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SECTION I

1.0 SUMMARY

The main objective of the NASA-sponsored Aerothermal Modeling

Program, phase I was to assess current aerothermal submodels used

in the Garrett Turbine Engine Company (GTEC) analytical combustor

models.

number of "benchmark" quality test cases were selected
after an extensive literature survey. The selected test cases,

both nonreacting and reacting flows, were broadly divided into the

following categories:

o	 Simple flows
o	 Complex nonswirling .Mows

o	 Swirling flows
o	 Dilution jet mixing in confined crossflows.

These test cases were used to assess the following submodels

separately and jointly for various combustion processes:

n^

v

s r.

o k-e model of turbulence and algebraic stress model, with

and without various corrections including low Reynolds

number and Richardson number corrections
I	 !

0
	

Scalar transport models
a

0 Multistep kinetic schemes, t

•	 Turbulence/chemistry interactions

•	 Spray combusti0ii.	
_

1	 t
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The following general conclusions were derived from Phase I

work

o An accurate numerical scheme should be developed to mini-

mize numerical diffusion in the computations of recircu-

lating flows

o

	

	 Benchmark quality data should be generated under well- 	

xdefined environmets for validating the various sub-

models used in gas turbine combustion analysis.

o	 Although current aerothermal models make reasonable pre-

dictions, intensive model development and validation
	 t.

effort should continue for the following sabmodels:

Algebraic stress model

-	 Algebraic scalar transport model

-•	 Two-step and four-step schemes

Probability density function approach for a two-

step scheme

-	 Double-reaction zone model.,

d
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SECTION II

2.0 INTRODUCTION

The objectives of the NASA Aerothermal Modeling Program are to

assess the current state-of-the-art and identify the deficiencies

in current aerothermal models for gas turbine combustors. The pro-

gram involves the following tasks:

Task 1.1 - Model Definition

Task 1.2 - Data Base Generation

Task 1.3 - Benchmark Test Case Definition

Task 2.1 - Model Execution

7!ask 2.2 - Model Assessment

Task 2.3 - Program Plan for Model Improvement.

Paragraph 2.1 gives a brief background of aerothermal model- 	 1	 a

ing followed by a description of the Garrett empirical./analytical

combustor design approach in Paragraph 2.2. This design approach
is based on the use of a numbest of interrelated multidimensional

analytical models that contain appropriate submodels (modules) of

turbulence, chemistry, spray combustion/evaporation, soot, and

high pressure radiation. These modules are described in Section

3.0. A description of the numerical schemes employed are provided

j	 in Section 4.0, and a survey of relevant literature is preserved in 	
7

Section 5.0.
}

The r,*del assessment results are presented in four different	 }

sections:

E

o	 Section 6.0 Results for simple flows, with and without 	 ".

combustion

o	 Section 7.0 - Results for complex nonstvirling flows 	 -

3

_	 w
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0	 Section 8.0 - Evaluation of the models for swirling flows

0	 Section 9.0 - Three-dimensional (3-D) dilution jet-
mixing validation results

Section 10.0 presents the conclusions and the recommendations for

model improvements.

2.1 Aerothermal Modeling Background

Substantial increases in gas turbine performanct%, have been

achieved in recent years due largely to the use of advanced tech-

nologies in components and material, in addition to operation at

higher cycle pressures and temperatures. To meet the trend toward

higher pressure ratio gas turbines with increased turbine inlet

temperature:, increased research and development efforts have been

directed toward the combustion system. These efforts have contri-

buted largely toward gaining a better understanding of the overall

combustion process and have led to the development of an advanced

combustor design methodology based on a combination of empirical

and analytical techniques. The challenging demands placed upon the

combustion system due to increased performance and life require-

ments, as well as the need to reduce combustor design and develop-

ment cost, have provided the primary motivation for using multi-

dimensional combustion analysis procedures. The advanced combus-

tion analysis forms the basis for the design and development pro-

cedures of advanced technology combustors at Garrett Turbine Engine

Company .1-^ 10

To provide greater confidence in the design of high-perform-

snoe, durable combustors for advanced aircraft 'turbine engines, a

thorough understanding and accurate characterization of the various

physical phenomena involved is required. Over the years, Garrett

has been actively involved in the assessment, validation, and
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updating of combustor aerothermal models in the areas of multidi-

mensional flow effects, effects of turbulence scale and intensity,

combustion kinetics, fuel spray and flow field interactions, soot

formation, and high-pressure flame radiation characteristics.

Garrett has continued to assess every submodel within each model

against fundamental data from ideal element tests. 10-14 Concur-

rently, model accuracy has been indirectly assessed by comparing

predictions with measurement.m, on a number of production and ad-

vanced combustors. 1-9 Through an integrated effort of assessing

both the models and the submodels, it has been possible to con-

tinually improve the accuracy and reliability of the empirical/

analytical design procedure described in the following paragraph.
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2.2 Garrett Empirical/Analytical Combustor Design Approach

Past approaches to the design and development of gas turbine

combustion systems have largely involved the application of funda-

mental knowledge of turbulent reacting flows on an empirical basis,

followed by component testing to achieve optimum performance objec-

tives. A number of semiempirical relationships have been developed

through the years to provide guidelines for the initial design of a

new combustion system and to predict attainable performance on the
basis of experience curves. Such an approach has been quite suc-

cessful in the design and development of combustor configurations
that are derived from proven concepts.

The development of an empirical data base for combustors is

evolutionary. Its limitations, regarding the development of

advanced combustion systems with requirements outside of experience

bounds, became apparent to Garrett in the early 1970's. The inade-

quacy of the empirical approach in solving combustion development

problems relating to gaseous and particulate emissions; carbon for-

mation; and, more recently, liner and nozzle structural durability

for high-temperature-rise applications required complementing this

approach with advanced analytical methods.

Garrett has developed a number of analytical models that form

the basis for the design and development of advanced technology

combustors. The internal flow field of modern gas turbine combus-

tors is a highly complex 3-D phenomenon involving regions of

reverse-flow. In addition, the various combustor regions require
varying degrees of field resolution to predict accurately the con-
vective and radiative fluxes. A modular approach, therefore, has

been developed at Garrett allowing use of different computer
models, as depicted in Figure 2.2-1.



Figure 2.2-1 Combustor Models and Region of Application.
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ORIOMVAL PAGE IS
OF POOR QUALITY

ANNULUS FLOW MODEL, AFM

SOLVES FOR THE PRESSURE LOSSES
AND AIRFLOW DISTRIBUTION WITHIN
THE ANNULUS EXTERNAL TO THE
COMBUSTOR. PREDICTS THE REQUIRED
ORIFICE PATTERN FOR THE DESIRED
FLOW SPLITS AND THE BOUNDARY
CONDITIONS FOR THE COMBUSTOR
PERFORMANCE MODEL.

COMBUSTOR PERFORMANCE MODEL, CPM

SOLVES THE GOVERNING REACTING
FLUID DYNAMIC AND CHEMICAL REACTION
EQUATIONS FOR THE ENTIRE COMBUSTOR.
PREDICTS THE COMBUSTOR-FLOW FIELD
INCLUDING VELOCITIES, 1 EMPERATURE, AND
LOCAL FUEL-AIR RATIO AS WELL AS SMOKE
AND SPECIES CONCENTRATION.

I1

\	 1	 I

\	 ^	 I	 I
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TRANSITION MIXING MODEL, TMM

SOLVES THE GOVERNING REACTING
FLUID DYNAMIC AND CHEMICAL
REACTION EQUATIONS IN THE
180 0 TRANSITION LINER BEND
PREDICTS THE TEMPERATURE
QUALITY AT THE FIRST-STAGE
TURBINE INLET.

NEAR WALL MODEL, NWM

SOLVES THE GOVERNING FLUID DYNAMIC
AND HEAT FLUX EQUATIONS ADJACENT TO
THE LINER WALLS USING A HIuH-RESOLUTION
GRID. PREDICTS LINER HEAT TRANSFER
RATES AND ATTENDANT WALL TEMPERATURES.
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An annulus flow model is used to calculate pressure losses and

airflow distribution within the annulus external to the combustor

liner. This model calculates boundary conditions, such as flow

distribution around the liner, jet velocity, and efflux angles,

which are required as inputs for the combustor internal flow

models.

Two-dimensional (2-D) and 3-D combustor performance models are

used to predict internal profiles of dependent variables including

velocity, species, and temperature by solving fully coupled trans-

port equations for turbulent, recirculating, spray-combusting flow

fields. Up to 20,000 finite-difference grid nodes are numerically

solved in these programs to ensure a relatively "grid-independent

solution for the main flow field. However, for the region close to
the film-cooled wall, a better field resolution is required to

accurately predict the convective fluxes and the wall temperatures.

This is done by using near-wall model-.

The reverse-flow annular combustors generally employ transi-

tion liners where the main flow direction changes from axial to

radial for radial-inflow turbines or a full 180 degree bend for

k,	 axial flow turbines. The flow field has only small pockets of 	 }

"

	

	 reverse-flow regions. Computationally more efficient 2-D and/or

3-D transition mixing models are used for calculating the mixing
i rate of the cold dilution jets in the transition liner. These:	 +

models calculate the turbine stator inlet profiles of temperature, 	 }

velocity, and turbulence intensity, which are needed for assessing

turbine hardware life. The various analytical models are used in

the overall combustor design to arrive at a final combustor design.

in .a timely and cost-effective manner.

The empirical/analytical combustor design approach is shown in

Figure 2.2-2. The engine requirements and design define the com-

bustor inlet conditions and limiting envelope constraints. Using	 ..

8
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ENGINE CYCLE	 COMBUSTOR INLET	 SIZE ANO ENGINE CONSTRAINTS ON

CONDITIONS	 GONDITIONS^	 SHAPE THE COMBUSTOR ENVELOPE

NO OF FUEL NOZZLES	 PRELIMINARY COMBUSTOR	 ORIFICE PATTERN

ANNULUS FLOW AREA	 EMPIRICAL DESIGN	 COMBUSTOR GEOMETRY

BASELINE COMBUSTOR

DESIGN

MODIFY COMBUSTOR FOR	 COMBUSTOR GEOMETRY

BETTER 'II RFORMANCE	 AND INLET CONDITIONf

ANNULUS FLOW MODEL

COMBUSTOR S LOW a/LIT

COLD SIDEHOT SIDE BOUNDARYCOMBUSTOR PERFORMANCE	
BOUNDARY

MODEL	 CONDITIONS	 CONDITIONS

COMBUSTOR DISCHARGE

FLOW FIELD

COMBUSTOR
TRANSITION MIXING	 PERFORMANCE	 NEAR WALL

MODEL	 MODEL

REVERSE FLOW COMBUSTOR	 WALL TEMPERATURE

PATTERN FACTOR	 AND LINER LIFE

ANALYTICALLY
DESIGNED
COMBUSTOR

CURRELAfE WITH
FABRICATE 	 UNACCEPTABLE	 MODEL —

FINAL	 AND TEST	 RESULTS	 MODIFY COMBUSTOR
COMBUSTOR

ACCE ►TABLETEST	 ^♦ 	 RETEST

RESULTS	 RESULTS

Figure 2.2-2. Cot:,oustor Design Methodology.
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existing empirical design relations, a baseline combustor is

defined and includes the appropriate flow splits, number of fuel

nozzles, and orifice locations. The annulus flow model is then

used to determine the orifice sizes to obtain the desired overall

pressure drop, and flow splits needed to define the boundary con-

ditions for the combustor performance model.

The combustor performance model is run at various power condi-

tions to evaluate combustor internal flow characteristics. If the

design requires changes, the baseline combustor is altered, the

annulus flow model is rerun, and the combustor performance model is

again used to evaluate the new design.

The combustor ,liner wall convective and radiative fluxes and

attendant temperature levels and gradients are calculated with the

near-wall model.	 The hot-side boundary conditions are defined by

the combustor performance model. 	 The cold-side boundary conditions

are defined by the annulus flow model. 	 * The combustor performance,^r`
model is also used to define initial conditions for the transition .°

mixing model, which is used to calculate the mixing in the transi-

tion liner and the resulting burner exit temperature quality.

1
r	 f

The results from the combustor performance model, 	 near-wall

model, and transition mixing model are factored into the analyti-

cally designed combustor. 	 If the design is lacking, iterations are

peformed using the various models to arrive at an acceptable final

configuration.

The	 configuration	 is	 then	 fabricated	 and	 tested.	 If	 the ^•,

result is unacceptable, the test data is compared with the analy-

tical predictions	 and	 the	 appropriate	 subcomponent	 is modified,
.}

.i

reanalyzed, and retested to verify that the modifications corrected

the problems.	 This procedure is repeated until all the combustor `-

design goals	 are	 achieved.	 Experience	 shows	 that	 this design ;',



1

^1

I- Iff

approach minimizes the number of changes required on actual hard-
ware to achieve the design objectives.



SECTION III

3.0 Description of Analytical Models

§ Detailed descriptions of the combustor analytical models are

provided in Paragraph 3.1. Each analytical model contains several

submodels, which are described separately in Paragraphs 3.2 through
F	 A 3.6.

r	 3.1 The Analytical Models

i.

r

	

	 The Garrett modular analytical approach uses the following

four models for analyzing gas turbine combustor flow field.

F	 o	 Annulus Flow Model (AFM)

"	 o Combustor Performance Model (GPM), 2-D and 3-D

::	 o	 Transition Mixing Model (TMM), 2-D and 3-D

o	 Near-Wall Model (NWM)

Gr

}	 These models use submodels of turbulence, kinetics, radiation,

.,r
}

	

	
and spray combustion/evaporation and dispersion as summarized in

Table 1.

r
k

`r 3.1.1	 Annulus Flow Model

<< The first task in analyzing any combustion system is to pre-
. dict the annulus flow external to the combustor. 	 For this, the AFM

is used. The combustor annulus is divided into a arumber of sec-
.'Y

'tions with the section boundaries defined by orifice rows in the
 '	 ' liner or points of significant area change.	 In each section, the

AFM solves the one-dimensional (1-D) equations for axial and tan-
7`: m gential velocity.	 Mass is extracted from the annulus flow at each

orifice row.	 The extracted mass is governed by the liner orifice

R	 PRECEDING PAGE BLANK. NOT FILMED	 13
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TABLE 1. COMPUTER MODELS AND PHYSICAL SUBMODELS (MODULES).

OIMEN NUMERICAL

SUBMODELS (MODULES)
INPUTS

INFO
OBTAINS

INFOTURBO- RADIA•
MODEL SIONS TYPE LENCE KINETICS TION SPRAY TO F40M:

ANNULUS 1 - - _ _ _ CPM
FLOW
(AFM)

COMBUSTOR 2/3 ELLIPTIC; K-f 2-STEP/ 4-FLUX/ LAGhANG1AN TMM AFM
PERFORMANCE ORTHOGONAL/ 4-STEP 6 FLUX AND/OR
(CPM) NONORTHOGONAL EULERIAN NVAl

TRANSITION 213 PARABOLIC/ K-E 2-STEP NONE/ NOME - CPM
MIXING ELLIPTIC; 6 FLUX
(TMM) NONORfHOGONAL

!TEAR I/ PARABOLIC/ K-t 2STEP 2-FLUX NGNE - CPM
NCLL 2/ ELLIPTIC
(N NM) 3

14
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geometry and	 semi-analytical	 correlations	 for	 discharge	 coeffi-

cient.	 Pressure loss,	 both frictional and dump types,	 and heat
transfer are included in the calculations. 	 Iteration on combustor
liner pressure drop continues until the total orifice flow rate

achieves the desired value.	 The AFM predicts the static pressure y

distribution around,the combustor, the liner pressure drop, orifice

flow splits, and injection angles and velocities. 	 These values are

required as boundary conditions for the internal combustor	 flow
programs	 (CPM, TMM , and NVIM) .

3.1.2	 Combustor Performance Model

The CPM has two versions: 2-D and 3-D.

2-D Combustor Perf ormance Model

If the internal flow field of the combustor is predominantly

2-D plane flow or axisymmetic flow, a 2-D CPM is used to calculate

r.? combustor	 .internal	 flow	 field.	 The	 2-D	 CPM	 is	 a	 generalized`;
a finite-difference program that solves the conservative form of thea

the governing fluid dynamic and chemical reaction equations, using i

the numerical scheme of Patankar-Spalding. 15	The following vari-

ables are solved:

e
o	 Axial, radial, and tangential velocity

o	 Turbulent kinetic energy and dissipation r	 E

r•^ a	 Total	 fuel,	 unburned fuel,	 and other	 chemical	 species

including carton monoxide

*{ y, o	 Pressure

o	 Stagnation enthalpy ::>)

,.,a

^•
15 1

{
}
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Radiation

0

	

	
Liquid particle droplet size, velocity, and evaporation

rate 6

Cylindrical or rectangular coordinates are used along with the

capability of specifying any arbitrary shape for the liner wall or

	

any arbitrary ,internal object such as a fuel nozzle shroud. Using 	 r
the flow rates and velocities, etc., from the AFM, cooling slots,

primary and dilution orifices, swirlers, and liquid or gaseous fuel

nozzles are all modeled simultaneously. This gives the overall
combustor flow field and the species and temperature distributions.

Bulk flow properties determined include recirculation zone size and
shape, primary and dilution jet penetration, and combustion effi-

ciency.

3-D Combustor Performance Model

r'.k

r

.y

f

In many situations, the combustor geometry is not 2-D. In

these cases, 3-D CPM must be used. The 3 -D CPM is based on the

USARTL 3-D Mode112 and can be considered an extension of the 2-D

CPM to three dimensions. Both models use the same numerical scheme

and the coordinate system. Like the 2-D CPM, the 3-D CPM solves for

similar variables and requires boundary condition input from the

AFM. Arbitrary complex boundaries and nozzle shrouds can be simu-

lated. The 3-D CPM can analyze such 3-D flow situations as single
(or multiple) swirlers in an annular combustor, tangential fuel
nozzles, and discrete primary and dilution jets.

3.1.3 Transition Mixing Model

The TMM has two versionss 2-D and 3-D.

3

r
r 16
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2-D Transition Mixing Models.

Though the 2--I) CPM and 3-D CPM can analyze arbitrary shapes,

°.hey are limited to cylindrical or Cartesian coordinates. They

cannot economically calculate the flow in the transition liner used

in reverse-flow annular combustion systems.. For relatively long

combustors where the flow entering the transition liner is predom-

inantly 2-D, the 2-D tran .cition mixing model ( 2-D TMM) is used.

This model is based on the GENMIX program of Patankar and

Spalding16 Modifications have been added that allow the program

to negotiate 180-degree bends with the source terms added to

account for the induced radial pressure gradients. Since it is a

parabolic numerical scheme:, this model is limited to transition

liners in which the radii of curvature are large. Otherwise the

pressure effects would have to propagate upstream. As in the other

Garrett models, the two-equation k- F turbulence model is used along

with the 2-step reaction mechanism. For initial profiles, the 2 -D'

TM uses the exit profiles as predicted by either the 2-D CPM or 3-D

CPM. It then generates the exit profiles from the transition liner

to which the turbine stator is exposed.

3-D Transition Mixing Models

With current trends toward shorter turbo-propulsion combus-

tors and more compact transition liners, a significant amount of

dilution jet mixing and spreading takes place within the transition

liner. Attendant 3-D flow characteristics result from this mixing

^i and spreading.	 Moreover, due to tight-bend radii of the transition

" liner, upstream ( elliptic )_ effects caused by streamline cur! i%ture _	 I
•,

cannot be ignored.

= k ' A 3-D	 elliptic transition mixing model 	 has therefore been a	 r

developed	 that	 includes	 radiation	 and	 kinetic effects	 on	 the

} transition liner.	 This program is similar to the 3-D CPM, but ^"	 k

has 'been structured to afford more than 2000 L finite-difference
je

.n :. 17 Y	 .

A ^
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nodes, where L is the number of nodes along the predominant flow

direction.	 Theoretically, there is nrj limit on L; however, due to

computer time consideration, L is g^-orally kept less than 50. 	 The

3-D TMM can be adopted to analyze turbopropulsion combustors with

much more complex geometries that cannot be adequately discretized

by a cylindrical or Cartesian coordinate system.

i

3.1.4	 Near-wall Models
_	 r

i.	
To accurately predict hot-side convective and radiative fluxes

t

to the liner wall, a , ^!-D parabolic film cooling analytical model
was developed dur ing the Army Combustor Design Criteria Program.

'-	 Subsequently, an improved 2-D NWM has been developed to allow a
K 	 C

more accuL tte assessment of the effects of the following on liner 	 k
pper= =	 cooling effectiveness:

.y	
o	 Slot geometry	 ^C;Y
o	 Primary/dilution jets

^g	 o	 Flow in the lateral directions

.. j	 o	 Radiation from the bulk flow field and the opposite wall
f^

o	 Spray combustion adjacent to the wall. 	 j

The 2-D NWM can be used interactively with the combustor per-. 
formance models to more accurately predict near-wall flow field.

The 2-D NWM uses the same modules as the CPM.	 A, ^	 4

To further improve near-wall calculations, 2-D elliptic and	 j

3-D parabolic NWM have also been developed at Garrett,

7777
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3.2 Description of Turbulence and Scalar Transport

i

The internal flow field in gas turbine combustors is highly

turbulent and recirculating. Efficient design of combustion

systems requires a detailed understanding of the physio-chemical

processes of such systems. A prerequisite For this understanding

is an ability to analyze the nonreacting turbulent recirculating

flows.

The fluid dynamics of turbulent flows are governed by the

time-dependent Navier-Stokes equations. Solutions of these equa-

tions are extremely difficult and require prohibitively large com-

putational time. Furthermore, subgrid models are required to

describe the transport phenomena in addition to the Navier-Stokes

equations. A common alternative is to use time-averaged Navi,er-

Stokes equations. This system of equations contains unknown higher

order correlations resulting in a greater number of unknowns than

the number of available equations. Turbulence models of the higher

order correlations based on phenomenological assumptions are needed

to close this system of equations. The degree of success of a tur-

bulence model depends on the nature and accuracy of the phenomen-

ological assumptions.

The simplest of the turbulence models are the mixing-length

models. In ti^ese models, the characteristic length scales of tur-

bulence are often prescribed to close the system of equations.

These models have been successful in treating simple flows like

boundary layers and pipe flows, but have been unsuccessful in anal-

yzing recirculating flows.

The next higher order turbulence models are the one-equation

models. These models solve one differential equation for deter-

mining the distribution of the turbulent kinetic energy or equiva-

lent characteristic property of turbulence. The characteristic

19



length scale is defined in a manner similar to mixing-length

models. Consequently, the one-equation models have also been

unsuccessful in predicting turbulent recirculating flows.

The	 two-equation models	 are more	 complex	 than	 the	 mixing

length models.	 These models use two differential equations for

computing characteristic velocity and length scales. 	 Among the

two-equation models, the k-e model has been the most successful so

far.	 The k-e model is used in the Garrett combustor analytical

models and is described in Paragraph 3.2.1.	 In regions adjacent to c;	
j

walls, the viscous effects play a prominent role.	 To provide an
accurate prediction of the flow in these regions, a low Reynolds

number version of the k-E model is used in the Garrett near-wall
models.	 This model is described in Paragraph 3.2.2.

