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SECTION VII

7.0 COMPLEX NONSWIRLING FLOWS

For the case of simple flows, the k-E model with the low

Reynolds number correction in the near-wall treatment accurately

predicts the mean flow properties. The ASM accurately predicts the

Reynolds stress components and the mean flow properties. However,

in complex flows, extra strain rates are present due to streamline

curvature rising out of recirculation or curved duct geometries.

This extra strain rate causes the turbulence structure to be ani-

sotropic, and it is essential to evaluate the combustor performance

submodels for complex flows. The benchmark test cases for complex

nonswirling flows are identified in Tables 4 and 5. Among the

complex flows, the nonswirling flow will be studied first. Swirl-

ing flow computations are presented in Section 8.0.

7.1 Flow in a Curved Channel

One of the benchmark test cases studied in the complex flow

category is the flow in a curved duct. Measurements for the flow in
74

a curved duct were made by Shivaprasad, et al., in a test setup

shown in Figure 7.1-1, using an X-wire probe. Measurements of mean

velocity and turbulence velocity correlations were made along both

inner and outer walls (see Table 4).

Computations for this flow were made using a 2-D parabolic

scheme with i00 nodal points across the duct. The nodes were

closely spaced near the walls and were spaced further apart near

the center of the duct. The initial profiles were specified at

1.03 m downstream of the inlet station, using the measured velocity

profiles. In all these cases, boundary conditions near the walls

were specified using Chien's low Reynolds number correction scheme.
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Computations were made with:

o k-_ model

o k-_ model with streamline curvature correction

o ASM

o ASM with streamline curvature correction.

Figure 7.1-2 presents the predicted mean velocity profiles

(solid lines) using the standard k-E model and the measured pro-

files (symbols) along the inner convex walls. The agreement

between data and predictions is good. The predicted profiles are

slightly fuller than the measured results. The comparison between

predicted and measured axial velocity profiles along the outer con-

cave wall is presented in Figure 7.1-3. For this wall, the pre-

dicted velocity profiles (solid line) are fuller than the data

(symbols). The predictions gradually tend to approach the measured
values at x = 1.148 m.

In curved channel flows, the streamline curvature creates an

extra strain rate on the turbulence production. A measure of the

extra strain rate is given by the Richardson number. For this

geometry, the Richardson number is defined by

Ri = 2c 12u/0y)

where U is the local mean axial velocity and R is the radius of

curvature of the duct. The Richardson number was used to modify

the turbulence model constant C2 in the form outlined in Section
3.0.

The predicted mean velocity profiles along the convex wall

using the k-€ model with and without the Richardson number correc-

tion are presented in Figure 7.1-4. The predicted results are in
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good agreement with the data. A slight improvement in correlation

can be seen in the profiles by applying the Richardson number

correction. The predicted results for the concave wall are shown

in Figure 7.1-5. For the concave wall, the Richardson number cor-

rection slightly worsens the predicted results for mean velocity.

The predicted mean velocity along the convex wall profiles

using the ASM are presented in Figure 7.1-6. The predicted mean

velocity profiles are slightly fuller than the data. The ASM pre-

dictions are in good agreement with the standard k-E model results

(Figure 7.1-2). A similar conclusion may be reached for the pre-

dictions along the concave wall (Figure 7.1-7).

The ASM predictions for root mean square (RMS) axial velocity

fluctuations (u') along the convex wall boundary layer are pre-

sented in Figure 7.1-8. The predicted u' values (solid line) are

slightly larger than the data (symbols). The u' predictions along

the concave wall are presented in Figure 7.1-9. These profiles are

in good agreement with the data.

The predicted v' profiles along the convex wall are illus-

trated in Figure 7.1-10. The predicted v' values are slightly

higher than the data. The v' profiles along the concave wall are

shown in Figure 7.1-11. The predicted profiles along the concave

wall are in much better agreement compared to the results along the

convex wall. Note also that the ASM correctly predicts the parti-

tioning of the turbulence kinetic energy into u' and v' components.

The predicted Reynolds stress component u--valong the convex

wall is presented in Figure 7.1-12. The predicted values are

higher than the data. The corresponding profiles along the outer

concave wall are shown in Figure 7.1-13. The u--vvalues are

slightly overpredicted initially and are underpredicted further
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downstream. These profiles show the same trend as the kinetic

energy profiles that can be obtained from the u' and v' values.

The predicted results using the ASM with Richardson number

correction are presented in the next series of figures. Figure

7.1-14 illustrates the mean velocity profiles along the inner con-

vex surface. Comparison between Figures 7.1-6 and 7.1-14 shows

that the Richardson number correction improves the mean velocity

profiles along the convex surface. Along the concave surface, how-

ever, the Richardson number correction makes the velocity profiles

slightly worse, as seen in Figure 7.1-15. This indicates a need

for more work on the ASM to correct the effect of streamline cur-

vature.

The predicted u' profiles using the ASM with a Richardson num-

ber correction are shown in Figure 7.1-16. These profiles are in

much better agreement with data than those obtained without

Richardson number correction (Figure 7.1-8). The predicted u' val-

ues along the concave surface (Figure 7.1-17) are slightly higher

than those predicted without the Richardson number (Figure 7.1-9).

The v' predictions using the ASM with the Richardson number

are presented in Figure 7.1-18. The Richardson number correction

tends to reduce the v' values along the convex surface. On the con-

cave surface, the Richardson number correction slightly increases

the v' values (Figure 7.1-19).

