TO: NIT-44/Scientific and Technical Information Division
 Attn: Shirley Peigare

FROM: GP-4/Office of Assistant General Counsel
 for Patent Matters

SUBJECT: Announcement of NASA-Owned U.S. Patents in STAR

In accordance with the procedures agreed upon by Code GP-4 and Code NST-44, the attached NASA-owned U.S. Patent is being forwarded for abstracting and announcement in NASA STAR.

The following information is provided:

U.S. Patent No. : 4,404,469
Issue Date : Sept. 13, 1983

Government or Contractor Employee: U.S. Gov't

NASA Case No. : GSC-12,640-1

NOTE - If this patent covers an invention made by a contractor employee under a NASA contract, the following is applicable:

YES [] NO [X]

Pursuant to Section 305(a) of the National Aeronautics and Space Act, the name of the Administrator of NASA appears on the first page of the patent; however, the name of the actual inventor (author) appears at the heading of Column No. 1 of the specification, following the words "...with respect to an invention of...."
A multi-pinhole aperture lead screen (22) forms an equal plurality of invisible mini-images having dissimilar perspectives of an x-ray and gamma-ray emitting object (ABC) onto a rear-earth phosphor layer (24) which, in turn, provides visible light mini-images directly into a visible light image intensifier (26). A viewing screen (34/48) having an equal plurality of dissimilar perspective apertures distributed across its face in a geometric pattern identical to the lead screen, provides a viewer with a real, pseudoscopic image (A'B'C') of the object with full horizontal and vertical parallax. Alternatively, a third screen (34) identical to the viewing screen (48) and spaced apart from a second visible light image intensifier (42), may be positioned between the first image intensifier (26) and the viewing screen (48), thereby providing the viewer with a virtual, orthoscopic image (A''B''C'') of the object (ABC) with full horizontal and vertical parallax.

19 Claims, 4 Drawing Figures
REAL-TIME 3-D X-RAY AND GAMMA-RAY VIEWER

ORIGIN OF THE INVENTION

The inventor described herein was made by an employee of the United States Government and may be manufactured and used by or for the Government for governmental purposes without the payment of any royalties thereon or therefor.

TECHNICAL FIELD

This invention pertains to invisible radiant energy imaging and, more particularly, to conversion of x-rays and gamma-rays emitted by an object into visible autostereoscopic, images of the object in real-time.

BACKGROUND ART

The contributions of modern physics have increased the availability of radioactive x-ray and gamma-ray emitting materials in industry and nuclear medicine. As radioactive emission principally occurs outside of the visible part of the electromagnetic spectrum, an unaided human observer is unable to "see" a source of radioactive emission. It is difficult, therefore, to distinguish a source of x-ray and gamma ray emission from non-emitting neighboring and visually similar objects. Various techniques exist to locate a source of radioactive emission. One technique requires trial and error search with a Geiger counter. Another technique uses a scintillation detector. The information provided by these techniques is limited to the intensity and location of radioactive emission, and reveals nothing about the shape of a radioactive object or the distribution of radioactivity within the object. An x-ray camera formed by placing x-ray sensitive film behind a pinhole in an x-ray shield merely provides a recording of a two-dimensional facsimile of an x-ray or gamma-ray emitting object in one perspective. The facsimile can be viewed only after a delay for processing of the film. Furthermore, a single pinhole aperture camera is rendered extremely inefficient by the minute aperture of the pinhole.

Other, existing x-ray or gamma-ray cameras employ either parallel or converging collimators to bring an essentially parallel beam projection of a radioactive object onto a detector. The detector may be in the nature of a film, a scintillator, or a phosphor material which converts x-rays and gamma-rays into visible light. The visible light generated, together with positional information, is then processed by any of a wide variety of methods using such devices as photomultiplier tubes (e.g., Anger cameras), image intensifiers, visible light cameras, video cameras, and centroid-computing electronics in various combinations. Without the additional steps of making successive exposures and subsequent reconstructions, a particular object-to-camera geometry provides only a two-dimensional single perspective image of an x-ray or gamma-ray emitting object. Although a stereoscopic pair of such cameras may be used to obtain a stereoscopic pair of images which, upon reconstruction, provide a stereoscopic view of a single perspective of an object, that view lacks full horizontal and vertical parallax.

