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SECTION VII

7.0 COMPLEX NONSWIRLING FLOWS

For the case of simple flows, the k-¢ model with the low
Reynolds number correction in the near-~wall treatment accurately
predicts the mean flow properties. The ASM accurately predicts the
Reynolds stress components and the mean flow properties. However,
in complex flows, extra strain rates are present due to streamline
curvature rising out of recirculation or curved duct geometries.
This extra strain rate causes the turbulence structure to be ani-
sotropic, and it is essential to evaluate the combustor performance
submodels for complex flows. The benchmark test cases for complex
nonswirling flows are identified in Tables 4 and 5. Among the
complex flows, the nonswirling flow will be studied first. Swirl-

ing flow computations are presented in Section 8.0.

7.1 PFlow in a Curved Channel

One of the benchmark test cases studied in the complex flow
category is the flow in a curved duct. Measurements for the flow in

a curved duct were made by Shivaprasad, et al.,74

in a test setup
shown in Figure 7.1-1, using an X-wire probe. Measurements of mean
velocity and turbulence velocity correlations were made along both

inner and outer walls (see Table 4).

Computations for this flow were made using a 2-D parabolic
scheme with 100 nodal points across the duct. The nodes were
closely spaced near the walls and were spaced further apart near
the center of the duct. The initial profiles were specified at
1.03 m downstream of the inlet station, using the measured velocity
profiles. In all these cases, boundary conditions near the walls
were specified using Chien's low Reynolds number correction scheme.
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Computations were made with:

k=€ model

k-¢ model with streamline curvature correction
ASM

ASM with streamline curvature correction.

0O 0 0 O

Figure 7.1-2 presents the predicted mean velocity profiles
(solid lines) using the standard k-¢ model and the measured pro-
files (symbols) along the inner convex walls. The agreement
between data and predictions is.good. The predicted profiles are
slightly fuller than the measured results. The comparison between
predicted and measured axial velocity profiles along the outer con-
cave wall is presented in Figure 7.1-3. For this wall, the pre-
dicted velocity profiles (solid line) are £fuller than the data
(symbols). The predictions gradually tend to approach the measured
values at x = 1.148 m.

In curved channel flows, the streamline curvature creates an
extra strain rate on the turbulence production. A measure of the
extra strain rate is given by the Richardson number. For this

geometry, the Richardson number is defined by

v)2 o
2(R) 5y (UR)

(2U/ay) >

Ri

where U is the local mean axial velocity and R is the radius of
curvature of the duct. The Richardson number was used to modify
the turbulence model constant C, in the form outlined in Section

3.0.

The predicted mean velocity profiles along the convex wall
using the k-€¢ model with and without the Richardson number correc-
tion are presented in Figure 7.1-4. The predicted results are in
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good agreement with the data. A slight improvement in correlation
can be seen in the profiles by applying the Richardson number
correction. The predicted results for the concave wall are shown
in Figure 7.1-5. For the concave wall, the Richardson number cor-
rection slightly worsens the predicted results for mean velocity.

The predicted mean velocity along the convex wall profiles
using the ASM are presented in Fiqgure 7.1-6. The predicted mean
velocity profiles are slightly fuller than the data. The ASM pre-
dictions are in good agreement with the standard k-¢ model results
(Figure 7.1-2). A similar conclusion may be reached for the pre-
dictions along the concave wall (Figure 7.1-7).

The ASM predictions for root mean square (RMS) axial velocity
fluctuations (u') along the convex wall boundary layer are pre-
sented in Figure 7.1-8. The predicted u' values (solid line) are
slightly larger than the data (symbols). The u' predictions along
the concave wall are presented in Figure 7.1-9. These profiles are
in good agreement with the data.

The predicted v' profiles along the convex wall are illus-
trated in Figure 7.1-10. The predicted v' values are slightly
higher than the data. The v' profiles along the concave wall are
shown in Figure 7.1-11. The predicted profiles along the concave
wall are in much better agreement compared to the results along the
convex wall. Note also that the ASM correctly predicts the parti-
tioning of the turbulence kinetic energy into u' and v' components.

The predicted Reynolds stress component uv along the convex
wall is presented in Figure 7.1-12. The predicted values are
higher than the data. The corresponding profiles along the outer
concave wall are shown in Figure 7.1-13. The uv values are
slightly overpredicted initially and are underpredicted further
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downstream. These profiles show the same trend as the kinetic

energy profiles that can be obtained from the u' and v' values.

The predicted results using the ASM with Richardson number
correction are presented in the next series of figures. Figure
7.1-14 illustrates the mean velocity profiles along the inner con-
vex surface. Comparison between Figures 7.1-6 and 7.1-14 shows
that the Richardson number correction improves the mean'velocity
profiles along the convex surface. Along the concave surface, how-
ever, the Richardson number correction makes the velocity profiles
slightly worse, as seen in Figure 7.1-15. This indicates a need
for more work on the ASM to correct the effect of streamline cur-
vature. '

The predicted u' profiles using the ASM with a Richardson num-
ber correction are shown in Figure 7.1-16. These profiles are in
much better agreement with data than those obtained without
Richardson number correction (Figure 7.1-8). The predicted u' val-
ues along the concave surface (Figure 7.1-17) are slightly higher
than those predicted without the Richardson number (Figure 7.1-9).

The v' predictions using the ASM with the Richardson number
are presented in Figure 7.1-18. The Richardson number correction
tends to reduce the v' values along the convex surface. On the con-
cave surface, the Richardson number correction slightly increases
the v' values (Figure 7.1-19).

The uv predictions using the ASM and Richardson number are
shown in Figure 7.1-20 for the boundary layer along the inner con-
vex surface. The Richardson number correction tends to decrease
the uv values along the convex surface. Along the concave surface,
the Richardson number correction tends to increase the magnitude of
uv values, as seen in Figure 7.1-21.
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The flow field in a mildly curved duct is well predicted by
the k-€ and the ASM. The anisotropic turbulence structure is cor-
rectly predicted by the ASM. The Richardson number correction
improves the agreement between the data and predictions for the
convex surface, but more work is needed to get good results for
both convex and concave surfaces.
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"SHIVA-PRASAD AND RAMA-PRIYAN
FLOW IN A CURVED CHANNEL

INITIAL CONDITION

MEASUREMENT
|_..___ L1 X LOCATIONS

Ly = 1.03 M
H=010M

Ree = 2400

U =22 M/

ASPECT RATIO = 13.2 .

Y = NORMAL DISTANCE FROM WALL

Figure 7.1-1. Configuration of the Curved Channel Test Setup.
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Figure 7.1-3.
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Figure 7.1-5.
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7.2 Flow Over a Backward-Facing Plane Step

The flow through the curved duct studied in the previous para-
graph did not have any recirculation. In combustor internal flows,
however, recirculation zones exist. For combustor aerothermal
model evaluation, validation of the analytical models in recircu-
lating flows is essential. One of the benchmark test cases selec-
ted among recirculating flow fields was the flow over a backward
facing plane step, for which measurements were made by Johnston, et
al.,82’83 in a rig shown schematically in Fiqure 7.2-1. Test data
are available for step heights (HT) of 2.54, 3.81, and 5.08 cm.
Computations were performed for all these cases using a 2-D ellip-

tic code and the following turbulence models:

o Standard k-e€ model
o) k- € model with streamline curvature correction
o ASM with streamline curvature correction.

The numerical convergence for the nonswirling recirculating
flow calculations presented in this chapter was ascertained by com-
paring variations in the following parameters:

(o} Maximum local mass continuity residual (RMAX) normalized
by inlet mass flux.

o Cumulative mass continuity residual (RSUM) normalized by

inlet mass flux.

o Variations in the dependent variables from iteration to
iteration (A¢) normalized by the inlet value.

Typically, 400 iterations were required to achieve the following

levels of R R and AU:

MAX'’ T'SUM
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Ryax = (107)

Y
IA

SUM 0f001

AU

(10"4) from peak to minimum value over the
last 10 iterations.

For these computations, the inlet velocity profiles were obtained
from the test data and the turbulence kinetic energy profiles were
calculated by using measured ;5 and assuming that ;5 and ;5 are
equal at the inlet station. The inlet turbulence length scales
were assumed to be equal to 0.02 Wq e Along the walls, wall
functions were used to specify the boundary conditions, and at the
exit plane, zero axial gradient conditions were prescribed.

The model predictions were obtained for each of the three step
heights by using the following set of grid nodes distributed non-

uniformly over the axial distance indicated in Table 16 below:

TABLE 16. GRID NODE DISTRIBUTION.

Number of Nodes Axial Distance X-Location
Step Height Analyzed of Step
(cm) Axial Radial (cm) (cm)
2.54 59 32 78.7  15.24
3.81 59 32 78.7 15.24
5.08 57 37 54.6 3.81

A partial layout of the grid network used with the 1.5-inch
(3.81 cm) step is shown in Figure 7.2-2. A total of 32-grids were
used to span 4.5 inches, out of which, 13 nodes were used for the
1.5-inch step, as shown. The first interior node was 0.1 inches
(0.07 HT) from the step-side wall; HT
smallest axial node spacing was also 0.1 inches.

denotes step height. The
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Step Height of 3.81 cm

The comparison between the standard k-€¢ model predictions and
the measurements of mean axial velocity profiles at several axial
stations is presented in Fiqure 7.2-3. The predicted results are
represented by solid lines and the data correspond to symbols. The
k- € model predictions are in good agreement with the data up to x =
15.2 cm where the step is located.

For the flow region downstream from the step and upstream from
the reattachment point, the following observations can be made.
The correlation is good for the shear layer between the recircula-
tion bubble and the main throughflow. For the outer portion of the
recirculation bubble (ie., U>0), the agreement between model and
data is reasonable. However, for the reverseflow region, the model
predicts qualitative trends. The measured height of the reverse-
flow region is greater than the model prediction. Some of this
discrepancy may be due to use of wall functions. The reattachment
point is predicted to lie between x = 35.58 and 38.94 cm, while the
data indicates that the location of the reattachment point lies
between x = 38.94 and 42.34 cm. The streamlines obtained from the
standard k-e€ model are illustrated in Figure 7.2-4. The predicted
nondimensional_reattachment length, LR/HT was 6, while the measured
reattachment length was 7.

Figure 7.2-5 presents predicted axial velocity profiles with
the k~€¢ model modified by Richardson number correction. The
streamline curvature correction improves the model predictions in
the recirculation zone as well as the developing region downstream
from the reattachment. The predicted streamline plot is shown in
Figure 7.2-6 where recirculation zone length is predicted to be 6.5
times the step height. Without the Richardson number correction,
the length was predicted to be 6.0. There is also a slight increase
in the predicted amount of the recirculating flow rate over the

standard k-€ model as evidenced from Figures 7.2-4 and 7.2-6.
331



The predicted mean velocity profiles using the ASM and
Richardson number corrections are presented in Figure 7.2-~7. The
results are similar to the modified k-¢ predictions shown previ-
ously in Figure 7.2-5.

The turbulence kinetic energy profiles predicted by the ASM
with streamline curvature corrections and the data are presented in
Figure 7.2-8. The data points (shown in symbols) were obtained by
assuming ;f = ;f. The predicted profiles are in agreement with
data up to x = 30.99 cm, and beyond this station the predicted
levels of turbulence kinetic energy are significantly lower than

the measurements.

The ASM predictions for :5 and the measured values are illus-
trated in Figure 7.2-9, The predicted u2 values are initially
higher than the measurements, and beyond x = 41l.7cm, the predicted
values are progressively smaller than the data. 1In the ASM, the
Reynolds stress components are expressed as functions of k and €.
Hence, in regions where predicted k values are significantly
smaller than the measurements, the predicted Reynolds stress compo-
nents are also expected to be smaller than the data. The compari-
son between measured and predicted ;5 profiles are shown in Figure
7.2-10. The predicted ;7 values are smaller than the data, and
this is attributed to the underprediction of the k values.

The ASM predictions for the Reynolds stress uv and the data
are shown in Figure 7.2-11. The model initially overpredicts the
uv values and beyond x‘= 41.07 cm, it underestimates the uv values.
This trend is very similar to the uTi profiles. Further improve-
ments in the model predictions can be obtained if improvements are

made to the predicted k values.

Step Height of 2.54 cm

The standard k—-€ model predictions for mean axial velocity and
the data for a step height of 2.54 cm (1.0 inch) are presented in
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Figure 7.2-12., The predicted results are in very good agreement
with the data up to x = 20.32 cm. Between x = 25.4 cm and x =
32.18 cm, some differences are seen between the data and the pre-
dictions. In these regions, the k-€ model overestimates the veloc-
ity in the recirculation or low velocity zone near the bottom wall.

