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ABSTRACT

T, new Gauss-Newton algorithm is presented for solving non-
linear least squares problems. The problem statement may
include simple bounds or more general constraints on the
unknowns. The algorithm uses a trust region that allows the
objective functi.on to increase with logic for retreating to
best values. The computations for the linear problem are
done using a least squares system solver that allows for
simple bounds and linear constraints. The trust region
limits are defined by a box around the current point. In
its current form the algorithm is effective only for prob-
lems with small residuals, linear constraints and dense
Jacobian matrices. Results on a set of test problems are
encouraging.

t The research of this author was carried out at the Jet Pro-
pulsion Laboratory, California Institute of Technology,
under contract with the National Aeronautics and Space
^dministration.	
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Introduction

The constrained nonlinear least squares problem which we consider is
stated as follows.

Problem CALLS

Let f(x) be a differentiable mapping of a rectangular

domain T = {x:aj < x j < l3j, j = 1, ... ,N} into RM , and g(x)

(1) be a differentiable mapping of T into R L . Find an x e T,

M	 2
a i < gi(x) < f3i, i=1,...,L, such that IIf (x) 11 2 =	 fi(x)

i=1	 ~
is minimized at x =_x.

In the statement of problem CNLLS we emphasize that the functions
f(x) and g(x) are defined and differentiable for every 	 xeT.
Problems for which f(x) is defined only when xeT and a' < g(x) <'

are not included. The solution x will satisfy the bounds on -g(x), if

possible, but g(x) may be evaluated at an arbitrary point xeT.

The following notation is used,

xp x on the p-th iteration

fp f(x) on the p-th iteration

gp g(x) on the p-th iteration

(2)	 Gp ag/ax on the p-th iteration

Jp of/ax on the p-th iteration

Axp xp - Xp+l

he basic iteration, known as the (constrained) Gauss-Nekton method,
is given by the sequence of constrained linear least squares r:rolems



JpAxp  
f 

	(3)	 subject to the linear constraints

g -8 < G Ax < g - a
p	 P P	 P

and the simple bounds

	

-"	 wT,

_ -- }sue

	

^^T	 p=0,1,'1,...

Probably the most challenging aspect of developing an algorithm,
based on (3), is in making the method converge with good efficiency.
{pur notion of efficiency is based on the usual one, the number of
function and derivative evaluations, fp, Jp, gp, and Gp. The cost
of the numerical linear algebra to solve the constrained linear least
squares problem of (3) is assumed to be less important than the cost
of evaluating these functions and derivo tives.) It is frequently
true that the iteration (3) will fail to converge if IlAxpii
is not restricted in some way. Too tight a restriction, however,
will decrease the efficiency.

We describe an algorithm for bounding 11Axp11 which (based on
performance) gives better efficiency, on the average, than the
MINPACK algorithm, [1]. Cur work has not yet resulted in a finished
software product. What we are reporting here is the fact that our
basic methods look promising.

It must be emphasized that even when xp is close to a solution,

the iteration (3) may be unacceptably slow or may not converge.
Cases A-D below must be separately considered. They car.; of course,
appear in any combination. We feel that our algorithms currently
performs reasonably in Case A.

A. The matrix Jp is ,full rank and ► If pp i l-^c !0. Both J^fp and Axp con-
verge quadratically to zero. 	 (A simple model is f(x)=sin x,
near x=0.)

B. The matrix Jp is of full rank and 11fp11^c=>0. Iteration (3) gives
only linear convergence to the solution. (A simple model
is fT (x)=(l+sin x, 2-e x ), near x=0.)

C. At the solution Jp is not of full rank, but this does not
limit the	 amount 11f(x)11 can 	 be reduced.	 Iteration (3)

converges linearly to the solution. 	 (A simple model is f(x)
x sin x, near x=0.)