The u--vpredictions using the ASM and Richardson number are

shown in Figure 7.1-20 for the boundary layer along the inner con-

vex surface. The Richardson number correction tends to decrease

the uv values along the convex surface. Along the concave surface,

the Richardson number correction tends to increase the magnitude of

uv values, as seen in Figure 7.1-21.
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The flow field in a mildly curved duct is well predicted by

the k-E and the ASM. The anisotropic turbulence structure is cor-

rectly predicted by the ASM. The Richardson number correction

improves the agreement between the data and predictions for the

convex surface, but more work is needed to get good results for

both convex and concave surfaces.
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SHIVA-PRASADANDRAMA-PRIYAN

FLOWIN A CURVEDCHANNEL

INITIAL CONDITION

MEASUREMENT
L1 LOCATIONS

/

INLET
STRAIGHT
SECTION

R = 2.54M

L1 = 1.03M
H = 0.10 M

Re0 = 2400
U = 22 M/S
ASPECTRATIO= 13.2
Y = NORMALDISTANCEFROMWALL

Figure 7.1-1. Configuration of the Curved Channel Test Setup.
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Figure 7.1-18. ASM With Streamline Curvature Correction -- RMS
Radial-Velocity Profiles Along the Inner (Convex)
Wall.
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7.2 Flow Over a Backward-FacingPlane Step

The flow through the curved duct studied in the previous para-

graph did not have any recirculation. In combustor internal flows,

however, recirculation zones exist. For combustor aerothermal

model evaluation, validation of the analytical models in recircu-

lating flows is essential. One of the benchmark test cases selec-

ted among recirculating flow fields was the flow over a backward

facing plane step, for which measurements were made by Johnston, et
82,83

al., in a rig shown schematically in Figure 7.2-1. Test data

are available for step heights (HT) of 2.54, 3.81, and 5.08 cm.

Computations were performed for all these cases using a 2-D ellip-

tic code and the following turbulence models:

o Standard k-_ model

o k- _ model with streamline curvature correction

o ASM with streamline curvature correction.

The numerical convergence for the nonswirling recirculating

flow calculations presented in this chapter was ascertained by com-

paring variations in the following parameters:

o Maximum local mass continuity residual (RMAx) normalized
by inlet mass flux.

i

o Cumulative mass continuity residual (RsuM) normalized by
inlet mass flux.

o Variations in the dependent variables from iterationto

iteration (_) normalizedby the inlet value.

Typically, 400 iterations were required to achieve the following

levels of RMAx, RSUM and_U:
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/

RMAx = (10-5)

RSU M _ 0.001

40 = (10-4 ) from peak to minimum value over the

last i0 iterations.

For these computations, the inlet velocity profiles were obtained

from the test data and the turbulence kinetic energy profiles were

calculated by using measured u 2 and assuming that v2 and w 2 are

equal at the inlet station. The inlet turbulence length scales

were assumed to be equal to 0.02 w I. Along the walls, wall

functions were used to specify the boundary conditi0ns, and at the

exit plane, zero axial gradient conditions were prescribed.

The model predictions were obtained for each of the three step

heights by using the following set of grid nodes distributed non-

uniformly over the axial distance indicated in Table 16 below:

TABLE 16. GRID NODE DISTRIBUTION.

,m

Number of Nodes Axial Distance X-Location

Step Height Analyzed of Step
(cm) Axial Radial (cm) (cm)

2.54 59 32 78.7 15.24

3.81 59 32 78.7 15.24

5.08 57 37 54.6 3.81

A partial layout of the grid network used with the 1.5-inch

(3.81 cm) step is shown in Figure 7.2-2. A total of 32-grids were

used to span 4.5 inches, out of which, 13 nodes were used for the

1.5-inch step, as shown. The first interior node was 0.i inches

(0.07 HT) from the step-side wall; HT denotes step height. The

smallest axial node spacing was also 0.i inches.
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Step Height of 3.81 cm

The comparison between the standard k-E model predictions and

the measurements of mean axial velocity profiles at several axial

stations is presented in Figure 7.2-3. The predicted results are

represented by solid lines and the data correspond to symbols. The

k-E model predictions are in good agreement with the data up to x =
15.2 cm where the step is located.

For the flow region downstream from the step and upstream from

the reattachment point, the following observations can be made.

The correlation is good for the shear layer between the recircula-

tion bubble and the main throughflow. For the outer portion of the

recirculation bubble (ie., U>0), the agreement between model and

data is reasonable. However, for the reverseflow region, the model

predicts qualitative trends. The measured height of the reverse-

flow region is greater than the model prediction. Some of this

discrepancy may be due to use of wall functions. The reattachment

point is predicted to lie between x = 35.58 and 38.94 cm, while the

data indicates that the location of the reattachment point lies

between x = 38.94 and 42.34 cm. The streamlines obtained from the

standard k-E model are illustrated in Figure 7.2-4. The predicted

nondimensional reattachment length, LR/HT was 6, while the measured
reattachment length was 7.

Figure 7.2-5 presents predicted axial velocity profiles with

the k-E model modified by Richardson number correction. The

streamline curvature correction improves the model predictions in

the recirculation zone as well as the developing region downstream

from the reattachment. The predicted streamline plot is shown in

Figure 7.2-6 where recirculation zone length is predicted to be 6.5

times the step height. Without the Richardson number correction,

the length was predicted to be 6.0. There is also a slight increase

in the predicted amount of the recirculating flow rate over the

standard k-E model as evidenced from Figures 7.2-4 and 7.2-6.
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The predicted mean velocity profiles using the ASM and

Richardson number corrections are presented in Figure 7.2-7. The

results are similar to the modified k-E predictions shown previ-

ously in Figure 7.2-5.

The turbulence kinetic energy profiles predicted by the ASM

with streamline curvature corrections and the data are presented in

Figure 7.2-8. The data points (shown in symbols) were obtained by

assuming w2 = v2. The predicted profiles are in agreement with
data up to x = 30.99 cm, and beyond this station the predicted

levels of turbulence kinetic energy are significantly lower than
the measurements.

The ASM predictions for u2 and the measured values are illus-

trated in Figure 7.2-9. The predicted u2 values are initially
higher than the measurements, and beyond x = 41.7cm, the predicted

values are progressively smaller than the data. In the ASM, the

Reynolds stress components are expressed as functions of k and E.

