

In the statement of problem CNLLS we emphasize that the functions
f(x) and g(x) are defined and differentiable for every xeT.
Problems for which f(x) is defined only when xeT and a' < g(x) < n'

are not included. The solutlon X will saticfy the bounds on g(x), 1f
possible, but g(x) may be evaluated at an arbitrary point xeT.

The following notation is used,

Xp X on the p-th iteration
fp f(f) on the p~-th iteration
9p g(f) on the p-th iteration
(2) Gp 8g/3§ on the p-th iteration
Jp 85/85 on the p-th iteration
Axp Xp = ¥p+l
ihe basic iteration, known as the (constrained) Gauss-Newton xmethod,
s rroblems

is given by the sequence of constrained linear least squa:e



x0€T is given

JPAxp'= fp

(3) subject to the linear constraints
[} [}
g-B <GAx <g -a

~

p P P P
and the simple bounds

X €T
-p !

p=0,l'2'--c

g

Probably the most chailenging aspect of developing an algorithm,
based on (3), is in making the method converge with good efficiency.
{Our notion of efficiency is based on the usual one, the number of
function and derivative evaluations, fp, Jpr 9p: and Gy, The cost
of the numerical linear algebra to solve the constrained linear least
squares problem of (3) is assumed to be less important than the cost
of evaluating these functions and derivotives.) It is frequently
true that the iteration (3) will fail to converge if HApo
is not restricted in some way. Too tight a restriction, however,
will decrease the efficiency.

We describe an algorithm for bounding HApo which (based on
performance) gives better efficiency, on the average, than the
MINPACK algorithm, [l]. Cur work has not yet resulted in a finished
software product. What we are reporting here is the fact that our
basic methods look promising.

It must be emphasized that even when Xp is «close to a solution,

the iteration (3) may be unacceptably slow or may not converge.
Cases A-D below must be separately considered. They can,; of course,
appear in any combination. We feel that our algorithn currently
performs reasonably in Case A.

A. The matrix Jp is full rank and lfyll+c*0. Both J fp and Axp con-
verge quadratically to zero. (g simple model 1s f(x)=sin x,
near x=0.)

B. The matrix J, is of full rank and lf,lisc3>0. TIteration (3) gives
only 1linear convergence to the solution. (A simple model
is fT(x)=(1+sin x, 2-eX), near x=0.)

C. At the solution Jp is not of full rank, but this does not
limit the amount Hf(f)“ can be reduced. Iteration (3)

converges linearly to the solution. (A simple model is f(x) =
x sin x, near x=0.)
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VD. At the solution Jp is not of full rank and this limits »_'t_;h__e

amount uf(x)n can be reduced. Iteration (3) does not con-

verge. (A simple model is f(x) = 1 + sindx, near x=0.)

We anticipate that in Part II of this report (not yet written) modi-
fications of the iteration (3) will be presented. These modifica-
tions will involve using (3) where .t is effective and higher order
terms where it is not. We believe that oir modified algorithm will
be efficient for all the cases except for case C when case D is also
present. We believe this combination is a rare event in the computa-
tions that will apply our methods.

Our current algorithm is effective cnly on problems where is a
constant matrix. We expect to modify the algorithm for nonlinear
constraints in Part II of this report.

Section 2 gives a broad outline of the algorithm and contrasts it to

the Levenberg-Marquardt method used, for example in MINPACK [1] and
the package NL2SOL [2]. Section 3 gives the details of our algorithm
and the rationale for various aspects of its design. Section 4 sum-
marizes our results on the test problems and contains some discussion
of the test set itself.

2. Outline of the Algorithm

In this section we summarize our approach for solving the non-
linear least squares problem of (l). The key to efficiency
is in accepting steps Axp for which nfpe1n > ufpn. Large moves
that increase uf(x)u are frequently good moves in the sense

that they get closer to the solution. 1In turn, this requires
logic so that the algorithm can retreat to its previous best
values if it senses that making these moves got it into trou-
ble. We provide logic for sensing trouble and for making the
retreat,

The algorithm begins with a user-given starting point, x,. ' An

N-dimensional box, B, is constructed that contains,xp. The

lengths of each dimension of B are chosen so that B remains in T
and HAXnll remains "reasonable." We will elaborate on
this below and in the next section.