6
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D. At the solution Jp is not of full rank and this limits the
amount Nf(x)u can be reduced.	 Iteration (3) does not con-

verge. (A simple model is f(x) - 1 + sin4x, near x=0.)

we anticipate that in Part II of this report (not yet written) modi-
ficationa of the iteration (3) will be presented. These modif ica-
tions will involve using (3) where it is effective and higher order
terms where it is riot. We believe that oi.r modified algorithm will
be efficient for all the cases except for rase C when case D is also
present. We believe this combination is a rare event in the computa-
tions that will apply our methods.

our current algorithm is effective only on problems where Gp is a
constant matrix. We expect to modify the algorithm for nonlinear
constraints in Part II of this report.

Section 2 gives a broad outline of the algorithm and contrasts it to
the Levenberg -Marquardt method used, for example in MINPACK [1) and
the package NL2SOL [2]. Section 3 gives the details of our algorithm
and the rationale for various aspects of its design. Section 4 sum-
marizes our results on the test problems and contains some discussion
of the test set itself.

2. Outline of the Algorithm

In this section we summarize our approach for solving the non-
linear least squares problem of (1). The key to efficiency
is in accepting steps Axp for which ;ifp+1 11 > ufpn. Large moves
that increase iif(x)n are frequently good moves in the sense

that they get closer to the solution. In turn, this requires
logic so that the algorithm can retreat to its previous best
values if it senses that making these moves got it into trou-
ble. We provide logic for sensing trouble and for making the
retreat.

The algorithm begins with a user-given starting point, x 0 . An

N-dimensional box, B, is constructed that containsxp . The

lengths of each dimension of B are chosen so that B remains in T
and iiAxpii remains "reasonable." We will elaborate on
this below and in the next section.

There are five cases for altering these dimensions that we will
discuss in detail in Section 3. These cases are

1. Selecting the dimensions of B initially.

2. Selecting the dimensions after successive best values of
ii f (x)11 are obtained.

3. Selecting the dimensions after finding a best value of
li f (x) il after a value that is not a best.



4. Selecting the dimensions after giving up and retreating to a
best value for Il f (x) I1.

5. Select;ng the -dimensions after obtaining a value far-
11 f(x)11 larger than the best obtained previously.

The Levenberg-Marquardt Method for so'cving nonlinear least squares
problems (with no constraints) can be regarded as placing an ellip-
soidal trust region about each point x `The MINPACK implementa-
tion (3] of this method chooses the relative sizes of the axes of
this ellipsoid based on the column norms for Jp. This type of
scaling is appropriate when the error in each variable contributes
equally to the residual, a condition that is frequently -not
satisified.

Our algorithm uses adaptive scaling that depends on changes in the
individual components of x. Namely, the relative weights used to

compute the future moves is approximated by the size of moves made
in the past. We tried column scaling using reciprocals of column
norms at successive best x values. Based on overall performance, we

prefer the adaptive scaling outlined above. A Levenberg-Marquardt
algorithm that uses our approach for column scaling could be
developed.

Briefly stated, our decision to retreat to a best value for
11 f(x)11 is made in one of two ways:

1. If ' I Jp xp- fp ll> 
2 

f ^^ f 
(xBEST) if + il`7BEST^xBEST- 

!
BEST it ] '

 Ax e eB , WP.

retreat. If this condition is not satisfied, the linear approx-
imation is telling us that we still have reasonable expectation
for improvement, despite the fact that 11f(x)11 is large.

2. If 11f(x)11 gets too large after a move from a best x value,

the initial move was probably too large.	 We retreat if

ilfpll>f, where f=211fpll at the first step with llfpll >llfp-ll1.	 This
allows an arbitrarily large increase on the first step; after

that llf(x)ll is bounded.	 The final version of our algorithm

is not expected to require this condition.

The characteristics that we consider vital here are: An arbitrarily
large increase in 11f(x ) 1i is tolerated; there is no ad hoc limit

on how many iterations will be taken before retreating; and retreat-
ing immediately if the residual to the current linear problem does
not hold the prospect of an eventual new best.