Even though the k-e model has been the most successful in pre-

dicting recirculating flows, the predictions for flows with stream-

line curvatures have been only qualitatively correct. 	 Flow fields

involving streamline curvatures have been known to have increased

turbulence diffusion rates due to enhanced turbulence production.
r

This increased turbulence production is not adequately accounted {

for in the k-e model.	 One-way to include this extra production of

turbulence iz to modify the constants in the k-e model in propor-

tion to the Richardson number, which is a measure of 	 the extra

strain rate produced by the streamline curvature.	 These correc-

tions are described in Paragraph 3.2.3.
^	

t

The Richardson number corrections 	 are applicable for 	 flows

with moderate streamline curvature effects.	 For flows with strong
I

curvature effects	 a solution of the Reynolds stress equations is
necessary.	 Solution of the complete Reynolds stress components

results in increased computational time. 	 An attractive alternative Y.'

is the use of an algebraic Reynolds stress model.	 In this model,.;
F«

r-F

r	 r.
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the terms in the Reynolds stress transport equations are approxi-

mated to yield algebraic; expressions 	 in terms of the turbulence

kinetic	 energy and	 length scale.	 The degree of	 approximations

employed would determine the accuracy of predictions.	 The alge-

braic Reynolds stress model is described in Paragraph 3.2.4. f	
1

In complex combustor flow fields, the approximations used in

developing the algebraic Reynolds stress model are not valid. 	 For

such flow fields, the Reynolds stress components must be obtained

from	 the	 solution	 of	 differential	 transport	 equations	 for	 the

appropriate Reynolds 	 stress component.	 A description of	 these

equations used by Garrett are provided in Paragraph 3.2.4. l

Another important submodel for combustor internal flows is the

scalar transport model.	 The accuracy of the combustor performance

predictions depends upon the accuracy of predicting the transport

of scalar properties such as concentration of reactants, etc. 	 The

most commonly used scalar transport model is the gradient diffusion>

model.	 The gradient diffusion model does not adequately account _

for counter-gradient transport, which has been known to exist in

most combustor internal flow fields. 	 An algebraic scalar transport

model	 (ASTM)	 has	 been	 developed	 at	 Garrett, which can 	 predict

counter-gradient	 scalar	 transport.	 This model	 is described	 in

Paragraph 3.2.2.

3.2.1	 Governing Equatio^ ns for the k-E Model

•	
I

The time-averaged transport equations for turbulence kinetic {

energy (k) and its dissipation rate (E) can be written in the fol- I

lowing generalized variable form: "	 t

a

♦ ., 	 i I

b

21
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t

F ax (prU`^) + ar (prVo) + a9 (pWO)

axx (r reff, ¢ ax - a (r reff,O ar

10- B (reff, r a9 )^ - S
	

(1)

Here p, reff,o and So denote the fluid density, the local effec-

tive exchange coefficient of variable (P, and sources /sinks. The

source terms for the dependent variables are

o	 Turbulence kintetic energy, k = -I( uu ^+ v^ +w )

	
f

,1

k

f
o,r
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The effective viscosity is obtained from the relation

iteff = µ+µt

where u and µt are the molecular and turbulent viscosities, respec-
tively. µt is related to k and a via

µt=CDPk2/e
	

(5)

The exchange coefficients are defined as

reff,0 = µeff/ eff,0

Recommended values for the constants in the above equations are

	

CD	0.09

	C1	 1.44

	

C2	 1.92

	

cr
eff, k	

0.9

eff, E
is calculated from

2

Geff, e -	
K 

77T
(CZ—Cl) CD 	(6)

where the K is the von Karman constant taken to be 0.41.

x...	 The near-wall region is given a special treatment in the pro-

gram. Since the expression for I'eff	 is	 accurate for turbulent

flows only, a means is provided for the inclusion of the correct

sheer stresses and other fluxes at the wall.	 Therefore, the nodesc a
`

next to the wall are assigned the following values as Per an empi-

r ical wall law:

23
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Y+ 11.5	 r^wal l

y+ > 11.5i91 n	 + + P	 ( 7)
K (y) O

4

r+ = pk 
I/2 

CD 
1/4 

µ	 a

_ 1/4
PO = 910 ((r°r -1) ( Q.°* )	 (8)

eff	 eff

where S is the normal distance of the wall from the first interior

adjacent node and o- is the laminar Schmidt number.

The kinetic energy of turbulence has small diffusion near the
walk.; hence, Twall for k is set equal to zero. Instead of computing

rw?1 for E, it is calculated for the near-wall node by assuming a4a
linear- variation of the length scale giving the following expres-

sion:

x

E= C 3/4 k 3/2 AK s)

3.2.2 Near-Wall Low Reynolds Number Correction
ty

In the near-wall region, the wall function approach, described

in the previous paragraph does not properly describe the behavior

of turbulence kinetic energy and its dissipation rate. A sys-

tematic Taylor Series expansion technique has been developed by

Chien, 17 which correctly describes the turbulent shear stresses,

kinetic energy, and its dissipation rate in the region near a wall.;_`•

To maintain the consistency of the behavior of k and E near the
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wall, additional terms had to be added to the k and E equations and

the turbulent effective diffusion rates were modified. The cor-

rected equations of Chien near the wall are as follows:

Turbulence kinetic energy; k

a (p0k) + 1 a (p rV k) = a	 e k
OXx	 r ar	 Ox (ref f,k a x)

+r Or	 r reffk Orr + Sk + D	 (10)

where, D is the extra source term, given by

D	 -214 2 (11). y

^ reff,k = (µ +µ t f))/Qeff,k (12)
i

' fir	 =	 1,0 - exp (-0.0115 y+) (13) f
z

- Sk is the source term described in equation (2) r

s Dissipation Rate, E

a	 E
a x (FUE ) +	 a r (r

pV0, =	
f	 aOX	 reff 1:	 '&x

(14)
k

r
a	 aE+I •.>

f
r r	 E	 +S + EOr	 E

._.
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P

0

where, E is the additional source term for dissipation, defined as

E _ -2 µ exp (-0.5 y+)2
Y

(15)

and	 SE = (C I Gk - CZ f2 PIE) k 	 (16)
i

with	 f2 = 1.0 - 0.22 exp (-RTJ6)2 	 (17)

P k2
RT µ e

In the modified k and a equations, it is possible to apply the

boundary conditions at the wall, with k o and E = o at y = o.

This approach gives consistent results near the wall.

3.2.3 Richardson Numbers Correction to k-e Model

The standard k-e model presented in Paragraph 3.2.1 describes

the turbulence characteristics at any point in the flow field by a

single velocity and length scale. These scales are obtained from

an assumed isotropic turbulence structure. This model is adequate

for simple flow fields. When significant streamline curvatures are

introduced into the flow field, such as strong recirculation zones

or swirl, the k-E model does not adequately account for the en-

hanced turbulence diffusion caused by the extra strain rates asso-

ciated with streamline curvature. For analyzing such flow fields,

the k-e model should be modified.

A measure of the extra strain rate due to the streamline curv-

ature is given by the Richardson number, Ili. The extra strain rate

imposed on the flow field would tend to increase both the velocity

and the length scales of turbulence. One way to account for the
changes in the characteristic scales- is to modify the turbulence

26
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constants depending upon the Richardson number. For 2-D recir-

culating flows, the Richardson number can be defined as

	

Ric	 -^	 2
	 (RVR^	 (18 )

	

I	 E	 R

where, V  and Rare the resultant velocity and the radius of curva-

ture respectively. They are defined as

V  = U2 + V2	
(19)

I	 UV 
( aV _ aU) + U2 8V _ V2 W	

(20)R	 ay ax	 ax	 8

VR

,z	
For swirling flows, the corresponding Richardson number is defined

t	 by

4

^ 	 V2{) a (r V® )

Rive =	 r	 (21)

( 8U ) 2 + (r2 C ̂3)2
ar	 Br r

In the k- f model, the governing equation for k is an exact

equation and no empirical modeling is involved in it. However, the

E equation is a modeled equation containing two empirical con-

stants. The adopted approach is to modify the constant C 2. in the

equation by the following expression

27
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C2 = 1.9? exP	 a^ RiV -	 Rig ).	 (22 )
9 B

Here a V8 and ac are empirical constants, whose values are of the

order of 0.2.
a

3.2.4 Algebraic Reynolds Stress Model

Turbulent flow fields occurring in combustors are generally

nonisotropic in character. The turbulent diffusion rates in dif-

ferent directions are different depending upon the strain-rate ten-

sor. Descriptions of such flow fields necessitate knowledge of the

complete Reynolds stress components. Solution of the complete

Reynolds stress components is expensive and complex. An alterna -
tive to this approach is the algebraic Reynolds stress model.,,

The algebraic Reynolds stress model is obtained by approximat-

ing some of the higher order terms in the Reynolds stress equation

based upon phenomenological simplifications. The approximations

result in algebraic expressions for the Reynolds stress components

with added empirical. constants.

The exacttransport equation for Reynolds stress ui u
i 
at high`

Reynolds numbers in an incompressible flow can be written in the

form'

t•

28	
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Kuj_ a	 t	 uip'a^iau.

 ,
	 ^	 — ^ 1

Dt	 ax  ( uku iuj) P a xi	ax.	 ` 2 P^a xk 	axk /J

Convection	 Diffusion	 E... Viscous
^J Destruction

IUj	 aU	 _R! aui a
(Uiuk axk + ujuk axk + P a	 ax i	 (23 )

7rij = Pressure-Strain
P i j = Production

At high Reynolds numbers, the viscous dissipation e ij is essential-

ly due to U a small scale turbulent motions and hence tends to iso-
tropike u iuj . The pressure-strain term has ►peen modeled by Rodila
in the form

"ij = "ij, i + 'ij
,2	 (24)

ITij,l represents the contributions to pressure strain arising

from fluctuating velocities only, and 7ri
j,2 accounts for the inter-

actions between fluctuating velocities and mean strain. These

terms are modeled as follows:

iri14i	
CI K 

Cuiuj	 3 sij 
k3

a u	 au.
i1,2	

-a Pij - PS ij - /3 Dij - ^ PS ij -yk 

^Tx_j '
-}a
 i

where:

(25)

(26)
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CO	 1.5p a	 2	 2
1

y	 55	 and 02 = 0.5

Pij	 i k	 + UP k )

	

a Xk 	 'axk

k 8
Uk + 

6j U 
k Uk)	 (28)

U,,u 
D ij	 (	 Xi

Rodi has proposed that the convection and diffusion of uiu 
i 

can be

scaled by

D
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With this simplification, the above equation reduces to the f orrw
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From Equation (33):

C _
2

(^	 _ a) +	 Y-11  u2 C'k k (36)

The	 ASM	 provides	 a mechanism by	 which anisotropic turbulence

structure can be pred = eted without substantial increase in computa-

tional effort.	 The empirical constants in the ASM have not been
fully established. They have to be determined by comparing the
predictions with the data base.
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3.2.5 Reynolds Stress Transport Model

Although the algebraic Reynolds stress model provides a means

of computing the anisotropic structure of turbulence, its accuracy

in complex turbulent flows is not expected to be good. In the alge-

braic Reynolds stress model, the closure of the system of equations

.for Reynolds stresses was achieved by using a sealing law through

which the high9k order correlations were expressed as functions of

lower order corr,)Iations. In complen internal combustor flows, the

validity of the scaling laws is questionable. In sxch cases, the
only recourse available is to use the Reynolds stress transport

model, where the Reynolds stress components are determined by solv-

ing modeled differential transport equations for each stress compo-

nent. The closure of these transport equations was achieved by

	

6	 modeling the higher order correlation terms in a manner analogous

	

;; V	 to the methods used in the k- E model.
4

4	 i 	 LY.

The governing equations for the Reynolds stress components can

be written in generalized form as follows:	 '^

r { JL (PrUO) + a , (PrVO) + a8 (PWO)	 4
((

i	 (37)	 1
t^

_ ex (rreff,^ c7 ) - er (rreff,^a)

a	 I aao
_ r aB (reff, 0 r a 8)- S

Y

Here P, reff,O and So represent the fluid density, local, effective 	 i

	

x	 exhange coefficient, and the source term for the dependent'vari

able, 0, The source terms are	 T

C",	 Axial turbulence normal stress, 2
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o	 Turbulence Shear Stress, vw
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o	 Turbulence shear stress, uw
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aVe	

uv v8+ W2+ P(3 ax	 ax	 -	 r ,,,N,....r.
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-	 P Y k
ava

- C 11 uw + Puw (! -a-(3) IVax	 i k ....	 ^'ara

Here,	 Cl,	 a,	 (3,	 and y are empirical constants, whose values are

defined in Equation 26.

4
Solutions obtained from these equations .̂ are used in the mo-

mentum equations instead of using theq	 g	 gradient diffusion assump- ;

tions.	 In the new-wall region, boundary conditions for the depen-

dent Reynolds stress components are applied by assuming the convec-

tion and diffusion terms to be small, in accordance with the wall
function approach.	 The Reynolds stress component w2 is computed •'	 1

from the relation

w 2	 2	 22k - u	 - v
`

c

,r.
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3.2.6 Scalar Transport Model
w
a
s

	\u	
The turbulent transport of Scalar properties in a flow is

quite different from the transport of momenta. The most common
a

method of describing turbulent scalar transport is the gradient

transport law through the use of Prandtl/Sehn ►idt numbers. This

^	 t
apprach is adopted in the standard k-E model. In the gradient

transport model, the turbulent transport parameters of interest are

defined by the following.

puB' =	 reff B ax	 (43)

i

pv8' _ - reff,B 8r	 (44)

2 ^k	 r 8® 
2 ( 88 

/2	
(45).'	 p6	 = 

,

a© e reff, B L 8x > +\\ ar / ]	 1L
where

reff,e = µeff/°®

Here, 1^rB is the Prandtl/Schmidt number for the scalar, 0 and
ae is an empirical constant. Recommended values for these are,

ae = 0.9 and ae = 0.8

The gradient diffusion model does not predict any counter-

gradient diffusive transport. However, in many flows, regions of

counter-gradient diffusive transport have been known to exist. For

such flows, the scalar transport terms must be obtained from appro-

priate transport equations,
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3.2.7 Algebraic Scalar Transport Model 	 i

The governing equations for scalar transport are coupled non-

linear differential equations, which are quite time consuming to

solve. However, by using scaling laws analogous to the method

used in developing the ASM, it is possible to obtain algebraic ex-

pressions for the scalar transport correlations. These expressions

could still account for the counter-gradient scalar transport.

The detailed steps used in deriving the algebraic scalar transport

terms are described in this paragraph.

Transport Equations for U-01;

Div Q v u.0 1) -	 Diff (Pu.B')	 PP.	 - PE.	 +	 1
1	 1	 18	 16	 P ^^J 9	 (46)

Convection	 Diffusion Production Redistribution
Dissipation

ae -	 ui®	 =--1 (47)
Pj8	 =	 -	 u iuj axi ax. 3

i

'
E.	 = 

W e 
f

J8	 f
au.
_J

t
a B
ax. (48)'

1

ax i

* j 9	 CIO k + c2 	uiet	 ex.
Uity

Assumption:

t R

t	 t u	 t
o

rx
i	

x	 bu B t

Div (pv uj 6) - Diff (Puio) = a_i k (P-E)	 +	 aZ	 (P8 - ee) (50)
z.,

x36



Convection	 Diffusion Production Dissipation
J

U where,

Pp	 _	 _	 2	 u. 9' a 9e	
=a x) -	 2 u e ' 	 0d - 2a x ve' 00a r	 (54)

f
and

^2
E	 e

 e

M	 {

E0 
_ ae (55)

j	 a 

For minimizing computational effort, the following assumption rt'a	 L

is made in a form consistent with the model for velocity fluctua-

tions. f(
`

Rp

rt1 ny

_rt *rt"
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Pe = - 2 uj 0' ax	 (51)
J

feeB = a^ 
k	

(52)

210.

al and a2 are empirical constants to be determined.

^2
The transport equation for scalar fluctuations, 8 , is

div (Pv9)	 -	 Diff (Pa	 =	 PPg - P	 (53)
y	 J
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22	 2
div (P:7 0 '	 Dif f P 0 '	 C	 P 0 (P-o0 - ^-

Using Equations ( 53) and (56)

(56)

P P0 - PC e.

,2

C
0 P 0 (P- 6)

k (57)

i	 ?
With these simplifications, the correlations for scalar quantities
reduce to the form:

 + a
I (P- E 	

(58)
ax	 CIO k	 kve	 v2

IN	 ae^

I

aj	
— 

ae^ —1 auFX + UV T +	 Tr (I - Cj	 r	 ve	 20)]/

I	 (P	 C2,) alll+ Ci e F	 TXJ
(59)

0,2

2
870	

V 0 

L

17 ax

E
c9	

(
PkE J
	 +

(60)

Th-., assumptions used in the derivation of the algebraic stress ^, i°{

model are applicable for the flows that are close to local equi-

librium.	 However, this model does not neglect any of the terms in
the transport equation, and only a scaling law has been employed. •

The algebraic relations shown above express the turbulent scalar

transport as a function of both mean scalar gradients and mean

velocity gradients and hence can predict counter-gradient scalar

transport.
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3.3 Gaseous Fuel Combustion Models

Successful modeling of combustors depends upon a correct

scription and coupling of the fluid mechanics, turbulence, h

transfer, and chemical processes involved. The rates of turbul

exchange of various species and the rates of chemical change need

to be modeled. In turn, this modeling will determine the details

of quantities such as energy input to the gas stream, flow

patterns, temperatures, and species concentrations. Turbulence

models have been developed to a reasonably satisfactory stage. The

state of development of chemical models is not nearly so satisfac-

tory and is discussed in Paragraph 3.3.1.

The turbulence/chemistry interaction model currently used by

Garrett is a modified version of the eddy-breakup model; work is in

p progress on the development of a perturbation analysis technique.
These models are described in Paragraph 3.3.2.

k4- 3.3.1	 Hydrocarbon Reaction mechanisms°

FXp A successful modeling of combustion systems	 depends on an
^^• adequate description of the reaction mechanism. 	 For hydrocarbon

oxidation, a large number of species participating simultaneously

k
in numerous elementary kinetic steps is required to specify the

r 3'	 reaction mechanism.	 These differential equations are "stiff" and
r

require special time-consuming integration methods. 	 For a complex'z

{	 3-D problem, the computing costs would be prohibitive. 	 Besides the

' • 'f large number	 of species equations	 to be	 solved,	 the	 elementary

z steps and their rate constants are not well known except for the h	 y

7P,	 simplest of hydrocarbons	 (e.g. , CH 4 ^ .	 To avoid this problem, the
g

gas turbine combustion modeling effort has frequently been simpli- j

fied 	 by using a global approach 	 that	 reduces chemistry to the

specification of an overall global oxidation scheme.	 This can pre-
`.Ytld

dict quantities of	 interest:	 f uel consumption and heat release

rates.
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One Step Scheme

!..-I

The simplest global mechanism is the one-step scheme:

CX Hy + (X + 4
/V2 ► XCO2+1  H2O

The advantage of this mechanism is its simplicity; it involves

the solution of the conservation equations for unburned fuel and

the mixture fraction. The heat release and the concentrations of

the other species are then obtained from linear functions of the

amount of fuel consumed. This mechanism, however, fails to predict

the important characteristics of hydrocarbon oxidation, i.e., the

-formation of intermediates and CO, which influence the process con-

siderably. As a result, this mechanism is inadequate for obtaining

quantitative predictions.

Two-Step Scheme

A slightly more complex scheme is the two-step mechanism:

CXHX + (7 + 4 ) (02 +nN2) w XCO + H2C + ( +) nN2

X CO + 2 (02 + nN2) X CO2 + ^ nN2.

This scheme involves the solution of one additional equation:

that for the concentration of CO. Although the two-step scheme has

been widely used by Garrett it is deficient in that the formation

. cp- ĝrrA `d4 z^

1

I

r

of intermediates is ignored. The derivation of the pertinent equa-

tions is given below.

	

 ^ 	 a o

For the first reaction,	 f

	

,:	 r

s	 •r
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I N 3

r l = (mass of 0 2 )/ (mass of fuel) ,

r 2 = (mass of CO)/(mass of fuel)

r 3 = (mass of H 20)/(mass of fuel);	 (61)

in the second reaction:

r 4 = (mass of 0 2 ) / (mass of CO) ,

r 5 = (mass of CO 2 )/(mass of CO).	 (62)

The values of these ratios can be calculated in a straight-forward

manner

r1 _ (
22i + 4 ) W02/Wfu

r 2 = X WCO/Wfu

r 3	(Y/2)WH20/Wfu

r4	 (1/2)W02/WCO

r 5 = WCO2/WCO
	 (63-)

Here the W's are the molecular weights of the chemical species.

r

9

"

	

	 The mass fractions of all chemical species obey the general

differential equation with So as defined in Table 2. Further, the

*•	 diffusion coefficient r can be taken to be the same for all 	 't

1	 species, especially when the flow is turbulent. The value of r is

	

then µ t /a t , where vt
 is the turbulent Prandtl (or Schmidt) number. 	 r.;

	

The source terms for various species are related via the ratios 	 •'.

defined in Equations (61) and (62).. As a result, the mass frac-

	

tions of the species can be added in certain proportions to yield 	 t;
41
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zero source terms. This is shown in Table 2. Here S fu denotes the

source for fuel due to the first reaction, while SCO stands for the
rate of production of CO in the second reaction.

TABLE 2. SOURCE TERMS FOR CHEMICAL SPECIES.

S

Mfu	 Sfu

'CO	 SCO r2sfu

'OX	 r 1S f u + r 4SCO

MCO2	 — r5SCO

MH20	 - r3Sfu

r 

A0 04L

k

,^	
1

i

a

OA - mOX	 (rl + r 2 r 4 )"n fu	 r 4mCp
	

0

Og _ mCO2 + r5mCO + r 2 r 5 mfu	 0	 1

O
C 

%20 + r3 m
fu	

0	
A,

s	
f

^R
	

The last three entries in Table 2 show that, because their

* v ,	 source term is zero, a single solution for them would suffice pro-

°j

	

	 vided their boundary conditions are the same. This condition can

be ensured by normalizing the O's with reference to their values in

the air and fuel streams. Thus a single variable f with a zero 	 •';,
source term and with values 0 and 1 in the air and fuel streams

42
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respectively can be regarded as providing the solutions for A, OB
and OC via the following relationships:

f _ ±A-kair r = O B-OB, air

10A,fuel -OA ,Air	 ^ B, fuel -'OB,air

Further, let:

(m+-u ) fuel	 1

and

s

(mOX)air = R

C,fuel C,air
	 (64)

(m142) air	 1-R	 (65)'

Combining Equations (64), (65), and the definitions of ¢A' 'OB' OC'
we have:

moX = R(1-f) + r4 'CO + (rl+r2r4) (mfu f)	 (66)

mCO2 = r 2 r 5 (f-m fu ) - r5mco	 (67)

mH2O = r 3 (f-m fu )	 (68)

Incidentally, f can be considered as the mass fraction of "total

fuel" that would prevail if the fuel did not react at all.

The reaction rates Sfu and Sco are given by the following
relations:

Sfu - (The smaller of S  and S2)



f

J

where

_	 1.5 0.5S1 Fl P	 mfu mOX exp(-E1/RT)•

S2	 CR,1 pmfat E/k.