There are five cases for altering these dimensions that we will
discuss in detail in Section 2. These cases are

l. Selecting the dimensions of B initially.

2. Selecting the dimensions after successive best values of
nf(x)n are obtained. :

3. Selecting the dimensions after finding a best value of
nf(x)n after a value that is not a best.



4. Selecting the dimensions after giving up and retreating to a
best valuerfor HE(x) 1. : ;

5. Selecting the dimensions afte;‘ obtaining a value for-
f(x)ll larger than the best obtained previously. '

The Levenberg-Marquardt nethod for soiving nonlinear least squares
problems (with no constraints) can be regarded as placing an ellip-
soidal trust region about each point xp. ~The MINPACK implementa-
tion [l1] of this method chooses the relative sizes of the axes of
this ellipsoid based on the column norms for Jp. This type of
scaling is appropriate when the error in each variable contributes
equally vo the residual, a condition that is fregquently . not
satisified.

Our algorithm uses adaptive scaling that depends on changes in the
individual components of X. Namely, the relative weights usea to

compute the future moves is approximated by the size of moves made
in the past. We tried column scaling using reciprocals of column
norms at successive best x values. Based on overall performance, we

prefer the adaptive scaling outlined above. A Levenberg-Marquardt
algorithm that uses our approach for column scaling could be
developed.

Briefly stated, our decision to retreat to a best value for
HE(x)Il is made in one of two ways:

1
l - = -
1. If Jprp fpﬂzz[uf(xBEST)u "JBEST BEST fBEST”]' AxpeB, we
retreat. If this condition is not satisfied, the linear approx-
imation is telling us that we still have reasonable expectation

~ for improvement, despite the fact that lf(x)!ll is large.

+ Ax

2. If Hf(f)u gets too large after a move from a best x value,
the initial move was probably too large. We retgéat if
I£pi>E, where E=2ifpll at the first step with lfpli>lifpjil.  This
allows an arbitrarily large increase on the first step; after
that Uf(x)lll is bounded. The final version of our algorithm
is not ;x;ected to require this condition.

The characteristics that we consider vital here are: An arbitrarily

large increase in If(x)Ill is tolerated; there is no ad hoc 1limit

on how many iterations will be taken before retreating; and retreat-
ing immediately if the residual to the current linear problem does
not hoid the prospect of an eventual new best.
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Our trnsﬁ,ré ion . anounts to a ehoice for the dimensians-ef the
box B that we place around Xige The dimensions of the bax-are

varied, roughly speaking, so that when the function*decteases
the dimensions increase. Otherwise the dimensions tené to
decrease.

We introduce the following 1list of variables that are used to
describe the details of the algorithm.

X t..e vector of independent variables at Step p, i.é.. Xpe.

Xj component i of x, i=l,...,N

83 change on the current iteration, i.e., component i of
AXP.

f function whose Euclidean length (least squares norm) is

being minimized.
Xp value of x from among all the previous Xp that gave the
minimum of ng(g)u; i.e., the "best" X.

fp smallest value of Nf(x)Il so far, fp=lf(xg)ll

f, value of Hf(xp-l)", last value for HE(x)I

fe value of Hf(xp)ll, current value for Hf(x)ll
bj  bound used in computing §;.
B; bound used in computing §; after a new best

k count of iterations since a new best. (Set to 0 to flag
initialization.) .

KASE if KASE>0 got a new best after KASE iterations. (Set to
0 for initialization; set to -1 when we retreat to best x.)

ci length of column i of the Jacobian matrix Jp.
o a scalar used in computing bj
P predicted value of f- based on solving the constrained

linear problem

boost, a boost factor for increasing the bounds Bj on suc-
cessive best x's.