Hence, in regions where predicted k values are significantly

smaller than the measurements, the predicted Reynolds stress compo-

nents are also expected to be smaller than the data. The compari-

son between measured and predicted v2 profiles are shown in Figure

7.2-10. The predicted V values are smaller than the data, and
this is attributed to the underprediction of the k values.

The ASM predictions for the Reynolds stress uv and the data

are shown in Figure 7.2-11. The model initially overpredicts the

u--vvalues and beyond x = 41.07 cm, it underestimates the u--vvalues.

This trend is very similar to the u_-2profiles. Further improve-
ments in the model predictions can be obtained if improvements are

made to the predicted k values.

Step Height of 2.54 cm

The standard k-E model predictions for mean axial velocity and

the data for a step height of 2.54 cm (i.0 inch) are presented in
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Figure 7.2-12. The predicted results are in very good agreement

with the data up to x = 20.32 cm. Between x = 25.4 cm and x =

32.18 cm, some differences are seen between the data and the pre-

dictions. In these regions, the k-E model overestimates the veloc-

ity in the recirculation or low velocity zone near the bottom wall.

When Richardson number corrections are applied to the k-_

model, significant improvements in the predicted mean velocity pro-

files were obtained, and those profiles are illustrated in Figure

7.2-13. The agreement between the data and the predictions is good

in the entire flow field of interest.

The mean velocity profiles obtained from the ASM with the

Richardson number correction are shown in Figure 7.2-14. The

agreement between the data and the predictions is again good

throughout. The measured profiles at far downstream stations are

fuller than the predictions.

The ASM predictions for turbulence kinetic energy are pre-

sented in Figure 7.2-15. These profiles are slmilar in character-

istics to those in Figure 7.2-8 for the 3.81 cm step height. The

model tends to underestimate the k values beyond the reattachment

point x _ 32 cm. Some of this model deficiency can be improved by

using an improved near-wall model.

m

A comparison between ASM predictions for u2 and data are
illustrated in Figure 7.2-16. The model tends to overpredict the

u_ values in the recirculation zone (x<32 cm) and underestimate
the u' values in the recovery region. This is partially attributed

to the predicted lower values of wall shear stress compared to the

data in the recovery region. This aspect can be seen in the mean

velocity profiles; namely, the data shows a fuller profile than the

predictions.
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The predicted mean square velocities, v2 and the measurements

are shown in Figure 7.2-17. The predicted v2 values are smaller
than the data throughout the flow field of interest.

m

The uv predictions for the 2.54 cm step height and the data

are presented in Figure 7.2-18. The predicted u--vvalues are higher

than the data up to the reattachment point (x = 32 cm), and beyond

this point the predicted u--vmagnitudes are less than the data.

The results shown for the 2.54 cm step height are very similar

in character to those presented for the 3.81 cm step height.

step Height of 5.08 cm

For the case of the 5.08 cm step height, hot-wire measurements

were made by Eaton and Johnston.83 Measurements of initial con-

ditions were made at 3.81 cm upstream of the step.

The k-_ model predictions for mean axial velocity profiles are

shown in Figure 7.2-19. The k-E model predictions and the data are

in good agreement up to x = 13.97 cm. Beyond this station, the k-E

model underestimates the recirculation velocities. The predicted

velocity profiles when the Richardson number correction was applied

are illustrated in Figure 7.2-20• With the Richardson number cor-

rection, some improvements in the predictions are obtained.

The mean velocity profiles predicted by ASM with Richardson

number correction are shown in Figure 7.2-21. These profiles are

similar to those shown in Figure 7.2-20 for the k-€ model with

Richardson number correction. The ASM predictions for the axial

mean square velocity fluctuations, u2, are illustrated in Figure
7 2-22 The predicted --_values are higher than the measurements• " U

up to x = 37.7 cm and, beyond this station, the model underpredicts
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the turbulence kinetic energy component. This trend is similar to

the one observed for the 2.54 cm and 3.81 cm step heights.

The ASM predictions for u--vare shown in Figure 7.2-23. The

predicted u-_values are higher than the data everywhere except the

last station. This trend is also consistent with the character-

istics observed for the other two steps.

The predicted pressure variations along the step side and the

measurements are illustrated in Figure 7.2-24. The predicted and

measured pressure coefficient profiles agree well. The k-_ and the

ASM tend to slightly overestimate the Ps values (less than 5 per-
cent).

For the case of flow behind a plane step, the k-_ model pre-

dicts the mean velocity field fairly accurately, but slightly

underpredicts the size of the recirculation zone. When the stream-

line curvature correction is included, the k-_ model improves the

mean velocity profiles and the length of the reattachment point.

Mean velocity profiles predicted by ASM with and without streamline

curvature are similar to those of the k-E model. The ASM tends to

overestimate the u' velocity components inside the recirculation

zone and to underestimate them in the recovery region. A similar

trend is observed for the u-_and k profiles. Further refinement of

the ASM model is needed to improve the quantitative accuracy of the

model.
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Figure 7.2-9. AMS With Richardson Number Correction -- RMS Axial

Velocity Profiles (u2/U2Ref) for the 3.81-cm Step.
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Figure 7.2-19. Comparison Between the Standard k-E Model
Predictions and Measured Streamwise Velocity

Components for the 5.08 cm Step.
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7.3 Flow Through a Sudden Pipe Expansion

A detailed experimental study of the flow behind a sudden

expansion in a circular duct of 100 mm diameter (D) was made by Moon

and Rudinger89 using a laser Doppler velocimeter (LDV), as shown in

Figure 7.3-1. The diameter of the inlet tube was 7 mm, thus giving

an expansion ratio of approximately 2.0, which is representative of

typical dump combustors. The inlet tube was long enough (1260 mm

or 18 tube diameters) to give a fully developed velocity profile

upstream of the step.