Here, CR 1 is the eddy breakup constant for first reaction.

Recommended value for CR,l is 3.0

SCO = - (The smaller of S 3 and S4),

where

S 3 F 2 P2 mCO mOx exp(-E2/RT)^

S4 = CR,2 PmCO E/k.
	 (70)

CR,2 is the eddy breakup constant for the second reation, recom-

mended value for C R 2 is 4.0

The constants in the above expressions are given the following

values:1

F1 = 3.3x1014 ,	 El/R = 27000.,	 CR'1	 3,

F2 = 6.0x10 $ ,	 E2/R = 12500.,	 CR 2 = 4, '.

all in S.I. Units.

To summarize, the quantities mfu' mCO, and f are used as the

dependent variables of the differential equations. The source

terms for mfu and mco are calculated from Equation (69) and (70),

while the source for f is zero. The values of mOX , mCO2, and mH2O

are then obtained from Equations (66), (67), and (68). Lastly, mN2

is calculated from the fact that all mass fractions should add up

to unity.
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Four-Step Scheme

The oxidation of hydrocarbon fuel can be described by the fol-

lowing steps:

(a) Transformation of the hydrocarbon fuel into intermediate

hydroca-rbons and hydrogen with little release of energy

(b) Oxidation of intermediates to CO and H2

r̀ (c)	 Oxidation of CO to CO2

r

(d)	 Oxidation of H 2 to H20.
4

Steps	 (b)	 through	 (d)	 are exothermic and are responsible for the
t^r► •' release of energy and associated temperature rise.	 A reaction

t

:^- scheme, which is designed to correctly model the oxidation process,

must include a description of these steps,. i	 zr,..
!

^

•

sue'
`- The simplest mechanism that accounts for the essential fea- t	

,.'

tures	 of	 the	 hydroc^Ar•hon	 oxidation	 is	 the following	 four-step
a 

-. scheme proposed by Hac^tman, et a1.19

CN H2N+2 ~ 2 2 H4 +H2 °`	 y

.

.,,
C2 H4 + 02 --2CO+2H2

e^

CO + 1/2 02 — COQ
}

i, 4 Hz + 1/2 02	
H

2 
t?

r

•S

v .. y	 s 1
t a^ ^	 a	 ,	 t

r
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which is valid only for aliphatic hydrocarbons (of the type

C  H2N+2). To accommodate a general hydrocarbon CXHy, the first

two steps have been modified;

CXHy — CXHy_ 2 + H2

CXHY-?. + 102 --- X CO + ^H2

This scheme involves the solution of two transport equations

for the concentrations of C XHy-2 and H2 , in addition to the trans-

port operations for unburned fuel., CO, and "total fuel" as outlined

in the two-step scheme.

3.3.2 Turbulence Chemistry Interaction

In this section, a review of turbulent combustion models is
provided. This is followed by a description of the models under

investigation at Garrett. Finally, 'a summary of turbulence/-

chemistry interaction modeling is provided.

Review of Turbulent; Combustion Models

An adequate treatment of turbulence/chemistry interactions is

essential for a reliable combustion model. Since the kinetic equa-

tions are nonlinear 11M temperature and concentrations, large errors

can be caused by incorrect time-averaging of the various terms with

attendant effects on heat release rates, time-averaged gas temper-

atures, and convective and radiative fluxes to the liner walls.

The Problem - It has long been realized that the practice of writ-

ing chemical kinetic equations in terms of time-averaged local var-

iables such as

W  =17 4 A exp I -8/T j 	 (71)



f

4

is unsound in turbulent mixing flows with relatively fast kinetics.

Here W  is the chemical reaction rate for species i of mole frac-

tion Y i ; Y  is the mole fraction of another species; A is the pre-
exponential factor in the Arrhenius expression for the chemical

kinetic rate 8 is the activation temperature; and ':` o the abso-

lute temperature., the overbar indicating time averaging. Equation

(71) neglects the correlations between fluctuations in the various

quantities, e.g., Y'_j j ' Y' jV and the contributions from these
terms can change the computed reaction rate by an order of magni-

tude or more. Attempts to compute the various correlations direct-

ly, as has been done by Donaldson 20 and Borghi, 21 have proved suc-

cessful only in flows where the fluctuations are low and the heat

release is not large.

A

x

i

The Fast-Chemistry Approach - A more satisfactory approach in non-

premixed combustion systems is based on the assumption that the

chemistry is fast. The chemical reaction rates are then entirely

mixing controlled and are a function of the turbulence rather than

the chemical kinetics. Two versions of this approach are in cur-

rent use. 1F 	 ^ q.;^'^ ^7^

a r 	 r.r...
t

In the first version, equations for conserved scalars such as ^$ =

the element mass	 fractions or	 the mixture	 fraction	 are	 solved,

directl	 for the individual combustion productof solving 	 y	 p.instead
species.	 Molecular species concentrations and temperature are then

determined	 from	 the	 compu od	 moments	 of	 the	 conserved	 scalar,

usually by aseuming some probability density function for the con-

served scalar.	 The oast chemistry assumption implies an instanta-

neous relationship between molecular species or temperature and the 3t

conserved scalar.	 Chemical reaction rates can be found, if needed, 1

by differentiation. 	 Such an approach has b4en used by some inves- s'^

tigators,	 e.g.,	 Lockwood. 22	 The pr .otAa°_Ck-	 is that the extension to

include the treatment of any ' typv, C:,V reaction mechanism, 	 even a nY

single-step one, entails compl y ^.A3ci,
*	 . ,^

47
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In the second version, molecular equations are solved and the

chemical reaction rate is modeled directly in terms of turbulence

quantities. The Spalding eddy breakup (EBU) mode1 23 is the prime

example of this approach, in which single or multi-step reaction

mechanisms can be handled, when suitable modifications to the model

are made. This has been done by Garrett, which has developed a mod-

ified version of this model.

Both of these approaches give qualitatively satisfactory

results for the main species concentrations and temperature. The

problem, however, is that chemical kinetics is no longer involved.

The Inclusion of Chemical. Kinetics --Although  the majority of fuel

oxidation in gas turbine combustion systems is essentially mixing

controlled under most operating conditions, the chemical kinetic

effects must be included to predict hydrocarbon emissions, flame

stabilization or blowout, CO emissions, soot formation and burnout,

and NO formation. The problems of satisfactorily including the

chemical kinetics into the chemical reaction rate have proved to be

formidable.

As a first step towards inclusion of the kinetics,, the EBU

model has been modified at Garrett to compute tuer  reaction rate A

from the minimum of the EBU rate and the well-stirred reactor

global reaction rates. Garrett has used 2-step and, recently, 4-

step kinetic schemes. The procedure is illustrated'-here with -a
single-step reaction scheme.

R	 min (R EBU, RWS ]	 (72)

REBU	 CRpcJ)e/k	 (73)

RWS	 A P1.5 
Mox M fu

0.5 exp 
(-
E/RT)	 (74)

min [Mfg, Max/i3	 (75)
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REHU =	 the eddy-breakup rate of chemical reaction;

RWS =	 the well-stirred rate of chemical reaction;

CR =	 empirical constant;

A	 =	 Arrhenius pre-exponential factor;

P	 -	 density;

M
0 
 

=	 mass fraction of oxidant	 1	 }

Mfu =	 mass fractiort of fuel	 ^}i
z

E/R	 activation temperature;

T	 =	 absolute temperature;

k	 =	 turbulence kinetic energy

E	 =	 dissipation rate of k	 ='
1

i	 =	 mass of oxidant per unit mass of fuel.

This model, which was used in the computer codes developed by

Garrett for the US Army, 12 has been found suitable for qualitative	
I

correlations. A further extension of the model at Garrett solves a
ii

transport equation for the fluctuation, g (=t^ 2 ) , of the fuel con-
centration rather than obtaining 0 from Equation (75). This addi-

tional equation results in better agreement between the predictions

and experimental data for typical combustor geometries. It is

still not suitable for accurate quantitative predictions and for

problems such as kinetic effects on temperature or satisfactory 	 } M°

r
r

tyy^,,

M

1	 ^^
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estimates of free-radical concentrations. These quantities are

required for accurate prediction of CO, since CO consumption often

occurs via the reaction CO + OH = CO 2 + H.

Achievement of a satisfactory approach to the modeling of the

chemical reactions has led to several rather novel approaches to

the problem. Many of these methods, such as Spalding's HSCIMO

model, 24 Chorin's Vortex Dynamics, large eddy simulation tech-

niques, and joint PDF approaches, 25 involve at least an order of

magnitude increase in the size and complexity of the computation

and as yet are not completely formulated. One approach, based on a

perturbation analysis for reaction kinetics, does not involve such

an .increase in size and complexity, and has been formulated by

Bilger. 26 This method, as described in the next paragraph, has

been adapted by Garrett.

The Perturbation Analysis for Reaction Kinetics

In this approach, a turbulent diffv3ion flame model has been

developed . 27 It uses a double reaction zone model and perturbation

analysis for finite rate kinetics for hydrocarbon combustion. A

system of eight parabolic transport equations is solved. The system

consists of the usual k-E model equation in Favre averaged form for

continuity, momentum, mean mixture fraction, specific turbulent

kinetic energy, and turbulent kinetic energy dissipation rate, with

additional scalar transport equations for mixture mole number per-

tubation, unburned fuel mass fraction pertubation, and mixture

fraction variance. The thermodynamic state ( and composition) of

the flow field is contained in an equilibrium model of the hydro-

carbon-air mixture, in terms of mean mixture fraction. The progress

of the chemical reactions (and thereby the molecular kinetic rates)

is contained in perturbations or constraints on the equilibrium in

_	 terms of mole number and unburned fuel mass fraction. The unburned

50



•	 r

fuel mass fraction and the intermediate are specified as functions

of mixture mass fraction, f. For the fuel,

Y13 =Y°13 + Y

	 (76)

where

YO13`0
	

0 !^-e<eig

and

(-eI )
Y^13 ` -19

where

dig <	 < I

y
	

is the pertubation in fuel mass fraction
t 1

Y°13 is the "fast chemistry" y (i.e.,(.e., :zero pertubation) .fuel

mass fraction	
l` 

M r: >

Y13 is the fuel mass fraction

dig is the mixture fraction where a "reaction sheet"

E consumption or pyrolysis of fuel occurs under fast

chemistry conditions similar to the classical

Burke-Schumann formulation .
dig

 here is taken as
0.073.

s

r
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For the intermediate hydrocarbon, its mass fraction is given by,

Y12 = 0 Of	 < fS 77

12Y 12
er	 (-e<

' T—f S

< fig (78)

Y 12
er(e•	 -	 )_	 s	 ((-0

1
fig< f	 <^ (79) ^

-es) (I - fig)

where

t is	 the	 mass	 fraction of	 fuel	 in	 the	 inlet fuel
stream

Y12 is the intermediate hydrocarbon mass ifraction«

v	 .{

e	 is the fraction of fuel by mass that is converted to 	 +
intermediate at f ig for fast chemistry conditions.

e is taken as 0.2

and	 es	 is the stoichiometric mixture fraction

Hence, the double reaction zone at e and ^ . 	 ^as	 ig	 1

i

Thirteen species are considered in the reactions. H, H 2 , H2O,

0 1 OH, 02 1' 	 N 2, Ar, CO, and CO 2 are calculated from partial or 	 •;

constrained equilibrium, and the fuel and intermediate are speci-
fied as in Equations 76-79. The pertubation in mole number space

is a result of the rate of three -body recombination reactions,
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4-M --► H2 + M	 Rl

i+M —i- H2O + M	 R2

2+M —••- HO  + M	 R3

H+O+M ---a- OH + M	 R4

The progress of these reactions toward equilibrium is measured by

mole number, N

I

^z I
F

^y

N	 II	
Yi	

Mole
i-t	 i	 S

where

Y 	 is the mass fraction of species i

and

Wi	 is the molecular weight of species i

The pertubation in mole number is defined as

(80)

q;

Mt i

}}

f



 

At 

Where N o is the number of moles at full equilibrium. Then, for vari-
ous pertubations in mole number space for a given mixture mass

fraction, the time rate of change of N can be calculated from reac-

tions R1-R4 using here the kinetic data of Jensen and Jones.28

Perturbation Equations

From the species balance transport equation,

a y.	 ay,t	 ^	 a	 pD	 ^

a
t '	 + Puk ax 	 'axk	axk	 - 0	 (82)	 l

4

where the molecular diffusivity is assumed to be the izame for all

► •	 species, and using Equations 80 s%j, 81 gives,

+ pU	 +	 D	 an	 =	 a	 2	
d2NO an

a t	 k ft	 ax
a	 a Wn	 (83)

k	 p	 axk	 p	 axk	 df2
k1 °;	

1

F..

M	 w	 is the source term for mole number	 i

A similar equation can be written for the fuel mass fraction, per-
turbation.

t

z	 + pU	 _Y	 a	 pp	
_ pD 

a	 2 d 
y^13	 + wy (84).

2
1

k	 at	 k ax 	 'axk	axk	 axk	 d2

WW is the source term for mass fraction 	 t^

where the dependence of y on N° is neglected,54 f;	 » , _
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where Cg 
2  

is a model constant with value of 1.79. Then,

k

n] = 
1/2 7 Cg

2 

f-1,2 
{E/k) 

'a N, , —P 
( s^
A 

 
(89)

+ W
n

n
U
k ax

k	 6'xk
	 vn

-I	
—	 -Ju

	

a	 e
U ay	 = 1/2 T C e "2

 
(E A) A yk ox 

k	
ax 

k	 cry P 	 92	 p (1i g) (90)

+ W y
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E '-I the Favre averaged scalar dissipation rate is

`_*_1

C9 
2  

f 
Ij 2 

(6/k)

(3)

IL

OROof 1^00jk QP

Awl%
F ALA

Then using density weighting (Favre averaging), the equations for
turbulent flow become,

2W
P

an	 a	 Joe\' d
+	 u 'In	 D")	 pU	 ox	 Ox	 e2 + 'Wn	 (85)

k	 k	 k	 k	 d

2 d
2
 YO

13

	

P +	 U, 1 1yof
	 PD 	 + Wax y	 (86)

uk	 k ON 	 (5xk)	 d f2

Using gradient modeling of the turbulent fluxes and k-e modeling of
the scalar dissipation X

where
2

X =
2

D
(87)
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The parameters AN,s and a  
represent the net change in dN°1d6 and

dY° 13/de across the reaction zones at es and eig , respectively, and
p(^) is the Favre probabiilty density of t. In deriving these

equations, the usual high Reynolds number assumptions have been

made and the scalar dissipation is assumed not to be correlated

with the mixture fraction.

Finally, the mixture fraction pertubation,

gives the transport equation for the variance of the mixture frac-

tion
1

P
a;^	 -

k	 a xk	 xk
µefi	 a^ 2 =	 C	

a' 2
µef f	 a

2

C	 P E ia a xkv 2 g 1	 xk -	 g2	 r

(90.

The main features of measured probability density functions are the

strong spike associated with the free stream and the continuous

distribution generated by turbulence. By splitting the two, a

clipped Gaussian intermittent formula is used to represent the

Favre averaged probability density at a partil cular value, ea

ly	

eXp	 1/2P	 -	 ( ) 1/2	 t°ti

	

/t	 ( 92) .
wheret^Y
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and
IV \	 2	 - ^2,2 f = y (' 	 + (fit -	 + j l _y1 e

 `	 \	 1

(93)

Also from simple fits to the partial equilibrium calculations, the
mean density as a function of the mole number and fuel mass func-

tion perthbations as
ti

-I

A -
V. W+ .r (0.n022   + 1.38 y

(94)

where v° O is the Favre average specific volume for zero per-
turbations.

Lastly, the kinetic dependent source erms w  and w  are given by,

wn= T fff g Q,m y) wn Q,n, y)(I/P) p( ,ofy) d dndy	
.T

K-
l

`	 and	 wy_	 pffS*Q n, y)P( 	 n,y)dy d nd
l

t (96)

`e.	 where	 wn'p = - 9000 n2 moles
9

p

*,	 1

from	 consideration	 of	 the	 partial	 equilibrium calculations and r	 s

q (e, n	 y) is a• quenching function to allow for breakdown of the con-
-	 strained equilibrium represented as follows:
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k	 ^.

q Q, n, Y) = B*(f) = 0	 for < 0.01

= 50(F-0.01)	 0.01	 0.03

e > 0.03

Simplification of the joint P.D.F. yields

wn = - p B* 9000 n 2

The fuel source term wy is evaluated based on the kinetic rate of

Duterque 29 over the range of expected values of e, n, and y and again
the joint P.D.F. is avoided, as

wy = _ P f SY (e, n, y) p (^) de

0
where	 (97)

Sy 
w

Py	
8.53.10 14 X02	

T 
T )

exp ,23500 sec -

where X02 oxygen mole: fraction and temperature, T, are taken from

the partial equilibrium calculations for Methane.

The above three differential equations are combined with the

other five Favre averaged equations, as mentioned above, written in

cylindrical coordinates and transformed using the stream function

{
^	 S

aVj = pu rar

and put in finite difference form using a Crank -Nicholson central

difference :scheme. The nonlinear coefficient terms and source

terms were evaluated as the mean of the upstream value and the

first estimate of the downstream value.

Then, for any "output" posit .on in the flame, the effect of
pertubations on species mole fractions and temperature is calculated
from the local P.D.F.,
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X
i
	 f Xa (e, of y) p W d	 (93)

0
I

T= f T V n, y) p (e) d	 (99)

0
again, where joint probabilities have been avoided.

3.4 Spray Evaporation/Combustion Models

Since the influence of the liquid fuel spray on combustor per-

formance is quite pronounced, an accurate spray model is essential

for any combustor modeling effort. The modeling of liquid fuel
sprays is discussed in this section.

The spray model currently used by Garrett is based on a

Lagrangian discrete-droplet approach allowing for droplet slip but

no turbulent dispersion Eulerian (continuous formulations) ver-

sions allowing for dispersion, with or without droplet slap, have

also been developed by Garrett. Both approaches offer advantages

in certain circumstances.

3.4.1 A Review of Spray Models

A number of spray evaporation/combustion models have been dev-

eloped and used with varying degrees of success. Several review

papers: are available in the literature; 30,31 an excellent recent

review gaper is bar Faeth. 32 Faeth has divided the spray model work

E

E	 _
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In LHF models, the gas and liquid phases are assumed to be in

dynamic and thermodynamic equilibrium at all times, with no droplet

slip, Consequently, the use of LHF models should be limited to

finer droplet sprays. Although the LHF predictions tend to

approach measurements as the droplet size reduces, the agreement is

relatively poor, even for the sprays that have an SMD of around 30

microns. 32 Compared to the SF models, the LHF models are easy to

use because they require minimum information concerning fuel injec-

tor characteristics, fewer empircal constants, and shorter com-

putation time. The LHF models give useful qualitative descriptions

of the spray development, the rate of which is generally over-
estimated.

In SF models, finite interphase transport processes of mass,

momentum, and heat are taken into account; and these models are

therefore of more interest in gas turbine combustor modeling. The

SF models can be broadly divided into the following two major cate-
gories:

o	 Discrete Droplet Models (DDM) - Lagrangian

o	 Continuous Formulation Models, (CFM) - Eulerian

Both categories contain features that make their ',application to
f

practical combustors desirable. In DDM, the fuel droplets are as-

sumed to exist sufficiently removed from each other that droplet-
to-droplet interaction can be. neglected. This assumption is quite

reasonable for regions in the combustor other than very close to

the fuel nozzle spray origin. Thus, the analytical modeling of a

single droplet can be applied to the gas turbine spray that greatly
simplifies the formulation. The nozzle spray is divided into a

number of size groups usually determ .,ned experimentally, 33 with one

droplet representing the behave. F }?; all the droplets in its group.

A. DDM is ,constructed for each size .Jroup. Given an initial velo-

city and temperature as determiners from the injector characteris-

tics, the droplet trajectory is calculated through the flow domain

60



i

r

as governed by drag and other, forces, until the droplet evaporates

or exits the calculation grid. At each point along the flight path

as evaporation occurs, modifications are made to the momentum,

enthalpy, and species equations that govern the gas phase flow.

The second major category of SF models is CFM. These models

solve turbulent transport equations for the motion of the droplets

and the turbulent diffusion of droplets is included. An underlying

assumption is that all the droplets and the gas phase have the same

velocity. The computational effort required for CFM is greatly in-

creased because a complete equation (similar to the momentum, spe-

cies, etc., equations) must be solved for each droplet group. Com-

puter storage must also be allocated for the extra variables. A

'majors disadvantage of this approach is that errors are generated in

the vicinity of the fuel nozzle. Since the difference in the

liquid and gas phase velocities is very significant in this region,

a better resolution of grid spacing is needed than can be managed.

3.4.2 Garrett's Spray Models

The main requirement of a spray model is accurate predictive

capability within a :.^ ,asonable amount of computational effort, es-

pecially for 3-D flows of practical interest. To achieve accuracy,

various physical processes must be incorporated into the model in a

realistic manner. Thus, relative velocity differences between the

gaseous and liquid phases (droplet slip), resulting in interphase

momentum transfer, must be considered. Also, the evaporation of

droplets during heat-up time (interphase heat and mass transfer) is 	 ^,	 t

: h	important in order to predict ignition processes. Finally, tur-

bulent diffusion of droplets is important but is generally ignored 	 r°

in most of the spray models. Stochastic models to consider tur-

bulsnt diffusion, as reported by Gosman35 are computationally ex-
 • =d a Tpensive when applied to real combustors.q

a 3 a ^ x a
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On the computational aspect of spray modeling, it should be

realized that a different degree of resolution is required in the

near-injector and far-injector regions.

f`

Consideration of these factors has led to the development of

the Garrett spray models, the features of which are described

below.

G ? 
Evaporation during heat-up time is considered in the Garrett

model and the computation of heat-up and evaporation rates includes

realistic properties of jet aviation fuels. The spray model is ap-

plicable to both dense and sparse sprays and is coupled into either

the 2-step or the 4-step global hydrocarbon oxidation scheme; it is

available in both 2-D and 3-D combustor performance pro-

grams.

Velocity differences (slip) between the droplets and the gas
phase are modeled, and so is turbulent diffusion of the droplets.,

For coi«put?t onal purposes, the droplet si4a distribution is dis-

cretized,	 differential equations in a Eulerian framework are

rr.^• solved for the velocity components and concentration of droplet: in

each size group (typically five size groups are considered). To

obtain good resolution in the near injector region, Lagrangian

equations of motion for the droplets are solved in this region.

Each class of droplets is tracked through the flow field ir: the

vicinity of the injector and the interphase transports of mass,
A.momentum, and energy are used to couple Lhis solution to the

'.	 Eulerian equations. The model thus combines the desirable features
rr,	

of the DDM and OFM approaches. 	 -	 I

i•
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Lagrangian Model

The Lagrangian model was initially pursued since the formula-

tion allows the tracking of small fuel droplets that are signifi-

cantly smaller than typical grid dimensions and since the computa-

tional requirements for 3 -D flows are quite small. ! n addition,

the assumption of sparse sprays and no droplet -droplet interaction

is quite reasonable for most regions in a gas turbine combustor.