—1 this ‘notation, we now describe our algarithm. The 1anguage we
f‘use ‘here is close to SFTRAN3, [3]. We first desnsribe the algorithm
~and follow this by some details about why we chose the specific fac-
‘tors to vary the trust region, The reader - is warned that some
~details of the algorithm given hére are obsolete even at this
writing. The results shown in Tables 1-4 do correspond to the
following algorzthm, however.

H-K-1 Algorithm for Nonlinear Least Squares

61 = O i-l,...'N
k =20
fB = o
P =0
retreat = ,false.
terminate = .false,
DO FOREVEK
IF (retreat) THEN
C We must retreat back to best x.
k =0
KASE = -1
f, = fp
X = Xp
Else
KASE = k

Xi = Xi - Gil i=l'oon,N
If (terminate) Exit from Algo;ithm

End if
Compute J, £, G, and g at x.

fc = nf(x)u
Test for convergence.

If (terminate) Exit from Algorithm
If (fc < fg) k = 0
If (k = 0) then

C We want to position at best x values.

fg = f¢



DO CASE (2-KASE, 3)
Case 1
We immediately got a new best x.

The following formula for a has the following effect.
If fo < P, then a = 1 + 1/ALFAC.

If f = P * £y, then a = 1,

If fa>>P * fL, then a4 = 0050
« = max(f& - P2,0)

a + P * (ALFAC + 1) * (£, - P)
%= 24 +P * ALFAC * (f )

ALFAC = 0.125 * (% + ALFAC)
boost = min((a+l)*boost, 1010)
Case 2
We are at the initial X.
ALFAC = 1/128
Do ForBi = 1,.04/N
% = -Xi

(B 1 0) then
If (cj # 0) then

Bj = -fc/cj
Else
By = -1
End If
End If
bj = Bj
End For
Xg = X
o = l
boost = 0.5
Exit from the "If (k = 0)" block.
Case 3

We are retreating to best x.



T Taw 0,128
- boost =-0.25
7 Casé’o§hér o
Mot immediately a beét,§.
a = 0.25
'ﬁoast”i 1

“ End Case

Do For i = 1,...,N
§i = !xp)i - Xj
If (6 = 0) then

bj = a*Bj
Elsge
(xp)i = xj
End 1€
Bj = by
End For
Else

The nonlinear residual ncrm is not a new best
ALFAC = 0.25

1f(k = 1) then
£f = 2%fc

B = (fp+P)/2
Else If (fco>f) then

The function norm is too big.
retreat = ,true.
cycle on "Do Forever® loop
End if
End if
a = (0.25%fc + 0.5*f1)/(fc + f1)
Do For i = 1,...,N

If (55 = 0) then
bj = a*bj

bj = a*SIGN(S{+Bj,8j) + boost*dj

it e G
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Compute the box, with ~each dimension defined
(Li,ui} that will be #+he trust regioa for the
problem, B e e L RV
Do For i = 1,.,,x
If (bi<0) then
i = b%,
uj = ~£;*(8/9)
Else

uj = by
L§ = uj*(8/9)

End If

Restrict the trust region bounds further if the user has
given bounds ~n the variables.

i = max (Lj, x§ - Bj)
u; = min (uj, x4 - af)

End For
If the user has given general conctraints, compute the

bounds (25, uj) for the constraint equations.
Do For j = lpoccyL
Lj= gy(x) - Bj
13 = 93(x) - aj
End For

Solvc linear least =quares prcolem {4] with bounds and
generals constraints to get 65, j = l....,N, and the
linear residual, vector length, 3.
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End if
End if
:fL = £

1f (o> F) then
__reirea_i; = ,true.

End if = . =
If (.not. retreat) thén

If (nAxpM is small and certain other

conditions are satisfied) then
terminate = .true.