When Richardson number corrections are applied to the k-¢
model, significant improvements in the predicted mean velocity pro-
files were obtained, and those profiles are illustrated in Figure
7.2-13. The agreement between the data and the predictions is good
in the entire flow field of interest.

The mean velocity profiles obtained from the ASM with the
Richardson number correction are shown in Figure 7.2-14. The
agreement between the data and the predictions is again good
throughout. The measured profiles at far downstream stations are
fuller than the predictions.

The ASM predictions for turbulence kinetic energy are pre-
sented in Figure 7.2-15. These profiles are similar in character-
istics to those in Figure 7.2-8 for the 3.81 cm step height. The
model tends to underestimate the k values beyond the reattachment
point x =~ 32 cm. Some of this model deficiency can be improved by
using an improved near-wall model.

A comparison between ASM predictions for :5 and data are
illustrated in Figure 7.2-16. The model tends to overpredict the
uTE values in the recirculation zone (x<32 cm) and underestimate
the u' values in the recovery region. This is partially attributed
to the predicted lower values of wall shear stress compared to the
data in the recovery region. This aspect can be seen in the mean
velocity profiles; namely, the data shows a fuller profile than the

predictions.
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The predicted mean square velocities, ;5 and the measurements

are shown in Figure 7.2-17. The predicted v2 values are smaller
than the data throughout the flow field of interest.

The uv predictions for the 2.54 cm step height and the data
are presented in Figure 7.2-18. The predicted uv values are higher
than the data up to the reattachment point (x =~ 32 cm), and beyond
this point the predicted uv magnitudes are less than the data.

The results shown for the 2.54 cm step height are very similar
in character to those presented for the 3.81 cm step height.

Step Height of 5.08 cm

For the case of the 5.08 ¢cm step height, hot-wire measurements

83

were made by Eaton and Johnston. Measurements of initial con-

ditions were made at 3.81 cm upstream of the step.

The k-€¢ model predictions for mean axial velocity profiles are
shown in Figure 7.2-19. The k-¢€ model predictions and the data are
in good agreement up to x = 13.97 cm. Beyond this station, the k-e€
model underestimates the recirculation velocities. The predicted
velocity profiles when the Richardson number correction was applied
are illustrated in Figure 7.2-20. With the Richardson number cor-

rection, some improvements in the predictions are obtained.

The mean velocity profiles predicted by ASM with Richardson
number correction are shown in Figqure 7.2-21. These profiles are
similar to those shown in Figure 7.2-20 for the k-€¢ model with
Richardson number correction. The ASM predictions for the axial
mean square velocity £fluctuations, Gf, are illustrated in Figure
7.2-22. The predicted ;7 values are higher than the measurements
up to x = 37.7 cm and, beyond this station, the model underpredicts
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the turbulence kinetic energy component. This trend is similar to
the one observed for the 2.54 cm and 3.81 cm step heights.

The ASM predictions for uv are shown in Figure 7.2-23. The
predicted uv values are higher than the data everywhere except the
last station. This trend is also consistent with the character-
istics observed for the other two steps.

The predicted pressure variations along the step side and the
measurements are illustrated in Figure 7.2-24. The predicted and
measured pressure coefficient profiles agree well. The k-¢ and the
ASM tend to slightly overestimate the Pg values (less than 5 per-
cent).

For the case of flow behind a plane step, the k-€¢ model pre-
dicts the mean velocity field fairly accurately, but slightly
underpredicts the size of the recirculation zone. When the stream-
line curvature correction is included, the k-€ model improves the
mean velocity profiles and the length of the reattachment point.
Mean velocity profiles predicted by ASM with and without streamline
curvature are similar to those of the k-€¢ model. The ASM tends to
overestimate the u' velocity components inside the recirculation
zone and to underestimate them in the recovery region. A similar
trend is observed for the uv and k profiles. Further refinement of
the ASM model is needed to improve the quantitative accuracy of the
model.
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7.3 Flow Through a Sudden Pipe Expansion

A detailed experimental study of the flow behind a sudden
expansion in a circular duct of 100 mm diameter (D) was made by Moon

89 using a laser Doppler velocimeter (LDV), as shown in

and Rudinger
Figure 7.3-1. The diameter of the inlet tube was 7 mm, thus giving
an expansion ratio of approximately 2.0, which is representative of
typical dump combustors. The inlet tube was long enough (1260 mm
or 18 tube diameters) to give a fully developed velocity profile

upstream of the step.

The 2-D elliptic computations were performed with the standard
k—-€ model for the region extending 10.2 mm upstream of the dump and
169.2 mm downstream from the dump (1.69D). A total of 55 x 40 nodal
points were used to simulate the geometry. A fully developed pipe
flow profile was used for the inlet station. The predicted axial
velocity profiles (Figure 7.3-2) are compared with the measured
data at five axial stations: 5 = 0.25, 0.75, 1.0, 1.25 and 1l.5;
here X is the axial distance downstream from the step. The overall

agreement between predictions and data is acceptable.

Similar to the plane-step results presented in Section 7.2 for
the standard k-¢ model, the axisymmetric step calculations stress
the following. The shear layer region is predicted well. The pre-
dicted recirculation zone height and the maximum reverse-flow
velocities are smaller than data. The reattachment point is pre-
dicted reasonably well. Further improvements can be made by using
the streamline curvature corrections. Because of the limited range
of the data available, no other computations were made for this

configuraton.
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7.4 Flow Over a Circular Ring

An axisymmetric equivalent of a 2-D fence is a ring in a tube.
A detailed mapping of the turbulent flow past a ring (rectangular
roughness element) was made by Phataraphruk, et al.91 for several
ring heights (0.125 to 0.375 inches) and widths (0.131 to 0.655
inches). A circular pipe of 2.44-inch diameter was used with a
ring-type roughness attached to the wall as shown in Figure 7.4-1.
The flow approaching the ring was a fully developed pipe flow. The
calculations with the standard k-¢ model were made for a total of
four rings, configurations A, E, H and I in Table 17. Typical
comparison between data and predictions is shown in Figure 7.4-2
for H-ring, 0.375-inch high and 0.131-inch wide ring. Axial
velocity profiles at most of the axial stations agree reasonably
well except for the discrepancy near the tube centerline, which
cannot be explained. However, for the station 18.67H downstream
from the ring, the agreement is excellent. Similarly, acceptable
comparison is achieved for the turbulent kinetic energy profile.

In summary, the standard k-€¢ model predicts reasonably well
the meanflow field behind circular rings. The predictions of the

turbulence structure are qualitatively good.

TABLE 17. RING CONFIGURATIONS INVESTIGATED BY LOGAN, ET AL.

CONI;IGURATION HEIGH"{I' (IN.) WIDTH (IN)
A 0.125 0.131
8 0.125 0.262
c 0.188 0431
D 0.188 0.262
E 0.250 01431
F 0.250 0.262
G 0.250 0.524
H 0.375 0.131
| 0.375 0.655
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7.5 Flow Around a Wedge-Shaped Flameholder

The flow-field behind a 2-D flame stabilizer is quite complex
because of the shape of the flame stabilizer. The aerodynamic
characteristics of separated flow behind a wedge-shaped flame sta-
bilizer was studied experimentally by Fujii, et al., as shown in

l,90 with the aid of laser Doppler velocimetry. The

Figure 7.5-
flame stabilizer was an equilateral triangle in cross section with
each side (B) being 25 mm. The measured streamline plot is shown in
Figure 7.5-2 for an average freestream velocity of 10 m/s. The

measured parameters were:

Length of the recirculation zone 2.2B
Amount of air being recirculated 0.1 Wa
Maximum reverse flow velocity = 0.4 U_

where
Wa
U

Inlet Airflow Rate
Free-stream Velocity

n

Flow-field predictions of the Fujii flame stabilizer were
obtained by using the 2-D elliptic code with 60 x 32 grid nodes for
upper half of the setup because of the symmetry of the test geom-
etry. The triangular shape of the bluff-body was simulated by a
stair-step approximation. The standard k-e model was used. The
predicted streamlines are presented in Figure 7.5-2, expressed as
percent W_. The following predicted parameters agree reasonably
well with measurements:

2.3 B

Amount of air being recirculated 0.08 W,
Maximum reverse-flow velocity = 0.37 U_

Length of the recirculation zone
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Figure 7.5-1. Wedge-Shaped Flameholder Setup.
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7.6 Flow Around a Confined Disk

A detailed nonintrusive laser Doppler measurement in a nonre-
acting flow behind a confined disk was made by Roquemore et al.92
The LDV measurements were made in the Air Force Aeropropulsion Lab-
oratory combustion tunnel with and without fluid injector through
the nozzle. The geometry of the experimental setup is shown in
Figure 7.6-1. For the nonreacting case, Co, gas was injected axi-
ally at the disk centerline. The downstream flow field was mapped

for different CO2 flow rates and a constant annulus flow rate.

2-D elliptic computations were made for each of the CO2 flow
rates using the standard k-e¢ model. The predicted axial velocity
variation along the centerline is presented along with the corres-
ponding measured data in Figure 7.6-2. Both predictions and
measurements show a gradual reduction in the negative velocity
region at the centerline as well as downstream movement of this
region as the CO, injection rate is increased. The predictions
agree reasonably well with data in regard to the size of the nega-
tive velocity region. ‘
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7.7 Confined Coaxial Jet Expansion

Another benchmark test case selected for the recirculating
flow model validation was the coaxial jet expansion in a pipe.
This flow field is used to evaluate the model for the case of flow
behind an axisymmetric step. Measurements were made by Johnson and

88

Bennett in a water test rig for the test configuration shown in

Figure 7.7-1.

Measurements of mean velocity and turbulence fluctuations were
made using a laser Doppler velocimeter. Furthermore, scalar trans-
port measurements were made using the laser-induced fluorescence
method.

Computations for this case were made using a 2-D elliptic code
with 2200 nodes.  The grid network used in the computations is
shown in Figure 7.7-2. 1Initial profiles are applied at the station
where pipe expansion occurs. The initial velocity and turbulence
kinetic energy profiles were assumed to correspond to a fully
developed pipe flow with the appropriate mass flow rate. Computa-
tions were made with:

o Standard k-¢ model
o) K-€¢ model with streamline curvature correction
o) ASM with streamline curvature correction

The mean velocity profiles predicted by the standard k-e¢ model
and the measured values are illustrated in Figure 7.7-3. The pre-
dicted mean velocity profiles are in good agreement with the data.
Between x = 15.2 cm and x = 25.4 cm, some differences between the
data and the predictions are seen. However, the overall predic-
tions are in agreement with data in the recirculation zone.
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The k-€ model predictions for turbulence kinetic energy and
the data are shown in Figure 7.7-4. The predicted k values are in
agreement with the data near the inlet plane. The k-¢ model under-
estimates k values further downstream. This characteristic is very
similar to that in the plane step case.

The mean velocity profiles predicted by the k-¢ model with
Richardson number correction are presented in Figure 7.7-5. These
profiles are similar to the results without the Richardson number
corrections. 1In this flow field, the average mean velocities are
very low (less than 2 m/s) with a Reynolds number of about 50,000.
In such flows, the velocity gradients are not very large and hence
the Richardson number corrections do not cause significant changes
in the mean velocity profiles. The predicted turbulence kinetic
energy obtained from the k-€¢ model with the Richardson number
corrections are shown in Figure 7.7-6. These profiles are also
identical to those obtained without the k-¢ model (Figure 7.7-4).

The ASM predictions for mean velocity with streamline curva-
ture correction are presented in 'Figure 7.7-7. These profiles are
virtually identical to the k-¢ model predictions and therefore
compare well with the data.

The axial RMS fluctuating velocity‘components, u', are shown
in Figure 7.7-8. The ASM predictions are represented by solid
lines and the data correspond to the symbols. The ASM underpre-
dicts the turbulence intensity in the recirculation zone, and at
X = 30.5 cm the u' predictions are in good agreement with the data.
In the ASM, simplifying assumptions were made by assuming that the
Reynolds numbers of the flow were very high. 1In the present case,

D

the Reynolds numbers are relatively low (Re. -® 50,000) and the
validity of those assumptions is questionable.

The ASM predictions for the v' velocity components are illus-
trated in Figure 7.7-9. The predicted v' profile at x = 1.3 cm is
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in good agreement with the data near the axis of the pipe. 1In the
recirculation zone, however, the ASM underpredicts the radial tur-
bulence intensity. At the downstream stations, the model under-
estimates the v' values, even in the vicinity of the axis of the
tube.

Figure 7.7-10 illustrates the comparison between the data and
ASM predictions for the shear stress component, uv. At x = 1.3
cm, the large negative peak value for uv near the axis corresponds
to the shear layer between the inner and the outer coaxial streams
and the large positive uv peak corresponds to the shear layer asso-
ciated with the pipe expansion. The predicted uv profiles are in
good agreement with the data, even though the predicted normal
stresses u' and v' are smaller than the measurements.

