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Abstract

We show that alpha, an important parameter in dynamo theory, can be propor-

tional to either the kinetic, current, magnetic, or velocity helicity of the

fluctuating magnetic field and fluctuating velocity field. The particular

helicity to which alpha is proportional depends on the assumptions used in

deriving the first order smoothed equations that describe the alpha effect.

In two cases, viz. when alpha is proportional to either the magnetic helicity

or velocity helicity, alpha can be determined experimentally from two-point

measurements of the fluctuating fields in incompressible, homogeneous

turbulence having arbitrary symmetry. For the other two possibilities, alpha

can be determined if the turbulence is isotropic.
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1. Introduction

A fundamental problem in dynamo theory is the study of how nature trans-

forms toroidal magnetic fields into poloidal ones. The inverse transforma-

tion, changing poloidal fields into toroidal ones, can be easily accomplished

by differential rotation. This problem has been extensively studied for the

kinematic turbulent dynamo where one does not impose self-consistency on the

velocity and magnetic fields, but assumes the statistics of one is known,

usually the velocity field, and solves for the other in terms of the first.

Parker (1955) and Steenbeck, Krause and Radler (1966) developed a dynamo

theory in this context that is now known as the "alpha effect". The essence

of the theory is to show that under certain conditions involving a lack of

mirror symmetry in the turbulence, there is an electromotive force that is

proportional to the mean magnetic field B o . From Ohm's law there will then be

a similar term in the current density that produces a poloidal component to

the magnetic field. The alpha effect is the lowest order approximation in a

more general framework, mean field electrodynamics, in which the electromotive

force due to fluctuations is represented as a series expansion in powers of

the mean field.

For a, the constant of proportionality between the electromotive force E

and Bo , to be nonzero, some feature of the turbulence must lack mirror

symmetry. In the usual derivation of the alpha effect (Steenbeck, Krause, and

Radler, 1966; Moffatt, 1978), a is related to a weighted integral of the

kinetic helicity spectrum and hence appears to be dependent on a lack of

mirror symmetry of the fluctuating velocity field v. Recently, Keinigs (1983)

has rederived a and has argued that instead of being a function of the kinetic

helicity spectrum, 01 is actually )roportional to the total current helicity.
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Thus, it would appear that nonzero values of a are possible even if the

weighted integral of the kinetic helicity spectrum is zero but the current

helicity is finite. In this paper we first show that a can be proportional to

any of four helicities of the turbulence depending on the assumptions used in

deriving the alpha effect. We then address the autstanding question raised by

Moffat*_ (1981) of how one can determine a experimentally.

The paper is organized as follows. In section 2 we review the standard

derivation as presented by Moffatt (1978). We find that the physical nature

of the asymmetries in the turbulence can be understood in terms of a pseudo-

scalar H  which characterizes the velocity field and is mathematically

analogous to the magnetic helicity Hm. We show that a is directly proportion-

al to this function, which we call the "velocity helicity". We then review

the derivation of the alpha effect as presented by Keinigs (1983) and discuss

the conditions under which a is proportional to the current helicity HJ . We

conclude with two new derivations of a made under slightly different assump-

tions about the statistics of the turbulence and find that a can be propor-

tional to either the kinetic helicity H  or the magnetic helicity. In section

3 we address the question of the measurability of a in homogeneous turbulence

in circumstances in which an experiment provides two-point field covariances

with collinear separations. The work of Matthaeus et al. (1982) and Matthaeus

and Goldstein (1982) demonstrating the measurability of H  in homogeneous

turbulence of arbitrary symmetry is generalized. in the two cases in which a

is proportional to either H  or H v , we show that a can be determined indepen-

dent of the symmetry of the turbulence if the dissipation coefficients are

known. Where a is proportional to either H  or Hk, we show that the assump-

tion of isotropy is sufficient to permit determination of a, again subject to

U	 knowing the appropriate dissipation coefficient. The results are summarized

in section 4.
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2. Helicity and the Alpha Dynamo Problem

The steps leading to the alpha effect equation are well-documented

(Moffatt, 1978; Krause and Radler, 1980). We present a review here to

demonstrate explicitly the relationship between the assumptions contained in

derivations of the alpha effect equation and the nature of the asymmetries

'`gat must be present in the turbulent fields (either v or b) to ensure nonzero

values of the alpha effect parameter.