V
The generalized governing equation for fuel mass fraction is

d	 div (PVmfu - 
rfu,eff 

grad m
fu) = m e	 Rfu

(100)

where Rfu is the destruction rate of fuel and me is the rate of

vapor production from the fuel droplets. The vapor production rate

or evaporation rate is determined from the burning _ rate ,constant

ko , which relates the change in the square of the droplet diameter

(D) with time.

(_	 2d	 _	
8A

kc _
dtD) In (,i + B) •.	 '

. PfCPI

(101)
a

t

where:	 Al = Thermal conductivity of vapor

CP1 = Weighted average specific heat of vapor and 'air

B Mass transfer number

Pf = Fuel density

from the burning rate constant, the fraction of fuel evapora-

ted from a group of droplets (AFi) can be determined from the time

integral; •

(gyp1.5
^i

.	 .BFI= 
ppJ f

D kdt
i	 i

ry	 ,

-^f	 in (102)
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where D io is the initial. droplet diameter and the i subscript de-
notes parameters of the ith droplet group.

-? The total evaporation rate is then given by

m^^r -
	

rr'fu	
N	

(103)

e ^	 F°i= i

•The total fuel flow ratewhere:	
mfti,

a

A 
t

N = Number of droplet groups

' AV = Volume of grid cell through which droplet is pass—
X	

lY

ing

The calculation ofme 	given above is based on the model of

Williams, 30 which uses the temperature difference between the drop-
let and ambient as the driving force. 	 An alternate approach is F1

that of Priem and Heidmann, 36 who use the partial pressure of the
fuel vapor as the driving force.	 The advantage of the Priem and
Heidmann technique is its applicability to low temperature situa- "`	 s

tions s,r,ch as altitude ignition, unlike the Williams model.

x} .;F,jpression for evar-;ration rate for the Priem and Heidmann 1

model !r	 -
^ 's

(104)
2

"fie = 7r D	 K P^aP a

where:

K = Function of vapor diffusivity and d3 oplet Reynolds
number
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Pvap = Vapor pressure of fuel at droplet surface

P.	 P.,

a	 P	 In	 P P
vap	 " " vap

P'•

P,, = Ambient pressure

Eulerian Model

The salient features of the model are (a) velocity differences

(slip) between the droplets and gas phase are allowed; and (b) tur-

bulent diffusion of the droplets is included. For computational

purposes, the droplets are considered to be present in a certain

number (typically 5 to 10) of discrete size ranges. Differential

equations in an Eulerian framework are solved for the velocity com-

ponents and concentrations of the droplets in each size group. In-

terphase transport of mass and energy (due to droplet evaporation

and combustion) and momentum (due to drag between gas and liquid

phases) are taken into account. Turbulent diffusion of drops is

treated as if the droplets were present as a gaseous constituent.

The approach used here is to assume the diffusion to be governed by

a Fickian type law with an appropriate turbulent Schmidt number,

assumed to be uniform over the flow field; but this is easily ex-
tended by specifying the turbulent Schmidt number as a function of

local flow characteristics. The model is applicable to both dense

and sparse sprays insofai as the volume occupied by the droplets is

r

included in the governing equations.
F

The partial differential equations governing the droplet mo-

tion and concentration of each size group ate all written in one {'

general form as

a	 (RP¢) + div ^R (puO- grad ¢) } - SO
7t (105)

*	 + r
c
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R = Volume fraction of the droplet size consi

P = Density of the droplets

0 Velocity component or concentration of d
considered

U = Velocity vector of droplet size considered

A = Turbulent viscosity

0*0 Effective Schmidt number

So = Source of 0.

3

The term S0 contains the pressure gradient, surface friction,

and interphase drag if 0 is a velocity component; interphase mass

transfer (evaporation rate) if q5 is droplet concentration; and in- 	 }

terphase heat transfer (heat-up) if ¢ is the enthalphy.

A drawback of the Eulerian model is that it cannot give ade-

quate resolution in the near injector region = An excessively fine

finite--difference grid would be required to obtain adequate resolu-

tion. The Lagrangian method is capable of providing this resolu =	m

tion in the near injector region. Garrett has therefore coupled

two methods in order to utilize the advantages of each. The method

is described next.

7

Lagrangian/Eulerian Model 	 k,

'r
The concept of this model is analogous to the near-wall treat-

ment described in Paragraph 3.2 and it can be called the near-noz-

zle spray treatment.. The interaction between the Lagrangian and

Eulerian solution is through the boundary conditions and the source

terms.

To obtain good resolution in the near-injector region, a spe-
cial treatment is used in this region. The gas properties eval-
uated by the Eulerian solution are used to solve a set of

Lagrangian equations of motion for the droplets again allowing for 	 ae,

<W,
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interphase mass, momentum, and energy transfer. Each class of

droplets is tracked through the flow field in the vicinity of the

injector and the interphase mass, momentum, and energy transport

that appear as source terms in the gas phase equations are thus

evaluated. These terms are obtained by summing overall droplet

size groups for each elementary control. volume. The Eulerian equa-

tions are then solved again including the interphase transport

items. The procedure is repeated until it converges to the desired

degree of accuracy.

Physical Processes

The physical processes involved in, spray modeling are inter-

phase momentum transfer (drag forces), interphase heat transfer

(droplet heat-up) and interphase mass transfer (droplet evapora-

tion), and turbulent dispersion of droplets. A brief description

is provided in the following paragraphs.

Drag Forces - To calculate the drag forces on the droplet, the drag

coefficient, CD , must be determined. several expressions are

available and Garrett has adopted the suggestion of Briffa 37 who

-measured water droplet velocity decay using a shadowgraph tech-

nique. Other forces, such as buoyancy or gravity, acting on the

droplet, are quite small in comparison to drag and are usually

neglected.

Droplet Heat-Up and Evaporation - Calculation procedures for the

rate of phase change of droplets fall into two basic categories: 	 t

two-stage and transient heat-up models. In two-stage models, as

discussed by Williams, 30 the droplet is assumed to heat up to the

boiling temperature with no evaporation. occurring. Once obtained,

the evaporation rate is governed by expression for the burning rate 	 ^t

constant, defined as the time rate of chance of the square of the 	 » °..'



droplet diameter. Expressions can be used that account for the

existence of an envelope or wake-type flame. The driving force is

the temperature difference between the droplet and the surrounding

gas phase,

Transie;'t heat-up models such as that of Priem and Heidmann,36

use the difference in fuel vapor concentrations between the droplet	 F
surface and its surroundings as the driving force.	 The temperature	 #

T

of the drop is determined from the consideration of heat transfer	 rr

to the drop and the fuel latent heat of vaporization.

Though it offers the advantage of ease of computation, the

two-stage models best represent droplets in the high-temperature

zones of the combustor, where droplet heat-up time is quite short

and local fuel concentration is low.

Droplets exist for a significant period of time in the rela-

tively cool, fuel-rich zone near the nozzle.	 The transient models

better represent such droplets.	 The transient models are more com-

plex from a computation standpoint, but they reflect the varying t#

boiling temperature through the droplet life history and are sup-
erior in predicting the evaporation in low-temperature environments

(during an altitude start, for example).
^ 1	 i

To evaluate	 the	 evaporation rates,	 f uel properties such as

specific heat and distillation curves are required. 	 For typical G	 r

aviation fuels, these properties are usually available in the lit--

erature or can be estimated from basic characteristics such as spe.- i.

cific gravity. 38 i
1i

Turbulent Diffusion of Droplets - In most of the spray models, tur- 414

bulent dispersion of droplets is ignored or introduced in an over-
,.

simplified manner.	 Some recent studies have adopted a stochastic
approach to model this feature.	 Recently, Gosman, et al., 35 have

6f3
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presented a stochastic discrete droplet method. In this method, a

statistically significant number of random droplet samples is

tracked in a Lagrangian framework and the ensemble-averaged

behavior is assumed to represent the turbulent dispersion of drop-

lets. This procedure is likely to be computationally expensive for
real combustors where a large Number of samples is required to

obtain statistical averages.

The Garrett Eulerian model includes turbulent diffusion. The

model of diffusion of droplets is assumed to be the same as that of
the gaseous phase; the extent of diffusion is controlled through

the specification of the turbulent Schmidt number for droplet dif-

fusion
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3.5 Boot Formation and Oxidation

In this paragraph, soot formation and oxidation in combustion

chambers are discussed. A general background on soot emissions is
provided first. Quasi-global expressions for soot formation and

oxidation a:.,: described. A description of the influence of turbu-

lence on soot formation and oxidation is included. The current

approach adopted by Garrett is described next. This approach con-
siders the influence of turbulent fluctuations on soot formation

and oxidation rates.

3.5.1 Background

The particulate emission of primary concern in the combustion

of hydrocarbon fuels is soot, which is evident in the form of
exhaust smoke. The emission of smoke from gas turbine engines is
responsible for the following problems of concern in this program:

o

	

	 Higher liner temperatures due to increased radiative heat

transfer

o

	

	 Impingement of carbon on metal surfaces, resulting in

erosion and reduced equipment lifetimes

o

	

	 Distortion of fuel spray distribution due to carbon
deposits, leading to hot spots.

Recently, attention is being directed toward the combustion of

alternate fuels derived from coal liquids and shale oil. Since the

use of these fuels results in significant increases in smoke pro-

µ R'

	

	 duction, a better understanding of the physical and chemical pro-
cesses governing soot production is needed.-

1
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The processes governing the formation and subsequent oxida-

tion of soot are of a particularly complex nature and, as such,

quantitative models of soot production have yet to be developed.

Soot is not an equilibrium product of combustion and, therefore,

its formation is influenced as much by the physical processes of

atomization, evaporation, and fuel/air mixing as by reaction

kinetics. Soot is generally produced anywhere within the combustor

where fuel/air mixing is inadequate, resulting in oxygen-deficient, 	 D'

high-temperature zones.

For the pressures and temperatures normally prevalent in gas

turbine combustors, equilibrium calculations indicate that solid

carbon appears when there is insufficient oxygen to oxidize the

hydrocarbon to CO and H 2 according to the r_eIvt,ion:

CXH^ + 2 02 xCO + H,;	 (106)

That is, the carbon-oxygen mass ratio for incipient soot formation
a^° a

is 12:16, or alternatively, the atomic C-0 ratio is unity. How- 	 t

=ever, since soot formation is essentialy a nonequilibrium phenome-

non, experimentally,, soot is observed at C-O ratios (a) much less

than unity at low temperatures (<2000°K) and (b) -greater than 	 11

unity at higher temperatures. 33
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Smoke levels are primarily dependent on

, f 	 o	 Air/fuel mixing

o	 Temperature

o	 Equivalence ratio

I' 
xaW	 o	 Residence time of air/fuel mixture

y	 o	 Pressure

o	 Fuel composition.
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These factors influence both the formation and subsequent oxidation of
4

	

soot and are dependent on engine operating conditions, details of the	 n

j	 combustor internal flow field, fuel droplet characteristics, etc.

3.5.2 Quasi-Global Models of Soot Form ation and Oxidation

Since the elementary steps in the formation and oxidation of soot

are not totally understood, Garrett uses quasi-global models that

characterize soot production occurring via a few overall steps. Such

models have been successful in predicting soot production. 40

The quasi-global models do not predict the size of soot par-

ticles. Wzth the current state-of-the-are:, it is not possible to

predict the size of formation of the soot particles in.any practi-

cal flow situation. Therefore, it is assumed that particles are

produced at a known size in any analysis. It may also be assumed
that particles are produced in. accordance with a specified size

distribution (e.g., Gaussian).

	

Tesner, et al., 41 proposed a soot production model that 	
g J

	grouped the complex processes of pyrolysis, nuclei formation, and	
X

soot forma l-ion into 'three rate-limited subglobal steps:

Yt Pyrolysis-.

ng =a aCfu exp ^ •f	 Part.^rr^`.$)	 (107)j}

Nuclei Form«ition:	 •"

Rnj = no + 0-9)ngo Nn(part../m3.$)	 (108)	 f

SOON:. Formation:	 1

= m (a blV^n (kg,{m3.s1 (109) ` • « r'v
Rs f	 P

r	 .{
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where ao, E, g, g o , a, and b are constants for given fuel; n o is the
ratio of spontaneous formation of nuclei; n is the nucleus concen-

tration; N is the concentration of soot particles; and m p is the

mass of a soot particle.

Khan and Greeves4 2 provosed a single-step global expression as

a function of the partial pressure of unburned hydrocarbons (pHC)'

the unburned equivalence ratio (0 u ) , and the temperature (T)

dt S = 0.468PH 01 exp (-40,000/RT) gm/cm 3s.	 (110)C

	In both the above models, soot oxidation rates are not considered. 	 M1

R

Edelman., et a1, 40 consider both soot formation (Rf) and soot
oxidation (R ) and express the net soot formation rate as

t *, OX

dCs	
__ Rf
	 A4Rox

(111)
-a

:6><
dt :..•

where At equals total surface area available for oxidation.	 The

formation step is expressed by a modified Arrhenius type of vela-

tion;

Rf = ATaC F 'CCU exp (-E/RT) gm/cm3s. (112)
f

` 2^
• where	 CO2r	 CHC	 equal	 the	 concentration of unburned oxygen and

I

y hydrocarbon (gm/cm3 ), and where A,a , a, b, E are model constants. •	 s'
Ik

a e-_•	 a
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For the oxidation st,,r:), Edelman, et al., 40 adopt the semi-

empirical formula of Nagle and Strickland-Constable 43 for

pyrolytic graphite oxidation; this formula is nonlinear and non-

Arrhenius in P02 and T:

(KAP02

A R	 12	 4+ K P (I -) Atgm/st ox	 I +KZPO )	 B 02	 (113)

where:

[1 + KT/(KBPO )3-1 	 (114)
2

KA = 20 exp(-30,000/RT)	 (115)

-aKB = 4.46x I 0-3 
exp (- 15,200/R T) 	 (116)

y

KT = 1.51 x 105 exp(-• 97,000/RT) 	 (117)
t

KZ = 21.3 exp(4100/RT)	 (18)	 {
y 1

Shock-tube measurements 44 of soot oxidation rates qualitativ-aly!

confirm the features of the above formula.	 With these expressions

for soot formation and oxidation and assuming a singe soot part-

icle size of 250A, Edelman, et al., 40 obtained close agreement of

the predicted soot concentration (mg/1) with the experimental data
.	 1

in a jet-stirred reactor. Thus, these expressions assume perfect

mixing.	 In a gas-turbine combustor, however, regions of unmixed
i

species will exist,	 and turbulence will also influence the soot

production rates. 	 As such, modifications to these f, .;;pressions are ^	 a

required before they can be used for a general 3-D turbulent flow,

E'
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3.5.3 Influence of Turbulence on Soot Formation and Oxidation

Ma nussen, et al, ? 45,46 haveg	 proposed a model that accounts for

the influence of turbulent fluctuations on soot production rates.

In turbulent flows, chemical reaction occurs when reactants at a

sufficiently high temperature are mixed at the molecular level.

The molecular mixing process is analogous to the dissipation (E) of

turbulent kinetic energy k and is associated with the smallest

scales of turbulence. Dissipation is concentrated in highly

strained regions of the fluid occupied by fine structures with

characteristic dimensions of the same magnitude as the Kolmogorov

microscale. The reactants are molecularly mixed in these fine

structures, where reaction occurs. Magnussen, et al., proposed the

following expressions for the mass fraction contained in the fine

structures:

	

-3/4	 (119)

where R  is the turbulence Reynolds number, and the rate of

transfer of mass per unit mass between the fine structures and the

surrounding fluid is

-^r4
m = 23.6 • (Rt) 	

k
	 (120)

The rate of reaction is proportional to fn X where X is the

fraction of small-structure eddies that are sufficiently heated to

react. It is assumed that X is proportional to the ratio of local

reacted fuel concentration and total fuel concentration. Thus, the

rate of reaction is

Rfu = 23.6 (Rt)- 1/4 e X Cmin (kg/m
3

 .$)	
(121)

}

1
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where
C	 + i)r/(!X _	 +i +_	 P/0	

fu

Cpr = Product concentration
(122))

CfU = Fuel concentration

` Cmin is the smaller of Cfu and (CO2/i) and i is the stoichiometric
oxygen requirement.	 The temperature T* of the reacting _fine struc-

tures is	 T above the local time-mean temperature T:

T*=T+ QT=T+^HRCmin
(123)

PC
where:	 P

H= the heat of reactionR
C	 the specific heat.p

and the surrounding temperature T O is
s.	 v

k T°=T- AT	 iyY X . (124)

a
Using Equations (107) and (109)j the mean rates of nuclei and soot

formation are then expressed as
Jr_

Rn, f - 
'no,T* • Y* • X • PIP* + no'To (I .- Y*•X) • PIP' + (f -g) n

t
-	 n° N° (I - Y*) PIP -go 	 go	 X (125)

and

w	 _
_

 _ Rs:f	
mp (a - b N*) n*Y.*XPIP *

..+ m	 • (a - b - N°) • n	 (l -.Y*X)• PIP°
P

(126)

3
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Finally, the mean rates of nuclei and soot oxidation are expressed

as:

Rn = Rfu	 un/Cf (Part/m^ s)	 "^c 	(127) P'!

R	 R C /C (kg/m3-s)s,c - fu s fu	 .(128)
t
i

Magnussen, et al., used this model to compute the soot concentra-

tions in a to •.;rbulent C 2 H 2 diffusion flame. By adjusting the part-
icle diameter [entered as mp , the particle mass in Equation (109)],

	

and the constant ao in Equation (107), good agreement with experi-	 2

mental measurements was obtained.

	

3.5.4 The Garrett Soot-Emission Model 	 1

The model adopted by Garrett- for computing soot emissions

under NASA Contract NAS3-22542 is described in the following para-

graphs.

The computation of soot emissions involves the solution of two

additional transport equations for the concentrations of nuclei and
•,	 k

	soot. To complete the equation specifications, the source terms	 -^

and the Schmidt numbers for these two variables are as follows:

The source term for nuclei concentration is expressed as

._ Rn, f Rn, c

S.

. where .Rn,f is given by the smaller of the two values from Equations E
(108)	 and (?25),	 Rn,c	 is given by Equation (127).	 Thus,	 these 4

` expressions amount	 to the use of . the	 turbulent	 reaction	 rates,

subject to the	 limitation that they-cannot be greater	 than	 the
I

rages under well-stirred reactor conditions.
r

j	
C
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The source term in the soot concentration Equation (111) is

similarly expressed as:

Rs,f - Rs'c

where Rs'f is given by the smaller of the two values from Equations

(112) and (126); Rs,C is given by the smaller of the two values from

Equations ( 113) and ( 128).

The turbulent Schmidt numbers (s and 
0n for soot and nuclei

concentrations are assumed the same as for gaseoue fuel (i.e.,

0.9) .

This model has been incorporated into the Garrett 3-D com-

bustor performance program. preliminary computations indicate its

;.	 ability to make gifalitative predictions.
CAL	

' "°	
-.	 _	

l
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3.6 Radiation Modeling

An adequate treatment of radiative heat transfer from combus-

tion products is essential for the prediction of gas-turbine Liner

temperatures and heat-transfer rates. For this purpose, Garrett is

at present using the six-flux radiation model based on the

Schuster-Hamaker 47 approximation. The influence of soot, CO2,

and H2O on the radiation properties (absorptiv ties and emissi-

vities) is included in theee equations.

3.6.1 The Flux Methods

In the flux methods, the angular distribution of radiation

intensities is replaced by a number of discrete intensity vectors

in different directions, thus reducing the complexity of the

integro-differential equation of radiation heat transfer. The

energy transfer in each direction is represented by a closed first-

order ordinary differential equation obtained by integrating 'the

radiation transfer equation over a solid angle. This method was

originated for the 1-D .case as the two-flux method, wherein only

two directions are considered. Considerable errors exist in the

two-flux solution in the case of essentially 1-D heat transfer bet-

ween parallel plates; a situation for which the method is supposed-

ly best-suited. This suggests that the two-flux method is not

sufficiently accurate to permit its application to the prediction

of radiant transfer in practical systems.

..	 a
1

- ti

J

	Spalding48 extended the 1-D formulation to tvio and three
	 1

dimensions by formulating the four and six-flux models. Exten-

sions of the two-flux model to multi-flux and nongrey emitting

	

absorbing media are also discussed by Siddall. 49 The four-flux	 E

	

model applied to an axisymmetric combustor underestimated wall 	 f

radi,,ation fluxes, although temperature predictions were reason-

able so

79
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The reasons for the inaccuracies in these flux methods are (a)

the radiant flux is divided into too few directions (2, 4, or 6
being small for many applications or (b) the fltixeR in the differ-

E 
ent directions are unrealistical ' y independent of each other.

Another limitation of the flux models is'that their extension to

general curvilinear coordinates for handling complex geometries is

rather cumbersome'.

3.6.1.1 The Six-Flux Model Used at Garrett

A six-flux radiation model based on the Schuster-Hamaker

approximation 47 is used currently at Garrett. It should be noted

that, as pointed out by Siddall 49 , other flux model approximations

such as Milne-Eddington and Schuster-Schwarzschild can be repre-

sented by the same form of flux equations with constants being

different.

The differential equations describing the variations of the
fluxes along six directions can be reduced to the following three

second-order ordinary differential equations;

X

( a+s dx ) " a (Fix-E) + (2RX - Rr P.Z)	 (129a)

"

r	 x,

^	 F

f

.^ I d (	 r37 a +s -T '

r
dR) = a'(Rr_E) + s (2R r-RX-RZ)dr (129b)

r l

I d'	 )	 dRZ
( a

Zs	 Z	 x	 r
)= a(R	 -E)+S. (2R	 -R -R_) p(129c)rd:9	 +s	 rd6

80

a

^
^4	 Y^	 4	 A"	 Y (

m
r^u

NPU



q
Where the composite -fluxes Rx , R  and R  are defined as

RX = 2' (Ix+ + Ix-)

R  = (Ir+ + Ir)

RZ=2 0 +I e )

where I X+ , I r* and I 0+ are the fluxes along the positive directions
of axial, radial, and circumferential directions, respectively;

Ix- , Ir- , and I B- are the corresponding fluxes along the negative
directions.

a = absorption coefficient, defined as radiation absorbed

per unit length

s = scattering coefficient, defined as radiation scattered

per unit length

E = black body emissive power = v T 4 AW	 ^``,'
w9	 i

i

Q	 the Stefan-Boltzman constant. t'
i

3.6.2	 Discrete „Transfer Method
n	

1
.i

Lockwood	 and	 Shah 	 presented	 a	 method called	 the
^:

discrete transfer method. 	 This method is based on the solution of R

representatively directed beams of radiation within the combustor,

as'in the Monte Carlo method. 	 However, in this method the direc-

tions of the rays are specified in advance and they are solved for
only between two boundary walls contrary to the Monte Carlo method 4

where the -ray directions are specified at random and the rays are
tracked to extinction. 	 Lockwood and Shah have shown that this

♦ ^^. ^YJ	 u
`

4 y
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method closely reproduces the analytical solution for radiation

between parallel plates (1-D case), radiation in a square enclosure

(2-D), and in a cubic enclosure (3-D). The conventional two- ,
four- , and six-flux models for these cases show larger errors.

This new method is economical, geometrically adaptable, provides
ease of application, and has `tlje possibility of obtaining any
degree of precision (through the specification of number of rays).