8



Roam
6F qW-1 ININ

a 	 -	 _i	 je	 "t to	 33.	 Th -neon :in
define _ the treat E,.e	 n.,.^._

Our trust region amounta to a choice for the dimensions of the
box a' '-weace around x	 The	 dimensions - of	 the box are

varied,	 roughly speaking,	 so that when the function `decreases
the dimensions increase.	 Otherwise	 the	 dimensions	 tend' to_
decrease.

we introduce the following list of variables that are used to
describe the details of the algorithm.

x t.:e vector of independent variables at Step p : i.e., xp.

xi component i of x,	 i=1,...,N

Si change	 on the	 current	 iteration,	 i.e.,	 component	 i of
Axp-

f function whose	 Euclidean	 length	 (least	 squares	 norm) is
being minimized.

r 
_ xB value of x from among all the previous xp that gave the

f II f (	 ) II	 th	 "b	 t'minimum o	 - x ; i.e.,	 a	 es	 ft.

fB	 smallest value of !If (x) it so far, fBC llf ( xB ) II

fL	 value of II f (xp_ 1 ) Ii, last value for Ilf (x) II

fC	 value of Ilf (xp) II, current value for Ilf (x) II

bi bound used in computing di.

Bi bound used in computing di after a new best

k

	

	 count of iterations since a new best. (Set to 0 to flag
initialization.)

KASE if KASE> 0 got a new best after RASE iterations. (Set to
0 for initialization; set to -1 when we retreat to best x.)

ci	 length of column i of the Jacobian matrix Jp,

a	 a scalar used in computing bi

P

	

	 predicted value of fC based on solving the constrained
linear problem

boost, a boost factor for increasing the bounds Bi on suc-
cessive best x's.



i a-atI, n,`we now descrfbe our algorithm. The language we
use - here is clone to SFTRAN3, (3I	 We first describe the algorithm
and follow this bFsome details about why we chosa the specific fac-
tors to vary the trust region: The reader` is warned that some

-details of the algorithm, given here are obsolete even at this
writing. The results_ shown in Tables 1-4 do correspond to the
following algorithm, however.

H-K-1 Algorithm for Nonlinear Least Squares

di = 0, 1=1,...,N
k = 0
fB =
P = 0
retreat	 = .false.
terminate = .false.

DO FOREVER
IF (retreat) THEN

C	 We must retreat back to best x.

k	 = 0
KASE _ -1
fL	 fB
x	 = xB

Else
RASE = k
xi = xi - di, i=1,...,N

If (terminate) Exit from Algorithm

End if
Compute Jr f, G. and g at x.

fC = ► i f (x) n
Test for convergence.

If (terminate) Exit from Algorithm

If (fC < fB ) k - 0

If (k = 0) then

C	 We want to position at best x values.

fB - fC

10



C	 If f8 - P * fL , then x = 1.

C	 If f8» P * fL , then a	 O.S.
a = max(f8	 P2,0)

a + P * (ALFAC + 1) *-(f  L	 P)
a	 2a +  P * ALFAC *( f L P)

ALFAC - 0.125 * (u + ALFAC)

boost - min((a+l)*boost, 1010)

Case 2

C	 We are at the initial x.

ALFAC - 1/128

Do For i - 1,...,N
Bi = -xi
If (Bi - 0) then

If (ci	 0) then
Bi = -fC/ci

Else
Bi = -1

End I f
End If
bi - Bi

End. For
xB=x
a1^
boost	 0.5
Exit from the "If ( k - 0)" block.
Case 3

C	 We are retreating to best x.



FT

Do For i

S i _ 'XB) i	 xi

If (Si	 0) then
bi	 a*Bi

Else
bi	 ac*SIGN(Si+Bi,S i ) + boost*Si
( XB)i = xi

End If
Bi = bi

End For
Else

C	 The nonlinear residual nc-m is not a new best
ALFAC 0.25

If (k

	

	 1) than
f = 2*fC

P - ( fg+P)/2
Else If (fC>f) then

The function norm is too Dig.

retreat - .true.

cycle on "Do Forever" loop

End i f

End if

a - (0.25*fC + 0.5*fL)/(fC + fL)

Do For i = 1,.9.,N
If (di	 0) then

bi = a*bi

12



ai - max (Li t xi-Si)
ul - min Wi t xi - ai)

End For

C	 if the user has givers general constraints, compute the

C	 bounds (Lj, uj) for the constraint equations.