An earlier invention, a low intensity x-ray image scope ("Lixiscope") disclosed in U.S. Pat. No. 4,142,101, is a fully portable, hand-held device which provides an intensified visible-light image of objects illuminated with point sources of x-rays or gamma-rays. It uses an x-ray to visible-light converter to drive a visible-light image intensifier having one or more microchannel plate electron multipliers. The Lixiscope provides a viewer with a visible shadow, in real time, of the illuminated objects.

STATEMENT OF THE INVENTION

Accordingly, it is an object of this invention to provide a device giving visible, three dimensional images with both horizontal and vertical parallax of x-ray and gamma-ray emitting objects.

It is another object to provide a device giving visible, three dimensional images with both horizontal and vertical parallax in real-time of x-ray and gamma-ray emitting objects.

It is yet another object to provide a device giving visible, three dimensional images in a single step with both horizontal and vertical parallax of x-ray and gamma-ray emitting objects.

It is another object to provide a device giving visible, three dimensional, real pseudo-sopic images with horizontal and vertical parallax in real-time of x-ray and gamma-ray emitting objects.

It is a further object to provide a device giving visible, autostereoscopic, virtual orthoscopic images in real-time of x-ray and gamma-ray emitting objects.

It is another object to provide a device giving visible, autostereoscopic images of true size of x-ray and gamma-ray emitting objects.

It is a yet further object to provide a device giving directly viewable, autostereoscopic images of true size of x-ray and gamma-ray emitting objects.

Briefly, these and other objects are achieved with a device having a pair of multiple-pinhole aperture plates held spaced apart from the opposite ends of an x-ray to visible-light converter mated to a visible-light image intensifier. When the output of the image intensifier is viewed through the second aperture plate, this device provides real three dimensional, pseudoscopic (i.e., reversed depth) images of x-ray and gamma ray emitting objects in real time. The images possess both horizontal and vertical parallax with a reasonably large field of view. Alternatively, the device may be modified to incorporate a second visible-light image intensifier equidistantly spaced between the second aperture plate and a third multiple-pinhole aperture plate aligned with the pinholes of the first aperture plate. When the output of the second image intensifier is viewed through the third aperture plate, the modified device provides virtual, three dimensional, orthoscopic (i.e., true depth) images also possessing horizontal and vertical parallax over a large field of view, during real time.

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete appreciation of this invention, and many of the attendant advantages thereof, will be readily apparent as the same becomes better understood by reference to the following detailed description when considered in conjunction with the accompanying drawings in which like reference symbols indicate the same or similar components, wherein.

FIG. 1 is a schematic representation of the principle of three dimensional imaging of an object.

FIG. 2 is a block diagram showing the functional elements of one embodiment of the invention.
FIG. 3 is a schematic representation of the principle of producing an orthoscopic three dimensional image of an object.

FIG. 4 is a block diagram showing the functional elements of an alternative embodiment of the invention.

DETAILED DESCRIPTION OF THE DRAWINGS

Refer now to the drawings and, in particular, to FIG 1 where a pinhole screen analogy illustrates the principle of three dimensional imaging used in the present invention. A x-ray or gamma-ray emitting object ABC is situated in front of a screen S containing a multiplicity of pinhole apertures spaced apart in a planar array. Screen S is made of a material otherwise impervious to x-rays and gamma-rays. A non-inverting x-ray imaging detector D1 is placed in position with its input surface at the input plane of screen S, parallel to and a short distance from the right of screen S, to convert x-ray and gamma-ray images into intensified visible light images at unity magnification. Each pinhole individually operates as a pinhole camera. By using pinholes P1 and P2 as an exemplary pair, two inverted x-ray mini-images abc of object ABC form on the receiving or input surface of detector D1. These mini-images are converted into intensified visible-light images abc at the emitting or output surface of detector D1. The separations between adjacent pinholes P1 and P2 and between S and D1 are chosen so that the mini-images abc do not significantly overlap each other. A second screen, S', is positioned at the same distance from the output surface of detector D1 as screen S is from the input surface of detector D1. Screen S' contains a plurality of pinhole apertures distributed across its surface in a planar array preferably identical to and aligned with the array of pinholes in screen S. Screen S' is made from a material opaque to visible light.