We begin by considering a turbulent, electrically conducting fluid, which

is described by the equations of incompressible magnetohydrodynamics (MHD):

3B/3t . V x (V x B) + np2 B	 (la)

v w B - 0	 (1 b)

3V/at + (V • v)V = -VP + (J x B) + vv 2 V	 (2a)

v w V - 0	 (2 b)

where B is now normalized to Alfven speed units [B 	 B/3(47rp0)], p  is the
	 j^

mean density, P is the pressure which in incompressible MHD is the solution of

a Poisson equation derivable from (2), and J - v x B is the electric current

density.	 Both the resistivity n and the viscosity v have dimensions of

(length ) 2 /time as is typical of transport coefficients. 	 The MHD equations

(1-2) can be related in a straightforward way to a system of dimensionless

units in which n and v pla, the role of inverse magnetic Reynolds number and
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inverse mechanical Reynolds number, respectively. It is useful to rewrite (2)

in terms of the vorticity w - v x V by taking the curl of (2a) yielding

au/at - v x (J x B) - v x (U x V) + Vp l w	 (3)

which completely specifies the time evolution of V when (2b) is valid and

there is no contribution due to potential flow.

To continue, we separate the fields B and V and the induction equation

into mean and fluctuating parts. We follow Krause and Radler (1980) and treat

the mean as the expectation of an ensemble of identical systems. There are

occasions when it may be more convenient to define the mean values in terms of

integrations over space and/or time, but the results will not always be

indentical. We first separate B and V into mean and fluctuating parts: B -

B.0 + b and V - V
0
 + v We assume that V0 e N> - 0 and that B0 

= <B> is in

some sense "slowly varying" in time and space, i.e., that its spatial and time

derivatives are negligible compared to the derivatives of b(x,t). The mean

and fluctuating parts of the induction equation (1a) become

aBo/at - v x <v x b> + n v 2 B 0	(4)

ab/at - v x (v x B0) + e[v x (v x b)] + rev = b	 (5)

where A denotes the difference between the quantity in brackets and its mean.

For future reference we note that the vorticity equation can be similarly

rewritten in the form

M,
0- 7 x <J x b> — v x <„ x 0

	
(6)



-7-

aW/at-vx(JXRO ) + o[vxQxb))—e[vx(Wxv)) +0 2 2 	(7)

Return now to equation (5) and note that b is generated by the source term

v x Bo. Because (5) is a linear equation for b, b and B o will be linearly

related if, for example, we assume .;hat b - 0 at some initial time. Thus, the

mean turbulent electromotive force E - <v x b> is also a linear functional of

_B0 . In turbulent media, the fluctuating quantities at a certain place and

time will have a finite correlation with fluctuating quantities'at some other

place and time only if the separation with respect to both space and time is

not too large. Thua. to determine E at a given point, we anticipate that v,

b, and 
Bo 

need only be known in a neighborhood of that point. The linear

relationship between E and 
-Bo 

should then be given approximately by a Taylor

series expansion which converges rapidly because B o weakly varies on scales

over which Bo and b are correlated. The lowest order term in this expansion

is

E 	 aijBoj
	 (8)

The reader is referred to Moffatt (1978) and Krause and Radler (1980) and

references therein for a more complete discussion of these issues. In

isotropic turbulence aij - ad ij , and equation (4) becomes the alpha effect

equation

aBo/at = a(v x Bo ) + nv= Bo	(9)

n '
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The Velocity Helicity L Hv

In the usual approach, the fluctuating part (5) of the induction equation

is used to relate v and b. But instead of arriving at an expression for a as

a weighted integral of the kinetic helicity spectrum (Moffatt, 1978), we will

show that a new helicity can be defined, the velocity helicity H v, which is

proportional to a. Further advantages of introducing H  are detailed in

section 3. The derivation proceeds in the usual way by making the assumption

of "first-order smoothi-g" (equivalent to a quasilinear approximation), which

states that the difficult nonlinear term e[vx(vxb)] may be dropped. A

detailed discussion of the physical regimes in which the neglect of these

nonlinear terms is justified can be found in Moffatt (1978) and Krause and

Radler (1980). Circumstances that appear to be sufficient for first order

smoothing are the low magnetic Reynolds number and the "weak turbulence"

limits. In this paper, we will assume that first-order smoothing is always

appropriate.