The method is designed to be coupled to fluid flow solutions. GTEC

has used this method in its 2-D combustor program.

3.6.3 Radiation Properties

The contributors to radiation fluxes in gas turbine combustors

are: soot, CO 2 , H2O (vapor), inorganic particles, etc. Only the
influence of soot, CO 2 , and H2O (vapor) is discussed here.
Although CO and unburned CAT contribute to emission and attenua.. j
tion of radiation within flames, these contributions are localized
and of secondary importance for computing radiative fluxes. The

contributions of NO  and So  can be neglected because of their low
concentrations.

The radiation properties of the principal radiating species

including soot, CO 2 , and H 2O are significantly nongrey. Conse-
quently, the calculation of the radiation properties t is a time-

consuming task. However, detailed spectral calculations are

unnecessary since approximate calculations (by means of curve fits)
52are more convenient and provide good accuracy.	 Garrett has

employed the approximate curve-fit procedure for the calculation of
radiation properties under NASA Contract NAS3-22542.14

.a

0 
_	 1!

-E

x	 The absorptivity (a) of the gas-soot mixture includes the soot

#

	

	 absorptivity, the absorptivity due to the absorption bands of CO2,

and H,20 and corrections for the overlappingin of bands.
C
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Using the spectral data. 53 the gas absorptivity is calculated

Y taking a summation over the absorption bards of CO 2 and 420. In

,ie approximate calculation method adopted by Garrett, u simpler
aproach is used. The gas absorptivity, a  is written as 54

ag eg (T/T s
) (0.6-0.2t)

iere	 Pw/ (Pw + Pc)

Eg = gas emissivity at a temperature T and path length LTS/T

Pc ,PW = partial pressure of CO2 and H2O

Eg = EC + E w - 46cw

where;

Ec , Ew = emissivities of CO 2 and H2O

AEcw 
= overlap correction factor.

f  
can be computed using a temperature adjusted version of

Leckner's 55 approximate overlap correction AEcwi and approximating

cc and E  by curve fits of P c , Pw , T and path length to spectral

calculations. In the range of interest in gas-turbine combustors,

such calculations agree to within 5 percent of the spectral calcu-

lations and the experimental results. The absorptivity (a) of the
gas-soot.mixture is given by

a= as +ag - asg

j•	 i

+s	 6

w.A

y ,

i
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With a g obtained above, it remains to determine c s , the soot

absorptivity. This is obtained by the method of relske and Tien. 56

This method asstKgtas that the complex refractive index of soot is
independent of wavelength and that the soot particle diameter is

small compared to the wavelength of radiation, so that scattering

is negligible. The spectrally integrated absorptivity can then be

written in a closed-form expression to determine as.

By using the radiative property calculations of the type

described above, Sarofim57 indicated that radiation calculations

ran be made with fair confidence, and that the major source of

uncertainty in such calculations is soot concentration ? rather than

gas-radiatoh properties.



[+Y Y

SECTION IV

4.0 DESCRIPTION OF THE COMPUTATIONAL SCHEME

The governing differential equations described in Section.3.w,,

are nonlinear and coupled partial differential equations. In most

practical situations, it is not possible to obtain analytical solu-

tions to these equations and numerical methods have to be used. A

description of the numerical scheme used in the CPM is provided in

Paragraph 4.1. The treatment of the boundary conditions is given

in Paragraph 4.2, and the criteria for convergence and the method

for assessing grid independence are outlined in Paragraph 4.2.

4.1 Description of the Numerical Method

The numerical method used in the CPM"s are based upon the

finite difference technique of Patankar, 58 ^,^°; ^^,	 d LL_ n	 ,
-_	 _	 r.vj, ,_ use

d
 1.11C •?tzllloL-

Implicit Method for Pressure Linked 'Equ tat ion (SIMPLE) algorithm.

The fea" >: a: s of this computational proceftre include the following:

A4	 Solution of a sufficiently general single form of differ-
ential equations

o	 Provision for use with different physical models

o	 Use of pressure and velocities as the main hydrodynamic

variables

o	 Use of the pressure-correction technique

o	 Use of nonuniformly spaced grids

o	 Use of staggered storage locations

85
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o	 Derivation of finite-difference equations by integrating

the differential equations over finite control volumes

o	 rrine-by-M,ne solution of the difference equations

The finite-difference equations are derived for a box-shaped

flow domain. Over the region of interest, a number of grid planes

parallel to the two coordinates are placed. For each grid node,

the finite-difference equations are set up for each of the flow

variables to be solved. Since the governing equations for axial-

and radial-velocities (Equation 1), contain pressure gradient terms,

these two variables are solved along planes staggered with respect

to the main grid Planes described above.

4t

A typical grid node spacing for a general flow problem is

shown in Figure 4.1-1. Finite-difference equations for a node are

obtained by integrating the differential equations over a control

volume enclosing a grid node. For evaluating the convection and

diffusion fluxes through a control volume facer a linear variation

(in the direction normal to the face) of the flow properties is

assumed. For other purposes, a stepwise variation with discontinu-

ities at control-volume boundaries is assumed. Net rate of flow of

0 into the control volume around anode P (Figure 4.1-1) by convec-

tion and diffusion in the x-direction is

I

7A
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Defining f f f SOdV = S u + Spo. , the one-dimensional. transport
equation for the variable becomes

[T X_  + (i - fX) LX- + TX+ - fX+ LX+ _ SF
10 

P

[ TX_ + (1 -f X- ) Lx_ ]Ox- + [ TX+ - fX+ LX+ ],OX+ + Su

(131)

The linear-profile assumption becomes unacceptable when fX+ LX+ is

large compared with TX+ because with weighting factor (TX+ ` fX+
LX+ ) then becomes negative, implying an unrealistic physical pro-

cess through which raising the value of (bX+ could lower the value

of 0. Therefore, it is assumed that if the convective flow rates
p

x	 (L) are large compared to the diffusion coefficients (T) , the dif-

fusion across the control-volume face is zero and the value of i,
convected is equal to the value at the node on the upwind side of

the face. With this assumption® the coefficient TX+ - fX+ LX+ is

replaced by T*	 F. L where	 s<	 r
X+	 X+ X+

TX+ = [ TX+, - (1 - fX+) LX+' fX+ LX+]	 r
A	

.

Here [a l , a2 , a3 ] stands for the largest of the three quantities r
al , a, and a3.

"ors
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I
Using a similar procedure for the fluxes in the radial direc-

tion, the final finite-difference equation is reduced to
i

AP4iP A
	 +A	 +A	 +A	 +S	 ^jX+ X+ X- X- Y+ Y+ Y- Y	 u	 j

(132)	 s1

The solution of the above equation is obtained by line-by-line

relaxation using an efficient tri-diagonal matrix algorithm. By

this method, a traverse along one direction, for example, the X-

direction, is made with old values for the y-direction nodes.

Using this solution as the best estimate, the y-direction is then

traversed. The solution method adopted is based on the SIMPLE

algorithm of Patankar and Spalding as described in Reference 15.
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Figure 4.1-1. Typical Grid Spacing of the Swirling Flow

Prcblem and Control Value around a Point P.
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4.2 Boundary Conditions

The boundary conditions are enforced by appropriately modify-

ing the finite-difference coefficients at the first interior point

adjacent to the boundary. For the inlet boundaries, the velocity

components, density, and turbulence profiles are either experimen-

tally known or estimated. At the inlet boundary, if pressure is

specified, the pressure correction is set to zero. When the normal

velocities at the boundary point are specified, the coefficients in

the pressure correction are modified in such a way that the mass

fluxes through the control volume satisfy the overall continuity

equation.

For boundaries of the second kind, where gradients and not the

values of the variables are specified, the program uses one of the

following two approaches. in the first approach, the boundary

value is guessed and continually updated to satisfy the given gra-

dient condition. The second approach breaks the link through the

boundary to all adjoining external control volumes by first arrang-

ing for the finite-difference coefficient connecting the boundary

node town internal node 'to be zero, and then inserting the correct

flux at the boundary as a source of diffusion and/or convection for

that internal node.

At the symmetry plane, the convection and diffusion fluxes in

the radial direction are zero. Therefore, the finite-difference

coefficients containing these fluxes are set to zero at the axis of

symmetry. For the exit plane, information about some of the vari-

ables is not available. However, since it is the process occurring

in the calculation domain that decides values of the variables that

the outgoing fluid will carry, there is no need for information at

such boundaries. These boundaries , are simply treated by neglecting

the diffusion at the exit boundary.

k	
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Boundary conditions at the near-wall nodes are treated in the

manner outlined in Section 3,0 (Equations 7 through 9).

The input parameters depend upon the nature of flow problem

computed. In many of the test cases, initial profiles of turbu-

lence kinetic energy (k) and length scales (L) are not available.

For these cases, uniform profiles of k and L are prescribed at the

inlet and the default values used are

k = 0.003 U2av

L = 0.02 Rmax

where, Uav is the average inlet velocity, and Rmax is the maximum

cross-stream dimension of the flow geometry. If information about

turbulence intensity levels is available at the inlet, appropriate
G t5'

uniform k values are used at the inlet.

G
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4.3 Convergence Criteria

The solution is accepted as the converged solution when the

total mass source error is less than about 0.1 percent of the total

mass flow rate. For all the test cases, the computations were car-

ried out further to ensure that the profiles of the dependent vari-

ables did not appreciably change. For all the test cases cone	 a

sidered in this program, when the solution converged to the accept- 	 g

able limit of 0.001 on the total mass source error, the maximum

mass source error in the computational domain was less than 0.0002.

The number of iterations required to reach the acceptable conver-

gence level varied from problem to problem. In most of the recir-

culating flows, a minimum of 350 iterations- were needed to reach

the convergence criterion.

During the computations, the values of each dependent variable

are monitored to ensure that the maximum change in the value of
d

each dependent variable is a small fraction of the reference value. 	 }^?

When this condition is satisfied, and if the total mass source tS	 4 4hst

error is less than 0.1 percent, plots of all the variables of i
interest are obtained. Computations are then continued for another

50 iterations and plots are obtained again. If these plots are

identical to within graphical accuracy, the solutions are accepted

as converged solutions.

The numerical solution obtained for any given flow problem

depends upon the grid density and grid distributions. The solo- 	 ^:	 Cra
tions are accepted as grid independent if the predicted results are

essentially invariant when the grid density or the grid distribu-

tions are changed. This type of test was performed for many of the 	 j

test cases, but these test results will be presented only for a few

of them. For the other cases, the predictions presented in this 	 •'. ;,

report are essentially grid independent. The details about the 	 ;`': {

grid distributions for each test case will be provided along with
the discussion of the results. 	 "^.rvr*
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SECTION V

5-.0 DATA BASE FOR BENCHMARK QUALITY TEST CASES

To assess and critique the current models and genorate a pro-

gram plan to improve their accuracy and usefulness as a combustor

design tool. , the assessment of the models was coonducted in the fol-

lowing two interrelated steps:

•	 Assess and critique the physical submodels $:nvol'ving the
fundamental processes of combustion, individually, with

dFta from ideal element tests under well-defined, condi-

tions. The physical submodels considered here are turbu-

lence modeling, gaseous fuel combustion, spray evapora-

tion and combustion, soot formation and oxidation, and

radiation modeling.

•	 Assess and critique the model predictions against the

data from advanced gas turbine combustors.

Accordingly, the data base is arranged in two sections: Para-

graph 5.1 includes a description of the data base from ideal

element tests and Paragraph 5.2 contains a description of the data

from a number of gas turbine combustors.

5.1 Data Base from Ideal Element Tests

j

E

^i

{

A literature survey of recently published work (generally 1970 r.

or later) was conducted to compile a data base necessary for a 	 l

benchmark quality test case. Published literature _ related to the 	 j

following submodels was reviewed: 	
I

r
a

93

1



o	 Gaseous Fuel Combustion

o	 Spray Evaporation and Combustion

o	 Soot Formation and Oxidation

In the following paragraphs, a data base from ideal element

tests is provided. The ideal tests range from simple entrance

flows in pipes and 2-D channels to more complex flows like the flow

fields behind steps, blockages, and swirling recirculating floras.

These tests are intended to encompass the range of complexities

involved in combustor internal flows. Simple entrance flows are

included in the validation efforts to ensure that the analytical

models can be used to predict simple flows without any modification

to the model. The data base selected has fairly detailed measure-

ments includin turbulence arameter measurements with estima-_	 ^	 g	 p	 ^	 .^^

tions on errors.

5.1.1 Turbulence Modeling	 {

In this paragraph, a data base for assessing turbulence models

is provided. The assessment procedure for the k- F turbulence

models will consist of comparing the predicted tie-mean velocity

components with the corresponding measurements. For the algebraic 	 4
{

and full Reynolds stress models, the predictions of the turbulence 'w	 t

`intensities and cross correlations will also be compared with the

measurements. Some cases involving scalar transport are also con 	 i

sidered, and these involve predictions of the concentratio n of a

truce gas ( inert) or temperature under heated but inert conditions.

The references reported in the following tables provide infor-
mation about the available measurements reported in the literature.
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TWA:;

These references were selected abased upon the extent and accuracy

of the data and the nature of the geometry of test conditions. The

references selected are presented in the form of increasing order

of complexity of the flow field in the form:

o

	

	 Simple Flows (Boundary Layers, Jets, Mixing Layers, etc.)

(2-D Parabolic) - Table 3

o

	

	 Streamline Curvature Effects (Curved Ducts, Curved.

Boundary Layers, etc.) (2-D Parabolic) - Table 4

•

	

	 Recirculating Flows (Nonswirling) (Both Unc^.nfined and

Confined) (2-D Elliptic) - Table 5

•

	

	 Swirling Flows (With and Without Recirculation) (2-D

Elliptic/2-D Parabolic) - Table 6

o	 Scalar Transport - Table 7.

From the references provided in these tables, benchmark test

cases were selected, as described in Sections 6.0, 7.0 and 8.0.

These cases were used to evaluate the turbulence and kinetic model

predictions.
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¢	 ON•^oNpfGJ	

cz	
^^>¢

pO

	

CC

	 ^	 xOpw^

	

2 7ad4Cwt
	 pow	 0.d60.•2^

	

o x3y'b z 	 ^^	
OU^N

	

= U H	 ,J,1 _^ X

C	
4 w

N	
o

O N
H ^^ R.
	 o6 ^

O
cr

to

^ a

W U
W J
	 ;	 Q	 f•

K S

^	 ^ r°-	 ^ a	 a	 a•

0

W	 •

^	 x	 ^

i	
J
a o Q	 ti

F-

z	 ^

I

	

W	 ,	 1

	

o	 ___r	
¢....	 1`^ 1p ^i ^	 F	

I

	

Z 2	 n F- J	 ,	 1	 U	 fr

	

Y H	
G	 m	 J	 n	 U

o a	 ^?	 o°
0

	

W2	 Z we.	 t ^	 (	 ^	 S 	 2

	

W	 N	 Z 1	 >	 4	 I J	 J

	

°-	 O.	 2 Q O	 n.^^	 J	 d	 C	 O
cm	

Z	 N yST N	 x10	 I	 J	
N	 1	 N	

N

N _
¢	 _	 ^	 o^ W	 2

O	
W

m	 €=	 G ^	 3	 °r c	 N	 1	 w4	 c.	 ^ 	 O	 ¢

	

i3.	 yn	 w	 I	 '.m	 a	 a.	 y

ct

°	 .nn	 ^	 LL'	 J	 w
J	 ^	 ¢	

W	

^

a	 3
N	 o	 ¢	 o

to

0z

	

s.	 Q¢	 ¢ Q	
W

	

^S	 WW,	 W p
	

^¢

	

C4j j^	 QWQ .v	 Q'̂~pmj	 ymz=^

	

QS ^	Sm

	

Q--	 yLL= "	 ^ 3— ^	 N^QO^ s
c^
m	 ^	 z

N

1
	

t"

F

1

`I

1~-"
p

«	 MA	
C

^4 	3
^	 G

t	 ^	
W

W	

I

^^	 I

l

t

n	 1
r	 i

t

f

^

I

1

1

E
j

Y
I

Ir
Ier
^,	 y



7 1ORIG- NAL FAGE

OF POOR QUALITY

0

Q
E-4
z
0
U

LLC2
ca w	 z^¢8

ca

cm

O

L4

cD

m.

rlILL

21

ED

s2mME-
,,a
W w

>

B:: 6jcz
yf

LEE, A

15

ig

E5

N 26 =mz
en	 fmw
um

as
—9wm.z,

it

yyi

cn

0

z

En



ORfMMAL PACCE CS

OF POOR QUALITY

w^

Ww

Q W

N
•p
c4

< yN
^77

en

W

^¢

2

W./Lq
S m^

µgON
co

W^Q ^-	 N

10fti^

OOz
^ C 4w O ^2 II

RR
4

253 i a o e M >i

¢ o
I mob J

^	 ^ x is o

NCW
S
H
0

N

W f

O

W

a

2
J

I; e R 4

S
= m

S O ^

u
E5W

I/

z

r P 86 I	 ^ 1c=

lcd
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5.1.2 Gaseous Fuel Combustion

In this paragraph, a data base for assessing gaseous fuel com-

bustion models is provided. The assessment procedure consists of

comparing the predictions of time-mean velocity components, temper-

ature, concentrations of species (unburned fuel, CO, CO 2 , H2 , H2O,

02 , N2 ) against the experimentally measured values of these quanti-

ties. These quantities were selected because they are of interest

in gas turbine combustors. Reliable measurements of these quanti-

ties are available, and they are a good indication of the predic-

tive capability of the gaseous combustion model consisting of the

turbulence/chemistry interactions and the hydrocarbon reaction

mechanisms. The assessment will be done for different flow types:

turbulent/laminar, premixed/diffusion, one/two/three-dimensional

flow, parabolic/elliptic, swirling/nonswirling.

In accordance with the assessment procedure, the data base is

categorized into four sections:

o	 Laminar Premixed Flames - Table 8

o	 Laminar Diffusion Flames - Table 9

o	 Turbulent Premixed Flames - Table 10

o	 Turbulent Diffusion Flames - Table 11.

In each of these tables, the data is arranged in order of increas-

ing complexity, starting from 1-D parabolic to 3-D swirling

elliptic flows.

r.	
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1

During the search for compiling the data base, several publi-

cations were encountered wherein the boundary conditions or other

Y

	 information required for modeling were not clearly or completely

t_	 stated.	 Such cases (e.g., References 111-123) have not been

included here.	 Measurements of quantities not related to the

assessment procedure given above have also been excluded. The data
t
'	 base is concerned with the measurements of quantities listed above

for steady gaseous hydrocarbon flames.
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û^^NWvy^ Y

wm^SxK'-
O^

p oo 
^^jj

HH'^ N OS

6 ^^ ^Y	 2 ^	 2

C

O

r

W Q

c^a
N

g

y

6

y

^ • W^^

t

Q

^
h y 4 0

.Zw
=
O

a	 ^YizO
{^u 2^ W W J^?QI-JZ

ag
^Ou^ W	 W H O
JH	 J^<O

W
[L

s'^rz
x^W

ao
SH

{u

20f^^2N2.2.y	 H^Q^

E3	 ^Y LN UVia¢^

O :E
d ¢
Wr
r

^ W

i-^

=0
Rt
W 
O

p°yoon=Z^^
8T^i ¢2LL0.

ppJ YpJ.
[JS

a ^

CM

C6
V

lV W

U

iV W

m•

N W

T..
O

d

W

CD

¢^

°

2
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5.1.3 Spray Evaporation and Combustion

In this paragraph, a data base for assessing spray evaporation

and combustion models is provided. The assessment procedure will

consist of comparing the predicted spray trajectory, droplet con-

centrations, velocites and size distribution, temperature, and

concentrations of species (unburnt fuel, CO, CO2 H2 , H2O. 0 2 , N2)

against the experimentally measured values of these quantities.

The available data on spray evaporation and combustion is listed in

Table 12. The predictions of these quantities is an indication of

the accuracy of the various features of the spray model:

o The prediction of spray trajectory, droplet concentra-

tions, velocities, and size distribution under non-

burning and nonevaporating conditions reflects on the

accuracy of the spray dynamics model, which includes the

modeling of the drag forces between the spray and the gas

phase.

o The prediction of the droplet concentrations and size

distributions along with the mixture fraction under non-

burning (but evaporating) conditions serves to test' the

droplet heat-up and evaporation models.
i

o	 Finally, the prediction of droplet concentration and size

distribution along with gas temperature and composition

serves to test the validity of the spray combustion

model.

Thus by assessing the predictions of the quantities listed

above, all features of spray evaporation and combustion involving

interphase momentum (spray dynamics, drag), teat (droplet heat-up)

and mass ( droplet evaporation and combustion) transfer are tested

individually and jointly.
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^.1

'eke data base is arranged in order of increasing flow .complex-

ity. 6 rces in which all boundary and initial conditions required

for modeling were not completely or clearly stated have not been

included in the data base (e.g. References 156-170). It should be

noted that complex two-phase slip models as used at Garrett require

detailed information specifying the initial conditions at the fuel

injector; initial drop size distribution, initial velocity distri-

bution,, etc.	 This information is generally not available and

therefore has to be estimated from the available injector charac-

teristics.
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5.1.4 Soot Formation and Oxidation

In this paragraph, a data base for assessing soot formation

and oxidation models is provided. The assessment procedure will

consist of comparing the predicted soot concentration, temperature,

concentrations of species (unburnt fuel, CO, CO 2 , H21 H2O, 0 2 , N2)

against the experimentally measured values of these quantities.

The comparison of predicted and measured soot concentrations is a

direct indication of the accuracy of the soot model. Temperature

and gas composition are affected by the presence of soot to an

extent depending on its concentration. Therefore, assessing the

accuracy of the predictions of temperature and gas composition

serves to indirectly assess the'soot model.

The data base for the soot models is rather inadequate since

very few measurements under controlled conditions have been

reported in the literature. The reason is the difficulty in accur-

ately measuring soot concentration profiles in a combustor. Quite

often, only the exhaust smoke concentration is measured and soot

profiles have been measured in only simple flames.

As in the preceding sections, several sources of data (e.g.

References 185-194) were found that were not suitable for model

assessment due to incomplete specification of the boundary and

initial conditions. These have not been included here. Also, mea-

surements related only to gas turbine type fuels have been con-

sidered, since it is practically impossible to validate the model

and obtain a set of model constants for all types of hydrocarbons.

The data base for soot formation and oxidation is presented in

Table 13.
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Ŵ GG..
m ;^

i3 i
Z

r

fpJ	 ^

zs	 T

JJ

	 N

6

N

fL

^= O

pp2 J

141

AH
U_

n

H
O

cr1

a
H

x

4 

M, u

4	 I

.	 i

t 1



nx^. „s.ryevYn^^..-,;VV^ 	.*.^..	 ^.: ... .^.-• '-.: ^.. _._—^-	 .^ .p:.	 .-.. r. 	.	 .	 n .,.J-^.-^..^ ,... ^.	 . .__	 .r«., w ♦ 	 r	 rce..,	 ,.! t	 ... .. r .em ,.+»^^ wrr m..x .^....

' 	 T	 I

{ t

5.2 Data Base from Garrett Gas Turbine Combustors

A number of gas turbine combustors have been mapped at Garrett

over the last ten .years. A brief description of the Garrett data

base is given in the following paragraphs.