Reduce bounds if the size of the move was well below what
was allowed

=0

Do For j = 1,...,N
t = 6j/b_.l
If (t > 0) then
o = max (o,t)
Else
0 = max (G,-(9/8)*t)
End If
End For 7

If (0 < 0.5) then
¢ = 2%

Do Fot j=l'.o.,N

End For 3
boos* = 1
End If

Ené Forever :




We close this section with some discussion of the reasons for our
choice of the dimensions of the box, B. These are cases 1-5 given
in Section 2. The algorithm tends to select slightly smaller bounds
for those components which are changing direction. The direction is
- set at the initial point as the sign of the value. For example, a
. variable with the value 1 can move to points in the interval

/9%, 2j.

1. Selecting the DRimengions of B Initially
If a variable is nonzero, we assume that its value is in the
approximate scale of a solution for this parameter. The user
should avcid nonzero initial guesses if this is not the case.
The dimension of the box, in this coordinate, is 17/9 the magni-
tude of the variable. If the variable is zero and c; # O,
we use an approximation to a single variable Gauss-Newton step.
This approximation assumes that the residual could be reduced to
zero with that component. This yields (17/9)ufeoi/cy as
the dimension of B. If ¢y = 0, we use the value of (17/9) for

the dimension in this coordinate. These bounds tend to be large,
especially if one were ¢to insist on a reduction in uf(x)ii.

We have not done much work on this choice of initial bounds.
Perhaps the choice should be symmetric in a relative sense for
examnple. More testirg of this could be done, and it is likely
that tuning would yield some improvements in the algorithm's
performance. The choice we made was guided by retaining simplic-
ity of implerentation. If a choice of a nonzero initial wvalue
is off scale 7y £>weral orders of magnitude, our algorithm may
be inefficient. We plan to make changes to the algorithm to
deal with this out-of-scale problem at a later time.

2. Selecting the Dimensions After Successjve Best Values of

HE(x)!l are obtained

Our principle for choosing the scale on the size of B is based
on past behavior. Specifically, the bounds are closely related

to the distance between adjacent values of x. There are three

further effects that we use to choose the dimensions. If the
step direction changes sign, we prefer smaller moves. Secondly,
if the function is exhibiting linear behavior on this move or
thirdly, follows a sequence of best x values, a boost in the size

of the step is desired.
Linear behavior is measured using the formulas

a = max(f@ - P2,0)
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Ta = (a + P*(ALE.C + 1)*(f, - P))/(2a + p*anrac*(f - P))

ALPAC = 0.125 * (1/a + ALPAC)
This formula has the following effect. If fc < P, then

a = 141/ALFAC. If f =P * f then a = 1. If f& >> P*fy, then
« =0.5 (One can think of Iint:ueases in a as neasuring more
linear behavior). The factor for boosting the bounds is updated
using the formula boost = min((a+l)*boost,1010), The for-

mula for updating the bounds is
(4) Bj = a*SIGN(5§;+Bj,8;) + boost*s;

The sign of B; is used to store the direction of the last-
step. Note that this fornula includes the three effects men-
tioned above. :

Sa ti io t ai Best lue of
HE{x)n After a Value that.is not a Best

The size of the move 1is based oun differences between best x
values using (4) with a = 1/4 and boost = 1. This choice was
based on performance. A conservative measure is used because a
new best was not immediately found.

It is important to use the difference between best x values

rather than the size of the individual moves. If adjaéént best
x values are smaller than moves taken, then there is nc benefit

Eo taking larace moves. On the other hand, if adjacent best x

values are significantly farther apart than the size of move;
taken, this is an indication that the large move can be allowed,

d R eatin 0o a
Best Value for Hnf(x)u

The logic for this case is the simplest of all. The dimensions
of the box, after retreating, are reduced using (4) with
a = 1/8 and boost = 1/4. Some reduction is required given
that a retreat took place. The values of 1/8 and 1/4 were
chosen based on performance with the test set. The move 3§
is the 1last move that resulted in a new best value for
nf(x)li, or the value used after adjusting from a previous

retreat.
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(5)