When viewed through pinholes P1 and P2, spatially corresponding to and aligned with pinholes P1 and P2, the mini-images abc will form a visible light reconstruction A'B'C' of the x-ray or gamma-ray emitting object ABC. The reconstructed image A'B'C' is a real image situated in front of screen S' toward the viewer, with a magnification of unity. Although the image A'B'C' is an upright image, it is pseudoscopic, that is, the depth of the object ABC is reversed when viewed through screen S toward the viewer, with about the same separation from screen S as object ABC is from screen S2. The depths of object ABC may be magnified without disturbing its lateral dimensions by moving viewing screen S farther from emitting surface S2 of intensifier 26. Screen S2 may be fixed in its separation from converter layer 24 by a glass or plastic spacer (not shown) which also serves as support for screen S2.

Together, x-ray and gamma-ray to visible light converter 24 and visible-light image intensifier 26 perform the function of detector D1 of FIG. 1 while screens S2 and S4 serve as screens S and S', respectively. With an image intensifier 26 producing a non-inverted image of unity magnification, both the orientation and size of the incident mini-images abc arriving at the detector input surface S2 of image intensifier 26 are preserved at the output surface S3, however, at the emitting surface S2, they are in the form of intensified visible light mini-images Mini-images abc are in FIG 1 therefore represent both the input and output of x-ray imaging detector D1.

Turning now to FIG. 3, a schematic of another pinhole screen analogy shows that an orthoscopic image of an x-ray or gamma-ray emitting object ABC may be obtained utilizing the principle illustrated in FIG. 1 by the additional step of performing a point-by-point inversion of mini-images abc. It is to be noted that a collective inversion of the mini-images abc will not provide an orthoscopic image. It is therefore, necessary to make a point-by-point inversion of mini-images abc from the output of detector D1 to obtain the desired orthoscopic image A''B''C'' from mini-images a'b'c'. This step may
be performed by placing a second non-inverting, visible light image intensifier \(D_2 \) approximately the same distance from the screen \(S' \) as the detector \(D_1 \) is from screen \(S \). Now, screen \(S' \) acts as an inverting screen rather than a viewing screen and the mini-images from detector \(D_1 \) are inverted through pinholes \(P_1' \) and \(P_2' \) into images \(a'b'c' \) at the surface of intensifier \(D_2 \). A third screen \(S'' \), preferably identical to screen \(S' \), is placed at approximately the same distance from the intensifier \(D_2 \) as screen \(S' \) is to intensifier \(D_1 \). Screen \(S'' \) has pinholes \(P_1'' \) and \(P_2'' \) therein aligned with pinholes \(P_1' \) and \(P_2' \) in screen \(S' \). It is to be noted that this pinhole screen analogy relies upon pinhole aperture screen \(S' \) to invert mini-images abc rather than to use those mini-images to reconstruct pseudoscopic image \(A'B'C' \).

When mini-images \(a'b'c' \) are viewed from the right of screen \(S' \) through pinholes \(P_1' \) and \(P_2' \), the rays of mini-images \(a'b'c' \) are now divergent in the direction of the viewer. Consequently, a virtual, orthoscopic image \(A'B'C' \) of object \(ABC \) is formed to the left of screen \(S' \). This orthoscopic (true depth) virtual image is situated to the left of the viewing screen \(S'' \) at approximately the same distance as object \(ABC \) is from screen \(S' \). Thus, when looking at screen \(S'' \), the viewer receives a sensation of seeing object \(ABC \) through a "window." Referring now to FIG. 4, optical instrument \(40 \) thereof is a two stage alternative embodiment designed to translate pseudoscopic image \(A'B'C' \) into an orthoscopic image \(A'B'C' \) according to the principle illustrated in FIG. 3. Instrument \(40 \) differs from instrument \(20 \) by the incorporation of a second stage having a second non-inverting, visible light image intensifier \(42 \) with its input surface \(44 \) spaced apart from a second screen \(34 \) by a distance approximately equal to the distance between screen \(34 \) and output surface \(32 \). Unlike intensifier \(26 \), the input surface \(44 \) of intensifier \(42 \) is not mated with a x-ray to visible light converter. Image intensifier \(42 \) receives the inverted mini-images \(a'b'c' \) produced by the pinhole apertures in screen \(34 \) and displays those images, much intensified, with unity magnification on its output surface \(46 \). A third or viewing screen \(48 \) also perforated by numerous pinhole apertures forming a planar array preferably identical to that of screen \(34 \), is spaced apart from the output surface \(46 \) by a distance approximately equal to the distance between screen \(34 \) and input surface \(44 \). A virtual, orthoscopic image \(A'B'C' \) may then be viewed through screen \(48 \). The depth of image \(A'B'C' \) may be magnified without disturbing its lateral dimensions by moving screen \(48 \) farther from the emitting surface \(46 \) of light intensifier \(42 \).