5.2.1 Can Combustor Mapping

; g

	

	A nonreacting can combustor with swirle s at the dome was map-

ped207 in 1973 for comparison with the k-E turbulence ,model. ?^

3
	 schematic of the burner along with the flow split is shown in Fig-

	
}

{. ure 5.2-1. A calibrated three-hole wedge probe and liquid micro-

manometer were used to measure the radial distirubtion of the yaw

angle, static and total pressures at different axial stations.

n

As part of model validation under the USARTL Design Criteria

Program, another can combustor nonreact i ng flow was mapped at dif-

ferent throughflow rates. This combustor was filled with 21 mea-

surement ports.

t

A calibrated fire-hole pyramid probe was traversed across the

can combustor at three circumferential locations and seven axial

stations. Four traverses were made in the primary zone, seven in

the intermediate, and ten in the dilution zone. The probe mounts
F;

and the test conditions are shown in Figure 5.2-2.

Reacting flow mapping was accomplished on a similar can com-

bustor, shown in Figure 5.2-3. Radial profiles of CO, CO 2 , NOx,

and unburned hydrocarbons were measured at axial stations 6.0, 8.51

10.4, 12.9 1 15.4, 18.8 1 21.3, and 26.2 cm downstream from the fuel

nozzle face. Five circumferential stations were mapped to deter-

mine the profile variations in the circumferential direction. The

mapping was conducted for both gaseous (natural gas) and liquid

fuels (Jet A) over a wide range of operating conditions. The fuel

nozzles used for each fuel are shown in Figure 5.2-4.
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F'

o TEST CONDITIONS

P3 T3 Wa3 _OP

CONCH # i4TM) (K) (Kg/s) P
1%)

1 10.00 288 1.818 3.25

2 10.03 288 2.263 5.01

3 9.98 288 2.736 7.39

Figure 5.2-2. Cold F1cw Van Cornht,stor Mapping Setup and
Test Condtt$oi:&^.
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CAN RADIUS - 6.35 cm

It ,	 .. ALL DIMENSIONS IN CENTIMETERS	 54122A

REACTING FLOW CAN COMBUSTOR GEOMETRICAL DETAILS

NO. OF	 GEOMETRIC AXIAL DISTANCE
ORIFICE TYPE ORIFICES SIZE (cm) AREA, cm 2 (cm)
DOME LOUVERS 30 0.36 3.02 —
PRIMARY 6 1.12 5.89 9.09
DILUTION 6 1.42 9.53 17.21
COOLING SLOT LIP

#1 30 0.44 4.6 5.05
#2 30 0.48 5.43 12.20
#3 30 0.48 5.43 20.59
#4 30 0.48 5.43 29.67

Figure 5.2-3. Can Combustor for Reacting Flow Mapping.
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Figure 5.2-4. Natural Gas Nozzle and Airblast Nozzle Used for
the Can Combustor Mapping.
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A water/steam-cooled stainless steel emissions probe with ten

individual radial sampling points was used for the combustion emis-

sions mapping.

5.2.2 Annular Combustor Mapping

A reverse-flow premix/prevaporizing (PM/PV) annular combus-

tion system that is compatible with the Garrett TFE731-2 turbofan

engine envelope was designed and tested to demonstrate combustor

technology capable of meeting the 1979 EPA emission standards for

TI class engines as part of the NASA Pollution Reduction Technology

Program. To better understand the performance characteristics of

this combustion system, internal radial profiles of gaseous emis-

sions were measured in an atmospheric test rig.

The piloted PM/PV combustion system incorporates two axially

staged burning zones, as shown in Figure 5.2-5. The radial pro-

files of CO, CO 2 , UHC, and NO were measured at four different

axial-stations and six circumferential (9) planes within the main

combustion zone. A water/steam-cooled probe was used to obtain

radial profiles. The internal emissions mapping was conducted at

one atmosphere in a combustor rig without the transition liner.

The effect of different parameters including combustor inlet tem-

perature (T 3 ), overall fuel/air ratio, and fuel-flow splits between

the pilot and PM/PV combustion zones on the emissions profiles were

studied. The mapping was conducted with propane as PM/PV fuel to

simulate complete evaporation; however, Jet A fuel was used for the

pilot.

4

Information concerning the internal flow field of a TFE731

production combustor (Figure 5.2-6) was provided through measure-

ments of CO 21 CO, UHC, and NO x taken inside the combustor primary,

intermediate, and dilution zones at atmos pperic test conditions.

147

.r a

t	

Ii

k

'.ru,.yz	 ....'^.^.i	 -^— ^	 _ ...	 r*h	 ,. ; k ,.^3. b1CC'F".':Ct': '^:°. .. 	 .w^a...w.<w •mnew.en•u..^fl-.w,^::e^n. ^ 	 .wrr..-..^.,. .w...wo...^.a^.^...^..:. .. .... i^..a.^_._. 	._ ^...: _._.__.r--___ _	 ...



PREMIX/PREVAPORI ZING (PM/PV)
COMBUSTION SYSTcM

0

rt
Uk^`-K Ri

' E'.
X "'j'Y

OF pose

PREMIX FUEL INJECTION POINTS

PM/PV
A N N U L U S --^J	 '-1

MMi

DILUTION	
►-52.1 --a PILOT ZONE

MAIN COMBUSTOR
ZONE

PRIMARY FUEL
NOZZLES

Y
AXIAL STATION A

Figure 5.2-5. Axially Staged Burning Zones of the Piloted
PM/PV Combustion System.
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8
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AIR

I
^.	 Figure	 5.2 -6.	 Emission Sampling Probe Stations Inside the

TFE731 Combustor.
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The emissions probe used for the internal mapping was the same

as the one used earlier to map the PM/PV Concept 3 combustor. The

eight individual sampling ports of the probe were manifolded

together to obtain only averages in the radial direction. The mea-

surements were taken at different axial stations (as shown in Fig-

ure 5.2-6) in.the primary and secondary regions.

Detailed internal gaseous emissions and temperature measure-

ments inside the Uprate T76 combustor primary zone have been con-

ducted at various axial locations.

A single-point, water-cooled, emissions probe with an end cap

(Figure 5.2-7) was designed for use in the primary zone. This

probe is intended to separate relatively large .liquid fuel droplets

from the gas sample. The end-cap feature was also used in the con-

struction of a ceramic radiation shield for the aspirated thermo-

couple used to measure primary zone temperatures.

Emissions samples were taken at five different axial positions

from 1.016 to 6.35 cm from the dome. Temperature measurements were

taken from the dome to the dilution zone. The measured sector

extended over 36 degrees and was centered on a main fuel nozzle.

seven circumferential stations were selected to correspond with

areas of carbon deposition in the Uprate T76 combustor.

Most of the data was taken at an altitude idle-engine condi-

tion and also at the sea-level design condition. Two combustors of

the same part number were measured. Fuel/air ratios nearly twice

the stoichiometric values were measured at the discharge of the

primary zone for the design condition, indicating poor primary zone

mixing.

}
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SECTION VI

6.0 SIMPLE FLOWS

The results for the benchmark test cases (shown in Table 3)

are presented in the following four categories:

o	 Model evaluation for simple flows

o	 Model evaluation for complex nonswirling flows

o	 Model evaluation for swirling flows

0	 3-D jet-mixing flow validation

These categories are selected in increasing order of complexity

and, for each category, the results will be presented for nonreact-

ing and reeacting flows. In this section, discussion of results

and model evaluation for simple flows are presented. To present the

results, the predictions will be shown by lines and the data will

be represented by symbols throughout this report.

6.1 Flow Over a Flat Plate

One of the benchmark test cases selected from the assembled

data base is the flow over a flat plate, for which measurements

were made by Watts and Brundrett67 . Their test plate was 2.44 m

long with boundary layer trips placed near the leaning edge to make

the boundary layer fully turbulent. The mean velocity and the tur-

bulence velocity fluctuations were measured with a hot-wire probe

at x = 0.244, 0.462, 0.8466',, 1.163, 1.4656 and 2.2743 m. The free

stream velocity for this test case was 20.8 m/s. A schematic of

this flow geometry is shown in Figure 6.1-1.

l

i

.

Computations for this case were made using the Garrett 2-D

parabolic code, and predictions were obtained with the following

models:

t-RECEDING PAGE BLANK NOT FILMED
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o	 Standard k-F model

o

	

	 Standard k-E model with near-wall low Reynolds number

correction

o	 Algebraic stress model (ASM)

o	 ASM with low Reynolds number correction

For all these cases, the initial conditions were applied at x

0.244 using the measured profiles. One hundred cross-stream grid

points were used in these computations. The grid distributions

were selected so that the nodes were closely spaced near the wall

and are farther apart near the edge of the boundary layer. For the

standard k-E model, the wall function treatment outlined in Section
-.2 was used to specify the wall. boundary conditions.

The predicted mean velocity profiles using the standard k -E

model are shown in Figure 6.1-2. This figure shows that the agree-

ment between data and predictions was poor. Problems in this com-

putation were associated with the wall function approach for pre-

scribing the boundary conditions at the near-wall nodes.

One way to circumvent the applicatiw of the wall functions is

to apply low Reynolds number corrections to the k and E equations

that will enable k and E to be zero at the wall in a consistent

manner. From the survey of literature for low Reynolds number cor-

rections, the model of Chien 17 was selected for these computations.

In Chien's model, the source terms and exchange coefficients in the

k and a equations have been modified. The governing equations for

k and e, still retain the form shown in Equation (1). The differ-

ence arises in equations (2) and (4). The modified terms in

Chien's model are

j#

i

1
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S k = Gk -- P" _ 2µk2 	(133)

and 	 y

Se = (C I Gk - C2f^Pe)	 + E	 (134)

reff
'k 

= µ+µt flu

where,

fµ = 1.0 - exp (-0.01 15 y+),
	 (136)

y+= P.

2
f2 = 1.0 - 0.k_e	 (137)

E _ -2µ Y2 exp E-0.5 y+]	 (138)

reff,E=(14+µt) ae 	 (139)

Here, u* is determined by using the linear part of the law, of the

wall,

u=u*y+, 0e y+ <_ 11.5	 (140)

With the modified terms in the k and a equations, the wall boundary

conditions at the wall (y=0) are:

k=0

e=0
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eter, 'CD ,	 is used for calculating the turbulence diffusion rate. 4
Figure 6.1-4 shows that the ASM is in excellent agreement with the

data	 of Watts	 and	 Brundrett.	 Application of	 the	 low Reynolds

number correction on the ASM does not appreciably improve the mean r

velocity predictions.	 These results are presented in Figure 6.1-5. t
1

However, the application of Chien's low Reynolds number correction

substantially improves the prediction of turbulence kinetic energy t

components.	 A	 comparison	 of	 the	 predicted	 turbulence	 kinetic

energy profiles at x - 1.8735 m using the four models are presented f

in Figure 6.1-6.	 The predicted turbulence kinetic energy values,

using the standard k-E model, are slightly higher than the measured

values.	 The peak k value near the wall 	 is	 significantly higher r.

than the measurements.	 When Chien's low Reynolds number correction F`p

is applied to the k-E model, the near-wall kinetic energy values
b

are in better agreement with the data.	 The ASM predictions for k a_.'^4

are also higher than the data, but is slightly better in comparison

It should be recognized that for improving near-wall solution

accuracy with Chien's modification, one must employ a number of

grid points inside the viscous sublayer. This is not always pos-

sible for elliptic flows. Consequently, in this report, Chien's

corrections are applied only for parabolic flows. In all the com-

putations with Chien's correction, approximately 10 nodes were dis-

tributed in the viscous sublayer.

A comparison between the data and the predicted results using

Chien's correction are.shown in Figure 6.1-3. A significant im-

provement in the agreement and predictions is obtained with the low

Reynolds number correction over the wall function approach in the

standard k-E model.

Figure 6.1-4 illustrates the predicted results for mean veloc-

ity using the algebraic Reynolds stress model. In the ASM the

value of the coefficient CD is computed from equation (23) while

the standard k-E model assumes a constant value of C D . This param-



with the k-e model predictions. The application of the ],ow
Reynolds number correction significantly improves the predicted k

values.

A comparison between data and predicted time mean fluctuating

velocity components at x = 1.8735 is shown in Figure 6.1-7. The ASM

predicts much higher peak values for u', v', and w' components com-

pared to the data, Application of the low Reynolds number correc-

tion yields good agreement with the data.

Based on the comparison between predictions and data on a flat

plate turbulent boundary layer, the following conclusions can be

made

o The standard k- E model gives qualitatively good results.

Significant improvements in mean velocity profiles ;ire

achieved by applying Chien's low Reynolds number correc-

tion to the k-e model (low Reynolds k-E).
c ?a

o	 Algebraic stress model results are as good as the loco

Reynolds k- e model in regard to mean velocity profile.

o	 The low Reynolds number correction is required for

achieving good near-wall turbulent kinetic energy pro-

files with both k- e and ASM models.

o Individual fluctuating velocity components are reason-

ably well correlated by ASM except in the viscous sub-

layer, where significant improvements are obtained by

a Al in the low Re nolds number correctionP_ Y g	 Y
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6.2 Plane Couette Flow

The plane Couette flow is a well defined flow for which anal-

ytical solutions and good experimental measurements are available

for evaluating the turbulence models. The test data selected for

validating the models in this report were obtained by El Telbany

and Reynolds 208 in a test setup shown schematically in Figure

6.2-1. In this setup, the bottom wall was stationary and the top

wall was moved at a velocity of 17.08 m/s, which corresponds to a

Reynolds number of 12,640. The distance between the walls was

44 mm.

Computations for this flow were made with the standard k -E

model and the algebraic stress model using a 2-D parabolic code.

The standard k -E model predictions and the data for mean velocity

are shown in Figure 6.2-2. The agreement between data and predic-

tions is very good. The non-dimensionalized Reynolds shear stress

profile predicted by the standard kiE model is also in good agree-

ment with the data, as seen in Figure 6.2-3. However, the profile

of Reynolds stress normalized by the turbulence kinetic energy pre-

dicted by standard k-E model is not in agreement with the data

(Figure 6.2-4), In the standard k-E model, in the regions where

the shear stress is a constant, the turbulence kinetic energy is

also a constant'. However, the data shows a gradual reduction in

the k values away from the wall with the minimum value at the plane

of symmetry. Consequently, the predicted uv/k profile is contant

in the core of the flow, while the data shows a gradual increase in

its value away from the wall. It is possible to match the predicted

and measured values of uv/k at the plane of symmetry by increasing

the turbulence model constant, C D , from 0.09 to 0.144. A signif-

icant improvement is obtained in the uv/k profile, which is shown

in Figure 6.2-5. However with CD = 0.144 used in the standard k -E
model, the predicted mean velocity profile was not in agreement

with the data, as seen in Figure 6.2-6.

~	 }I
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The ASM predictions are illustrated in Figures 6.2-7 through

6.2-13. The comparison between ASM prediction and the data for

mean axial velocity is shown in Figure 6.2-7. The agreement

between the two is very good. The ASM prediction for iv, normal-

ized by the wall shear stress is in good agreement with the data, as

shown in Figure 6.2-8. However, when the Reynolds stress profiles

are normalized by the local turbulence kinetic energy, shown in

Figure 6.2-9, the predicted profile underestimates the values in

the core of the flow. However, the ASM predictions for the center-

line iv/k values are closer to the data than that predicted by

standard k- e model. A very similar profile is obtained for the

correlation coefficient, uv/(u'v'), which is shown in Figure

6.2-10. These two figures demonstrate that the ASM slightly over-

estimates the turbulence kinetic energy components.

The ASM prediction for the axial turbulence intensity, u', is

shown in Figure 6.2-11. The predicted peak u' value is slightly

smaller than the data. However, in the core of the flow, the ASM

predictions are in good agreement with the data. The predicted and

measured cross-stream turbulence intensity profiles are illus-

trated in Figure 6.2-12. The predicted v' values are about 20 per-

cent higher than the data. The predicted w' values are also higher

than the data by about 15 percent in the region near the plane of

symmetry as shown in Figure 6.2-13.

t
i

'r

The Couette flow calculations may be summarized as follows:

0

Y•^

The standard k-e model predicts the mean velocity profile

accurately, but underpredicts the centerline uv/k value

by about 20 percent.

R

When the centerline uv/k value is matched with the data,

(using CD = 0,144) , the predicted mean velocity profile',
F	 ^.'.R

is in poor agreement.with data.

k

f 

t
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o	 The algebraic stress model correctly predicts the mean

it velocity profile and underpredicts the centerline uv/k,

but the centerline uv/k values are in better agreement

with the data than the standard k-e model. The basic

reason for this deficiency is because of the overestima-

	

I
	

tion of v' and w' by the ASM. Overall individual turbu-

lence components are predicted well by the ASM.
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Figure 6.2-1. Geometry of Plane Couette Flow.
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6.3 Developing Flow in a Two-Dimensional Channel

one of the simple flows considered for validating the k-E tur-

bulence model was the developing flow in a two-dimensional channel.

Analysis of the entrance flow problem provides a means of evalu-

ating the accuracy of the numerical scheme. Detailed mean flow

measurements in the entrance reg3tan of a parallel plate were made

by Emery and Gessner 65 . The geometry of their test setup is shown

in Figure 6.3-1. Predictions for this flow were obtained using a

2-D elliptic code with the standard k-£ model with 2200 grid nodes.

Computations were performed until the total mass source error was

less than 0.01 percent. Comparison between predicted and measured

axial velocity variation along the centerline of the channel is

shown in Figure 6.3-2. The difference between the two results is

comparable to the measurement accuracy. Figure 6.3-3 illustrates

the predicted and measured profiles of the axial velocity component

at different axial stations. The agreement between data and pre-

dictions is very good.,

The predicted and measured wall shear stress distributions are

presented in Figure 6.3-4. The predictions and the measurements

are within about 7 percent of the data, which is within the accur-

acy of the wall shear stress measurements. The agreement between

measured and predicted results demonstrates that the standard k-E

model is sufficiently accurate for predicting mean flow field in a

two-dimensional channel.
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6.4 Developing Pipe Flow

The next benchmark test case considered was the developing

flow in a circular pipe. The test case selected for this problem

corresponds to the measurements, , by Barbin and Jones 68 . The geome-

try of their test setup is shotdn in Figure 6.4-1.

The bulk flow velocity at the inlet in the test case was

33.174 m/s and the Reynolds number, based upon the bulk velocity,

was 388,000. The mean velocity measurements were made using pilot

tubes and the turbulence velocity components were measured using an

x-wire probe. Computations for this case were made using a 2-D

parabolic program. The computational domain extended from x = 0.3

meters to x = 8.1 meters in the axial direction and from r = 0 to r

= 0.1 meters in the radial direction. Along the axis of the tube,

sy;^ etry boundary conditions were specified, and along the pipe

wall, standard wall :functions were used to specify near-wall bound-

ary conditions. In the computations, 100 grid nodal points were

used in the radial direction. At x = 0.3 meters, the measured pro-

files were used as initial profiles. Computations were made with

standard k-E model and ASM.

Comparison between standard k-e model predictions and the data

of Barbin and. Jones for mean axial velocity  is shown in Figure

6.4-2. The mean velocity profiles are nondimensionalized by the

average bulk velocity, U  = 33.17 m/s. The predicted mean velocity

profiles are in very good agreement with the data. .

The mean axial velocity profile comparison between the data

and ASM predictions is presented in Figure 6.4-3. The ASM predic-

tions are in good agreement with the measurements. The predicted

and measured root mean square.(RMS) axial velocity fluctuations,

u', are illustrated in Figure 6-.4-4. The ASM correctly predicts

f

	 the axial turbulence intensity near the axis of the pipe. Near the
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wall of the pipe, predicted peak values of u' are apparently higher

than the data. However, the measurements Near the wall do not have

sufficient resolution. The boundary conditions near the wall were

specified using wall functions, which have been shown (Paragraph

6.1) to overestimate the peak turbulence kinetic energy in the case

of a flat-plate boundary layer,. By using an improved near-wall

modelp improvements in the peak turbulence intensity can be

obtained. The comparison between the predicted and measured cir-

cumferential turbulence intensity component, w', is illustrated in

Figure 6.4-5. These profiles have characteristics very similar to

the u' profiles. The w' peak values are slightly overestimated.

The near-wall model deficiencies are responsible for the overesti-

mation of the peak w' values.

The results presented in this paragraph demonstrate that the

k-E and ASM accurately predict the mean velocity profiles and that
further improvements in turbulence structure and pressure drops can

be achieved with an improved near-wall model.

Y
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6.5 Fully Developed Pipe Flow

The fully developed pipe flow is another case of simple flow

where the turbulence models can be evaluated. The test measurement

selected for this case was that of Laufer 209 , at a Reynolds number,

Re , of 500,000. The geometry of the flow field is illustrated in

Figure 6.5-1. Computations for this case were made with a 2-D

parabolic program, starting with a plug flow profile at x = 0. The

calculations were performed up to x = 10 meters, where fully devel-

oped flow field was established. Predictions were obtained using

the k-E model and the ASM with Chien's low Reynolds number correc-

tion. A comparison between Laufer's data and the k-E model predic-
tions are shown in Figure 6.5-2. The agreement between data and

predictions is very good. The predicted and measured turbulence

kinetic energy profiles are shown in Figure 6.5-3. The standard

k-E model predicts a higher value of peak turbulence kinetic energy

near the wall compared to the data. Similarly, at the centerline,

the k--E model predicts about 40 percent higher value for k than the

data.

The ASM prediction for mean velocity profile is shown in

Figure 6.5-4. ' The predicted results and the data are in good

agreement. The ASM prediction for turbulence kinetic energy is

.illustrated in Figure 6.5-5. The predicted peak as well as the

centerline values of the turbulence kinetic energy are in good

agreement with the data. The ASM predicts a faster decay of turbu-

lence kinetic energy W. away from the wall, but the predicted

s

m x,

s

	

	
variation of k in the core of the flow is slightly smaller than the 	 j

measurements

	

The ASM predictions for axial turbulence intensity, u', and 	 a

the data are presented in nondimensional form in Figure 6.5-6. The

predicted u' peak value near the wall is slightly smaller than the

data. However, the agreement with data in the core of the flow is
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very good. The predicted and measured v' profile is shown in

Figure 6.5-7. The predicted profile is in good agreement with the

data. However, the peak value of v' predicted by the model is

slightly higher than the data. The predicted and measured w' pro-

files, shown in Figure 6.5-8, are in good agreement in the entire

flow field. At the axis of the pipe, the predicted w° value is

slightly higher than the data. The comparison between data and

predictions for the Reynolds shear stress, uv, is shown in Figure

6.5-9. The data and predicted values are in excellent agreement.

The low Reynolds number k-E model predicts the mean velocity

profiles in a fully developed pipe flow accurately. It predicts a

higher value of turbulence kinetic energy near the wall and at the

centerline compared to the data. The ASM predicts the inean veloc-

ity profile accurately and significantly improves the turbulence
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6.6 Two-Stream Mixing Layer

Another benchmark test case selected from the data base for

turbulence model validation is the flow in the mixing layer between

two streams. Measurements for this case were made by Saiy and

Peerless 60 using a hot-wire probe and pitot tubes. A schematic of

their flow test setup is shown in Figure 6.6-1.