‘Selection the Dimension After Obtaining a Value for if(x)! Larger

In this case it is important that the size of the box should tend
to decrease. If the size decreases too much, however, our first
rule for retreating would take effect and waste the effort. The
formulas for the size of the bound in this case are aiven by

a = ((1/4)*fc + (1/2)*fL)/(fC + fL)

i

= d*{SIGN((1/4)*6i + Bigﬁi) + (3/4)*6i]. 61 £0

This formula has the following properties in each separate coor-
dinate of the box. If the move gave a good decrease in fc- and
the direction of the move is unchanged, then the dimencionr of the
box stays the same. If fc is a good decrease in the cpposite
direction, the box shrinks by 3/4. If fc significantly in-
creases and the move is in the same direction, the box shrinks
by 1/2. PFinally, if f£c significantly increases and the move
is in the opposite direction, the box is reduced by 3/8.

We emphasize here that it is not necessarily a bad move if the
value of fr increases but the linear residual P is still small.

Some Test Results for the New Algorithm

We developed our algorithm using the test set [5] for uncon-
strained nonlinear least squares problems. Having this set of
testing software was most appreciated by the authors. 1In this
section, we give the results of our algorithm compared +o the
MINPACK [l] codes for nonlinear least squares problems.

There are characteristics of some test problems that make com-
parisons hard to draw. PFor example certain problems, (8, 9, 10,
15 (10 by 10), 16 (N by N), N=10, 3C, 40) have more than one
local minimum. The authors of [5] claimed that a package they
tested, NLSQ2, failed on problem 10, second starting point. This
problem has N = 3 variables and M = 16 data values., 1In fact,
the result corresponds to a local minimum near x; = x3 = =, The
residual reported for this problem is the residual variance
obtained using the average of the data values. For the class of
algorithms being considered, we would not characterize any con-
vergence to a local ninimum as a failure.

17
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For these reasons, we present results in Tables 1 and 3 for the

H-K-1 and MINPACK codes for those problems that are directly
comparable. 1In particular, the points that the two codes con-
verge to are the same, and the convergence criteria are
(effectively) the same. The output flags INFO/H-K-1 and INFO/
MINPACK are defined below. Their values indicate the reasons why
each algorithm converged on each problem.

Tables 2 and 4 show the results of the H-K-1 and MINPACK codes

for those problems that have the same convergence criteria but
with different solution points obtained. Note that the distance
of the solution from the initial point is 1listed for both
solutions.

Reliability of software for nonlinear least squares has been
discussed in the evaluation paper ([6]. A reader may get the
impression from the paper that efficiency is not an issue in
evaluating code packages, only reliability. Obviously, effi-
ciency of the algorithm is important. One of us (Krogh) has been
concerned with applications involving multipoint boundary value
problems with modest sized systems of oidinary differential
equations. Each evaluation of the function and Jacobian matrix
requires the integration of the system over a long trajectory,
and the computation is expensive. In fact, this part of the
process dominates the linear algebra involved in the Levenberg-
Marquardt algorithm used to implement the Gauss-Newton method
{7]. For problems where the functions are cheap to evaluate, the
issue of efficiency in the linear algebra can become important.
Of course, reliability is important. The software should not say
that it has found a solution when it has not; it should not fail
because an intermediate point has a singular Jacobian matrix; it
should satisfy all of its claimed tests for convergenc2, etc.
It is necessary that a careful study of the output from a package
be made so that fair conclusions are obtained when one makes
comparisons. For example, all of the packages evaluated in [6]
converge to local minima; none of them guarantee that a global
minimum has been found. Thus, one cannot fault any algorithm
tested for finding one local mininum versus another. (One might
rrefer the algorithm that moves to the nearest min.) Dur view
is that performance should be compared only for those problems
that result in convergence to the same local min.