Do For j - 1,...,L

1j= g j (x) - Si

u j - gj(x) - aj

End For

C	 Solvc linear least squares prc.)lem 141
C	 generals constraints to get 6k j =
C	 linear residual, vector length, .

with bounds and
1....,N, and the



If (P > P) then

retreat - .true.

End if

If (.not. retreat) thC-n

If (11dxp11 is small and certain other
conditions are satisfied) then

terminate = . true.

End if

End if
f  = f 

C	 Reduce bounds if the size of the move was well below what
C	 was allowed

a = 0

Do For j = 1, ... ,N

t = dj/b.
I

If (t > 0) then

a = max (a, t)

Else

o = max (6,-(9/8^*t)

End If

End For

If (a < 0.5) then

a = 2 *a

Do For j = 1,...,N

bj = a *bj

If (k = 1) Bj = bi

End For

boos* = 1

End If

End Forever

14



We close this section with some discussion of the reasons for ouz
choice of the dimensions of the box, 8. These are cases 1-5 given
in Section 2. The algorithm tends to select slightly smaller bounds
for those components which are changing direction. The direction is
set at the initial point as the sign of the value. For example, a

- - variables with the value 1 can move to points in the interval
[119, 2l •

10 Selecting the Dimensions of B Initially

If a variable is nonzero, we assume that its value is in the
approximate scale of a solu •;:ion for this parameter. The user
should avcid nonzero initial guesses if this is not the case.
The dimension of the box, in this coordinate, is 17/9 the magni-
tude of the variable. If - the variable is zero and ci # 0,
we use an approximation to a single variable Gauss-Newton step.
This approximation assumes that the residual could be reduced to
zero with that component. This yields (17/9)iifcii/ci as
the dimension of B. If ci - 0, we use the value of (17/9) for
the dimension in this coordinate. These bounds tend to be large,
especially if one were to insist on a reduction in ttf(x)ii.

We have not done much work on this choice of initial bounds.
Perhaps the choice should be symmetric in a relative sense for
example. More testing of this could be done, and it is likely
that tuning would yield some improvements in the algorithm's
performance. The choice we made was guided by retaining simplic-
ity of implementation. If a choice of a nonzero initial value
is off scale y ar%veral orders of magnitude, our algorithm may
be inefficient. We plan to make changes to the algorithm to
deal with this out-of-scale problem at a later time.

2. Selecting the Dimensions After Successive Best values of

►i f (x) ii are obtained

our principle for choosing the scale on the size of B is based
on past behavior. Specifically, the bounds are closely related
to the distance between adjacent values of x. There are three

further effects that we use to choose the dimensions. If the
step direction changes sign, we prefer smaller moves. Secondly,
if the function is exhibiting linear behavior on this move or
thirdly, follows a sequence of best x values, a boost in the size

of the step is desired.

Linear behavior is measured using the formulas

u = max (f8 - P2 ,0 )



-- ct - (a + P* (ALZ-.-.0 + 1) * (fL - P))/(2a + P*ALFAC* (fL - P) )

ALFAC 0.125 * (1/a + 	 AC)

This formula has the following effect. If fC < P, then

a = 1+l/ALFAC. If f8 - P * fLL, then a - 1. If fZ » P*fL, then
a = 0.5 (One can think of increases in a as measuring more
linear behavior). The factor for boosting the bounds is updated
using the formula boost - min((a+l)*boost,I0 10). The for-
mula for updating the bounds is

(4)	 Bi - a*SIGN(di+Bi,di) + boost*di

The sign of Bi is used to store the direction of the last
step. Note that this formula includes the three effects men-
tioned above.