The k-¢ model and the ASM correctly predict the mean velocity
profiles. But, the predicted turbulence kinetic energy levels are
lower than the data. The ASM underpredicts both u' and v' levels in
the recirculation zone of axisymmetric expansion. In the plane
expansion (Paragraph 7.2), it was observed that the ASM overpre-
dicted u' and underpredicted v' in the recirculation zone. The ASM
predictions for uv are in very good agreement with the data of
Johnson and Bennett.
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JOHNSON AND BENNETT
FLOW THROUGH A SUDDEN EXPANSION IN A PIPE
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Figure 7.7-1. Geometry of Confined Coaxial Jet Expansion Setup.
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. Figure 7.7-2. Finite Difference Grid Network for Confined Coaxial
Jet Expansion.
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7.8 Nonreacting and Reacting Flow Behind a Step

Detailed measurements of the turbulent structure behind a step

86

with and without combustion was made by Pitz. For their flow

condition, measurements of species (CO, COZ) and temperature were

132 The measurements were made in a test

made by Ganji and Sawyer.
setup shown schematically in Figure 7.8-1. The step height was 25.4

mm.

This test case was selected for evaluating the model in non-
reacting and reacting environments. In the nonreacting flow, com-
putations were made with k—-¢ model as well as the ASM with stream-

line curvature corrections.

Nonreacting Flow

Computations of the nonreacting flow were made with a 2-D
elliptic program consisting of 2200 nodes. Measured profiles at
the step plane were used as initial profiles with an average veloc-
ity of 22.2 m/s; Along the walls, the boundary conditions are
imposed through wall functions; and at the exit plane, zero axial
gradient conditions were imposed.

The k-¢€ model predictions for mean velocity in the high
Reynolds number case of Pitz are shown in Figure 7.8-2. The pre-
dictions are in close agreement with data outside the recirculation
zone. Inside the reverse flow region, the agreement is relatively
inferior. The regions in the vicinity of flow reversal are known
to produce high levels of turbulence diffusive transport. The k-€
model does not predict as large a turbulence diffusion rate as the

measurements indicate.

The ASM predictions for mean velocity are shown in Figure
7.8-3. In these predictions, streamline curvature (Richardson
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number) corrections were included. These predictions are in good
agreement with the data. The data shows that the recirculation
zone extends farther out in the cross-stream (y) direction than
the location predicted by ASM.

The ASM predictions of axial turbulence intensity are pre-
sented in Figure 7.8-4. The measurements are shown in symbols.
The ASM underpredicts the turbulence intensity levels in the recir-
culation zone. For x > 5.08 cm, the ASM underestimates the turbu-
lence levels in the regions outside the recirculation zone. 1In the
case of the flow near the inlet, the turbulence intensities are
correctly predicted.

Premixed Propane/Air Combustion Behind a Step

In the reacting flow case, a premixed propane/air mixture with
an equivalence ratio of 0.56. was used. The average velocity at
the inlet was 13.3 m/s and the inlet temperature was 295°K. Com-
putations for this case were made using a standard k-€¢ model with
both two-step and four-step schemes. In the experimental setup,
the rig was cooled by passing cooling air around it. The bulk exit
temperature of the cooling air was reported to be 500°K. 1In the
computations, initially, a constant wall temperature was assumed to
be 500°K. In the two-step model, the Army Design Criteria reaction

rate constants were used.

The mean velocity predictions by the two-step model with T, =
500°K are reported in Figure 7.8-5. The mean velocity profiles are
in agreement with the data in the core of the flow. 1In the region
behind the step, the predictions agree with measurements in the
recirculation zone, but comparison becomes comparatively inferior

in the recovery zone, (X=12 cm).
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The two-step scheme predictions for temperature distributions
are presented in Figure 7.8-6. At x = 1 cm, the data and predic-
tions are in good agreement. Beyond this station, the predicted
temperatures are slightly higher than the measured values. Fur-
thermore, the predicted temperature profiles do not indicate as
much convective heat flux in the radial direction as those shown by
the data.

The four-step model predictions for mean velocity are illus-
trated in Figure 7.8-7. Comparison with two-step model prediction
(Figure 7.8-5) shows that the four-step scheme predicts a slightly
stronger recirculation zone. However, the agreement between the
data and the predictions are good, especially in the core of the
flow. The four-step model predictions for temperature are shown in
Figure 7.8-8. The four-step scheme initially overpredicts the tem-
peratures; and beyond x = 9 cm, it underpredicts the temperatures.
The four-step scheme is expected to be slower than the two-step
scheme because of the higher number of reaction steps. Consequent-
ly, the predicted temperature levels are also smaller. Further-
more, rate constants used in the four-step scheme (obtained from
Hautman, et al.) are applicable to higher inlet temperatures than
the experimental conditions. The four-step scheme also predicts a
substantially lower radial heat transfer than the data.

In the case of combustion behind a step, the wall temperature
distributions can play very significant roles on the combustion
performance. Ganji and Sawyer had reported wall temperature values
at a few stations. From these profiles, a wall temperature distri-
bution was deduced. This ﬁemperature distribution, as shown in
Figure 7.8-9, was used in the next series of computations., This
wall temperature distribution is significantly higher than 500°K

everywhere except near the inlet.
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The two-step scheme predictions using the measured wall tem-
perature distributions are shown in Figures 7.8-10 through 7.8-12.
Figure 7.8-10 shows the comparison between the data and the two-
step scheme predictions for mean velocity. Comparison between
Figures 7.8-5 and 7.8-10 shows the effect of wall temperature dis-
tribution on mean velocity. With a hotter wall temperature,
(Figure 7.8-10), the two-step model predicts a slightly stronger
recirculation zone. Figure 7.8-11 shows that due to the higher
wall temperatures, the predicted temperature distributions are also
higher. However, the radial heat diffusion is still underpredicted
by the model.

The two-step model predictions for CO and CO2 concentrations
are illustrated in Figure 7.8-12. The predicted CO concentrations
are significantly smaller than the data in the recirculation zone.
In the stream layer coming off the step, the CO concentrations are
initially overestimated. The predicted co, profiles are in good
agreement with the data at x = 10 mm. - At the downstream stations,
the predicted co, profiles do not spread radially outward as much
as shown by the data. This trend is consistent with the tempera-
ture profiles shown in Figure 7.8-11.

The four-step model results with the measured wall temperature
distributions as input are presented in Figures 7.8-13 through 7.8-
15. 1In Figure 7.8-13, the four-step results for mean velocity and
the data are reported. Comparison with Figure 7.8-7 shows that the
four-step model predicts a slightly weaker recirculation zone with
a hotter wall temperature distribution.

The predicted temperature distributions at x = 1.0 and 3.0 cm
by the four-step model (Figure 7.8-14) are overpredicted, and for X
= 9 cm, they are significantly underestimated. These profiles
demonstrate the strong influence of wall temperature on the kinetic
scheme.
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The four-step predictions for CO and co, concentrations are
shown in Figure 7.8-15. The CO concentrations are overestimated by
the model in the vicinity of the bottom wall. The radial spreading
of CO concentrations are substantially underpredicted by the model.
The predicted CO2 profiles are in very good agreement with the data
except at x = 15.0 cm, where the level of Co, is underestimated.
Because of the low levels of COZ' the predicted temperature values
are also lower at 15.0 cm.

Figures 7.8-16 through 7.8-18 illustrate the results obtained
with the rate constants in the first two reaction steps (see Table
9) modified as

24

Ko, 2.0893 x 10

Ko, = 5.0117 x 102! Cr, = 6.0

In these computations, a constant wall temperature of 500°K was
prescribed in the region behind the step. Significant improvements
in the predictions for mean velocity and temperature can be seen in
these results. However, the predicted CO levels are higher than
those shown in Figure 8.4-15 with Hautman's rate constant. This
demonstrates the need for further work on the four-step scheme.

For the nonreacting flow, the k-¢€¢ model and ASM underpredict
turbulence intensities. For the case of premixed propane flame
with low inlet temperatures, the two-step scheme predictions are in
better agreement with the data than the four-step results. Further
modifications in the four-step rate constants are expected to im-
prove the corelation. The wall temperature distribution has a sig-
nificant influence on the predicted results.
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Figure 7.8-1.

PITZ AND DAILY

FLOW BEHIND A BACKWARD FACING STEP

I
- o e emn we e -'

COMPUTATION

REGION

h = 0.025 M

H = 0.051 M

L=220 M

TEST SECTION WIDTH = 0.173 M
Uy = 133 N/S

EQUIVALENCE RATIO = 057

T = 300°K

Schematic of the Test Rig for Nonreacting
and Reacting Flow Behind a Step.
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7.9 Opposed Reacting Jet Flow

Another benchmark test case selected for evaluating the
kinetic scheme is the recirculating flow in an axisymmetric opposed
reacting jet combustor. Species concentration and temperature
measurements were made by Scheffer and Sawyer146 in a premixed

opposed jet combustor shown schematically in Figure 7.9-1.

A premixed propane and air mixture was used for both the main-
stream and the opposed jet with an equivalence ratio of 0.625. For
the test case selected, the following were the flow parameters:

Mainstream average velocity = 7.74 m/sec
Mainstream Temperature = 300°K
Jet velocity = 95.9 m/sec
Jet temperature = 295°K

Computations of the flow field were made using a 2-D elliptic
program with 1400 nodes. Predictions were obtained with both two-
step and four-step kinetic schemes. 1Initial profiles for the main-
stream were specified using a plug flow profile with U = 7.74 m/s
and T = 300°K. The inlet kinetic energy profile was assumed to be
uniform with a value of 0.18 mz/sz, and the inlet length scale was
assumed to be constant with a value of 0.00058 m. Computations
were performed for half of the flow domain by assuming symmetry
around the centerline. Adiabatic boundary conditions along the
wall were applied. Along the axis of symmetry, zero radial gradi-
ents were prescribed for all the variables except v, which was set
to zero. At the exit boundary, zero axial gradient conditions were
imposed on all of the dependent variables.

407



The two-step model predictions for temperature are shown in
Figure 7.9-2. The two-step scheme with the Design Criteria rate
constants overestimates the gas temperatures everywhere. The model
overpredicts fuel consumption rate as shown by the unburned fuel
mole fraction profiles in Figure 7.9-3. The two-step model pre-
dicts a faster reaction than the measurements, and hence the
unburned fuel concentrations are underestimated.

Since the two-step model predicts a faster reaction rate for
the opposed jet flame, the predicted CO2 concentrations are also
higher, as seen in Figure 7.9-4. The CO concentrations predicted
by the two-step scheme are significantly higher than the data, as
seen in Figure 7.9-5. Because of the faster reaction scheme, the
predicted Hzo mole fractions are higher (Figure 7.9-6) and the pre-
dicted oxygen concentrations (Figure 7.9-7) are smaller.

The four-step model predictions (with the original rate con-
stants) for the opposed jet flame are presented in Figures 7.9-8
through 7.9-13. The four¥step model results for temperature are
illustrated in Figure 7.9-8. The profiles are in better agreement
with the data compared to the two-step model results (Figure
7.9-2). The four-step scheme predictions for unburned fuel mole
fractions are shown in Figure 7.9-9. These profiles are also
underpredicted by the tw04step model. However, the four-step
predictions of co, concentrations, as seen in Figure 7.9-10, are in
good agreement with the data. This suggests that the four-step
model with Hautman, et al., rate constants overestimate the reac-
tion rates of fuel oxidation, but the oxidation rates of CO and the
intermediates are correctly modeled. This conclusion is substan-
tiated by the CO profiles shown in Figure 7.9-11, which are in good
agreement with the data. The predicted H20 concentrations (Figure
7.9-12) and oxygen mole fractions (Figure 7.9-13) are in good
agreement with the data and are consistent with the reaction rates
of the other species.
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For the case of the opposed jet flame, the two-step kinetic
scheme overestimates the reaction rates of fuel and CO oxidation,
and hehce the predicted temperatures are much higher than the data.
The four-step scheme overestimates the fuel reaction rates, but
correctly predicts the reaction rates for the other steps. Con-
sequently, the four-step results are in much better agreement with
the data than the two-step results.
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7.10 Axisymmetric Combustor with Coaxial Fuel and Air Jets

The reacting flow test cases considered thus far do not repre-
sent the geometries in the practical combustor dome. A more
realistic geometry of an axisymmetric combustor with coaxial fuel
and air jets was chosen for the next benchmark test case. Measure-
ments of species concentration and temperature were made by Lewis
and Smoot140
7.10-1.

in a test geometry shown schematically in Figure

For the test case selected, methane was used through the fuel
tubes, and the average inlet conditions were as follows:.