Alternatively, if pinhole aperture screens \(34 \) and \(48 \) are made identical, instrument \(20 \) may be constructed so that viewing screen \(34 \) slides to the right, permitting insertion of pinhole screen \(48 \) and image intensifier \(42 \) between intensifier \(26 \) and screen \(34 \).

FIGS. 1 and 3 illustrate the principles underlying operation of the present invention. Specific implementation of these principles may vary. For example, variation in the implementation may occur in such components as the pinhole aperture screens or in the visible light image intensifiers. Preferably, the apertures through screens \(22 \), \(34 \) and \(48 \) are arranged in planar arrays of similar and preferably identical patterns. The patterns may be either uniform or irregular. Typically, the number of apertures in and the surface areas of each screen will be equal if the instrument \(20 \), \(40 \) is designed to provide unity magnification. In an instrument providing other than unity magnification (e.g., minification) however, if the patterns are similar or identical, the surface area and, therefore, the spacing between apertures of at least one screen may differ from the other screens. The screens \(22 \), \(34 \) and \(48 \) should be assembled in instruments \(20 \), \(40 \) to assure near alignment between apertures in neighboring screens. To provide an acceptable quality of image, overlapping of mini-images abc, a'b'c' at the input-planes \(23 \), \(44 \), respectively, should be avoided by maintaining minimum separation between the screens and detectors and by using a geometric aperture pattern which provides sufficient separation between adjacent pinholes in each array. Additionally, the cross-sectional areas of the pinholes must be uniform and large enough, 0.2-0.3 mm for a 0.5 mm thick screen, to avoid diffraction effects in the visible-light range. Similarly, the diameter of all pinholes should be equal because the intensity of an image seen through a pinhole is dependent upon the cross-sectional diameter of the pinhole.

A modification of instruments \(20 \), \(40 \) in which a large aperture optical lens, e.g., a double convex lens, is inserted between converter layer \(24 \) and the input surface \(28 \) of visible-light image intensifier \(26 \), enables the instrument to provide magnification other than unity. In this modification, shield \(30 \) is correspondingly extended to prevent stray visible light from entering between converter layer \(24 \) and image intensifier input surface \(28 \). The optical lens focuses mini-images from converter layer \(24 \) onto input surface \(28 \), thereby allowing converter layer \(24 \) and input screen \(22 \) to have surfaces differing in area from the input surface area \(28 \) of image intensifier \(26 \). Thus, larger objects \(ABC \) may be viewed with the instrument. Similar modifications may be made at the viewing end of instruments \(20 \), \(40 \).

Any of several commercially available devices may be used in instruments \(20 \), \(40 \) as visible light image intensifiers \(26 \), \(42 \). One class of such devices is the proximity focused type. Another class is the inverter type which has either electrostatic or magnetic lenses with varying magnification factors. A third class of visible light intensifiers is exemplified by the microchannel plate visible-light intensifier disclosed in U.S. Pat. No. 4,142,101. Some of these commercially available image intensifiers may include an internal x-ray to visible light converter \(24 \) while others are made with a converter \(24 \) mounted just outside an exterior envelope at the input surface. It is to be noted that the noun "pinhole" is used here to indicate an essentially non-diffracting non-focused, x-ray, gamma-ray or visible-light aperture. The adjectives "visible" and "invisible" refer, respectively, to whether or not the spectrum of the radiant electromagnetic energy discussed is normally discernible with unaided human vision. The nouns "light" and "light beam" are used to indicate radiant electromagnetic energy within the visible spectrum while the noun "ray" indicates radiant electromagnetic energy within the x-ray and gamma-ray region of the invisible spectrum.

An optical instrument has been disclosed having an x-ray to visible-light converter mated to a visible-light intensifier with a pair of screens equidistantly spaced apart (~1.6 mm) from either end of the converter-intensifier. In this configuration, the planar array of pinholes (~1000, 0.3 mm each in diameter) uniformly distributed (in hexagonal pattern, for instance, with 1.6 mm center-to-center spacing) over the face of the first screen partitions the view of an invisible ray emitting object into a...
plurality of dissimilar mini-images discretely distributed over the face of the converter. Through the second screen, ideally identical to the first, a visible-light image of the object is reconstructed from an equal plurality of dissimilar mini-images, thereby providing an erect, three-dimensional pseudoscopic image with both horizontal and vertical parallax directly viewable over a wide field of view during real time by one or more human observers. An orthoscopic visible-light image may also be obtained for real-time viewing by the simple addition of one more stage of a visible light image intensifier and a viewing screen.