The 2-D elliptic computations were performed with the standard

k-_ model for the region extending 10.2 mm upstream of the dump and

169.2 mm downstream from the dump (1.69D). A total of 55 x 40 nodal

points were used to simulate the geometry. A fully developed pipe

flow profile was used for the inlet station. The predicted axial

velocity profiles (Figure 7.3-2) are compared with the measured

X _ 0.25, 0.75, 1.0, 1 25 and 1 5;data at five axial stations: D " "
here X is the axial distance downstream from the step. The overall

agreement between predictions and data is acceptable.

Similar to the plane-step results presented in Section 7.2 for

the standard k-E model, the axisymmetric step calculations stress

the following. The shear layer region is predicted well. The pre-

dicted recirculation zone height and the maximum reverse-flow

velocities are smaller than data. The reattachment point is pre-

dicted reasonably well. Further improvements can be made by using

the streamline curvature corrections. Because of the limited range

of the data available, no other computations were made for this

configuraton.
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7.4 Flow Over a Circular Rin9

An axisymmetricequivalentof a 2-D fence is a ring in a tube.

A detailedmapping of the turbulentflow past a ring (rectangular

roughness element) was made by Phataraphruk,et al.91 for several

ring heights (0.125 to 0.375 inches) and widths (0.131 to 0.655
inches). A circular pipe of 2.44-inch diameter was used with a

ring-type roughnessattached to the wall as shown in Figure 7.4-1.

The flow approachingthe ring was a fullydevelopedpipe flow. The
calculationswith the standard k-_ model were made for a total of

four rings, configurationsA, E, H and I in Table 17. Typical

comparison between data and predictions is shown in Figure 7.4-2

for H-ring, 0.375-inch high and 0.131-inch wide ring. Axial

velocity profiles at most of the axial stations agree reasonably

well except for the discrepancynear the tube centerline, which
cannot be explained. However, for the station 18.67H downstream

from the ring, the agreement is excellent. Similarly,acceptable

comparisonis achieved for the turbulentkinetic energy profile.

In summary, the standard k-e model predicts reasonably well

the meanflow field behind circular rings. The predictions of the

turbulence structure are qualitatively good.

TABLE 17. RING CONFIGURATIONS INVESTIGATED BY LOGAN, ET AL.

H W
CONFIGURATION HEIGHT (IN.) WIDTH (IN.)

• A 0.125 0.131

B 0.125 0.262

C 0.188 0.131

D 0.188 0162

E 0.250 0.131

F 0.250 0.262

G 0.250 0.524

H 0.375 0.131

I 0.375 0.655
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7.5 Flow Around a Wed@e-ShapedFlameholder

The flow-field behind a 2-D flame stabilizer is quite complex

because of the shape of the flame stabilizer. The aerodynamic

charac£eristics of separated flow behind a wedge-shaped flame sta-

bilizer was studied experimentally by Fujii, et al., as shown in

Figure 7.5-1,90 with the aid of laser Doppler velocimetry. The

flame stabilizer was an equilateral triangle in cross section with

each side (B) being 25 mm. The measured streamline plot is shown in

Figure 7.5-2 for an average freestream velocity of i0 m/s. The

measured parameters were:

Length of the recirculation zone = 2.2B

Amount of air being recirculated = 0.1 Wa
Maximum reverse flow velocity = 0.4 U_

where

Wa = Inlet Airflow Rate

U_ = Free-stream Velocity

Flow-field predictions of the Fujii flame stabilizer were

obtained by using the 2-D elliptic code with 60 x 32 grid nodes for

upper half of the setup because of the symmetry of the test geom-

etry. The triangular shape of the bluff-body was simulated by a

stair-step approximation. The standard k-€ model was used. The

predicted streamlines are presented in Figure 7.5-2, expressed as

percent Wa. The following predicted parameters agree reasonably
well with measurements:

Length of the recirculation zone = 2.3 B

Amount of air being recirculated = 0.08 Wa
Maximum reverse-flow velocity = 0.37 U_
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7.6 Flow Around a Confined Disk

A detailed nonintrusive laser Doppler measurement in a nonre-

acting flow behind a confined disk was made by Roquemore et al.92

The LDV measurements were made in the Air Force Aeropropulsion Lab-

oratory combustion tunnel with and without fluid injector through

the nozzle. The geometry of the experimental setup is shown in

Figure 7.6-1. For the nonreacting case, CO2 gas was injected axi-
ally at the disk centerline. The downstream flow field was mapped

for different CO2 flow rates and a constant annulus flow rate.

2-D elliptic computations were made for each of the CO2 flow
rates using the standard k-_ model. The predicted axial velocity

variation along the centerline is presented along with the corres-

ponding measured data in Figure 7.6-2. Both predictions and

measurements show a gradual reduction in the negative velocity

region at the centerline as well as downstream movement of this

region as the CO2 injection rate is increased. The predictions
agree reasonably well with data in regard to the size of the nega-

tive velocity region.
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7.7 ConfinedCoaxial Jet Expansion

Another benchmark test case selected for the recirculating

flow model validation was the coaxial jet expansion in a pipe.
This flow field is used to evaluatethe model for the case of flow

behindan axisymmetricstep. Measurementswere made by Johnson and

Bennett88 in a water test rig for the test configurationshown in
Figure 7.7-1.

Measurements of mean velocity and turbulence fluctuations were

made using a laser Doppler velocimeter. Furthermore, scalar trans-

port measurements were made using the laser-induced fluorescence
method.

Computationsfor this case were made using a 2-D ellipticcode

with 2200 nodes. The grid network used in the computations is

shown in Figure 7.7-2. Initialprofilesare appliedat the station

where pipe expansionoccurs. The initial velocity and turbulence

kinetic energy profiles were assumed to correspond to a fully
developedpipe flow with the appropriatemass flow rate. Computa-
tions were made with:

o Standard k-€ model

o K-_ model with streamline curvature correction

o ASM with streamlinecurvaturecorrection

The mean velocity profiles predicted by the standard k-€ model

and the measured values are illustrated in Figure 7.7-3. The pre-

dicted mean velocity profiles are in good agreement with the data.