Air Velocity, Uair = 34.3 m/sec
Air Temperature, T_ . = 589 °K
Fuel Velocity, Ufuel = 21.3 m/sec
Fuel Temperature, Tg 4 = 300°K
Inlet Pressure, P = 94 KPa

The computations for this case were made using the 2-D ellip-
tic code with standard k-€ model, and two-step and four-step
kinetic schemes. A total of 1400 nodes were used in the computa-
tions. Uniform inlet profiles were specified with inlet velocity
and temperatures as given above. The inlet kinetic energy for air
was given in the measurements as 11.765 m2/sz, and the correspon-
ding value for the fuel jet was measured to be 1.633 mz/sz. The
inlet length scales were assumed to be 0.00057 m for air jet and
0.000016 m for fuel Jjet, respectively. Along the (adiabatic)
walls, standard wall function treatment was employed. Along the
inner boundary, symmetry conditions were specified and at the exit
plane, zero axial gradient conditions were imposed. At the inlet,
the fuel mixture fraction was set equal to one in fuel and zero

else where.
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Two-step scheme with Design Criteria rate constants predic-
tions are shown in Figures 7.10-2 through 7.10-4. Figure 7.10-2
shows the comparison between the data and the predictions for the
mean mixture fraction. The data and predictions are in good agree-
ment. The profiles of unburned fuel are shown in Figure 7.10-3.
The'two-step overestimates the unburned fuel concentrations. The
predicted reaction rates are slower than the measured rates. This
conclusion is substantiated by the CO concentrations shown in
Figure 7.10-4. The predicted CO levels beyond x = 47.6 cm are sig-
nificantly lower than the data. Near the inlet (x = 9.5 cm), the
predicted temperature profiles is in good agreement with the data.
However, at x = 39.8 cm, the two-step scheme overestimates the
temperature level. |

The four-step scheme predictions with the orginal rate con-
stants are presented in Figures 7.10-5 through 7.10-10. In the
four-step scheme, the kinetic rate constants suggested by Hautman,
et al., were used. Figure 7.10-5 shows the comparison between data
and four-step predictions for the mixture fraction. These profiles
are in good agreement with each other. The unburned fuel mole
fractions are presented in Figure 7.10-6. The four-step model
initially overestimates the unburned fuel concentrations (up to x =
47.6 cm), and beyond that station, the predictions are in exceilent
agreement with the data. This is due to the relatively slow reac-
tion rates (compared to the two~step scheme) associated with the
four-step model. Because of the estimated slow reaction scheme,
the four-step model predictions for co, concentrations (Figure
7.10-7) are also smaller than the data initially and beyond x =
47.6 cm, the predicted CO2 values are in good agreement with the
data. The CO mole fractions predicted by the four-step scheme
(Figure 7.10-8) are smaller than the measured values, especially in
regions close to the axis of the combustor. The four-step model
predictions for temperature (Figure 7.10-8) are in better agreement
with the data than the two-step results.
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Because of the relatively slow reaction rates in the four-step
scheme, the predicted oxygen concentrations are higher than the
measured values near the inlet (Figure 7.10-9). However, beyond
X = 47.6 cm, the predicted 02~values and the data are in good
agreement. Similarly, the predicted HZO profiles are smaller in
magnitude compared to the data up to x = 47.6 cm, as seen in Figure
7.10-10. The concentration of hydrogen is overpredicted by the
four-step scheme (Figure 7.10-11) everywhere except at x = 78.5 cm.

For the case of an axisymmetric combustor with coaxial fuel
and air jets, the four-step model predictions are in closer agree-
ment with measurements than the two-step scheme. This is partially
due to the higher inlet air temperatures at which the rate con-
stants in the four-step scheme were established.
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LEWIS AND SMo0T

AXISYMMETRIC COMBUSTOR WITH COAXIAL FUEL AND AIR JETS
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Figure 7.10-1. Geometry of Axisymmetric Combustor With
Coaxial Fuel and Air Jets.
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SECTION VIII

8.0 Swirling Flows

In Section 7.0 various submodels were evaluated with complex
flows without swirl. The introduction of swirl into the flow
creates much faster mixing, caused by radial pressure gradients and
increase in turbulence generation. These phenomena are more dif-
ficult to predict than the effects due to geometrical streamline
curvatures, like the curved duct, and sudden expansion. This sec-
tion will address flow fields with swirl. Both unconfined and con-
fined swirling flows will be studied (see Table 6 for the test
cases considered). Due to the limited data available in swirling
flows, most of the swirling flow validation will be done on non-
reacting flows. Only one test case will be presented for the
reacting swirling flows.

8.1 Free Swirling Jet in a Stagnant Medium

The first benchmark test case selected for swirling flows was
the case of a round swirling jet injected into a stagnant medium.

Measurements of mean velocity components and Reynolds stresses were
101

made by Morse in a 2.54-cm-diameter swirling air jet exiting
into a stagnant medium, as shown schematically in Figure 8.1-1.
The exit velocity of the jet was 32.5 m/s with a swirl number of
0.25. The swirl number is a measure of the overall swirl strength

and is defined by

(8.1)

Measurements of mean axial and swirl velocities and the Reynolds
stress profiles were made at X/D = 0.5 (X = 1.27 cm) downstream of
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the nozzle exit. These measurements were used as initial profiles
in the computations. Computations of the free swirling flow were
made using the 2-D parabolic code with 100 cross-stream nodal
points spaced nonuniformly across the jet. Along the inner bound-
ary (r = 0), zero radial gradients were specified for all the vari-
ables. Along the outer free boundary, entrainment rates were com-
puted from jet theory. The free boundary location is computed from
the velocity field. For swirling flows, the turbulence diffusion
rates are different in the three orthogonal directions. The stan-
dard k-€¢ model does not adequately account for this characteristic
of the flow field. An artificial means to avoid this is to intro-
duce a Prandtl/Schmidt number of V. Computations for the free
swirling jet were made with the following models.

Standard k-€¢ model

k-€l model

Effect of Prandtl/Schmidt number for \/;
Richardson number correction for swirl’
ASM

OO 0 0 0o ©°

The standard k-e¢ model predictions for mean axial velocity
along with the data are presented in Figure 8.1-2. The profile
shown at X/D = 0.5 was the one used at the initial station. The
standard k-€¢ model underestimates the decay of centerline velocity.
The jet half width variation, however, is correctly predicted. The
standard k-€ model predictions for swirl velocity components are
illustrated in Figqure 8.1-3. The k-€¢ model underestimates the
decay of the peak swirl velocity. In these calculations, the
Prandtl/Schmidt number of V, was set equal to 1.0.

The standard k—-e€ model predictions with Prandtl/Schmidt number
of 0.7 for Vg are shown in Figures 8.1-4 and 8.1-5. The predicted
mean axial velocity profiles (Figure 8.1-3) are almost identical to
the results with Pr
profiles with Pr

Vp = 1. However, the predicted swirl velocity
vy = 0.7 are closer to the measured values. These
profiles still underestimate the decay of swirl velocity.
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The mean axial velocity profiles predicted by the standard k-e€
model in swirling flow are very similar to those of free jet (Sec-
tion 6.8). 1In the case of free nonswirling jet, the k-€1 model
(Equations 60-63) was observed to predict the mean velocity pro-
files accurately. Computations were made for the free swirling
flow using the k-€l model, and these results are shown in Figures
8.1-6 and 8.1-7. The k-€¢l1 model predictions for mean axial vel-
ocity profiles are illustrated in Figure 8.1-6. The k-€l1 model
predicts the axial velocity decay accurately even in swirling
flows. The k-€l model predictions for swirl velocity are in better
agreement with the data than the standard k-€¢ model. It is recall-
ed that in the k-€l1 model, the turbulent viscosity is increased
according to Equation 62. Note that the k-€1 model conserves the
angular momentum. Consequently, with increased turbulent viscos-
ity, the swirl velocity peaks are reduced and the swirl velocity
spreads out farther radially. The k-€1 model underpredicts the
decay of swirl velocity peaks.

The k-€1 model predictions with Prandtl/Schmidt number for vy
of 0.7 are shown in Figures 8.1-8 and 8.1-9. Figure 8.1-8 illus-
trates the mean axial velocity profiles, which are virtually iden-
tical to the results with PrV@ of 1.0 (see Figure 8.1-6). However,

the predicted swirl velocity profiles with Pr = 0.7, as shown in

Figure 8.1-9, are significantly different frogrthose with Prvg =:l.
The location of the predicted peak Vyp is farther from the axis as
the Prandtl number is reduced. But the predicted results with PrV@
= 1 are in better overall agreement with the data than those with
PrVg = 0.7, indicating that the Prandtl number should be around 0.9

as has been generally used.
The additional strain in swirling flows can be approximately

accounted for by introducing the swirl Richardson number, defined
as
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The Richardson number can be used to modify the turbulence model
constant C2 in the € equation by the relation

C2 = 1.92 exp (-0.2 RiVb)
This correction can account for the extra turbulence production due
to the streamline curvature. However, this correction is appli-
cable only to small values of the Richardson number, and ﬁhe value
of 02 is constrained to var§ between 1.45 and 3.84.

The mean axial velocity profiles predicted by the k-€l model
with Richardson number correction are presented in Figure 8.1-10.
The Richardson number correction predicts a slightly faster decay
of centerline axial velocity compared to the k-€él model (Figure
8.1-6). The swirl velocity profiles predicted by the k-€l model
with Richardson number correction are illustrated in Figure 8.1-11.
These profiles indicate a slightly faster jet spreading rate com-
pared to the ones without the streamline curvature correction.
These results demonstrate that the Richardson number correction
does not predict appreciably different velocity profiles compared
to the k-€1 model.

The predicted results obtained from the ASM for the Morse
swirling flow are presented in Figures 8.1-12 through 8.1-19.
Figure 8.1-12 illustrates the ASM predictions and data for mean
axial velocity. The ASM slightly underestimates the centerline
velocity decay compared to the data. However, the ASM predictions
are in better agreement with the data than the standard k-¢ model,
with no necessary heuristicbmodification of the turbulence model
constants.
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The ASM predictions for tangential velocity are shown in
Figure 8.1-13. The ASM underpredicts the decay of the swirl
velocity but nevertheless is in better agreement with the data than
the standard k-e¢ model.

The ASM predictions for the RMS axial velocity fluctuations,
u', predicted by the ASM and the data are presented in Figure
8.1-14. The ASM slightly underpredicts the magnitude of u' near
the axis of the jet. However, the location of the peak value is
correctly predicted. The ASM predictions for radial RMS velocity
fluctuations, v', are presented in Figure 8.1-15. The ASM under-
estimates the magnitude of v' compared to the data by as much as 40
percent at X/b = 2. However, at X/D = 10, the data and predictions
are in good agreement. Most of the differences between the data
and the predictions are in the region close to the axis, where sig-
nificant differences in the mean velocity components between data
and predictions exist.

The tangential component of RMS furbulence velocity fluctua-
tions, w', are presented in Figure 8.1-16. The ASM predictions are
shown by solid lines, and the data correspond to symbols. 1In the
ASM, the w' components are computed from the relation

Y (P

The ASM initially underestimates the centerline w' values and at

X/D = 10, it overestimates the w' values by about 20 percent. A
similar trend was also observed in the predicted turbulence kinetic
energy profiles. The underestimation of the centerline k values is
partly responsible for the low centerline axial velocity decay
rate. In Figures 8.1-14 through 8.1-16, the predicted results at
X/D = 0.5 were deduced from the initial conditions for k.
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The predicted Reynolds shear stress component, uv, is illus-
trated in Figure 8.1-17. These profiles exhibit a trend very simi-
lar to the normal stress components (Figures 8.1-14 through
8.1-16); namely, the peak uv values are initially underpredicted
and beyond X/D = 6, they are overestimated by the ASM. At X/D = 4
and X/D = 6, the ASM predicts the location of uv peak closer to the
axis than the data does. These effects are due to the differences
in the mean velocity profiles between the data and the predictions.

The comparison between the measured and predicted Reynolds
stress component, vw, is shown in Figure 8.1-18. The ASM predicts
a large negative value for vw values at the axis, while the data
shows a zero value there. But the peak vw value and its location
are in good agreement with the data. The ASM predictions and mea-
surements for the Reynolds stress component, uw are illustrated in
Figure 8.1-19. The predicted uw profiles are only in qualitative
agreement with the data. It is recalled that the Reynolds stress
components vw and uw are functions of swirl velocity gradients.
When the agreement between the data and the predictions is poor,
the Reynolds stress comparisons are not expected to be good.