The three-dimensional sensation of depth provided by instruments 20, 40 may be enhanced by increasing the distance between viewing screen 34 or 48, respectively, and the output surfaces 32 or 46. Increasing this separation causes magnification of the depth of the reconstructed image without disturbing its lateral dimensions. Concurrently with increasing separation between the viewing screen and image intensifier output surface however, a decrease in angular separation between zero and higher order images occurs because of a decrease in angular separation permits images on the output surface to become visible through one or more of the neighboring pinhole apertures of the viewing screen.

It will be appreciated that all those changes and modifications which fall fairly within the scope of the invention shall be a part thereof. For example, although the embodiments of the invention are disclosed as providing unity magnification, the use of multifringing intensifiers may be substituted for intensifiers 26, 42, thereby providing magnification other than unity. Similarly, either longer decay time phosphor layers, storage oscilloscopes, or digitizing instruments may be used in place of the emitting phosphor layer 32, 46 in light intensifiers 26, 42 to provide longer integration times. Further, a finer grain phosphor will provide increased image resolution. Additionally, although pinhole apertures are necessary in initial screen 22, viewing screen 34 and orthoscopic screen 48 may either be modified to incorporate or replaced by bubble lenses, lenticulated sheets or multiple optical lenses to increase output transmission while improving viewing quality.

The pinhole apertures of screens 22, 34, 48 are preferably made uniform to assure the quality of reconstructed images A'B'C', A''B''C''. A plurality of discrete apertures rather than collimator channels, are used in screens 22, 34, 48 because each aperture provides a view of the complete object while each collimator channel would provide a view of but a portion of the object. As each aperture in an array has a different perspective view, an array of apertures inherently provides a three-dimensional image of an object. The apertures of inverting screen 34 and viewing screen 48 need not be pinholes however, as several types of optical lenses may also be used. Either a lenticulated sheet, an array of discrete thin or thick lenses, or a sheet of discrete bubble lenses may be substituted for pinhole aperture screen arrays 34, 48.

Further details about the use and construction of instruments 20 and 40 may be found in a paper entitled "Three-dimensional imaging of x-ray and gamma-ray objects in real time," by L. I. Yin, J. I. Trombka and S. M. Seltzer, published in Applied Optics, volume 19, number 17, during 1980. X-ray screen 22 and viewing screen 34, 48 in instruments 20, 40 may be curved with equal but oppositely sensed radii of concave curvature facing the object ABC and pseudoscopic image A'B'C', respectively. As applied to two stage instrument 40, however, curved screens 22, 48 necessitate an increasing center-to-center spacing between adjacent pinhole (or lens) apertures in inverting screen 34 as a function of distance from the center of screen 34. Converter 24, image intensifiers 26, 48 and inverting screen 34 retain their planar surfaces if screens 22, 48 are curved, although their surface areas may be increased to take advantage of the higher resolution of the peripheral mini-images provided by curved x-ray screen 22.

It is apparent that the disclosed instruments provide an immediate, three-dimensional image of x-ray and gamma-ray emitting objects that are likely to be otherwise undiscernable to human observers. The small size of these instruments allows them to be made fully portable, suitable for such use as providing a welding inspector with a real-time image of the precise shape of a smaller radioactive section of a larger object, such as a length of contaminated pipe in a nuclear power plant. Or, to provide a physician with an in situ, three-dimensional image of a radioactive isotope absorbing cancerous section of a human gland. Additionally, the field-of-view provided by these instruments allows more than one person to simultaneously view the three-dimensional images generated.

What is claimed is:

1. An instrument for viewing x-ray and gamma-ray emitting objects, comprising:
 means (22) for forming incident x-rays and gamma-rays emitted by an object into an array of mini-images of said object;
 means (24) spatially displaced from said forming means (22) for converting said x-ray and gamma-ray mini-images into visible-light mini-images;
 first means (26) conjugately paired with said converting means (24) for intensifying said visible-light mini-images;
 and screening means (34/48) having a plurality of apertures, spatially displaced from said first intensifier means (26), for providing a reconstructed auto-stereoscopic visible-light image of said object having a continuum of perspective views.