Between x = 15.2 cm and x = 25.4 cm, some differences between the

data and the predictions are seen. However, the overall predic-

tions are in agreement with data in the recirculation zone.
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The k-€ model predictions for turbulence kinetic energy and

the data are shown in Figure 7.7-4. The predicted k values are in

agreement with the data near the inlet plane. The k-_ model under-

estimates k values further downstream. This characteristic is very

similar to that in the plane step case.

The mean velocity profiles predicted by the k-E model with

Richardson number correction are presented in Figure 7.7-5. These

profiles are similar to the results without the Richardson number

corrections. In this flow field, the average mean velocities are

very low (less than 2 m/s) with a Reynolds number of about 50,000.

In such flows, the velocity gradients are not very large and hence

the Richardson number corrections do not cause significant changes

in the mean velocity profiles. The predicted turbulence kinetic

energy obtained from the k-E model with the Richardson number

corrections are shown in Figure 7.7-6. These profiles are also

identical to those obtained without the k-_ model (Figure 7.7-4).

The ASM predictionsfor mean velocity with streamlinecurva-

ture correctionare presentedin Figure 7.7-7. These profilesare
virtually identical to the k-e model predictions and therefore
comparewell with the data.

The axial RMS fluctuating velocity components, u', are shown

in Figure 7.7-8. The ASM predictions are represented by solid

lines and the data correspond to the symbols° The ASM underpre-

dicts the turbulence intensity in the recirculation zone, and at

x = 30.5 cm the u' predictions are in good agreement with the data.

In the ASM, simplifying assumptions were made by assuming that the

Reynolds numbers of the flow were very high. In the present case,

the Reynolds numbers are relatively low (ReD _ 50,000) and the
validity of those assumptions is questionable.

The ASM predictions for the v' velocity components are illus-

trated in Figure 7.7-9. The predicted v' profile at x = 1.3 cm is
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in good agreement with the data near the axis of the pipe. In the

recirculation zone, however, the ASM underpredicts the radial tur-

bulence intensity. At the downstream stations, the model under-

estimates the v' values, even in the vicinity of the axis of the

tube.

Figure 7.7-10 illustrates the comparison between the data and

ASM predictions for the shear stress component, u--v. At x = 1.3

cm, the large negative peak value for u--vnear the axis corresponds

to the shear layer between the inner and the outer coaxial streams

and the large positive u--vpeak corresponds to the shear layer asso-

ciated with the pipe expansion. The predicted u-vprofiles are in

good agreement with the data, even though the predicted normal

stresses u' and v' are smaller than the measurements.

The k-E model and the ASM correctly predict the mean velocity

profiles. But, the predicted turbulence kinetic energy levels are

lower than the data. The ASM underpredicts both u' and v' levels in

the recirculation zone of axisymmetric expansion. In the plane

expansion (Paragraph 7.2), it was observed that the ASM overpre-

dicted u' and underpredicted v' in the recirculation zone. The ASM

predictions for uv are in very good agreement with the data of

Johnson and Bennett.
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w Figure 7.7-i. Finite Difference Grid Network for Confined Coaxial
Jet Expansion.
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Figure 7.7-10. ASM with Richardson Number Correction -
Shear Stress Profiles.
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7.8 Nonreacting and Reacting Flow Behind a Step

Detailed measurements of the turbulent structure behind a step

with and without combustion was made by Pitz.86 For their flow

condition, measurements of species (CO, CO2) and temperature were
made by Ganji and Sawyer.132 The measurements were made in a test

setup shown schematically in Figure 7.8-1. The step height was 25.4

mm.

This test case was selected for evaluating the model in non-

reacting and reacting environments. In the nonreacting flow, com-

putations were made with k-E model as well as the ASM with stream-

line curvature corrections.

Nonreacting Flow

Computations of the nonreacting flow were made with a 2-D

elliptic program consisting of 2200 nodes. Measured profiles at

the step plane were used as initial profiles with an average veloc-

ity of 22.2 m/s. Along the walls, the boundary conditions are

imposed through wall functions; and at the exit plane, zero axial

gradient conditions were imposed.

The k-E model predictions for mean velocity in the high

Reynolds number case of Pitz are shown in Figure 7.8-2. The pre-

dictions are in close agreement with data outside the recirculation

zone. Inside the reverse flow region, the agreement is relatively

inferior. The regions in the vicinity of flow reversal are known

to produce high levels of turbulence diffusive transport. The k-E

model does not predict as large a turbulence diffusion rate as the

measurements indicate.

The ASM predictions for mean velocity are shQwn in Figure

7.8-3. In these predictions, streamline curvature (Richardson
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number) corrections were included. These predictions are in good

agreement with the data. The data shows that the recirculation

zone extends farther out in the cross-stream (y) direction than

the location predicted by ASM.

The ASM predictions of axial turbulence intensity are pre-

sented in Figure 7.8-4. The measurements are shown in symbols.

The ASM underpredicts the turbulence intensity levels in the recir-

culation zone. For x > 5.08 cm, the ASM underestimates the turbu-

lence levels in the regions outside the recirculation zone. In the

case of the flow near the inlet, the turbulence intensities are

correctly predicted.

Premixed Propane/Air Combustion Behind a Step

In the reacting flow case, a premixed propane/air mixture with

an equivalence ratio of 0.56. was used. The average velocity at

the inlet was 13.3 m/s and the inlet temperature was 295°K. Com-

putations for this case were made using a standard k-_ model with

both two-step and four-step schemes. In the experimental setup,

the rig was cooled by passing cooling air around it. The bulk exit

temperature of the cooling air was reported to be 500°K. In the

computations, initially, a constant wall temperature was assumed to

be 500°K. In the two-step model, the Army Design Criteria reaction
rate constants were used.