The standard k-e¢ model underpredicted the axial and tangential
velocity decay. When a Prandtl number of 0.7 was used for Vg r the
diffusion rate for swirl velocity was increased, and hence a
slightly faster swirl velocity profile decay was predicted. The
decay of axial and swirl velocity was still lower than the data.
The k-~€l model, which was shown to give good results for circular
jets (Section 6.0), predicted the axial velocity profiles accur-
ately, and yet the decay of the swirl velocity profiles was under-
predicted. The k-€1 model results were in much better agreement
with the data than the standard k-emodel. When Pry, = 0.7 was
used in the k-€1l model, there were no substantial improvements in
the predicted results. The Richardson number correction for this
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swirling flow did not appreciably improve the k-¢l1 model predic-
tions. The ASM also underpredicted the decay of mean axial and
tangential velocity peak values. However, the ASM predictions were
in better agreement with the data than the standard k-¢ model. The
ASM predicted lower turbulence intensity values at the axis in the
regions near the exit plane of the jet, and at X/D>6, the predicted
turbulence intensities were slightly higher than the data. The
turbulent mean stress, uw, follows the same trend as the turbulence
intensity profiles. The predicted vw values near the axis of the
jet were in disagreement with the data, while the peak vw values
were in good agreement with the measurements. The predictions for
uw were in qualitative agreement with the measurements. The ASM
needs further refinement to improve the quantitative correlations.
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Figure 8.1-1. Test Setup for Swirling Air
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456

RADIAL DISTANCE (M)
0.000 0.004 0,008 0.012 0.016 0,020

(M)
0.010 0.020 0.030 0.040

RADIAL DISTANCE

0.000

Ol. 040 0.060 0.080

RADIAL DISTANCE (M)
0.020

0.000

- X/D = 0.5 X = 0.0127 M

INITIAL PROFILE

1

8.0 4l.0 81.0 ll2.0 l|6.0 ?0.0
TANG. VELOCITY (M/S)
- X/D = 4.0 X = 0.1016 M
o
o
- o
o
o
N o
o
)
T T T —
0.0 2.0 4.0 6.0 8.0 10.0
TANG. VELOCITY (M/S)
- X/D = 10.0 X = 0.254 M

0.00 0.25 0.50 0.75 1.00 1.25
TANG. VELOCITY (M/S)

w
Pt
- g X/D = 2.0 X = 0.0508 M
=
o~
[=]
W e
OO
Z wn
i o
«C
— <
v o
— o
a -
o
- o]
=2 °
ao W]
< -
m:: 0®
S 5 °©
= T T =T T ]
0.0 2.0 4.0 6.0 8.0 10.0
TANG., VELOCITY (M/S)
o
wy
_.Z_. X/0 = 6.0 X = 0.1524 M.
Zs
-
o
ud e
OO
Zg o
=a o
wsl o
Qo
o
-t o] o
ffg o
Qo [u}
< o (V)
= o
3
(-]
=

"TANG.

I I i I
0.00 1.00 2.00 3.00 4.00 5.

VELOGCITY (M/S)

Mean Tangential Velocity Profiles.

00

k-¢ 1 Model with Richardson Number Correction -



RADIAL DISTANCE (M)
0.000 0.004 0.008 0.012 0.016 0.020

0.040

RADIAL DISTANCE (M)
0.010 0.020 0.030

0.000

0.020 0.040 0.060 0.080

RADIAL DISTANCE (M)

0.000

w
o~
— X/D = 0.5 X =0.0127T ¥ ~34  X/D=2.0 X = 0.0508 M
. =
INITIAL PROFILE - g
- I.Ll).lct_.
Zwn
=3
. e
a2
(=]
. _’o‘—
Lo
o
ao
- ;o'-
§ °
T T T 1 e T T 1 1
0.0 10.0 20.0 30.0 40.0 0.0 10.0 20.0 30.0  40.0
AX1AL VELOGCITY (M/S) AXIAL VELOCITY (M/S)
: 2
—  X/D = 4,0 X = 0.1016 M azj X/D = 6.0 X = 0.1524 U
=
(] -9
w S
UO
N Z o
=2
n o
. al
(-]
ey
<o
- as
=< s
(=3
3
T T T T 1 o T T T T 1
0.0 6.0 12.0 18.0 24.0 30.0 0.0 5.0 10.0 15.0 20.0 25.0
AXIAL VELOCITY (M/S) AXIAL VELOCITY (M/S)
W X/0 = 10.0 X = 0,254 M

T T
0.0 5.0 10.0

1 1
15.0 20.0

AXIAL VELOCITY (M/S)

Figure 8.1-12.

ASM - Mean Axial Velocity Profiles.

457



458

o
~N
QZ_ X/0 = 0.5 X = 0.0127 M
:'D
-~ S INITIAL PROFILE
4o
Z o~
=z2
— <
[ -]
— @
oo
o
— o
<V‘
— o
oo
<
mO
o
o
o
o T T T T 1
0.0 4.0 8.0 12.0 16.0 20.0
TANG. VELOCITY (M/S)
o
-
HZ_ X/D =~ 4.0 X = 0.1016 M
=
- o
o
wa
O
zO
<C
—~ o
L3
acT
=e
— o
a S
<°
[» 4
o
o
o
°'—|

0.0 220 4{0 610 810 Ib.o
TANG. VELOCITY (M/S)

- X/D = 10.0 X = 0.254 M

RADIAL DISTANCE (M)

0.00 0.25 0.50 0.75 1.00 1.25
TANG. VELOCITY (M/S)

Figure 8.1-13.

RADIAL DISTANCE (M)
0.000 0.005 0.010 0.015 0,020 0.025

RADIAL DISTANCE (M)
0.000 0.010 0.020 0.030 0.040 0.050

X/D = 2.0
(o]

X = 0.0508 M

1
(c]

1

1

1

0.0 2{0 420 610 510 IB.O
TANG. VELOCITY (M/S)

X/D = 6.0 X = 0.1524 M

]

1

1

T T T T 1°
0.00 1.00 2.00 3.00 4.00 §5.00
TANG. VELOCITY (M/S)

ASM -~ Mean Tangential Velocity Profiles.



</D = 0.5 X = 3.0127 M X/0 = 2.0 X = 0.0508 M

]
1

1
1

|
1

RADIAL DISTANCH
RADIAL DISTANCE (M)
0.00000.00500.01000.01500.02000.0250

0.00000.00400,.00800.05200

T T 9 T T 1 T T 1
0.00 1.00 2,00 3.00 4.00 5.00 6.00 0.00 2.00 4.00 6.00 8.00
° U-PRIME (M/S) U-PRIME (M/S)
a s
>3 e
P X/0 = 4.0 X =0.1016 M P X/D = 6.0 X = 0,1524 W
(-] o
= T EOT
~o o -2
=4 =)
w3 w e
© o o8
=z° Zg
< <
-9 -
@8 wg
oo as
o
e o —J o]
o
=z o =s
Q o= Qo
<® £ < g
o x o
o o =3
(=] (=
(=3 (U] £=3
™ T 9 1 °c T T ! e 1
0.00 2.00 4,00 6.00 8.00 0.00 1.00 ?2.00 3.00 4.00 5.00
U-PRIME (M/S) U-PKIME (M/S)

- X/D = 10,0 X = 0.254 M

[}

o
o
o
o

RADIAL DISTANCE (M)
0.0000 0.0200 0.0400 0.0600 0.0800

0.00 1.00 2.00 3.00 4.00
U-PRIME (M/S)

Figure 8.1-14. ASM - u' Profiles.

459



— X/0 = 0.5 X = 0.0127 M X/D = 2,0 X = 0.0508 M

|

1
1

1
1

i
1

RADIAL DISTANCE (M)
0.00000.00400.00800,01200.01600,020¢
RADIAL DISTANCE (M)
0.00000.00500.01000.01500.02000.025¢

I | | I 1 1 1 I e |
0.00 1,00 2.00 3.00 4.00 5.00 6.00 0.00 2.00 4.00 6.00 8.00
V-PRIME (M/S) V-PRIME (M/S)
3 S
- wn
-5 X/D = 4,0 X = 0.1016 M -~ X/D = 6.0 X = 0.1524 M
o o
= 297
-— v] "3
4 =
w3 o W -
O oS
=z° o Zo
<o ° <3
—o o -
L3 =
ac o as
) <
-l e -l o™
<2 < ©
—_—0 o —©
o g 00 35
< =
o o Ig
=) o =3
3 o s
. M .
[~} 1 ¥ L 1 o I 4 1 ] 1
0.00 2.00 4.09 6.00 8.00 : 0.00 1.00 2.00 3.00 4.00 5.00
V-PRIME (M/S) V-PRIME (M/S)

X/D = 10,0 X = 0.254 M

i

1

RADIAL DISTANCE (M)
0.0000 0.0200 0.0400 0.0600 0.0800

I | D 1
0.00 1.00 2,00 3.00 4.00
V-PRIME (M/S)

Figure 8.1-15. ASM - v' Profiles.

460



- X/D = 0.5 X = 0.0127 M - X/D = 2.0 X = 0.0508 M

1

i
i

RADIAL DISTANCE (M)
0.00000.00400.00800.01200.01600.0200
RAD!IAL DISTANCE (M)
0.00000,00500,01000,01500.02000.0250

ful

o
0.00 1.00 2.00 3.00 4.00 5.00 6.00 0.0 20,0  40.0  60.0  80.0
W-PRIME (M/S) W-PRIME X 10 (M/S)

X/D = 4.0 X =0.1016 M X/D = 6.0 X = 0.1524 M

1 1
1 !

1
1

RADIAL DISTANCE (M)
0.00000.01000.02000,03000,04000.0500

o
o
o
]

o
o

RADIAL DISTANCE (M)
0.0000 0.0100 0.0200 0.0300 0.0400

0.00 2.00 4.00 6.00 8.00 0.00 1.00 2.00 3.00 4.00 5.00
W-PRIME (M/S) W-PRIME (M/S)

X/D = 10.0 X = 0.254 M

{

RADIAL DISTANCE (M)
0.0000 0.0200 0.0400 0.0600 0.0800

0.00  1.00 2.00 3.00 4.00
W-PRIME (M/S)

Figure 8.1-16. ASM - w' Profiles.

461



X/D = 0.5 X = 0.0127 M - X/D = 2.0 X = 0.0508 M

RADIAL DISTANCE (M)
0.00000.00400.00800.01200.01600.0200
(<]

RADIAL DISTANCE (M)
0.00000. 00500, 01000, 01500.02000. 0250

0.0 4{0 8{0 13.0 IE.O 0.0 4{0 8(0 IE.O ;%.0
~UV (M*x2/S*%2) ~UV (M#*22/S%#%2)

- X/D = 6.0 X = 0.1524 M

J

X/D = 4.0 X = 0.1016 M

i
[c]

1

i
(¢}

1
[c]

o)

RADIAL DISTANCE (M)
0.0000 0.0100 0.0200 0.0300 0.0400
(¢}
RADIAL DISTANCE (M)
0.00000.01000.02000.03000.04000.0500

o

.0 2.0 4.0 6.0 8.0 10.0 0.0 2.0 4.0 6.0 8.0 10.0
-UV (M#%2/S*%2) -UV (M»%2/S#22)

X/D = 10.0 X = 0.254 M 3

1

1

RADIAL DISTANCE (M)
0.0000 0.0200 0.0400 0.0600 0.0800

0.00 ItOO ztoo 3100 4(00 5(00
UV (M#£2/S2x2)

Figure 8.1-17. ASM - Shear Stress (uv) Profiles.

462



RADIAL DISTANCE (M)
0.000 0.004 0.008 0.012 0.016 0.020

RADIAL DISTANCE (M)

RADIAL DISTANCE (M)

0.010 0.020 0.030 0.040

0.000

0.020 0.040 0.060 0.080

0.000

R
20.0

w
~N
-~ X/D = 0.5 X =0.012T M ~S_ X/D=-2.0 X =-0.0508 M
IO
‘_O
~N
we
. W G
g o <Z(m
- ®o =<
o %% wno
o © ;EJ o
o
- [J) o O
o =2 °
ad
. o < ;-
o o
o
o b4
T T T L = T T
-4.0 0.0 4.0 8.0 12.0 ~-10.0 0.0 10.0
VW (M#22/S%#2) VW (M#22/S##%2)
[ =4
w
- X/D = 4.0 X = 0.1016 M ..oo_ X/D = 6.0 X = 0.1524 M
IO
VQ
2
o
] Soj
Zo o
=3 o
o o
= QS o
- o o
<o P
- aoc
23 3
= o
o =4 o
7 —T T T 1 o 1 T T 1
-6.00 -4.00 -2.00 0.00 2.00 4.00 -6.00 -4.00 -2.00 0.00 2.00 4.00
VW (Ms#2/S#22) VW (M#22/S%%2)
- X/0 = 10.0 X = 0,254 M
1 o
o
o
~ o
o
)
7 ?
(v}
© o
° o
] I 1
-2.00 -1.00 0.00 1.00
VW (M222/S%#2)

Figure 8.1-18. ASM - (vw) Profiles.