2. An instrument for viewing x-ray and gamma-ray emitting objects, comprising:
 means (22) for forming x-rays and gamma-rays emitted by an object a plurality of mini-images having dissimilar perspective views of said object;
 means (24) spatially displaced from said forming means (22) for converting said x-ray and gamma-ray mini-images into visible-light mini-images;
 first means (26) conjugately paired with said converting means (24) for intensifying said visible-light mini-images; and
 screening means (34) having a plurality of apertures, spatially displaced from said first intensifying means (26), for reconstructing from said intensified visible-light mini-images a composite pseudoscopic image of said object, having both vertical and horizontal parallax.

3. The instrument of claims 1 or 2 wherein said forming means (22) includes a plurality of apertures having dissimilar perspective of said object.

4. The instrument of claim 3 wherein said forming means (22) and said screening means (34) have equal pluralities of said apertures.

5. The instrument of claim 3 wherein said forming means (22) and said screening means (34) have equal
plurality of uniform apertures; and
inverted each of said plurality of intensified mini-images provided by said first intensifying means (26); second means (42) spatially displaced from said screening means (34), for intensifying said plurality of inverted visible-light mini-images; and
viewing means (48) having a plurality of apertures, spatially displaced from said second intensifier means (42), for reconstructing from said intensified plurality of inverted visible-light mini-images a composite orthoscopic image of said object, having vertical and horizontal parallax.

7 The instrument of claim 6 wherein said viewing means (48) and said screening means (34) have equal pluralities of said apertures.

8. The instrument of claim 6 wherein said viewing means (48) and said screening means (34) have equal pluralities of said apertures distributed in planar arrays of identical geometric pattern

9 The instrument of claim 6 wherein said viewing means (48), said screening means (34) and said forming means (22) have equal pluralities of said apertures distributed in planar arrays of identical geometric pattern

10 The instrument of claim 6 wherein said viewing means (48), said screening means (34) and said forming means (22) have equal pluralities of said apertures distributed in aligned arrays

11. The instrument of claim 6 wherein said viewing means (48) is spatially disposed between said first intensifying means (26) and said screening means (34), for inverting each of said plurality of intensified mini-images provided by said first intensifying means, via said plurality of uniform apertures; and
said second intensifying means (42) is spatially disposed between said viewing means (48) and said screening means (34); whereby said screening means (34) reconstructs from said intensified plurality of inverted visible-light mini-images a composite orthoscopic image of said object, having vertical and horizontal parallax.

12. The instrument of claim 11 wherein said viewing means (48) and said screening means (34) have equal pluralities of said apertures.

13. The instrument of claim 11 wherein said viewing means (48) and said screening means (34) have equal pluralities of said apertures distributed in planar arrays of identical geometric pattern

14. The instrument of claim 11 wherein said viewing means (48), said screening means (34) and said forming means (22) have equal pluralities of said apertures.

15. The instrument of claim 11 wherein said viewing means (48), said screening means (34) and said forming means (22) have equal pluralities of said apertures distributed in aligned arrays

16. An instrument for viewing x-ray and gamma-ray emitting objects, comprising:
a first plate of a material impenetrable to x-rays and gamma-rays, having a planar array of discrete apertures of equal cross-sectional area for passage of x-rays and gamma-rays emitted by an object; means spaced apart in a plane parallel to said first plate, for converting said x-rays and said gamma rays passed by said first plate into visible light; a first image intensifier coupled to said converting means to receive said visible light and emit intensified visible-light mini-images, and a second plate spaced apart in a plane parallel to said first image intensifier opposite said converting means and having an array of discrete apertures of equal cross-sectional area for viewing a three-dimensional image of said object reconstructed from said intensified visible-light mini-images.

17. The instrument of claim 16, further comprising:
a third plate disposed between said first image intensifier and said second plate, having an array of discrete apertures of equal cross-sectional area providing individual inversion of intensified visible-light mini-images emitted by said first image intensifier; and
a second image intensifier disposed between said second and said third plates to receive and provide intensification of said intensified visible-light mini-images inverted by said third plate

18. The instrument of claim 16 wherein said arrays of apertures in said first and said second plates are distributed across surfaces of said first and said second plates in an identical pattern

19. The instrument of claim 16 wherein said first image intensifier has an emitting surface adjacent and spaced apart from said second plate and said first and said second plates are spaced apart from said converting means and said emitting surface by equal distances.

* * * * *