Upon expanding the remaining double cross product, equation (5) becomes

ab
at	

n7 l b - Q0 09)v
	

(10)

The relationship between the fluctuating magnetic field b and the fluctuating

velocity field v is easily expressed by taking the Fourier transform of (10)

b(k, u) - i(!o0)v(k,w) /(-iu + nk 2 )
	

(11)

Note that at this stage we could equally well have written of v(k,w) in terms

of b(k,u). Substituting (11) into the Fourier integral expansion of E gives
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riBo •k	 *	 r r	 ("i(k—k')']c+i(w—w')tl > > r 	 rE !- w + n	 <v (k,w)xv(k ,w )> e	 — —	 d kd k dwdw (12)

We restrict our attention to homogeneous turbulence and take the usual low

frequency limit (cf. Moffatt, 1978) which can be justified at least in the

small magnetic Reynolds number regime where Jul « W. In this limit the

integrals over w and w' can be done (assuming that the fluctuations are time

stationary). We now introduce the energy spectrum tensor • ij (k), defined as

the Fourier transform of the homogeneous two-point velocity correlation matrix

Rij (x)-<vi (x)vj (x+r)> (Batchelor, 1970). Because # ij (k)a(k-k')-<vi (k)vj(k') >,

equation (12) becomes

i8 •k

°i - j n	 silm •^(k) d'k	 (13)

The matrix m^ can always be decomposed into its symmetric part 0slm and

antisymmetric part va	Because a •s	- 0, E depends only on #a
lm	 ilm lm	 i	 lm'

Matthaeus at al. (1982) and Matthaeus and Goldstein (1982) have shown that for

a solenoidal field, the antisymmetric part of the energy spectrum tensor can

have only one independent pseudotensor form which depends on a single

pseudoscalar function even in k. In the case of the magnetic power spectrum,

this function is the magnetic helicity spectrum Hm(k) defined by

1Hm (k)d s k - Hm F <A •b>	 (14)_ 

where A is the vector potential of the fluctuating magnetic field. In incom-

pressible flow, the velocity field is solenoidal and it is convenient to

define a similar function for the velocity field. 	 We will refer to this

t
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function as	 the velocity helicity 
H 	

and denote	 its spectral	 decomposition

Hv(k) . The velocity helicity as used here is essentially the dot product of v

with a vector whose curl is v in the same way that the magnetic helicity is

the dot product of the b with the vector potential A, where o x A - b.

The exact relationship between 
*aln(k) and Hv(k) can be found as follows.

First, one can "uncurl" in Fourier space so that

VIE) - trace lie ijik10alm(k)A s 1	 (15)

The unique form of iala is (cf. Matthaeus and Goldstein, 1982)

,a lm ` (i/2)E lmnknHv(k)	 (16)

r.	 This can in turn be inserted into (13), so that

k k
E i a -S

oi
l n-k̂-}-^ Hv(k)d'k	 (17)

We define a - 1/3 a ii to be consistent with the isotropic condition aij

06 ij . Then, from (8) and ( 17), ve arrive at a simple expression for a, (our

first expression for a) that is equivalent to the one found in Krause and

Radler ( 1980) and Moffatt (1978).

3^ f Hv(k) d'k - Hv/(3n)	 (18)

If Hv(k) in (18) is replaced by (15), Moffatt's expression for a is recovered.

Written in this way, it is clear that a is related to the linkage of stream

lines in the same way that the kinetic helicity reflects the linkage of
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voracity tubes and the magnetic helicity reflects linkage of magnetic flux

tubes (Moffatt, 1978; Turner and Christiansen, 1981).

The Current Belicity, H

The approach used above in evaluating alpha is not the only one that -an

be taken. Recall that we could have solved for v(k,u) in terms of b(k,u) in

(11). This is the approach taken by gainigs (1963). Proceediag in that way

leads to a new form fcr a which is related to the current helicity, Hy a

<J •b>. We briefly review the derivation for completeness and to clarify some

aspects of the derivation given by Keinigs. In the low frequency -limit, the

equation fcr Ei becomes

Ei . I Bj k sila S^(k)d'i:	 (19)
of j

Here, the rele^,ant spectrum tensor is S lm(k), which is the Fourier transform

of the two-point magnetic correlation <bl(x)bm(x+r)>. The antisymmetric part

of this tensor has the unique fora Saij - itijlklHm(k)/2 (Matthaeus et al.,

1982; Matthaeus and Goldstein, 1982), so that E becomes

k1k
E i - n I B	 HS(k) d'k	 (20)

of j

To extract from (20) a scalar exprearion for a we will assume that in this

case the turbulence is isotropic so that ai j a a6i j- Th*Ldfon ' a a Eiaoi/ao!
and we find

a =	 -	 I k= Ha(k) d'k	 (21)
o
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Using the definition of NJ;k), (21) can be imsediately rewritten as

SIL T, g^	 (22)
0

This is the result i _.atd by 141nigs. We emphasise that the two expressions

(18) and (22) for a are not in general aqual. In the first case, it was

assumed that the statistics of the velocity field were known. In the second

case, the statistics of the magnetic field were assumed given and the velocity

fluctuations were found. It is essential to keep in mind that because these

derivations are done within the spirit of the (non -self-consistent) kinematic

dynamo, there is no a priori reason for the two expressions for a to be equal.