463



o [72]
o o~
.—:;_ X/D = 0.5 X = 0.0127 M A:-.T X/D = 2,0 X = 0.0508 M
= =
- 2 -y -
Lu; u.lg ©
o °] o oo ©
Z e~ vl o Em ©
< = —
=2 ® o, — < o
o o [7p X1
v} o
T ® o © — o
Qo QA -~ ]
o q o o)
o o _J°'-1 o
=z d =
o o o
2° o < °de°
D=° o b
o o
S o s |o
> A o
= T T | = 1 T T 1
-4.0 0.0 4.0 8.0 12.0 ) -2.00 0.00 2.00 4.00 6.00
UW  (Mx22/S*22) UW (M%%2/S%%2)
g 2
AZ_ X/0 = 4.0 X = 0.1016 M .—Z_ X/0 = 6.0 X = 0.1524 M
= =
. )
..,g o 2
W o [ u.lo-.-.
(S ) (3]
=z° o Z o o
< o <3
—~o — . _] ]
w3 o »we
P © al
o
4
— 45 o o o
< = <o o
_o' ) S (V)
Q g o Qo o
<L <°'— o
= o o
g o g 2
o oy T T L ' T | T 1
~-2.00 0.00 2.00 4.00 6.00 -2.00 =-1.00 0.00 1.00 2.00
UW (M%22/S%22) UW (Me$2/Sx%2)
(=]
3
- o9 X/D = 10.0 X = 0.254 M
=
VO
wg
£ 5
< o
o
23 °
X
-
<&
=3 | A
<° L
o= o
(=]
=4 ®
P T T T 1
-1.00 -0.50 0.00 0.50 1.00

UW (M=%2/S%22)

Figure 8.1-19. ASM - (uw) Profiles.

464



8.2 Nonreacting Swirling Combustor

104 involved a cold-

One of the early investigations at Garrett
flow mapping of a can combustor (shown in Figure 8.2-1) along with
estimated airflow splits. A co-rotating set of two radial inflow
swirlers with 60-degree vanes established a swirling recirculating
flow region within the primary zone. The can combustor employed
two dome swirlers and four cooling slots as indicated in Figure
8.2-1. A calibrated three-hole wedge probe was used to determine
axial and swirl velocity components at different stations from the
dome: X- = 0.33, 0.55, 0.75, 1.25, 1.47, 1.72, 1.94, 2.17, 2.63 and

R
2.86 where R, radius of the can, is 8.27 cm.

Computations for this test case were made using the 2-D
elliptic program with 30 x 25 finite-difference nodes. Calcula-
tions were made with the standard k-¢ model using uniform inlet
velocity profiles corresponding to the flow splits shown in Figure
8.2-1. The comparison between predicted and measured mean axial
velocity profiles is presented in Figure 8.2-2. The k-€¢ model
accurately predicts the recirculation zone near the axis of the
combustor. However, the agreement in the vicinity of the combustor
wall is only qualitative. The differences between data and predic-
tions are probably due to discrepencies in the flow split and
boundary condition specification, and k-e¢ model limitations.

The k-€¢ model predictions for angular momentum, rV,, and the
measured values are illustrated in Figure 8.2-3. Near the axis of
the combustor, the predicted and the measured profiles are in
agreement. The region near the combustor wall contains discrepen-

cies between data and predictions.
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8.3 Confined Swirler Flow

103 involved cold flow

Another early investigation at Garrett
laser Doppler velocimeter (LDV) measurements in a 12.7 cm diameter
can combustor with different inlet swirl angles and swirler con-
figurations in regard to the expansion ratio. Among the inlet
swirl angles considered in the measurements were the zero degree
(non-swirling) and 60° swirler. Different inlet configurations
were used with the 60-degree inlet swirl angle. The geometries of
the test cases are illustrated in Figure 8.3-1. For each of these
flow tests, the inlet mass flow rates were measured. Computations
for these tests used the 2-D elliptic code with standard k-€ model.
The computations were started upstream of the swirler station with
a uniform velocity corresponding to the mass flow rate. The inlet
turbulence kinetic energy was assumed to be constant with a value
of 0.003 UZ

Flow Around a Disk

The standard k-€ model predictions for the flow around a disk
were obtained by using a grid network consisting of 70 axial and 25
radial nodes. The inlet axial velocity for this case was 19.54
m/sec. Figqure 8.3-2 shows a typical comparison between predicted
and measured mean axial velocity profiles at five planes located at
X/H = 0.048, 0.92, 1.87, 2.22 and 5.68 downstream of the disk; here
H denotes the radius of the disk. The predicted recirculation zone
is shorter than the measured value, and the predicted maximum
reverse flow velocity magnitudes are also smaller than the measured
values. However, at the far downstream station (X/H = 5.68), the
agreement between data and k-€ model predictions is very good.

60-Degree Swirler with Expansion Ratio of 1.2

For the configuration having a 60-degree swirler with an

expansion ratio of 1.2, the average inlet velocity was 7.26 m/sec.
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For this case, the calculations were performed by using 65 x 30
nodes. The computations were started at a station located one pipe
radius upstream of the swirler. Figure 8.3-3 shows a comparison
between data and the k-e€¢ model predictions for mean axial velocity
at X =1.17, 2.44, 5.0, 7.52, 15.14 and 20.22 cm downstream of the
swirler. Near the swirler exit, the velocity profile in the recir-
culation zone is correctly predicted by the data. However, in the
core of the flow, the data shows much larger radial gradients than
the predictions. At the far downstream stations, the agreement
between data and predictions is only qualitative. The discrepen-
cies between the data and predictions are probably due to the
boundary condition specification in addition to the model deficien-

cies.

60-Degree Swirler with Expansion Ratio of 2.2

This configuration has two axisymmetric steps, one at the hub
of the swirler and the second at the tip of the swirler. The radius
of the swirler hub was 2.67 cm and the swirler tip radius was 5.08
cm. The average inlet velocity upstream of the swirler was 5.33
m/sec. Computations for this case were started one pipe radius
upstream of the swirler with a uniform inlet veloc1ty of 5.33 m/sec

2 Predic-

and a turbulence kinetic energy level of 0.0203 m /sec
tions were obtained from the standard k-€ model by using 56 x 35
nodes. Comparison between predictions and the data for mean axial
velocity are illustrated in Figure 8.3-3 for different axial sta-
tions: X = 5.0, 7.52, 15.14 and 20.22 cm downstream of the swirler.
The predicted profiles are in qualitative agreement with the data.
The predicted velocities in the recirculation zone are smaller than
the measurements. Consequently, the predicted maximum positive
velocities are also smaller than the data in order to satisfy the
conservation of mass. The predicted and measured locations of peak

axial velocities are in good agreement.
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In conclusion, the standard k-€¢ model predictions are in good
agreement with the measurements, especially outside the recircula-
tion zone of nonswirling flows. 1In the recirculation region, the
production of turbulence is relatively high, and the structure of
turbulence is expected to be anisotropic. In such anisotropic
regions, the standard k-e¢ model predictions are not expected to be
accurate. In swirling flows, the standard k-¢ model results are
only in qualitative agreement with the data.
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8.4 Swirl Combustor with Cooling Air

Experimental Description

The velocity and turbulence measurements of Brum and

Samuelsen144

(Figure 8.4-1) have been compared with calculations of
the 2-p elliptic program. The flow field measured was a nonreact-
ing, confined swirling flow in an 8-cm-diameter tube (see Table
11). The tube was 50 cm long with rectangular windows on each side
to measure the axial and swirl components of velocity using forward
scatter measurement techniques with a two-color laser anemometry
system. Two electronic counters and a minicomputer were used to
acquire and separate the mean and time fluctuating components of
velocity and determine the crosscorrelation u'w' levels. The swirl
was generated by a l2-vane sheet metal swirler at the inlet cross-
section. The hub of the 60° swirler was 19 mm in diameter and the
tip was 57 mm in diameter with solid body rotation. 1In the hub or
centerbody, a cone/annular nozzle was installed for injection of
CO2 in the nonreacting measurements. The nozzle had an 8.65-mm
outer diameter, a l-mm gap, and a 20° included half angle. Dilu-
tion or cooling air was admitted between the outer diameter of the
swirler and duct wall. For these measurements a 50-percent split
of swirler to cooling air was maintained.

2-D Elliptic Modeling Considerations

Computations were made with a rectilinear node arrangement of
45 axial nodes, extending from -4.5 mm to 280 mm, and 31 radial
nodes, where the swirler exit was located at X = 0.0. The radial
node spacing duplicated the hardware dimensions with 7 nodes in the
center body, 14 nodes in the swirler, and 9 in the outer annulus.
Three nodes were provided before the inlet boundary to facilitate
the radial pressure gradient development caused by upstream inter-
action of the flow field. Axial grid spacing started with 1l.5-mm
spacing at the inlet and expanded geometrically to the exit.
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Inlet profiles were taken partially from bulk flow measure-
ments and laser anemometer measurements near the inlet (5 and 1 mm
downstream). The outer annulus had a bulk velocity of 15.4 m/sec,
zero swirl and a turbulent kinetic energy (k) taken from the mea-
sured profile. The swirler mean velocity components and turbulence
kinetic energy were taken from the measured profiles. Turbulence
length scale was assumed to be 1.6 mm.

A total of three different sets of calculations were performed
13 that
in two-stream mixing within a recirculating flow field, the inlet
profiles cannot be independently defined. Instead, they are

in this investigation. It has been recognized for some time

strongly influenced by interaction between the streams as well as
by the flow field they establish. Therefore, in the first set of
calculations, inlet profiles were specified for both streams at a
station 4.5 mm upstream of the swirler exit. The second and third
cases were computed starting with inlet stream profiles at the
swirler exit. Measured velocity and turbulence profiles at the
swirler exit were used in the second case, whereas solid-body rota-
tion with a constant axial velocity component was assumed in the
third set of calculations.

The predicted results of the first case are presented in Fig-
ures 8.4-2 through Figure 8.4-7. These results are converged solu-
tions with the total mass source error of about 0.04 percent. In
these figures, the predictions are represented by the solid line,
and the symbols correspond to the data. Figure 8.4-2 illustrates
the comparison between predicted and measured centerline axial
velocity. The predicted maximum flow reversal velocity is approxi-
mately -5.3 m/s, while the corresponding measured value is about
-8.8 m/s. The length of flow reversal region along the centerline
is measured to be about 0.105 m, while the prediction results show
a value of about 0.051 m. Furthermore, the location of the maximum
negative velocity is predicted closer to the swirler exit compared
to the data.
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The predicted radial profiles of the mean axial velocity com-
ponent are shown in Figure 8.4-3. The data shown in this figure
were obtained with 1.3 percent CO2 injected along the centerline.
The estimated injection velocity of CO2 based upon the mass flow
and nozzle area was quite high (27.9 m/s). Such velocities would
ténd to eliminate the recirculation zone. Accurate inlet injection
velocity measurements are needed to correctly predict the flow
field in the recirculation zone. Since that data is not available
for this case, the CO2 flow was not included in the computations.
Furthermore, the CO2
mass flow rate and is not expected to alter the flow field substan-~

flow rate is a small percentage of the total

tially in the regions far downstream (greater than approximately 10
nozzle diameters) of the injector. The predicted results shown in
Figure 8.4-3 do not include the CO2 injection. This accounts for
the difference between predicted and measured velocities near the
axis at X = 5 mm. However, in the regions corresponding to the
swirler and the cooling air region, the predicted axial velocities
are in agreement with the data. The ptedicted maximum flow rever-
sal velocities are smaller than the data. However, beyond the
recirculation zone, the data and predictions are in good agreement.

Figure 8.4-4 shows the comparison between predicted and mea-
sured swirl velocity profiles. The predicted peak swirl velocity
values are about 15 percent higher than the data up to the station
where recirculation exists. However, at the far downstream sta-
tions, the swirl velocity profiles are accurately predicted.

A comparison between predicted and measured turbulence kinetic
energy profiles is shown in Figure 8.4-5. In this figure, the data
was obtained by assuming isotropic turbulence structure with the
measured u' values. The overall levels of the turbulence kinetic
energy are correctly predicted. 1In swirling flows, the assumption
of isotropy is questionable, and the actual turbulence kinetic en-
ergy profiles are unknown.
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The measured and predicted normalized streamline contour plots

are presented in Figure 8.4-6 and 8.4-7, respectively.