We used constraints only for problem 10. (Results are also given
without constraints.) Constraints used were: (a) nonnegativity
on the variables and (b) restricting the argument of the expo-
nential functions so that the value is within machine limits.
These constraints seem natural for this problem. From the point
of view of a user of nonlinear leas: squares software, one would
probably solve the problem without constraints at the outset.
Then after seeing the unsatisfactory results, constraints would
be applied. After this the usevr wculd have more confidence that
the desired minimum value had been obtained.
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We now give a list of meanings for the:output flag INFO. The
machine precision was n a 7.1 x .0-15 on a CDC 6600.

INFO/H=K-1 Meaning
2 Obtained a smail value for Hf(x)u. (Tolerance is
nl/2).
3 Obtained a minimum for nf(x)un.
Tests satisfied are:
(a) max(n,fg - p2)1/2 < .10-2*p
and (b) ufg - fcr < 10-2+fp
and {(c) "fC -,fLH - < fB*nl/Z
4 No projection of residual' into column space of
Jacobian matrix, i.e., P > fc. (Usually means
residval is pure noise.)
5 Axpli < n and retreat = .false.
6 nAxpn < (lon)*uxpu and retreat = .false.
INFO/MINPACK Meaning
1 Obtained a minimum for Hf (x)n
Test is:

fc < 1+ nl/z)*P

2 Haxph < (lOn)*“fBH

3 INFO/MINPACK = 1 and 2 are both satisfied

4 No projection of residual into column space of
Jacobian matrix. '

5 Obtained a small value for ”f(f)“' (Tolerance
iS‘nl/z).

The results listed in Tables 3 and 4 are only for the reader's
general information. No conclusions should be drawn from the
numbers. We plan to present algorithms that will solve the
problems 6, 7, 13, 14 and 15 in Part II of this report (not yet
written). We expect the performance of our algorithm to improve
most markedly for the nonsmall residual problems.



Interpretation of the results of Tables 1-2, with regard to

efficiency, can vary. For example, problems where the Jacobian
matrices are analytically available frequently have the property
that evaluating f(x) and 3f£/9x involve little more work than

evaluating £f(x) alone. In many applications these quantities

can be efficiently computed at the same time, and users often
will do so. 1In this case, the amount of work for each problem
would be proportional to the numbers NFEV in Tables 1-4. Under
this measure for efficiency, our new algorithm is (almost) uni-
formly doing a superior job since the function and Jacobian are

‘required at the same point. At the other extreme, in applica-

tions where the Jacobians are approximated by one-sided divided
differences, the amount of work for 23f/2x will be about N

times the work for'evaluating f(x). For this comparison we com-

pute WORK = NFEV + N*NJEV, summarized in Table 1 and 3. Using
this measure for work penalizes our performance because of the
fact that at each-iteration we evaluate both f(x) and df/0x.

Even under thes’é conditions we are generally performing in a
soperior manner withrregard to efficiency.

Th: problem listed under NPROB in the tables has either a blank,
a ' or a " by its number. These denote the standard starting
point, [5], 10 times it, or 100 times it, respectively.
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, i TABLE 1
| . : Comparable Results for Small Residual Problems