The mean velocity predictions by the two-step model with T =w

500°K are reported in Figure 7.8-5. The mean velocity profiles are

in agreement with the data in the core of the flow. In the region

behind the step, the predictions agree with measurements in the

recirculation zone, but comparison becomes comparatively inferior

in the recovery zone, (X_12 cm).
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The two-step scheme predictions for temperature distributions

are presented in Figure 7.8-6. At x = 1 cm, the data and predic-

tions are in good agreement. Beyond this station, the predicted

temperatures are slightly higher than the measured values. Fur-

thermore, the predicted temperature profiles do not indicate as

much convective heat flux in the radial direction as those shown by
the data.

The four-step model predictions for mean velocity are illus-

trated in Figure 7.8-7. Comparison with two-step model prediction

(Figure 7.8-5) shows that the four-step scheme predicts a slightly

stronger recirculation zone. However, the agreement between the

data and the predictions are good, especially in the core of the

flow. The four-step model predictions for temperature are shown in

Figure 7.8-8. The four-step scheme initially overpredicts the tem-

peratures; and beyond x = 9 cm, it underpredicts the temperatures.

The four-step scheme is expected to be slower than the two-step

scheme because of the higher number of reaction steps. Consequent-

ly, the predicted temperature levels are also smaller. Further-

more, rate constants used in the four-step scheme (obtained from

Hautman, et al.) are applicable to higher inlet temperatures than

the experimental conditions. The four-step scheme also predicts a

substantially lower radial heat transfer than the data.

In the case of combustion behind a step, the wall temperature

distributions can play very significant roles on the combustion

performance. Ganji and Sawyer had reported wall temperature values

at a few stations. From these profiles, a wall temperature distri-

bution was deduced. This temperature distribution, as shown in

Figure 7.8-9, was used in the next series of computations. This

wall temperature distribution is significantly higher than 500°K

everywhere except near the inlet.
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The two-step scheme predictionsusing the measured wall tem-
perature distributionsare shown in Figures 7.8-10 through 7.8-12.

Figure 7.8-10 shows the comparisonbetween the data and the two-

step scheme predictions for mean velocity. Comparison between

Figures 7.8-5 and 7.8-10 shows the effect of wall temperaturedis-

tribution on mean velocity. With a hotter wall temperature,
(Figure 7.8-10), the two-step model predicts a slightly stronger

recirculationzone. Figure 7.8-11 shows that due to the higher

wall temperatures,the predictedtemperaturedistributionsare also

higher. However,the radialheat diffusionis still underpredicted
by the model.

The two-step model predictions for CO and CO2 concentrations
are illustrated in Figure 7.8-12. The predicted CO concentrations

are significantly smaller than the data in the recirculation zone.

In the stream layer coming off the step, the CO concentrations are

initially overestimated. The predicted CO2 profiles are in good
agreement with the data at x = 10 mm. At the downstream stations,

the predicted CO2 profiles do not spread radially outward as much
as shown by the data. This trend is consistent with the tempera-

ture profiles shown in Figure 7.8-11.

The four-stepmodel resultswith the measuredwall temperature

distributionsas input are presented in Figures 7.8-13through7.8-

15. In Figure 7.8-13, the four-stepresults for mean velocityand

the data are reported. Comparisonwith Figure7.8-7 shows that the

four-stepmodel predicts a slightlyweaker recirculationzone with

a hotter wall temperaturedistribution.

The predicted temperature distributions at x = 1.0 and 3.0 cm

by the four-step model (Figure 7.8-14) are overpredicted, and for X

= 9 cm, they are significantly underestimated. These profiles

demonstrate the strong influence of wall temperature on the kinetic

scheme.
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The four-step predictions for CO and CO2 concentrations are
shown in Figure 7.8-15. The CO concentrations are overestimated by

the model in the vicinity of the bottom wall. The radial spreading

of CO concentrations are substantially underpredicted by the model.

The predicted CO2 profiles are in very good agreement with the data

except at x = 15.0 cm, where the level of CO2 is underestimated.

Because of the low levels of CO2, the predicted temperature values
are also lower at 15.0 cm.

Figures 7.8-16 through 7.8-18 illustrate the results obtained

with the rate constants in the first two reaction steps (see Table

9) modified as

KoI 2 0893 x 1024= . CR1 = 6.0

Ko2 5 0117 x 1021= . CR2 = 6.0

In these computations, a constant wall temperature of 500°K was

prescribed in the region behind the step. Significant improvements

in the predictions for mean velocity and temperature can be seen in

these results. However, the predicted CO levels are higher than

those shown in Figure 8.4-15 with Hautman's rate constant. This

demonstrates the need for further work on the four-step scheme.

For the nonreacting flow, the k-E model and ASM underpredict

turbulence intensities. For the case of premixed propane flame

with low inlet temperatures, the two-step scheme predictions are in

better agreement with the data than the four-step results. Further

modifications in the four-step rate constants are expected to im-

prove the corelation. The wall temperature distribution has a sig-

nificant influence on the predicted results.
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7.9 Opposed Reacting Jet Flow

Another benchmark test case selected for evaluating the

kineticschemeis the recirculatingflow in an axisymmetricopposed

reacting jet combustor. Species concentration and temperature

measurements were made by Scheffer and Sawyer146 in a premixed
opposed jet combustor shown schematicallyin Figure 7.9-1.