We return to this issue in this next section, but first we show that there are

two additional sets of essumpti^►ns that can lead to expressions for the alpha

effect paramater.

The Magnetic and kinetic Reliciyies, H_. and !!,

In deriving both ( 18) and (22) we used the fluctuating part of the

Induction equation ( S) to obtain the appropriate relationship between the

fluctuating magnetic and velocity fields. There is an alternative possibili-

ty, namely to sae the fluctuating part of the vorticity equation (7). Them ,

by solving for either v in terms of b, or vice versa, two new expressions for

a can be found. As we shall sea, these now expressions are proportional to

either the sagn6tic helicity, or the kinetic helicity. One proceeds exactly

as before. Note that in equation (7) there arw two nonlinear "8" terms. In

the spirit of this paral -!l derivation, we assume that tYese terms can be
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neglected, i. e. we extend the concept of first-order smoothing to include

neglect of these nonlinearities. It is beyond the scope of this paper to

explore the conditions under which this approximation might be valid, but it

is ex-.acted that they are substantially the same as those necessary to arrive

at (18) or (22). Equation (7) then becomes

2t (^•v)J + vv = u	 (23)

and the Fourier transform is

-iu - i(!o•k)J(k) - vk = u(k)	 (24)

Provided that contributions from potential flow can be neglected, (24) implies

that

iB •k
(25)

In general (25) and (11) cannot be simultaneously true which is expected

because the first order smoothing approximations are different in the two

cases. Proceeding in an exactly analogous way, by substituting first for

v(k,u) and then for b (k,u) in the Fourier integral expansion of E, and taking

the low frequency limit, two more expressions for a emerge: one involving the

magnetic helicity Hv, and the other involving the kinetic helicity Hk 0 < w w>



t

a^ •	 I k'Hv(k) d'k • 
v^

0	 0

Note that the derivation of (26) directly parallels that of ( 18) for a, and no

assumptions need be made about the symmetries of the turbulence. In contrast,

the derivation of (27) parallels that of ( 21) for a =, in which it is explicit-

ly assumed that the fluid is isotropic.

We have shown that the alpha effect parameter can be proportional to any

of the four helicities derivable from statistics of the magnetic and velocity

fields. Which helicity appears is a direct consequence of the assumptions and

approximations used in the derivation. The four different expressions for a,

equations (18), (22), (26) and ( 27), indicate that the lack of mirror symmetry

required for a nonzero alpha parameter can take the form of linkages of stream

lines, tubes of current, magnetic flux tubes, or vorticity tubes, respectively.

The basic question now arises how one might evaluate any or all of these

expressions for a in an experiment. This is addressed in the next section.

3. The Evaluation of Helicity and a

It is clear that the first obstacle to determining a in any particular

experimental situation is the necessity of measuring the appropriate helicity.

This problem has been treated in some detail for the magnetic helicity by

Matthaeus et al. ( 1982) and Matthaeus and Goldstein ( 1982) who demonstrated

that magnetic helicity can be determined whenever the two -point correlation

function of the magnetic field is experimentally available for an appropriate-

ly wide range of spatial separations in a single direction. This is not an

unusual experimental situation and is found, for example, in wind tunnels or

in the interplanetary solar wind, where some version of the G. I. Taylor

-16-

(27)

r'
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"frozen-in-flow" hypothesis (Taylor, 1938) allows interpretation of two-time

single point covariances as two-point single time covariances. However, the

discussion here will also be relevant to cases in which multiple experimental

probes are constrained to have separations in one cartesian direction. The

theoretical basis for making this determination is that the antisymmetric part

of the energy spectrum tensor depends directly on either H  or H v. we apply

the previous results to the new helicities, and conclude that the velocity

helicity can be evaluated in homogeneous turbulence without further specifica-

tion of spatial symmetry, while the kinetic and current helicities are

determinable in isotropic turbulence. The techniques developed here will be

expressed in terms of velocity field quantities, but all results apply as well

to the analogous magnetic field quantities.