3. Selecting the Dimensions After Finding a Best Value of

11f(x)11 After a Value that is not a Best

The size of the move is based on differences between best x

values using (4) with a - 1/4 and boost = 1. This choice was
based on performance. A conservative measure is used because a
new best was not immediately found.

It is important to use the difference between best x values

rather than the size of the individual moves. If adjacent best
x values are smaller than moves taken, then there is no benefit

to taking large moves. On the other hand, if adjacent best x

values are significantly farther apart than the size of moves
taken, this is an indication that the large move can be allowed.

4. Selecting the Dimensions After Givina Uo and Retreating to a

Best Value for 11f(x)11

The logic for this case is the simplest of all. The dimensions
of the box, after retreating, are reduced using (4) with
u = 1/8 and boost - 1/4. Some reduction is required given
that a retreat took place. The values of 1/8 and 1/4 were
chosen based on performance with the test set. The move Si
is the last move that resulted in a new best value for
nf(x)ii, or the value used after adjusting from a previous

retreat.

16



5. Selection the Dimension After obtaining a Value for 11f (x)11 Larger
^I -

than the Best Obtained Pravi R"

In this case it is important that the size of the box should tend
to decrease. If the size decreases too much, however, our first
rule for retreating would take effect and waste the eftsrt- The
formulas for the size of the bound in this case are given b:

a = ( (1/4) *fC + (1/2) * f L ) / (fC + f L )

(5)	 Bi - a*B i , if i t - 0

= a*;SIGN((1/4)*4 i + B i ts i ) + (3/4)*5 i l Or 61 # 0

This formula has the following properties in each separate coor-
dinate of the box. if the move gave a good decrease in f C and
the direction of the move is unchanged, then the dimenc : on of the
box stays the same. if fC is a good decrease in Olt t-pposite
direction, the box shrinks by 3/4. If fC significantly in-
creases and the move is in the same direction, the box shrinks
by 1/2. Finally, if fC significantly increases and the move
is in the opposite direction, the box is reduced by 3/8.

We emphasize here that it is not necessarily a bad move if the
value of fC increases but the linear residual P is still small.

4. Some Test Results for the New Algorithm

We developed our algorithm using the test set [5] for uncon-
strained nonlinear least squares problems. Having this set of
testing software was most appreciated by the authors. rn this
section, we give the results of our algorithm compared }o the
MINPACR [1] codes for nonlinear least squares problems.

There are characteristics of some test problems that make com-
parisons hard to draw. For example certain problems, (8, 9, 10,
15 (10 by 10), 16 (N by ,N), N-10, 3C, 40) have more than one
local minimum. The authors of (5) claimed that a package they
tested, NLSQ2, failed on problem 10, second starting point. This
problem has N - 3 variables and M - 16 data values. In fact,
the result corresponds to a local minimum near x2 - x 3 - OD. The
residual reported for this problem is the residual variance
obtained using the average of the data values. For the class of
algorithms being considered, we would not characterize any con-
vergence to a local jainimum as a failure.

17



For these reasons, we present results Tables 1 and 3 for the
H-K-1 and MINPACK codes for those problems that are directly
comparable. In particular, the points that the two codes con-
verge to are the same, and the convergence criteria are
(effectively) the same. The output flags INFO/H-K-1 and INFO/
MINPACK are defined below. Their values indicate the reasons why
each algorithm converged on each problem.

Tables 2 and 4 show the results of the H-K-1 and MINPACK codes
for those problems that have the same convergence criteria but
with different solution points obtained. Note that the distance
of the solution from the initial point is listed for both
solutions.