Computations for this case were made using the 2-D Parabolic

Program. Since this flow field does not involve a wall boundary

layer, low Reynolds number correction is not needed. Predictions

for this case were obtained with the standard k- E model and the

ASM. Initial conditions for these computations were applied at x =

12.5 cm using measured data. A total of 100 cross-stream nodes

were used in the computations. The nodes were closely distributed

in the mixing region where gradients are higher and are sparsely

spaced in the outer regions. For the test conditions, the veloc-

ities of the two streams are;

UE = 16.5 m/s; UI = 38.37 m/s

The predicted mean velocity and turbulence kinetic energy pro-

files using the standard k - f model are presented in Figure 6.6-2.

The predicted mean velocity profiles are in very good agreement

with the measurements. The predicted turbulence kinetic energy

(TKE) values are slightly smaller than the data. However, the

width of the shear layer is correctly predicted. Overall agreement

between k -E model predictions and data is good.

Figure 6.6-3 shows the comparison between data and predictions

obtained from the algebraic Reynolds stress model for the mean vel-

ocity. The ASM predictions, similar to the k-E results, are in

very good agreement with data. A typical comparison between data

and predicted turbulence velocity components at x = 15 cm and x =
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20 cm is presented in Figure 6.6-4. The u' profiles are in very

good agreement with the data. The predicted and measured v° data

are in good agreement. A similar conclusion can be drawn for the w°

component, with the exception that the predicted w' peak values are

slightly larger than the data.

The measured data of v' and w° indicate that the peak values

occur at y>o; i.e., they have shifted toward the. low-velocity

stream side of the mixing layer. The ASM model predicts them to lie

along y = 0.

Figure 6.6-5 illustrates the comparison between data and pre-

dicted turbulence kinetic energy and shear stress (uv) profiles at

x = 15 cm and x = 20 em. The predicted turbulence k-e values are

slightly smaller than the data. This is consistent with the

results shown for the k-e model in Figure 6.6-2. The predicted uv

profiles are in good agreement with data oxcept for a slight dis-

crepancy at y = o.

Major conclusions from the mixing layer work reported here

are:

o Both k- and ASM models give equally good mean velocity

profiles as well as turbulent kinetic energy profiles.

The measured peak values of the turbulent kinetic energy

(ICE) are slightly higher than predictions; the ASM gives

a little better correlation.

o The ASM model gives good correlation for the fluctuating

velocity components (u', v°, and w°) as well as shear

stress u'v°). There is slight discrepancy in regard to

the radial location of the v° and w° peaks.
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6.7 Mixing of Coaxial Jets in Ambient Air

Another benchmark test case selected from the data base for

turbulence model evaluations is the flow in the near field uncon-

fined mixing region of two coaxial jets. Measurements for the
selected test case were made by Champagne et al. 64 using a hot-wire

probe. A schematic of their test set-up is shown in Figure 6.7-1.

For the test case studied, the ratio of outer to inner velocity at

the nozzle exit was 5.0 with the area ratio, A o/Ai = 2.94.

Computations for this flow were performed using the 2-D para-
bolic stream with the measured inlet velocity profile at x/Do =

1.16, where the maximum velocity, Umax was 18.29 m/s. The inlet

kinetic energy profiles were obtained from measurements and a uni-

form inlet .length scale of 0.01 Do was prescribed. Computations

were made with the standard k -E model and ASM.

The predicted mean axial velocity profiles with the k -E model

and data are presented in Figure 6.7-2 at x/D o = 1.16, 2.14, 3.09,

4.7, 6.05 and 8.02. The profiles shown at x/D o 1.16 are the ini-

tial profiles used in the computation. Here YM2 represents the

local half width of the jet. These results show that the data and

k-E model predictions are in good agreement with each other. Fig-
ure 6.7-3 show the comparison between data and ASM predictions for

mean axial velocity. These profiles are in good agreement with the

data, and a slight improvement over the k -E results can be seen.

Figure 6.7-4 show the comparison between the data and ASM pre-

dictions for u'. The predicted u' walues are slightly higher than

the data. However, the radial locations of the peak values are in

good agreement with the data. Figures 6.7-5 presents the compari-

son of the v' profiles. The predicted results and measurements are

again in good agreement. The comparison between predicted uv and
measured values are illustrated in Figure 6.7-6. These two results
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are in very good agreement with each other up to x/D = 4.07. Beyond

this station, the predicted uv values are slightly larger in magni-

tude compared to the data.

The k-E and ASIA predictions are in good agreement with mea-
surements. Further improvements in ASM predictions can be achieved

by fine tuning the empirical constants in the model.
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6.8 Free Circular Jet

In partial support of the free swirling jet correlation and to

further elucidate the coaxial jet mixing, a simpler case of free

circular jet was selected for model validation. The benchmark case

selected for this flow was that of Wygnanski and Fiedler 210 . They

have reported accurate measurements of mean and turbulence velocity

comjonents using a hot-wire anemometer in a test setup shown sche-

matic.'ally in Figure 6.8-1. Their jet diameter at the nozzle exit

was 26.4 mm with a jet exit velocity of 51 m/s. Measurements were

made at x/D = 40, 50, 60, 75, and 97.5. Computations for this case

were made with a 2-D parabolic program using initial profile

obtained from measurements at X/D = 40. Along the axis of the tube,

symmetry conditions were applied. A total of 100 cross-stream

points were used in the computations.

The mean axial velocity profiles obtained from measurements

and standard k-E model predictions are shown in Figure 6.8-2. The

top left corner figure shows the initial profiles used in the com-

putations. The predicted axial velocity results show a slower

decay of centerline velocity than the measurements do. This may be

due to under-estimated diffusion rates. Launder 211 has recommended

modifying the turbulence model constants C D and C2 for round jets
in stagnant surroundings according to the relation

	

CD = 0.09 - 0.04 f	 (141)

	

C2 = 1.92 - 0.067 f	 (142)

au^.	 au^.	 0.2
where	 f = ^ ax - a- - 

I	
(143)

These modifications were used to predict the structure of

Wygnanski and Fiedler's free jet. Comparison between the data and

predictions for mean axial velocity are shown in Figure 6.8-3. The
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predicted centerline velocity decay rate shown in this figure is

smaller than the standard k-f model results.

The correction factor f is always positive and equations (141) and
(142) would tend to reduce the magnitudes of CD and C 2 . Reduction

of CD value would tend to reduce the eddy viscosity with attendent

decrease in mixing rate.

The present approach is to increase the CD value by the

expression

Cp-0.09+0.04f
	

(144)

Furthermore, it was considered necessary to evaluate separating the

effects of changing C C and C 2 . Application of equation (144) alone
on the k-e model will be denoted as the k-fl model and the use of
equation, (144) and (14-2) i 	 de	 io/1de 1 will he	 noted as the k—f2	 ini. th—	 —	 lar4.4	 i	 i0

report.

The predicted axial velocity profiles using the k-E1 model and

the measurements are presented in Figure 6.8-4. The agreement

between data and the k-el model is excellent. Figure 6.8-5 allows

the k-E2 model predictions for axial velocity. These results

demonstrate that the k-f2 model tends to. overestimate the mixing,

which is responsible for the fast decay of the centerline velocity

of the jet.

The predicted mean velocity using the standard ASM is pre-

_ sented in Figure 6.8-6. The ASM tends to slightly underestimate

the mixing of the jet compared to the k-f1 model, but is signifi-

cantly better than the standard k-f model. Comparison of the pre-

dieted u' profiles and measurements, as shown in Figure 6.8-7,

illustrates that u' is underpredicted up to x/D = 60 and beyond
that station the agreement between data and ASM predictions is

very good. This is a consequence of the underestimated mixing



r	 k!

J. 	 d6	 hrates xn a mo el. Figure .8 -8 s ows the comparison of the pre-

dicted and measured v' component at three axial stations. The

agreement between these two is quite goof. However, some disagree-

ments can be seen close to the axis of the jet. The predicted wl

velocity profiles are in good agreement with the data, as seen in

Figure 6.8-9. The predicted uv profiles are compared with the

measurements in Figure 6.8-10. The uv values are initially under-

predicted and are slightly overestimated at xfd = 750

For the case of the round free jet, the standard k-E model

tends to underestimate the turbulent diffusion rates. Modifica-

tions of the empirical constants are necessary to improve these

results. The k-El model accurately predicts the mean velocity pro-

files, while the k-E2 model tends to overestimate the jet center-

line decay rate. The ASM shows a substantial improvement over the

standard k-E model and no ad hoc modification of the empirical

constants is necessary. The turbulence structure is well predicted

by the ASM, and further refinement of the ASM is necessary to

improve the quantitative predictions.
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Figure 6.8-5. Modified k-e Model (k-e2) Predictions with C2 and CD
rI	 As Given by Equations 60 and 62.
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6.9 Flow Over a Heated Flat Plate

The k-e and the ASM seem to predict the momentum transport

reasonably well for simple flows. It was deemed essential to eval-

uate these models on the transport of scalar quantities such as

temperature. The benchmark test case that was selected for this

purpose was the flow over a heated flat plate. Measurements of

mean and fluctuations of temperature were made for this case by

Charnay 11.0 et al. A schematic of their setup is shown in Figure
6.9-1. The flat plate was heated from the leading edge up to x =

0.7 m and. maintained at a uniform temperature of 313°K. Beyond x =

0.7 m, the wall temperature was abruptly changed and maintained at

290°K.	 The free stream temperature of air during the test was

..	 293°K. Measurementsurements of T T 2 and vT' were made at x =• D.7, 0.8,
ky

+	 0.9 1.05, and 1.4 m.

Computations for this case were made using. the 2-D parabolic

program with the initial conditions specified at x 0.7 m from the

measured Profiles. At x = 0.7 in, only the measured temperature pro-
files were reported. The inlet velocity profiles were assumed to

conform to the-law of the wall. The unknown wall mean stress was

calculated by assuming the temperature distribution to also follow

a logarithmic law. The details of this calculation procedure are

as follows:

;-	 For a flat plate with constant free stream velocity and sur-

^	 face temperature, the local Stanton number (P.U.0 ) is given by

Kays 212- as	 p

-0.2
0.0287 RexSt	 (145)

= 0.169 
R^_0.1 

(13.2 Pr-10.16) + 0.9
>	 x

whereRe	 P^'U^ x/A
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For the given free stream conditions, St was computed.	 The local

wall heat flux, q was obtained from 212

k qw = p00 CpU	 ( T -T00T,o) St (146)

The logarithmic law9 for temperature is givenP	 9 b	 Kays 212 asY

t+ = 2.195 In y+ + 13.2 Pr - 5.66	 (147)

x where,

t+ - (Tw-T) u*
( qw/A„ Cp )	 (148)

and	 y = AOOu*Y

From the prescribed temperature profile (T vs. y) , using equa-

tion (148), the value of u * was computed. Knowing u * , the velocity

profile was constructed from the law of the wall for mean velocity.

This profile was used as the initial velocity profile. The turbu-

lence kinetic energy was assumed to be a constant with k = 0.003 U2

The length scale was assumed to be linear, 1 = x y up to y = S.Y

Beyond that point, 1 was set equal to K5.

The boundary condition on the boundary layer edge was speci-

fied through the computed entrainment rate. Along the wall

boundaries, Chien's low Reynolds number correction to the k -E model

was applied. Across the boundary layer, a total of 100 nodes were

distributed with the nodes closely spaced near the wall and further

apart near the boundary layer edge. Computationo were made using

o	 k-E model with gradient transport model

o	 ASM with gradient transport model

ar
i

9

4 -

^	 3

s
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o	 Algebraic scalar transport model (ASTM)

The standard k-e model predictions with gradient scalar trans-

port model are presented in Figures 6.9-2 through 6.9-4. In

gradient transport assumption, the following expressions were used

for the turbulent transports:

ae
P U0 1	- - 'reff,e ax

ae
P ve	 eff,9 er

01 2_ 2 k f,
_ _&6E eff,e
_ ueff

eff,0 - Preff
where

(150)

(151)

88 2 + a8	 (152)
a x	 er

Preff	 0.9

Figure 6.9-2 shows the comparison between measured and pre-

dicted mean temperature profiles across the boundary layer. In

these figures,,,,the abscissa represents the temperature difference,

(T-Two) /(Tap - Two) ,, where Two is the wall temperature upstream of
X = 0.7 m• (313°K). At X = 0.7, the nondimensional temperature

profile would be similar . to the velocity profile with a monotonic

variation between zero at the wall to 1.0 at face stream edge. Just

downstream of X = 0.7, the value of the nondimensional temperature

at the wall jumps to 1.15. The mean temperature profiles gradually

recover from a hot wall condition to a cold wall profile. The k-E

model predictions for temperature differences are smaller than the

data as seen in Figure 6.9-2. In other words, the model under-

estimates the heat transfer rate to the wall.

The root mean square (RMS) value of the temperature fluctua-

tions obtained from the k-,e model are shown in Figure 6.9-3. In
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these figures, the T' values are nondimensionalized by (Tw o -To)

(20°K in the present case). The k-E model predicts high values of

T' near the wall. At the outer edge of the boundary layer, the k-E

model predictions are in reasonably good agreement with data. At

x = 140 cm, the peak T' values tend to approach the measured

values. This indicates that the gradient diffusion .assumption is

valid for equilibrium boundary layers.

Figure 6.9-4 illustrates the comparison between data and k -E

model predictions for the turbulent transport VT--r . In these fig-

ures, the quantity vTr is nondimensionalized by U (Tw o - Tom), with

Two being the wall temperature upstream of x = 0.7 m. The k-E

model underestimates the heat flux component v"T, especially in the

region close to the wall.

The predicted mean temperature profiles obtained, from the ASM

and gradient transport assumption are shown in Figure 6.9-5. These

profiles are almost identical to those obtained from the k-E model,

and the temperature differences are overestimated. The ASM pre-

dictions for ItMS temperature fluctuations are shown in Figure

6.9-6. These profiles are also identical to tai&*se obtained from
k-E model. A similar conclusion may be drawn for the vT' profiles

obtained from ASM, as seen in Figure 6.9-7,. These figures illus-

trate that the gradient transport model underestimated the heat

flux, and the ASM does,not significanity improve the heat estima-

tion.

The predicted results using the ASTM are presented in Figure

6.9-8 through 6.9-10. The ASTM uses the expressions given in Sec-

tion 4.0 for the various turbulent transports. The ASTM predic-

tions for mean temperature are shown in Figure 6.9-8. Comparison

with the k-E model results (Figure 6.9-2) shows that the ASTM sig-

nificantly improves the predictions for mean temperature, and at

x = 140 cm, the predicted mean temperature profile agrees very well

with the data.
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The ASTM predictions for RMS temperature fluctuations are

d	 6 9 9	 h	 d	 t th T'illustrate in Figure 0 - . T e ASTM ten s to overes ma e e

values near the boundary layer edge. In the near-wall region, some

differences between the data and ASTM predictions are present.

These differences are mainly due to the estimated turbulence struc-

ture, namely, u2 and v2 profiles.

The ASTM predictions for the heat transport v are presented

in Figure 6.9-10. These profiles are in good agreement with the

data near the edge of the boundary layer. However, some dif-

ferences exist in the near-wall region. These are due to the dif-

ferences between estimated values and test conditions. The test

results for the turbulence velocities were not reported. Further

improvements in the ASTM predictions can be achieved if the turbu-

lence structure predictions are refined.

The results presented in this paragraph show that even for a
simple flow case of boundary layer with sudden changes in wall

temperature, the gradient transport assumption is not valid. The

ASTM gives significantly improved predictions. Further improve-

ments in the Reynolds stress predictions are needed to obtain

quantitatively accurate results from ASTM.

Comparisons of mean temperature (T-Tw o), the RMS temperature
fluctuations (T"), and the heat transport (vT') calculated using

the various models .can be madefrom the following figures:
Figures

T-Two 	6.9-2
6.9-5
6.9-8

T'
Two-T^ 6.9-3

6.9-6
6.9-9

VT'

Uw (Two T,o ) 6.9-4
6.9-7
6.9=10

:r	 1

1

z



FLOW OVER A HEATED FLAT PLATE
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to

or = 3130 K1VM
T.- 290°K

ORIGINAL PACE [Zj

OF POOR QUALITY

CHARNAY ET AL
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Figure 6.9-1. Geometry of Flow Over a Flat Plate

with Step Change in Temperature.
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Figure 6.9-9. ASTM Predictions of the RMS Temperature Prol
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6.10 Plug Flow Reactor

In reacting flows, the validation of the kinetic scheme is as

important as the turbulence/chemistry interaction model. To vali-

date the kinetic scheme, computations were made for the plug flow

reactor shown schematically in Figure 6.10-1.

Measurements in a plug flow reactor were conducted by Hautman,

et al., 19 for lean, stoichiometric, and rich propane flames. These

measurements were used to test the validity of the four-step scheme

that has been proposed by Glassman and his associates based upon

detailed species and temperature measurements under a well-con-

trolled low-pressure and high inlet temperature environment. The

Glassman four-step scheme has been incorporated into the Garrett

Combustion Codes, both parabolic and elliptic.

Computations were performed for lean; ytoich ion, ctric, and rich

propane flames with both the two-step and the four-step schemes.

Comparisons of these results with the measurements are shown in

Figure 6.10-2 for the case of lean mixture. From Figure 6.10-1, it

is clear that the four-step scheme is far superior to the two-step

scheme in predicting the salient features of hydrocarbon combustion

in the Princeton reactor.

It should be noted that the four-step scheme as proposed by

Glassman and his associates was based upon data from their plug

flow reactor. This scheme probably represents a closer approxima-

tion to actual hydrocarbon oxidation processes in a high tempera-

ture environment than the simpler two-step scheme does. How four-

step correlates other reacting flow situations, such as a laminar
diffusion flame, premixed turbulent flames, and jet flames, is

covered in Paragraphs 6.11, 6.12 and 6.13, respectively.
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PLUG FLOW REACTOR
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Figure 6.10--1. Princeton High Temperature Plug Flow Reactor.
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6.11 Laminar Diffusion Flame

Another benchmark test case selected for validating the kin-

etic schemes is the laminar diffusion flame. Measurements for a

laminar diffusion flame have been reported by Mitchell, et al. 129

for the setup shown in Figure 6.11-1. This flow was computed with

the 2-D elliptic CPM. Runs of this type are useful in the valida-

tion of reaction mechanisms and establishing rate constant values

since uncertainties due to turbulent interactions are absent.

Comparisons between the measured and predicted species concen-

tration, temperature, and velocity at different axial locations are

shown in Figures 6.11-2 through 6.11-8, respectively, at three

axial stations. The predictions were obtained with both kinetic

schemes and include the influence of buoyancy and variable thermo-

dynamic and transpovt properties. Overall, the agreement between

the predictions and measurements is fairly good.

Results with the two-step scheme for * the first axial station

(x = 1.2 cm) are presented in Figures 6.11-2 through 6.11-4. The

overall heat release rate as indicated by axial velocity (V) corre-

lation is in gt.,od agreement with data. Stable species profiles

(e.g. CO 2 , H2O, 02 and unburned fuel) are also well correleted.

The CO levels are predicted to be significantly lower than measure-

ments by a factor of two to three. This is consistent with the two-

step results on the plug flow reactor. Similar observation can be

made for the comparison shown in Figures 6.11-5 and 6 . ^1-6 at

x = 2.4 cm. The temperature is slightly overpredicted (perhaps due

to neglect of radiation losses in calculations) at x = 5 cm. The

new CO prediction correlates well with the data.

The overall agreement between the two-step predictions and

data is reasonable. The slight discrepancies are due to the

following:

1T

p
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(a) The presence of H2 and intermediate hydrocarbons has been

ignored in the two-step scheme. This results in over-

prediction of H2O, CH4 , and temperature. Some of these

differences can be overcome with an improved scheme.

(b) Differential diffusion of species has been ignored. This

will be significant for H 2 diffusion due to its low

molecular weight.

(c) Radiation was not considered in these computations.

The four-step results with the rate constants suggested by

Hautman et al. are presented in figures 6.11-9 through 6.11-15.

Except for the velocity profile at x = 1.2 cm, the scheme indicates

good comparison with data as shown in Figure 6.11-9. The general

shape of the temperature profile is well predicted as shown in Fig-

ure 6.11-10. Near the flame centerline at x = 1.2 cm, the model
underpredicts temperature levels by approximately 50 percent. The

agreement improves further downstream, and. by x = 5 cm, the compar-

ison is good. The fuel breakdown near the center is underpredicted

by a factor of two as shown in Figure 6.11-11 for both x 1.2 and

2.4 cm. Similarly, for the initial portion of the flame, the CO2

levels near the center are considerably different from data. The

same is true of the other stable species; for example, 02 and H2O as

shown in Figures 6.11-14 and 6.11-15.

The four-step predictions in regard to CO are considerably

better than the two-step results shown in Figures 6.11-4 through

6.11-8. As shown in Figure 6.11-13, the CO peaks are similar in

magnitude, as the data shows. Some improvement is desirable for

the radial profile shape. Overall, the four-step correlates well

with the data. Deficiencies are in regard to correlation in the

initial portion of the flame centerline where the model under-

predicts fuel breakdown and the levels of temperature, CO 2 , CO, 02

and H2O.

241f

R

S	 4.4

t,

t

F

	

\ F h	 r1

	ti ^
	 4„•	 1

	

K.	 •	

11

M

	

+	 1

j

^	 d



CYLINDRICAL
PYRE( SHIEL

SILICONE 011
LIQUID S.•AL

PERFORATED
BRASS BURN
PLATE

40 MESH
STAINLESS S1
SCREENS

CONCENTRIC
BRASS CYLIN

STAINLESS
STEEL WOOL

t

E

i

A
t

R

ORIGIVNIAL PAGE 19

OF POOR QUALITY

CL

e:a.1S



210

200

190

100

170

160

150

W 140
cc

130
a
CE 120d
w 110H
0 100
0

„^,' 90
co

C VV
V

70

a 60

LU9 50

40

30

20

10

0

yy

^J

ORIGINAL PAGE.:- JS
OF POOR QUALITY

0 0.1	 0.3	 0.5	 0.7	 0.9	 1.1	 1.3	 1.5	 1.7

DISTANCE FROM SYMMETRY AXIS (CM)

Figure 5.11.2. Comparison Between Two-Step Model Predictions and
.,`	 Measurements for Axial Velocity and Temperature

Profiles of the Mitchell's Laminar Diffusion
Flame at 1.2 cm Above the Burner Plate.

{	 243

Y	

>

Y y	 .

1

9



3

k

i[ +
f :.
y e '

^rs+

IG
.._	

f•

J	 i.

d'

30

28

26

24

p 22z
20	 p

W

W	 ^	 •
1a

16	 •

z 14	 p

P 12

c	 ♦ CH4
10 11	 O CO2
g	 O ®	 •	 • H2O

60	
p 02

O

4
• •

2	 •

0	 p p	
A

O

0	 0.1	 0.3	 0.5	 0.7	 0.9	 1.1	 1.3	 1.5	 1.7

DISTANCE FROM SYMMETRY AXIS (CM)

Figure 6.11-3. Two-Step Predictions and (Measurements for CH 4F
co 

2
, H 2O and 02 Profiles, X = 1.2 cm.