A premixed propane and air mixture was used for both the main-

stream and the opposed jet with an equivalence ratio of 0.625. For

the test case selected, the following were the flow parameters:

Mainstreamaverage velocity = 7.74 m/sec

MainstreamTemperature = 300°K

Jet velocity = 95.9 m/sec

Jet temperature = 295°K

Computationsof the flow field were made using a 2-D elliptic
program with 1400 nodes. Predictionswere obtainedwith both two-

step and four-stepkineticschemes. Initialprofiles for the main-

stream were specifiedusing a plug flow profile with U = 7.74 m/s
and T = 300°K. The inlet kinetic energy profile was assumed to be

uniform with a value of 0.18 m2/s2, and the inlet length scale was
assumed to be constant with a value of 0.00058 m. Computations

were performed for half of the flow domain by assuming symmetry
around the centerline. Adiabatic boundary conditions along the

wall were applied. Along the axis of symmetry,zero radial gradi-
ents were prescribedfor all the variables except v, which was set

to zero. At the exit boundary,zero axial gradientconditionswere
imposedon all of the dependentvariables.
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The two-step model predictions for temperature are shown in

Figure 7.9-2. The two-step scheme with the Design Criteria rate

constants overestimates the gas temperatures everywhere. The model

overpredicts fuel consumption rate as shown by the unburned fuel

mole fraction profiles in Figure 7.9-3. The two-step model pre-

dicts a faster reaction than the measurements, and hence the

unburned fuel concentrations are underestimated.

Since the two-step model predicts a faster reaction rate for

the opposed jet flame, the predicted CO2 concentrations are also
higher, as seen in Figure 7.9-4. The CO concentrations predicted

by the two-step scheme are significantly higher than thedata, as

seen in Figure 7.9-5. Because of the faster reaction scheme, the

predicted H20 mole fractions are higher (Figure 7.9-6) and the pre-
dicted oxygen concentrations (Figure 7.9-7) are smaller.

The four-step model predictions (with the original rate con-

stants) for the opposed jet flame are presented in Figures 7.9-8

through 7.9-13. The four-step model results for temperature are

illustrated in Figure 7.9-8. The profiles are in better agreement

with the data compared to the two-step model results (Figure

7.9-2). The four-step scheme predictions for unburned fuel mole

fractions are shown in Figure 7.9-9. These profiles are also

underpredicted by the two'step model. However, the four-step

predictions of CO2 concentrations, as seen in Figure 7.9-10, are in
good agreement with the data. This suggests that the four-step

model with Hautman, et al., rate constants overestimate the reac-

tion rates of fuel oxidation, but the oxidation rates of CO and the

intermediates are correctly modeled. This conclusion is substan-

tiated by the CO profiles shown in Figure 7.9-11, which are in good

agreement with the data. The predicted H20 concentrations (Figure
7.9-12) and oxygen mole fractions (Figure 7.9-13) are in good

agreement with the data and are consistent with the reaction rates

of the other species.
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For the case of the opposed jet flame, the two-step kinetic

scheme overestimates the reaction rates of fuel and CO oxidation,

and hence the predicted temperatures are much higher than the data.

The four-step scheme overestimates the fuel reaction rates, but

correctly predicts the reaction rates for the other steps. Con-

sequently, the four-step results are in much better agreement with

the data than the two-step results.
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7.10 Axisymmetric Combustor with Coaxial Fuel and Air Jets

The reacting flow test cases considered thus far do not repre-

sent the geometries in the practical combustor dome. A more

realistic geometry of an axisymmetric combustor with coaxial fuel

and air jets was chosen for the next benchmark test case. Measure-

ments of species concentration and temperature were made by Lewis

and Smoot140 in a test geometry shown schematically in Figure
7.10-1.

For the test case selected, methane was used through the fuel

tubes, and the average inlet conditions were as follows:

Air Velocity, Uair = 34.3 m/sec

Air Temperature, Tair = 589°K

Fuel Velocity, Ufuel = 21.3 m/sec

Fuel Temperature, Tfuel = 300°K
Inlet Pressure, P = 94 KPa

The computations for this case were made using the 2-D ellip-

tic code with standard k-€ model, and two-step and four-step

kinetic schemes. A total of 1400 nodes were used in the computa-

tions. Uniform inlet profiles were s,pecified with inlet velocity

and temperatures as given above. The inlet kinetic energy for air

was given in the measurements as 11.765 m2/s2, and the correspon-

ding value for the fuel jet was measured to be 1.633 m2/s2. The

inlet length scales were assumed to be 0.00057 m for air jet and

0.000016 m for fuel jet, respectively. Along the (adiabatic)

walls, standard wall function treatment was employed. Along the

inner boundary, symmetry conditions were specified and at the exit

plane, zero axial gradient conditions were imposed. At the inlet,

the fuel mixture fraction was set equal to one in fuel and zero

else where.
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Two-step scheme with Design Criteria rate constants predic-

tions are shown in Figures 7.10-2 through 7.10-4. Figure 7.10-2

shows the comparison between the data and the predictions for the

mean mixture fraction. The data and predictions are in good agree-

ment. The profiles of unburned fuel are shown in Figure 7.10-3.

The two-step overestimates the unburned fuel concentrations. The

predicted reaction rates are slower than the measured rates. This

conclusion is substantiated by the CO concentrations shown in

Figure 7,10-4. The predicted CO levels beyond x = 47.6 cm are sig-

nificantly lower than the data. Near the inlet (x = 9.5 cm), the

predicted temperature profiles is in good agreement with the data.

However, at x = 39.8 cm, the two-step scheme overestimates the

temperature level.