H-K-1 Algorithm o MINPACK .
NPROB N M NFEV NIAC** WORK INFO Final bn Norm NFEV NJAC WORK INFO Pinal n.u Norm
k 4 2 2 10 10 30 2 -0- 22 15 52 5 -0~
4 2 2 5 5 15 2 5.7 x 10~13 8 4 16 [ 1.28 x 10-12
4" 2 2 6 6 18 2 3.6 x 10-12 6 3 12 5 1.60 x 10-12
, 5 3 3 9 9 - 36 2 9.6 x 10-9 11 7 32 5 5.00 x 10~8
59 3 3 11 11 44 2 3.5 x 10-9 20 14 62 5 1.46 x 10~9
g 3 3 10 10 40 2 3.4 x 10-15 19 15 64 5 2.36 x 10-14
| 8 3 15 6 6 24 3 9.6635961 x 10-2 7 5 22 1 9.0635960 x 102
” 9 4 11 10 10 50 3 1.7536343 x 102 - 17 14 73 1 1.7535838 x 102
ﬁ 10 3 16 14 14 56 3 9.3779451 127 116 475 1 9.3779451
. 10° 3 16 45 45 180 3 9.3779453 1830 1479 6267 1 9.3779451
L * 10 3 16 16 16 64 3 9.3779452
, , *10° 3 16 26 26 104 3 9.3779453
W F*10" 3 16 26 26 104 3 9.3779470
| |11 6 31 7 7 - 49 3 4.7831216 x 10-2 8 6 4" 1 4.7829594 x 10~2
” I § L ¢ 31 iz 12 84 3 4.7829624 x 10-2 14 12 86 1 4.7829594 x 10-2
M | 11 6 31 15 is 105 3 4.7829939 x 10-2 16 14 100 1 4.7829594 x 10~2
| 1n s 31 7 7 70 3 1.1831146 x 10-3 . 8 6 62 1 1.1831146 x 10-3
Lo 9 31 12 12 120 3 1.1831173 x 10-3 21 16 165 1 1.1831146 x 10~3
.11 9 31 15 15 150 3 1.1831146 x 10-3 19 15 154 1 1.18331146 x 10-3
11 12 31 7 7 91 3 2.1731041 x 10-5 10 8 106 1 2.1731540 x 105
| 11 12 2 13 13 169 3 2.1731041 x 10-5 14 12 158 1 2.1731040 x 10~5
o1n* 12 31 16 16 208 3 2.1731041 x 10-5 k1 28 n 1 2.1731041 x 10~5
I © 3 10 7 7 28 2 8.1 x 109 7 5 22 s 3.37 x 10-10
. 16 10 110 20 20 220 2 5.7 x 10-12 12 6 72 s 6.82 x 10~8
.17 s 33 6 6 36 3 7.3925101 x 103 19 15 LY 1 7.3924926 x 10~3
, [ 18 11 65 11 11 132 3 2.0034984 x 10-1 17 12 149 1 2.0034404 x 10-1

W *Using Constraints
| : | . *SOne Jacobian evaluation could be subtracted from entries where INFO=2 in H-K-1 algorithm. This was not done.
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TABLE 3
! , Comparable Results for Non-Small Residual Problems

| H-K-1 Algorithm MINPACK .
. WROB R M NFEV NN WORK  INFO Final L, Norm NPEV NIAC WORK INPFO  Final L, Norm
| 1 s 10 3 3 18 6 2.236080 . 2 W 1 2.2360680
| 1* s so 3 3 18 6 6.7082039 P 2 14 1 6.7082039
| 6§ 4 4 15 15 15 2 4.73 x 1078 16 14 72 s 4.73 x 10”8
| 6 4 4 18 18 9% 2 7.39 x 108 19 17 8 s 7.39 x 10”8
& 4 4 22 22 10 2 2.86 x 1078 23 21 107 s 2.86 x 20°°
7 2 2 24 24 712 3 6.9988835 15 s 31 1 6.9988752
7 2 2 27 27 81 3 6.9988759 20 12 4 1 6.9988752
™ 2 2 24 34 102 3 6.9988873 25 17 59 1 6.9988752
13 2 10 25 5 15 3 1.1151794 x 10 22 11 43 1 1.1151779 x 10
1M & 20 30 30 150 3 2.9295444 x 102 240 222 1120 1 2.9295440 x 10
4 ¢ 20 37 37 185 3 2.9295439 x 102 so 38 202 1 2.9295428 x 10
M 4 20 37 37 185 3 2.9295446 x 10° 214 198 1006 1 2.9295443 x 10
18 1 8 1 1 2 s 1.8862380 2 1 3 4 1.8862380
1S 1 8 26 6 52 3 1.8842581 29 27 s 1 1.8842482
15" 1 8 44 44 88 3 1.8842575 47 45 92 1 1.8842482

L V.4
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