70 1^	
N2

60

z	 50WV
W	 40
a

W
J
tl

O

a	 5

02W	 4 O 8	 CO

O
0	 3
c9

2

1

0

0 ' 0.1	 0.3	 0.5	 0.7	 0.9	 1.1	 1.3	 1.5	 1.7

DISTANCE FROM SYMMETRY AXIS (CM)

Figure 6.11-4.. Two-Step Predictions and Measurements for N
2 and

CO Profiles, X = 1.2 cm.

i

ORIGINAL PAGE IS
OF POOR QUALITY

244



ORIGINAL PAGLE b

OF POOR QUALITY

ft

no 1

210 -	 •
ISO

III

ISO -	 ELOCITY
119 -

a:61 -

v

	

rc 
130	 00 •

T

,a.108
BO

to

To TEMPERATURE
W 00

40

30

0

	

L	
7

0 

IL I	 03	 IL S	 0.7	 Its	 1.1	 1.3	 1.6	 1.7*

DISTANCE FROM SYMMETRY AXIS (CM)

Figure 6.11-5. Comparison Between Two-Step Predictions and
Measurements of Velocity and Temperature Profiles
of the Mitchell's Laminar Diffusion Flame at
X	 2.4 cm.

70

60	 N2

so

22 -

20 - •

10

It -;Ab
0 Coz

- 
	 RIO

	

I -A	 L 02

0So_ A - K:

10

—A

	

0	

0

	

O

3	 Co

0 &1	 0.3	 0.6	 9.7	 0.9	 1.1	 1.3	 1.5	 1.7

DISTANCE FROM SYMMETRY AXIS (CM)

Figure 6.11-6. Predicted and Measured Species Profiles at
X.= 2.4 cm. (Two-Step)

245

;	 + I

x0^ :1



ORIGINAL CAGE ES

OF POOR QUALITY

T20

270

20	
•

0

teo •^ p
	

t

160	 p A V
170	 p

160

ISO.	
p

^ IW •
F
W 120

^ 120
F	 •
C 116O
u 100

00

so

70

so

60

!0
f •

10

20

10

0	
p r

	

0 0.1	 0.2	 0.5	 0.7	 0.0	 1.1	 1.2	 1.5	 1,7

DISTANCE FROM SYMMETRY AXIS (CM)

Figure 6.11-7. Comparison Between Predicted and Measured Axial.
Velocity and Temperature Profiles and Mitchell's
Laminar Diffusion Flame at X _ 5.0 cm.	 (Two-
Step)

60

70	 •	 • • •	 N2

00

22

20	 •
16	 •

z ^4®	 •

	

•	 • p
c 14

7"
w 12	 p. 

10	 •

re 5 

a S

ri 4	 •

• •
2

E 0

w.	 S
4	 CO

2

0	 0.1	 0,2	 0.5	 0.7	 0.0	 1.1	 1.2.	 1.6.	 1.7

DISTANCE FROM SYMMETRY AXIS 1e111

Figure 6.11-8. Predicted and Measured Species Profiles at
`-	 X = 5.0 cm. (Two-Step)
s	 246



Gy

PROFILE AT 1.2 CM

ORIGINAL Rgej..- 6

OF POOR QUALITY

PROFILE AT 2.4 CM



1

ORIGINAL P^^^^ G

OF POOR Q99ALITY

o 0
r. ° PROFI LE AT	 1.2 CM PROF ILE AT	 2. 4 	 CSI

1.	 _ o COD O aw
O

Uj 
b

2	 -
C:k CO

v 0
Qb

... O
,t

w

y
fa

i
Cr- o O	 O d' o

@
Q I

t:. CD
o&

CD

^`

CD w

p S^ 7V !O N;r
W Uj

t N f"

^^	 e

0.000 0.010 0.020 b0.000	 0.010	 0.020 {;
RADIUS	 {M) RAD-I US	 (M)`

o
•-• N PROFILE AT 5 CM

G	 .^'^ b
crn^ino

q

V OCDCD

^..
W

y

y CC O

v%Zy U l' ..	 . - q

aa- n
LLJ

C;
0.000 0.010 0.020

j.

k

RADIUS	 (M)

A
t,

y	 y

y 	 f r - +

I L' #

R
i

Figure 6. 11-10. 4-Step Scheme, Temperature Profiles `P•`.

,
248

r	 .



O
O

.. `Q PROFILE AT 1.2 CM0
Cj
Q

LL. O

O
LL! v

C>

W C vzN
_° o

ua

0
0
0
0.000	 0.010	 0.020

RADIUS tMl

O
O
`%i	 PROFILE AT 2.4 Cif

t.7

U-

LU

d O
^ O

O
LUz
N-w
0
a
a
0
0.000	 01010	 0.020

RADIUS fM)
a

a

Figure 6.11-11. 4-Step Scheme, Methane Profiles.

249

_,	 — --	 MW



U

' <t n

LL- Ci

LiJ

e
t

J

h

LL ► o
`r. G us

.	 ^ Q

^ Z
A

cn

9 OU
i o

0.000
r-

Rte.	
...	 .i M

' j ^ JQ c

rs^ ID
g o

co

W Q

." cD

0
z
tD

r^ co

a$
i IV O

0.000

-
m " .

I u+

ORIGMAL PAG-E 6S
OF POOR QUALITY

U
'Q A

u- C

LLJ

J

C7

LL ► c
c

X c
CD

Cl

z
M
tz)

NW4Y
Q O
U 0̂

0.010	 0.020	 0.000

RADIUS (M)

PRAC 11 C LT G ru

na.ec.^ r •r n • n..

0.010	 0.020

RADIUS ( M )

0.010	 0.020

RADIUS ( M )

Do nc 1 e r AT . n nu

Jes .



Q O
w to

U- ° PROFILE AT	 1.2	 CIA0W
J
C7

.. 0
a 4LUo p

O
X
tz)
ZoNt=) O
O 0

z
0
M od ooU 0

01000 0.010	 0.020

RADIUS	 tM)
^o¢to
=

c
PROFILE AT 5 CM

J
C7

0

0
W o
C^

X
0Zcl

° oz `
t
M o
^o
0U.0
0.000 0.010	 0.020

RAD I US	 ( M )

ORIGINAL PAtE K

OF POOR QUALITY

U O

d to

u. c PROFILE AT 2.4	 Cu

JM

0
W O O

X
d
Z N^ O

^ O
z
d
m ^
^o

^ OU 0
0.000	 0.010	 0.020

RAD I US ( M )

Figure 6.11"13. 4-Step Scheme, CO Profiles.

251



RADIUS (M)
,020

Figure 6.11-14. 4-Step Scheme, 0 2 Profiles.

At

f

PROFILE AT 1.2 CM

.'zx if	 ,u +. •	 ^	 ....,+-..w ,+	 r wn -	 r	 t. , 'w M'nc. Y ...,t^::Y z 3.e+

{

PROFILE AT 2.4 CM

0.010

RADIUS (M)

PRMP I1 F AT 5 PY

a
N

„^ a

d o

LL
0

u.!
.1 a

O N
v O
za
W m
U o
>- a
X
ra
00o ^
0
0.000

0w
N

— a
U
d Q
M °00

LL
C;

LLJ

J o

d N
v O

'Z Q
uJ ao
C9 0ro
X
r^ a0
Q

a

OFt(GMAL PtiC

OF P0©gt QUALF Y
a
N
p_

U
Q o

U-
0

w

Q N

v O

uj O
CD orQ
X
to 000

-1	 0
0.020	 0.000 0.010	 0.020

RAD I US ( M )

i
I

{,



0

.c`
c:
U-

w
J o
d °
r O
LL'
w
F—
.rte3

°°°
0
0.000 0.010	 0.020

RADIUS (M)

PROFILE	 Al	 1.4	 CIAr-. 'cs p

U
d

0 p
LL.

w p
^J o
CD o p

O
O

5^ O
1.5.1
N
Q
3 p

° pe

°0.000 0.010	 0.020

RADIUS	 (M)
09
c

PROFILE AT 5 CM
r.

©
p

c^

'¢ p Op
U..

p

W
J o
t^ 4

o
^

V
y

p

1..y

Q p

O
°

O

O

0.000 0.010	 0.020

-' kM

M

y.

r

-7-. _	 _.

r	
s

f

	

	 ORMNAL PACE jjj

OF POOR QUALITY

3	 p	 O

O	 Oi	
N	 DRAC I I F IT 9 t 1U

RADIUS (M)

Figure 6.11-15, 4-Step Scheme, H2O Profiles

c

I
I1

.r

w a+	 ^^

•

a

253



t
ix

r

K
r

r

P
r

9e^

6.12 Turbulent Premixed Flame in a Rectangular Duct

Another test case selected from the data base for evaluating

kinetic schemes is the reacting flow of premixed propane/air in a

rectangular duct with a flame stabilizer as shown in Figure 6.12-1.

Measurements for this flow were made by Shipman,1371 138 et al.

Computations for this case were performed using the 2-D para-

bolic program and standard k-E model, with the initial profiles

obtained from measurements 0.0508 m downstream of the flame holder.

The average inlet velocity was 18.288 m/s at a pressure of one

atmosphere, having a turbulence intensity of 3 percent. Along the

t^lane of symmetry, a zero radial gradient was specified for all the

V,,Lriables except V, which was set to zero. Along the outer radial

boundary, wall function treatment was employed. Computations were

performed with two-step and four-step kinetic schemes. On the two-
step scheme', two different sets of rate constants were Used.. One

of them o-orresponds with the constants established in the Army Com-

bustor Design Criteria Program, and the other set is for the PM/PV

combastion. 12 Table 14 provides the values of the Arrhenius pre

exponents and the activation temperatures for the reaction steps.

TALLE 14. TWO-STEP RATE CONSTANTS FOR GARRETT/AVLABS AND
PREMIXED/PREVAPORIZING REACTION.

REACTION STEP 1 REACTION STEP 2

Pre- Activation Pre- Activation
Exponent Temperature Exponent Temperature

Design Criteria 3.3 x 10 14 27,000 6.0x108 12,500

PM/PV 3.9x109 18,000 2.2x108 12,500

The predictions obtained using the Design Criteria constants

are shown in Figures 6.12-2 through 6.12-8, and those using the

PM/PV constants are presented in Figures 6.12-9 through 6..12-15.

The predicted mean axial. velocity using the Design Criteria

constant and the measurements are shown in Figure 6.12-2 at five
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axial stations downstream of the flame holder. The predicted axial

velocity profiles show slower mixing rates compared to the measure

' f

	

	 ments. The velocities near the plane of symmetry are considerably

smaller in the predictions than in the data.

i

	

^	 Figure 6.12-3 illustrates the computed profiles of unburned

` fuel and data at five axial stations. The predicted unburned fuel

mass fractions are higher than the measured values indicating

	

r	 slower fuel disappearance rate. Figure 6.12-4 illustrates the com-

parison between predicted and measured CO mass fraction. The pre

f:
dieted CO profiles are significantly lower than the data up to x =

0.2032, partly due to the slow reaction rates. Beyond this sta-

tion, the CO mass fractions are in reasonable agreement with data.

However, the radial spread of CO profiles are underpredicted by the

	

u	 model.F.

Since the reaction rates are underpredicted by the design cri-

teria rate constants® the predicted temperatures (Figure 6.12-5)

are also lower than the measurements. The radial spreading of tem-

perature profile is also underpredicted by the model.

The other derived variables uch as 0 2 , CO 2 and 'H2O are pre-
sented in Figures 6.12-6 through 6.12-8 1 respectively. Due to the

lower fuel consumption rate, predicted 02 profiles are higher than
measurements. Similarly, the discrepancy between predictions and

measured CO2 can be explained. Apparent improvement in regard to

H2O profiles may be due to faster diffusion rates of this species
compared to model. assumptions of equal diffusivity for all species.

In conclusion, the Army Combustor Design Criteria rate con-

stants appear to underpredict fuel consumption rate and temperature

profiles. on occasions the design criteria constants have seemed

to overpredict reaction rates. More extensive validation is needed

to establish the two-step rate constants for both diffusion and

premixed flames.
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The predicted results for mean velocity, obtained by using the

PM/PV rate constants, are presented in Figure 6.12-9. 	 A substan-

tial improvement can be observed in the agreement between data and

predictions, when compared to the 	 results	 using Design Criteria

rate constants	 (Figure 6.12-2) .	 This is due to faster fuel con-'`

sumption.	 Figure 6.12-10	 illustrates the comparison of data and

predictions for unburned fuel.	 These profiles are in much better ,
4

agreement than the results obtained from the first set of rate con-

stants.	 However,	 the	 radial	 diffusion	 rates	 are	 still

underpredicted by the model.

The comparison between predicted and measured CO 2 profiles are

presented in Figure 6.12-11.	 Due to the improved convection rates, f'

the	 reaction rates are expected to be higher, and hence the CO2

values are higher than the values obtained from the design criteria

rate constants.	 The COvalues predicted from the PM/PV rate con-2
stants are still smaller than the measured values. J

The predicted and increased profiles for CO are illustrated in

Figure 6.12-12.	 The predicted peak CO values are higher than the i

data	 and the predicted CO mass	 fraction profiles	 do not spread

radially outwards as much as seen in the measurements.

The predicted temperature distributions using the PM/PV rate

x_

constants	 and	 the measurements	 are	 presented	 in Figure	 6.12--13.

Since the reaction rates are faster, it is expected that the pre-

dicted temperatures are also higher than those obtained using the

design criteria rate constants.	 Overall these profiles are in good t'

pagreement with data.

Figures 6.12-1z and 6.12 -15 show comparisons between measuredt

and predicted profiles of 02 and H2O, respectively.	 Although there. s'`

is improvement over the design criteria constants in regard to 02 ,z
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and CO 2 , the comparison is worse for H 2O. This may be due to a
number of reasons, such as:

o	 Incorrect approximation of fuel breakdown by simple two-

step

o	 Neglect of H 2 as one of the intermediate products

o	 Assumption of equal diffusivities of all gaseous mole-

cules

o	 Turbulence/chemistry interaction represented by a simple

eddy breakup model

Calculations were also performed using the four-step kinetic

scheme outlined in Section 3.0. The rate constants used in this

computation were obtained from the report of Hautman, 19 et al.

These rate constants have given good comparison with plug flow

reaction as shown in Figure 6.10-1. The Arrhenius pre-exponents

and the activation temperatures for each of the four steps are

given in Table 15.

TABLE 15. RATE CONSTANTS FOR 4-STEP KINETIC SCHEME.
it

REACTION
STEP

ARRHENIUS
PRE-EXPONENT (K 0 )

ACTIVATION
TEMPERATURE

EDDY BREAKUP
CONSTANT (C R )

1 2.0893 x 10 22 24,800 3.0

2 5.0117 x 1019 25,000 3.0

3 3.9811 x 10 19 20,000 3.0

4 3.3113 x 10 18 20,500 3.0
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The predicted mean axial velocity profiles using the four-step

kinetic scheme and the data are presented in Figure 6.12-16. The	 p

predicted velocities are significantly smaller than the measure-

ments.	 Predicted unburned fuel profiles are shown in Figure;

6.12-17 along with the data. Comparison with the two-step results

(Figure 6.12-14) shows that there are no appreciable differences in

the unburned fuel profiles between four-step and two-step.

The four-step predictions for CO are presented in Figure

6.12-18. Due to the slow reaction rates in the four-step scheme,

the predicted CO values are smaller compared to both the data and

the two-step scheme (Figures 6.12-4 and 6.12-12). Consequently, as

shown in Figure 6.12-19 the four-step predicted temperature pro-

files are lower than the two-step (Figures 6.12-6 and 6.12-13) and

the data. The other derived variables are similar including 02,

CO2 and H2O shown in Figures 6.12-20 through 6.12-22.

A number of reasons can be forwarded for delivering poor cor-

relation with the four-step scheme. Numerical experimentation was

made to demonstrate that the basic mechanism is valid and that

future modifications to the approach will yield good comparison.

Figures 6.12-23 through 6.12-29 present results with the first two

reaction-step rate constants changed

Kol = 2.0893 x 10 24	CRI = 6.0

K 0 = 5.0117 x 10 21 CR 2 = 6.0

Significant improvement in predictions can be seen, and one

can therefore conclude that the basic four-step hydrocarbon oxida-
tion mechanism is valid.
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6.13 Free Methane Turbulent Jet Flame

The free, turbulent, reacting methane jet inve:.;tigated by

Hassan, et al., 133 was modeled here using the PDF-partial equilib-

rium approach of Bilger and Starner. 27 Although several configura-

tions were studied by Hassan, the detailed data was available only

on the flame that has been investigated here. The test setup was a

vertical free turbulent methane jet issuing from a 7.74 mm diameter

pipe as shown schematically in Figure 6.13-1. The jet Reynolds

number was 15,000, with a bulk velocity of 39.9 m/s. The flame was

stabilized by a co-annular flow of 1 percent (by mass) of hydrogen.

A discussion of the data and the results of the numerical model are

presented below.

From the initial (or tube exit) jet velocity, mass flow and

assumed temperature of 59 °F, mass and energy flux can be determined

for comparison at downstream positions. The fuel was reported to

be 94 percent methane. From the assumption of atmospheric pressure

and the reported density, a molecular weight of 17.22 was deter-

mined. If the remaining 6 percent was composed of nitrogen and

propane (typical dry natural gas composition) , then 52.4 percent of

that fraction being nitrogen would give the above molecular weight.

From the reported mass flows of H2 and fuel, the following mole

fractions were determined,

Xfuel. = 78.86%, XCH4 = 74.13, XN2 = 2.48, XC3H8 = 2.25, XH2 = 21.

The specific enthalpy at the jet exit is then --4.154.106 kg and

energy flux is -5858 sec
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At four axial positions (x/D = 35.2, 75, 113.7 and 204) radial

profiles of temperature, mole fractions of CO, CO 2 and 02 were

reported. Consider the reaction equation in mole fraction form,

N
F Ccx Hcy Ncn + A (02 + 02 N2 )	 XCO + X CO2 + X02

+ XCH4 + XCH2 + XH2 + XH2O + XN2

Although dry measurements were made, the following analysis assumes

that the reported results were based on the same reaction equation

with the possible exception of CH 2 . Then, for the above reaction

equation, there are four atom-balance equations and the sum of mole
fractions identity for six unknowns (again exclude CH 2); therefore,
an additional constraint is required. For this, the water/gas

equilibrium 213 based on the measured local mean temperature and

modified as described below, was chosen. Then at various radii in

the cross section to . give an adequate definition, the reported data
were interpolated using cubic splines and the above unknowns com-

puted. Also the asymptotic end of each measured profile was deter-

mined from cubic spline fitting (extrapolation). If the above sys-
tem of equations gave a negative mole fraction of methane (occur-

ring in the high temperature and lean boundary regions) or CO was

nonexistent, then the water /gas equilibrium constraint was dropped
and the reaction equation solved (excluding both CH  and CH 4).

Lastly, the outermost regions would not have any free hydrogen (as

evidenced by computing negative mole fractions of same). Then the

carbon-balance constraint was dropped (taking the 0 2 measurements

as being more accurate), and the reaction equation solved for

nitrogen, water, and stoichiometry.

The water/gas equilibrium shift results of Mitchell, et

al. , 129 were applied to the equilibrium constant (determined from

measured temperature) in the rich regions of the flame. In the
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lean regions at less than 1400°K, the reaction was assumed to be

quenched (5) at 1400°K.

With an assumed jet profile of (19],

2

u =	 1 -	 r 3/2
u 	 (rb )

where the jet radius (r b) is minimum of the Co 2 or 02 profile
asymptote and the centerline velocity is determined by matching the

energy flux. For this balance consider the following control vol-
umes,

i Xh.

1

gAAD o)	 mane

rt
rb	 I

m2hi	
..

L

_ 
x'IX J_

Continuity gives
A 
	 = ii i + Atx	 where ihx is the entrainment, and

energy gives

2	 rb 2 rb
ihi	 hi + ui =
	 fh

+ 2	 uprdr - fuprdr -	 ih
2

0 0

where,

r 	 - radius of thermal boundary as determined from

the temperature profile

grad - radiation heat transfer outside jet boundary

to mass entrained

P	 - local density

ahi	- initial jet mass flux
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This procedure was attempted at all four measurement stations.
For the first, x/D = 36.2, the energy flux matching gave u b = 26.85

m/s. The other three stations have more enthalpy in the outer
boundary region than matching will allow, indicating that temper-

ature measurements there are high.

The partial equilibrium computations were made with the full

stoichiometry adjusted (i.e. amount of CH  and N 2 ) to give the cor-

rect enthalpy flux. The 2-D turbulent jet calculations were based

on a jet diameter 1 mm larger than that reported (i.e., the OD of
the H2 stabilizer). Then, an assumed fully developed pipe flow
velocity profile at the exit was set to give the correct jet mass

flux. 214 The turbulence intensity profile was taken from developed

pipe flow results. 215 The partial equilibrium computations were
based on the specific thermodynamic of the JANAF tables using the
curve fits of Wakelyn and McLain, 216 the three body recombination
kinetics of Jensen and Jones 28 and the global hydrocarbon breakdown

of Duterque, et al. 29 Additionally, the flame sheet approximation

had a pyrolysis mixture fraction of 0.073 and 0.2 mass fraction of

organic fuel converted to intermediate at the pyrolysis flame

sheet. In the 2-D turbulent jet calculations, the initial turbu-

lent length scales were 0.1 inner (jet) and 0.2 outer, both based

on the jet diameter. Also the free stream or ambient air was given

a velocity, of`0.25 m/s.

The axial plots of centerline.temperature, CO, CO2 , and 02 are
shown in Figure 6.13-2. The model-predicted centerline temperature

profile agrees reasonably well in regard to temperature rise
upstream and downstream of the flame tip at the center. The pre-

dicted peak temperature level and its axial location are slightly dif-

ferent from data. The initial CO buildup agrees well with data;

but there is some discrepancy in the post-flame region. Similar

conclusions can be made about the CO2 profiles shown in Figure
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6.13-2. For the initial portion of the flame (x < 0.75 m) , measure-
ments indicate finite concentration of o 2 at the centerline, Such

a behavior cannot be predicted by diffusion ',game models including

Bilger's model which, for a high fuel-rich region, sets 02 equal to
zero.

Figure 6.13-3 shows a comparison between measured and pre-
dicted profiles of total fuel mass fraction, and unburned fuel pro-

files are presented in Figure 6.13-4. rn the initial portion of
the flame, the conclusions are good, but farther down stream the
fuel oxidation rate is faster than what data would indicate. This
also results in higher centerline temperature levels as shorn in

Figure 6.13-5. From the model predictions of total fuel mass frac-

tion at x/D = 113.7, it is concluded that the Bilger model is predict-
ing a faster jet spreading rate. This causes faster decay of the

centerline temperature in the post-flame region as shown in Figure

6.13-5.

Comparison between measured and predicted CO profiles (Figure

6.13-6) show that, whereas the agreement is good up to x/D = 75, the

post-flame region is not well correlated by the Bilger model. Sim-

ilar conclusions can be made for the H2 profiles as presented in

Figure 6.13-7. For the 02 profiles, (Figure 6.13-8) up to xfD = 75,

the model predictions are reasonable. But further downstream the

model is predicting nigher spreading rate than` measurements sug-

gest. Similar levels of correlations are obtained for CO2 profiles

as shown in Figure 6.13-9.
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