Comparison between these two figures shows that the measured
maximum recirculation mass is 3 percent, while the predicted value
is 0.5 percent. The predicted reattachment length is considerably
shorter than the data.

A second set of calculations was made wherein the inlet condi-
tions were applied at the swirler exit (X = 0) using the measured
values of velocity and turbulence intensities. The grid network
"used in this case was identical to the one used in the first set of
calculations. The predicted results for the second set of calcula-
tions are shown in Figures 8.4-8 through 8.4-11. These results are
very similar to the first set of calculations, shown in Figures
8.4-2 through 8.4-5.

The third set of calculations was made in which the inlet
axial velocity profile was assumed to be uniform and a solid-body-
rotation profile was used for the inlet swirl velocity. These
inlet profiles were applied at the swirler exit, (X = 0). The
results of these computations are illustrated in Figures 8.4-12
through 8.4-15. The predicted length of the recirculation zone in
this case is about 0.03 m, which is even smaller than predictions
in the previous sets of calculations. The predicted mean axial
velocity profiles in this case (Figure 8.4-13) are significantly
different from the data, especially near the inlet station. How-
ever, beyond X = 10 cm, the predicted axial velocity profiles are
in good agreement with the data.

The predicted swirl velocity profiles (Figure 8.4-14) show
larger peak values than the data. However, near the axis of the
tube, the predicted profiles are in agreement with the data beyond
X = 4 cm. The predicted turbulence kinetic energy profiles are
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smaller thah the data by a factor of 2 up to X = 10 cm. Beyond X =
10 cm, the turbulence kinetic energy levels are correctly pre-
dicted.

The following conclusions can be made for the computations of
a swirl combustor with cooling air:

o} The initial axial and swirl velocity profiles have a dom-
inant effect on the predictions downstream.

o The size of the recirculation zone and the maximum flow
reversal velocities are underestimated by the k-¢€ model,
even though the trends are correctly predicted. The pro-
files in the far field (beyond X = 10 cm) are accurately
predicted by the model. This is consistent with the con-
clusions of Paragraph 8.3.

o When plug flow axial velocity and solid-body-rotation
swirler velocity profiles were used at the inlet, the
predicted results were in poor agreement with the data.
However, the predicted profiles in the far field are in
good agreement with the data.
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8.5 Swirling Flow in a Pipe Expansion

Another benchmark test case selected was the swirling flow in
a pipe expansion. Measurements in this flow field were made by

Janjua,100

et al., using a six-orientation, hot-wire anemometer
with and without swirl. A schematic of this test setup is shown in

Figure 8.5-1.

This figure illustrates the geometry of the test section for
both swirling and nonswirling cases. For the nonswirling case,
however, the hub radius of the swirler vane was equal to zero. Com-
putations were started with plug flow at the inlet 4.0 cm upstream
of the pipe expansion plane. Along the axis of the pipe, symmetry
conditions were specified, and at the near wall nodes, wall
boundary conditions were specified through the use of wall func-
tions. At the exit boundary, zero axial gradient conditions were
specified. The computational domain extended from 4.0 cm upstream
of the sudden expansion to 220 cm downstream of the step in the
axial (X) direction and from R = 0 to R = 15 cm in the radial direc-
tion.

Computations were made for nonswirling and swirling flows
using the 2-D elliptic code with the following modgls:

o Standard k-¢ model
o) k-€ model with Richardson number correction

o Algebraic stress model

Janjua Nonswirling Flow

For the nonswirling flow, the average inlet axial velocity up-
stream of the expansion was 5.385 m/sec. The inlet turbulence
kinetic energy and length scale were assigned uniform values of
1.075 mz/sec2 and 0.003 meters, respectively. The inlet average
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velocity is used to nondimensionalize the flow variables of inter-

est in presenting the results.

Figure 8.5-2 presents for the nonswirling flow the standard
k- e model predictions and the data of Janjua, et al., for mean
axial velocity profiles. In the region behind the step, the data
does not show any recirculatidn zone even at X = 19 cm (X/D = 0.5).
However, the predicted velocity profiles show the recirculation
zone extending up to X = 64 cm (X/D = 2.0). Because of this, the
predicted axial velocity values near the axis of the pipe are

larger than the data.

In nonswirling flows, the streamline curvature effects are
represented by the Richardson number, Rii, defined in Equation 18.
The Richardson number is used to modify the turbulence model con-
stant C2
duction according to Equation 22. When the Richardson number cor-

in the k-¢ model to account for the extra turbulence pro-

rections are included in the k-€¢ model, the predicted recirculation
zone near the wall (Figure 8.5-3) has slightly higher reverse-
velocity values than the standard k-¢ model results.

The algebraic stress model predictions with Richardson number
correction for the nonswirling flow in a pipe expansion are shown
in Figures 8.5-4 and 8.5-5. The comparison between Janjua data and
ASM predictions for mean axial velocity is shown in Figure 8.5-4.
The algebraic stress model also predicts a recirculation zone that
extends up to X 2. ASM results are similar to the k-¢ model

D
results beyond X = 64 cm.

The ASM predictions for u', v', and u'v' are shown in Figure
8.5-5 along with the data of Janjua, et al. The predicted u' values
are slightly higher than data in the recirculation zone. Near the
tube centerline, the algebraic stress model underestimates the u'
values. Very similar characteristics are also seen in the v' pro-
files. The predicted uv values are larger in magnitude than the
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data in the recirculation zone. At the axis of the pipe, the data
shows a nonzero uv values beyond % = 1, while the predictions show a
value of zero at the axis.

Chaturvedi Nonswirling Flow

In their publication, Janjua, et al., had compared their mea-
surements with the hot-wire data of Chaturvedi.217 In that report,
significant differences were seen between the data of Chaturvedi
and Janjua. To further elucidate flow field through a pipe expan-
sion, Figures 8.5-6 through 8.5-9 show comparison between calcula-

tions and Chaturvedi data.

Figure 8.5-6 presents the results with the standard k-¢ for -
mean axial velocity. These results are in good agreement with each
other. The k-€ model as well as the Chaturvedi data show flow re-
versal regions near the wall of the pipe up to % = 2., The k-€ model
predictions are also in agreement with the data near the axis of

the tube.

Figure 8.5-7 shows the mean axial velocity comparison between
Chaturvedi data and predictions obtained from a k-¢ model with
streamline curvature (Richardson number) corrections. These pro-
files are similar to the ones shown in Figure 8.5-6. The magnitude
of maximum reverse velocities predicted is slightly greater when
the Richardson number corrections are applied.

The comparison between Chaturvedi data and ASM predictions is
shown in Figures 8.5-8 and 8.5-9. Figure 8.5-8 shows the results
for mean axial velocity and u'. The mean axial velocity profiles
are in good agreement with each other, especially in the recircula-
tion zone. At % = 0.5, the ASM predictions for nondimensionalized
RMS axial turbulence velocities (u'/URef) are in good agreement
with the data in the region behind the pipe expansion step. The u'
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values are slightly overpredicted in the region near the axis of
the pipe. Beyond % = 1, the u' values near the axis of the tube are
underestimated. However, the predicted u' profiles in the region
behind the step afe in good agreement with the data. A similar
trend is also seen in the results for the RMS radial velocity fluc-
tuations (v'), as shown in Figure 8.5-9.

The ASM predictions and Chaturvedi data for the Reynolds shear
stress (uv) are shown in Figure 8.5-9. The data and predictions
are in good agreement at % = 0.5. Beyond this station, the ASM
overestimates the magnitude of uv in the recirculation zone. The
Chaturvedi data shows a faster decay rate of the peak uv value
than the predictions. In the region close to the axis of the tube,
the Chaturvedi data and predictions are in good qualitative agree-

ment,

Swirling Flow

Velocity measurements in a swirlihg flow through a pipe expan-
sion were made by Janjua, et al., in a test setup shown schematic-
ally in Figure 8.5-1. The average inlet axial velocity was esti-
mated to be 10.5 m/sec. For the swirl angle of 38 degrees, the
average inlet swirl velocity was 8.2 m/sec. Computations for this
case also were started 4.0 cm upstream of the sudden expansion,
with uniform profiles for axial velocity, turbulence kinetic
energy, and length scale of 10.5 m/sec, 3.308 m2/sec2, and 0.003 m,
respectively. The 2-D elliptic code with 2200 nodes was used to
obtain solutions. Computations were made with the following turbu-

lence models:

o Standard k—-¢ model

o k-¢ model with streamline curvature correction due to
swirl

o Algebraic stress model.
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The standard k-€ model predictions are presented in Figure
X

8.5-10. At 5 = 0.5, the predictions show flow reversal regions
near the axis as well as in the region behind the axisymmetric
step. The data shows a recirculation zone near the axis of the
pipe. The measured recirculation zone height is much larger than
the predictions. The data as well as the k-¢€¢ model predictions
show a maximum reverse velocity of about 32 percent of the refer-
ence velocity. The location of the maximum reversal velocity is

predicted to be at the axis, while the data shows it to lie off-
X

axis. The peak reverse-flow velocity values at 5= 0.5 are under-
predicted by the k-€¢ model. At % = 1, the agreement between data

and predictions is improved. The predicted profile shows the loca-
tion of the peak u-velocity occurring at a higher radial location
than that at % = 0.5. This is because of the centrifugal accelera-
tion caused by swirl. At % = 1.5, the agreement between data and

predictions is good.

The k-¢ model predictions and the measured values for tangen-
tial velocity are shown in Figure 8.5-10. The k-e€¢ model predic-
tions as well as the data show a solid-body rotational structure
(W/r = const.). At % = 0.5, the data shows some scatter near the
peak location, but the data indicates that location of the peak
tends to shift toward the axis of the pipe. 1In view of the centrif-
ugal acceleration caused by a swirl, it is reasonable to expect the
peak W values to occur closer to the wall of the pipe. This be-

havior is correctly predicted by the k-¢€ model.

The predictions obtained from the k-€ model with streamline
curvature corrections due to swirl are illustrated in Figure
8.5-11. The streamline curvature correction due to swirl is
applied in a manner identical to that outlined in Paragraph 8.1.
The figure shows the comparison between data and predictions for
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mean axial and tangential velocity profiles. The predicted pro-
files in this figure have similar characteristics to those obtained
from standard k-e¢ model. At % = 0.5, a slight reduction in the peak
positive as well as negative values is predicted with the
Richardson number correction compared to the standard k-e¢ model re-
sults. Similarly, a slight reduction in the peak W values can be
seen in the swirl velocity profiles when compared to the standard
k-€¢ model results. At the downstream stations, the effects of
streamline curvature correction are negligible.

The ASM predictions are illustrated in Figures 8.5-12 through
8.5-17. The ASM results for mean axial velocity have very similar
characteristics to the k-€¢ model results. The agreement between
the data and ASM results is good at % = 1.5. The ASM predictions
for swirl velocity are also similar to the k-¢ model results.

The ASM predictions and the data for RMS axial turbulence
velocity fluctuations are shown in Figure 8.5-13. At % = 0.5, the
predicted u' profile shows two peaks, one corresponding to the
shear layer from the hub of the swirler and the other from the tip
of the swirler vanes. The data shows only the peak corresponding
to the tip. The ASM overestimates the u' value in the recircula-

tion zone behind the hub and underestimates it in the region behind

1>
lw]

the pipe expansion step. At 1, the agreement between the data

o

and ASM prediction is poor; a = 1.5, the agreement is good.

The comparison between data and ASM prediction for the radial
turbulence intensity (v') is also shown in Figure 8.5-13. At % =
0.5, the ASM substantially overpredicts the v' magnitudes. But
further downstream the correlation is good. Similar observations

can be made for W' as shown in Figure 8.5-14.
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The Reynolds shear stress components (uv, uw and vw) predicted
by the ASM are shown in Figures 8.5-15 through 8.5-17. Other than
the last station (%) = 1.5), the agreement between the data and the
predictions is generally poor.

The results presented in this paragraph can be summarized as
follows:

o) The standard k-€¢ model and the ASM predicts the mean
velocity profiles accurately for the nonswirling flow
through the pipe expansion. The ASM predictions for the
Reynolds stress are in agreement with the data of
Chaturvedi.