Reliability of software for nonlinear least squares has been
discussed in the evaluation paper [6]. A reader may get the
impression from the paper that efficiency is not an issue in
evaluating code packages, only reliability. Obviously, effi-
ciency of the algorithm is important. One of us (Krogh) has been
concerned with applications involving multipoint boundary value
problems with modest sized systems of ordinary differential
equations. Each evaluation of the function and Jacobian matrix
requires the integration of the system over a long trajectory,
and the computation is expensive. In fact, this part of the
process dominates the linear algebra involved in the Levenberg-
Marquardt algorithm used to implement the Gauss-Newton method
[7]. For problems where the functions are cheap to evaluate, the
issue of efficiency in the linear algebra can become important.
Of course, reliability is important. The software should not say
that it has found a solution when it has not; it should not fail
because an intermediate point has a singular Jacobian matrix; it
should satisfy all of its claimed tests for convergence, etc.
It is necessary that a careful study of the output from a package
be made so that fair conclusions are obtained when one makes
comparisons. For example, all of the packages evaluated in [6]
converge to local minima; none of them guarantee that a global
minimum has been found. Thus, one cannot fault any algorithm
tested for finding one local minimum versus another. (One might
prefer the algorithm that moves to the nearest min.) Our view
is that performance should be compared only for those problems
that result in convergence to the same local min.

We used constraints only for problem 10. (Results are also given
without constraints.) Constraints used were: (a) nonnegativity
on the variables and (b) restricting the argument of the expo-
nential functions so that the value is within machine limits.
These constraints seem natural for this problem. From the point
of view of a user of nonlinear leas:t squares software, one would
probably solve the problem without constraints at the outset.
Then after seeing the unsatisfactory results, constraints would
be applied. After this the user would have more confidence that
the desired minimum value had been obtained.

18



We now give a list of meanings for the output flag INFO. The
machine precision was n 7.1 x 2.0-15 on a CDC 6600.

INFO/H-K-1	 Meaning

2	 Obtained a small value for tif(x)Ct. 	 (Tolerance is

n l/2 ) .

3	 Obtained as minimum for of (x) II.

Tests satisfied are:

(a) max(0;fJ- F2 ) 1/2 < ,10-2*p
and (b) tifg	 fCII	 < 10-2* f$
and (c) ItfC	 fL lt	 < fg*nl/2

4	 No projection of residual into column space of
Jacobian matrix, i.e., P > fC .	 (Usually means
residual is pure noise.)

5	 I ► AxpII < n and retreat - .false.

6	 uAxprt < (l0n) *IlxpII and retreat = .false.

INFO/MINPACK	 Meaning

1	 Obtained a minimum for of (:c) II

Test is:
fC < ;1 + nl/2)*p

2	 IIAxpII < (10n) *Iixgll

3	 INFO/MINPACK = 1 and 2 are both satisfied

4

	

	 No projection of residual into column space of
Jacobian matrix.

5

	

	 Obtained a small value for i ► f(x) ► I. (Tolerance
is n l/2) .

The results listed in Tables 3 and 4 are only for the reader's
general information. No conclusions should be drawn from the
numbers. We plan to present algorithms that will solve the
problems 6, 7, 13 1 14 and 15 in Part II of this report (not yet
written). We expect the performance of our algorithm to improve
most markedly for the nonsmall residual problems.



Interpretation of the results of Tables _1-2, with regard to
efficiency # can vary. For example, problems where the Jacobian
matrices are analytically available frequently have the property
that evaluating f(x) and of/ax involve little more work than
evaluating f(x) alone. In many applications these quantities

can be efficiently computed at the same time, and users often
will do so. in this case, - the amount of work for each problem
would be proportional to the numbers NFEV in Tables 1-4. Under
this measure for efficiency, our new algorithm is (almost) uni-
formly doing a superior job since the function and Jacobian are
required at the same point. At the other extreme, in applica-
tions where the Jacobians are approximated by one-sided divided
differences, the amount of work for of/ax will be about N
times the work for evaluating f(x). For this comparison we com-

pute WORK - NFEV + N*NJEV, - summarized in Table 1 and 3. Using
this measure for work penalizes our performance because of the
fact that at each---iteration we evaluate both f(x) and if/ax.

Even under these conditions we are generally performing in ~a
superior manner with regard to efficiency.

Th= problem listed under NPROB in the tables has either a blank,
a ' or a " by its number. These denote the standard starting
point, [5], 10 times it, or 100 times it, respectively.
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