Assume that the correlation function is known for collinear separations in

the 1-direction.	 Following Batchelor (1970) we define the reduced energy

spectrum tensor as

•rij (k i ) - (1/2r) I Rij(ri3O,0)e 
ikiri 

dri

- 1 0 ij (k) dkz dk,	 (28)

Now consider the imaginary part of (28). Because m ij is Hermitian (by the

combination of the reality condition 0 ij (k) - 0 i (-k), and the homogeneity

property fij (k) - •ji (-k)), the only imaginary part of 0 
1 

is an antisymmetric

pseudotensor, which has the unique form (16). After integrating over

and 3-directions, (28) becomes

 rIm 4 „ ( k i ) - If 1me z3 (k) dk,dk i - (k i /2) If Hv(k) dk,dk3

F'
c)

.1
E

e±

1
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or

Hvr(k,) - 2 Im •ri,(k,)/k,
	

(29)

Finally, the total velocity helicity is obtained by integrating over k, with

the result

Hv • I Hv(k) d'k ` I Hvr(k,) dk,
	 (30)

Therefore, the velocity helicity is measurable in that its spectrum is

contained in the spectral matrix of velocity correlations in one direction.

This result is completely equivalent to the results on the magnetic helicity

discussed in Matthaeus et al. (1982) and Matthaeus and Goldstein (1982). If

the resistivity n is also known, a, can be determined via this analysis.

Equivalently, knowing v and Hm , one can determine as.

The kinetic helicity H  (and the current helicity H J) can also be

evaluated in similar fashion. However, in this case it is necessary to assume

that the turbulence is isotropic in addition to being homogeneous. Recall that

Hk - i k2 Hv(k) d' k

ldk,k l 'Ildk,dk,Hv(k) + Idk2 k 2 2 Ildk,dk,Hv(k) + Idk3k32tldk1dkzHv(k)

Since isotropy is assumed, all three integrals must be exactly equal, and

H  - 6Ik, Imo r=,(k,)dk, 	 (31)

471

F4
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An exactly analogous result obtains for Hj . Again, if v and/or n are known

independently, one can evaluate a,, and/or a=. Thus, at least for isotropic

turbulence, all four helicities can be determined from the reduced power

spectrum. In turbulence of arbitrary symmetry, 
R  and R  

can still be found.

These results are summarized in Figure 1 where the relationships between

various expressions and the assumptions made in deriving them are indicated.

Numerical methods for constructing the requisite correlation spectra are

well established. Two current techniques for constructing these functions are

the Blackman-Tukey "mean-lagged-product" (Blackman and Tukey, 1958) and fast

Fourier transform (FFT). A comparison of these two methods can be found in

Matthaeus and Goldstein (1982) along with several examples illustrating the

determination of Hm from interplanetary magnetic field data. Application of

the FFT technique to the determination of the other three helicities using

both interplanetary magnetic field and plasma data from the Voyager spacecraft

will be reported elsewhere.

4. Conclusions and Summary

Methods for determining the alpha dynamo parameter in homogeneous,

incompressible MED turbulence have been presented. Four distinct helicities

of the turbulence have been indentified as being related to the alpha dynamo

problem. Which helicity is most closely related to a is completely dependent

on the applicability of the approximations made in deriving the alpha effect

equation. The recent results of Keinigs (1983) relating a to the current

helicity are therefore not in disagreement with the original derivation by

Steenbeck, Krause, and Radler (1966), reviewed by Moffatt (1978 and 1981), in



-Is-

which a was related to a weighted integral of the kinetic helicity spectrum

'v(k). That integral of the helicity spectrum is the quantity we have called

the velocity helicity in direct analogy to the magnetic helicity. Unlike the

kinetic helicity, which is only measurable in isotropic turbulence, the

velocity helicity can be measured in MHD turbulence of arbitrary symmetry.

We have presented two new approximations for a; one proportional to the

kinetic helicity and the second proportional to the magnetic helicity. The

particular form for a most appropriate in a given physical context depends on

the validity of the approximations made in each derivation. The two new

expressions for a were derived using a form of the first order smoothing

approximation whose general range of validity has not been investigated. In

addition, numerical techniques that can be utilized to evaluate a in MHD

turbulent media have been described. 	 These techniques may be useful in

1,

	

	
experimental situations where two-point collinear covariances are measured and

n and v are known. An application of these techniques using magnetic field

and fluid velocity data obtained in the solar wind will be presented in a

separate publication.
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Figure Caption

A summary of the relationships possible between a and the four helicities

of the turbulent fluid. a 3 is the traditional result, as is the result found

by Reinigs (1983). In both cases the first order smoothing approximation is

made on the induction equation. a, and a, are obtained by making the first

order smoothing approximation on the vorticity equation. If the dissipation

coefFicients n and v are known, a i and a„ can be determined in homogeneous

(and stationary) turbulence having arbitrary syemetry so long as the two-point

correlation function can be measured for collinear separations. a, and a, can

be determined in isotropic turbulence.
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