(o} In swirling flows, the standard k-€¢ model correctly pre-
dicts the axial velocity far downstream from the step.
In the near wake region behind the sudden expansion, the
agreement is qualitative. The predictions for mean swirl
velocity are only in qualitative agreement with the data.

o The streamline curvature correction due to swirl improves
the model predictions slightly.

o The ASM predictions for mean velocity are similar to the
standard k-¢ model results. The ASM predictions for
Reynolds normal stresses are in good agreement with data
for the downstream region. 1In the region near the sudden
expansion, the ASM predictions and the Janjua data are in
qualitative agreement. The agreement between data and
ASM predictions for shear stress is poor.
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JANJUA ET AL
SWIRLING FLOW IN A PIPE EXPANSION
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Figure 8.5-1. Test Setup of Swirling Flow in a Pipe Expansion.
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8.6 Confined Swirl-Driven Flow

Confined swirl-driven flow field characteristics have been

recently reported by Altgeld, Jones and Wilhelmi.218

They used a
l0-cm-diameter quartz tube 30 cm in length, as shown schematically
in Figure 8.6-1. A swirler was installed at the tube inlet. The
baseline swirler hub and tip diameters were 21 mm and 42 mm, re-
spectively. The swirler vane angle was 45°, with a corresponding

swirl number of 0.78.

The mean and fluctuating velocity components were made for a
fixed through-flow (3.3 m/sec reference velocity based on the tube
flow area).

Two configurations were investigated:

o} Configuration I - The swirler has a 7-mm-diameter orifice
at the hub center. This orifice axially injected 20 per-
cent of the swirler mass flow rate.

o Configuration II - The baseline swirler in the tube with
a 4-mm-thick baffle 67 mm in diameter. The baffle was
located 285 mm from the inlet.

A nonuniformly spaced node arrangement was used in the compu-
tations. It consisted of 53 axial nodes extending from 0 to 30 cm
and 26 radial nodes. The radial node spacing duplicated the hard-
ware dimensions with j nodes in the core jet, 6 nodes in the
swirler, and 20 nodes covering the baffle. The minimum node spac-
ing in each direction was 1 mm, and the axial nodes increased
geometrically to the exit, with the maximum node size being 10.3
mm,
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Uniform inlet profiles were used in the computations. The
swirler and core jet axial velocities were determined from the
specified reference velocity of 3.3 m/sec, the air flow splits, the
hardware dimensions, and an assumed 4-percent passage blockage.
For the swirler, the axial and circumferential velocities were
taken as equal. All radial and swirl velocities in the core jet
were modeled as zero. 1Inlet turbulence intensity was assumed to be
5 percent, and mixing length was taken as 3 percent of the inlet
passage height.

Figure 8.6-2 presents a comparison between measured and pre-
dicted mean axial velocity profiles of Configuration I at different
axial stations. At X = 2, 4, 6 and'8 cm, both measured and cal-
culated profiles show three distinct regions. Near the tube axis,
a high-velocity region is set up by the jet from the hub center.
This jet is responsible for destroying the center portion of the
swirl-induced recirculation zone. Consequently, only a part of
this reverse-flow region exists as shown in Figure 8.6-2. Beyond
X = 10 cm, both model and data indicate no reverse-flow region.
Measurements show faster decay of the center jet than the calcula-
tions do.

Configuration I tangential (swirl) velocity profiles are shown
in Figure 8.6-3. There is some discrepancy between predictions and
data in the initial portion of the tube, but further downstream the
agreement is reasonable. The model is predicting a slightly less
angular momentum decay rate. Overall, the correlation is satisfac-
tory.

Figure 8.6-4 presents axial velocity profiles for the second
configuration (exit ‘-baffle). The outer portion of the tube is well
predicted by the k-€¢ model, whereas in the reverse-flow region the
model predicts higher flow rate than the data indicates. The tan-
gential velocity profiles are shown in Figure 8.6-5. 1Initially,
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the agreement is quite acceptable. Further downstream, predictions
show solid-body rotation near the center portion of the tube. That
appears plausible. However, data indicates relatively uniform Vy

‘in the radial direction.
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8.7 Combusting Spray in Confined Swirling Flow

Internal flow fields of most of the practical combustors have
fuel spray interacting with swirling air, the swirl being intro-
duced for flame stabilization. The flow field in such a system is
characterized by the turbulence, kinetic and spray combustion
models. For the benchmark test case selected in this category,'
measurements were made by El Banhawy and Whitelawl79. A schematic
of their experimental arrangement is shown in Figure 8.7-1. The
test setup comprised a 1l55-mm-diameter combustion chamber and sys-
tems for supplying kerosene fuel, combustion and cooling air. The
combustion air entered the chamber through a swirler assembled co-
axially with a fuel atomizer, which was a rotating cup atomizer.
The fuel spray emerged from the atomizer in the form of droplets
with an average diameter of 33 microns. The droplet size was
determined from a separate spray test. For the test condition

selected, the inlet conditions were:

Combustion air flow rate: 0.0556 kg/sec
Kerosene flow rate: 0.00132 kg/sec
Nozzle airflow rate: 0.00229 kg/sec
Inlet air temperature: 300°K

Inlet fuel temperature: 300°K

0 0O 0 0 O ©°

Swirler vane angle: 60 degrees

‘The droplet velocity was measured by a laser Doppler velocimeter,
and the reported droplet velocity components were:

Up = 0.9 - 8 m/sec
Vp = 1,0 - 2.34 m/sec
Wp = 11.69 - 25.3 m/sec

The combustor internal flow field measurements included temperature

and species concentration profiles at different axial stations.
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Predictions for this case were obtained from the 2-D elliptic
program with the standard k-€¢ model. Computations were made with
the two-step and the four-step kinetic scheme using the Garrett
spray model. Computations were made using 51 x 27 grid nodal
points. A partial layout of the grid system used for this test case
is shown in Figure 8.7-2. The fuel nozzle body shape was approxi-
mated by a stair-step boundary. The inlet velocity components and
turbulence kinetic energy were assumed to be constant, with

Uin_ = 7.708 m/sec
Vein = 13.351 m/sec
= 2 2
kin = 0.713 m“/sec

The cooling air through the fuel nozzle body was introduced into
the combustor as radial jets, with velocities corresponding to the
droplet velocities.

The comparison between data and model predictions is shown in
Figures 8.7-3 through 8.7-6. Predictions were made with both two-
step and four-step schemes. The top parts of these figures show
the measured data, while the bottom parts show predictions with the
two-step and four-step models.

Figure 8.7-3 illustrates the results for temperature distribu-
tion. The predicted peak-temperature region is bigger than the
data. In obtaining four-step results, the rate constants recom-
mended by Hautman, et al., were used. The four~step model also
predicts bigger, higher flame-temperature regions than the data.
However, these contours are in better agreement with the measure-
ments than the two-step results. The data shows that temperature
contours are pushed radially outward closer to the wall compared to
the data. This implies that the heat flux in the radial direction
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is underpredicted by the k-¢ model. This trend is consistent with

the characteristics observed in other diffusion flame calculations.

The measured and predicted CO mole fractions are illustrated
in Figure 8.7-4. The measured peak CO mole fraction is 11 percent,
while the predicted peak CO concentration is 4 percent with the
two-step model. However, the location of maximum CO concentrations
is correctly predicted by the model. The CO concentrations pre-
dicted by the four-step model are much smaller than the data. The
maximum CO mole fraction predicted is about 3 percent. The loca-
tion of the peak CO is in agreement with the data.

The CO2 mole fractions measured and predicted by the two-step
model are illustrated in Figure 8.7-5. The maximum CO2 concentra-
tion in data and predictions are 13 percent. However, the pre-
dicted peak CO2
the data. The high co, isopleths are also located in the regions

concentrations occur farther downstream compared to

where high isotherms are predicted. The four-step predicted peak
CO2
the predicted peak CO, value was 12 percent.

concentration zone is smaller than that indicated by the data;

Comparison of measured and predicted oxygen mole fractions is
shown in Figure 8.7-6. With the two-step scheme, the predicted
regions of 1ow'oxygen concentrations occur further downstream com-
pared to the data. The four-step predictions and measured contours
are in better qualitative agreement than the two-step model.
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EL-BANHAWY AND WHITELAW

CYLINDRICAL COMBUSTOR WITH ROTATING CUP
ATOMIZER AND AIR INTRODUCED THROUGH A SWIRLER
SURROUNDING THE ATOMIZER

SASNN

r Y _
3 > AIR \l: FUEL R
]

e L l

r = 00125 M
rp = 0.021 M
r3 = 0.049 M
R = 00775 M
I; = 005 M

© L=07T58 M
Upig = 853 M/S
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Talr = 300°K
SMD = 33uM
TrygL = 300°K

Figure 8.7-1. Combusting Spray in Confined Swirling Flow
(E1 Banhawy and Whitelaw Test Setup).
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9.0 Dilution Jet Mixing Validation

Modern advanced technology combustor designs require shorter
combustors and higher turbine inlet temperatures. 1In such combus-
tion systems, the role of the dilutioh zone to achieve the turbine
inlet radial profile quality plays an important part. It is very
important to characterize the mixing of the dilution jets with the
hot combustor gases. The dilution jet mixing flow is a very com-
plex 3-D flow characterized by highly turbulent scalar transport.
Detailed analytical flow characterization of such flows can be done
only by a 3-D flow computation. As a part of the NASA HOST (Hot
Section Technology) Program, temperature field measurements were
made at Garrett as in several idealized dilution zone configura-
tions. Some of these test results were used to validate the 3-D
analytical model.

One of the major difficulties in the 3-D models lies in ob-
taining grid-independent solutions. The predictions obtained can
depend upon grid density distributions as well as the number of
grid points. A detailed discussion on the grid insensitivity is
presented in Paragraph 9.1. Paragraph 9.2 contains the discussion
on the effects of size and spacing for a single row of jets injected
from one side into a ducted cross flow. For this case of single-
sided injection, the effects of the jet-to-cross-flow momentum
ratio and the cross-stream nonuniform temperature profile are pre-
sented in Paragraph 9.3. The effects of injection from two sides
into a confined cross flow with in-line as well as staggered jets

are described in Paragraph 9.4.

9.1 Effects of Finite-Difference Grid Distribution

The 3-D calculations for the jet mixing test cases were per-
formed for the geometry shown schematically in Figure 9.1-1. All
the computations were made for the case of a single row of Jets
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injected perpendicularly to the ducted cross stream. The cross
stream had a constant duct height, HO' of 10.16 cm. The diameters
of the jets were equal, and the jets were spaced apart at a dis-
tance, S. The walls of the mainstream duct were insulated. The
distances along the mainstream were measured from the plane formed
by the injected air from the row of jets, and the distances across
the duct were measured from the duct wall where the jets are
located. Computations were performed from mid-plane to mid-plane
along the Z direction using cyclic boundary conditions at the first
and the last planes. The computational domain extended from the
top wall to the bottom wall. In the streamwise direction, the grid
network was extended up to x/H0 = 2 although in some test cases the
computations did not extend beyond x/H0 = 1.5,

One of the jet mixing test cases selected consisted of 12 jets
(1.27 cm diameter) with a jet-to-mainstream momentum ratio, J, of
25.32., The momentum ratio, J, is defined as
2

- 2 [»p
J = Pjvj mom

The ratio of orifice spacing to diameter in this test case was 2.0,
and the ratio of duct height to diameter was 8.0. The flow condi-

tions were:

Average mainstream velocity, Um = 15.04 m/s
Average mainstream temperature, Tm = 648.7°K
Jet exit velocity, Vj = 51.87 m/s

Jet exit temperature, 'I'j = 308.3°K "

m = 97,726 n/m
Mainstream turbulence kinetic energy = 1.27 m2/s2
Jet turbulence kinetic energy = 8.07 mz/s2

Mainstream static pressure, P
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Calculations for this case were made by using 45 x 26 x 17
(19,890) grid nodes in the axial, radial and transverse directions,
respectively. The grid network selected for this computation is
shown in Figure 9.1-2. 1In this case, a total of 49 nodes were used
inside the jet. The mainstream inlet conditions were assumed to be
uniform with Unr T and inlet turbulence intensity as obtained from

the measurements.

Predictions were obtained with the standard k-¢ model, wherein
the wall functions were used to specify the adiabatic wall boundary
conditions. At the exit axial plane, diffusion in the upstream
direction was set equal to zero. For the jet midplanes in the
transverse direction, cyclic boundary conditions were applied. The
predicted temperature distributions are expressed in nondimen-
sional form by the variable 0, defined as

Tm -7

6 -

Thus, higher 6 values correspond to colder regions, and low 4
values correspond to hot zones.

The comparison between data and predictions obtained with 49
nodal points simulating the jet is presented in Figure 9.1-3. The
predictions shown in this figure are converged results with the
total mass source error of about 0.02 percent of the total mass
flow rate after 350 iterations. The top part of the figure shows
the predicted and measured isopleths of 6 at three axial planes,
x/H0 = 0.5, 0.75 and 1.0. For each axial plane, the figure on the
left shows the predicted results and the one on the right shows the
measurements. The bottom part of the figure shows the comparison
between predicted and