The four-step scheme predictions with the orginal rate con-

stants are presented in Figures 7.10-5 through 7.10-10. In the

four-step scheme, the kinetic rate constants suggested by Hautman,

et al., were used. Figure 7.10-5 shows the comparison between data

and four-step predictions for the mixture fraction. These profiles

are in good agreement with each other. The unburned fuel mole

fractions are presented in Figure 7.10-6. The four-step model

initially overestimates the unburned fuel concentrations (up to x =

47.6 cm), and beyond that station, the predictions are in excellent

agreement with the data. This is due to the relatively slow reac-

tion rates (compared to the two-step scheme) associated with the

four-step model. Because of the estimated slow reaction scheme,

the four-step model predictions for CO2 concentrations (Figure
7.10-7) are also smaller than the data initially and beyond x =

47.6 cm, the predicted CO2 values are in good agreement with the
data. The CO mole fractions predicted by the four-step scheme

• (Figure 7.10-8) are smaller than the measured values, especially in

regions close to the axis of the combustor. The four-step model

predictions for temperature (Figure 7.10-8) are in better agreement

with the data than the two-step results.
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Because of the relatively slow reaction rates in the four-step

scheme, the predicted oxygen concentrations are higher than the

measured values near the inlet (Figure 7.10-9). However, beyond

x = 47.6 cm, the predicted 02 values and the data are in good

agreement. Similarly, the predicted H20 profiles are smaller in
magnitude compared to the data up to x = 47.6 cm, as seen in Figure

7.10-10. The concentration of hydrogen is overpredicted by the

four-step scheme (Figure 7.10-11) everywhere except at x = 78.5 cm.

For the case of an axisymmetric combustor with coaxial fuel

and air jets, the four-step model predictions are in closer agree-

ment with measurements than the two-step scheme. This is partially

due to the higher inlet air temperatures at which the rate con-

stants in the four-step scheme were established.
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Figure 7.10-8. 4-StepScheme - CO and TemperatureProfiles.
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Figure 7.10-9. 4-StepScheme - 02 Profiles.
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SECTION VIII

8.0 Swirling Flows

In Section 7.0 various submodels were evaluated with complex

flows without swirl. The introduction of swirl into the flow

creates much faster mixing, caused by radial pressure gradients and

increase in turbulence generation. These phenomena are more dif-

ficult to predict than the effects due to geometrical streamline

curvatures, like the curved duct, and sudden expansion. This sec-

tion will address flow fields with swirl. Both unconfined and con-

fined swirling flows will be studied (see Table 6 for the test

cases considered). Due to the limited data available in swirling

flows, most of the swirling flow validation will be done on non-

reacting flows. Only one test case will be presented for the

reacting swirling flows.

8.1 Free Swirling Jet in a Stagnant Medium

The first benchmark test case selected for swirling flows was

the case of a round swirling jet injected into a stagnant medium.

Measurements of mean velocity components and Reynolds stresses were

made by Morse101 in a 2.54-cm-diameter swirling air jet exiting

into a stagnant medium, as shown schematically in Figure 8.1-1.

The exit velocity of the jet was 32.5 m/s with a swirl number of

0.25. The swirl number is a measure of the overall swirl strength

and is defined by

R

r drSN = (8.i)

R pU 2 r dr

Measurements of mean axial and swirl velocities and the Reynolds

stress profiles were made at X/D = 0.5 (X = 1.27 cm) downstream of
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the nozzle exit. These measurements were used as initial profiles

in the computations. Computations of the free swirling flow were

made using the 2-D parabolic code with 100 cross-stream nodal

points spaced nonuniformly across the jet. Along the inner bound-

ary (r = o), zero radial gradients were specified for all the vari-

ables. Along the outer free boundary, entrainment rates were com-

puted from jet theory. The free boundary location is computed from

the velocity field. For swirling flows, the turbulence diffusion

rates are different in the three orthogonal directions. The stan-

dard k-E model does not adequately account for this characteristic

of the flow field. An artificial means to avoid this is to intro-

duce a Prandtl/Schmidt number of V8. Computations for the free
swirling jet were made with the following models.

o Standard k-_ model

o k-_l model

o Effect of Prandtl/Schmidt number for
o Richardson number correction for swirl

o ASM

The standard k-_ model predictions for mean axial velocity

along with the data are presented in Figure 8.1-2. The profile

shown at X/D = 0.5 was the one used at the initial station. The

standard k-_ model underestimates the decay of centerline velocity.

The jet half width variation, however, is correctly predicted. The

standard k-E model predictions for swirl velocity components are

illustrated in Figure 8.1-3. The k-E model underestimates the

decay of the peak swirl velocity. In these calculations, the

Prandtl/Schmidt number of Ve was set equal to 1.0.

The standard k-E model predictions with Prandtl/Schmidt number

of 0.7 for V8 are shown in Figures 8.1-4 and 8.1-5. The predicted
mean axial velocity profiles (Figure 8.1-3) are almost identical to

the results with Prva = i. However, the predicted swirl velocity[i

profiles with Prv@= 0.7 are closer to the measured values. These
profiles still underestimate the decay of swirl velocity.
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The mean axial velocity profiles predicted by the standard k-€

model in swirling flow are very similar to those of free jet (Sec-

tion 6.8). In the case of free nonswirling jet, the k-E1 model

(Equations 60-63) was observed to predict the mean velocity pro-

files accurately. Computations were made for the free swirling

flow using the k-E1 model, and these results are shown in Figures

8.1-6 and 8.1-7. The k-E1 model predictions for mean axial vel-

ocity profiles are illustrated in Figure 8.1-6. The k-E1 model

predicts the axial velocity decay accurately even in swirling

flows. The k-E1 model predictions for swirl velocity are in better

agreement with the data than the standard k-E model. It is recall-

ed that in the k-E1 model, the turbulent viscosity is increased

according to Equation 62. Note that the k-E1 model conserves the

angular momentum. Consequently, with increased turbulent viscos-

ity, the swirl velocity peaks are reduced and the swirl velocity

spreads out farther radially. The k-E1 model underpredicts the

decay of swirl velocity peaks.

The k-E1 model predictions with Prandtl/Schmidt number for V@

of 0.7 are shown in Figures 8.1-8 and 8.1-9. Figure 8.1-8 illus-

trates the mean axial velocity profiles, which are virtually iden-

tical to the results with Prvn of 1.0 (see Figure 8.1-6). However,
u

the predicted swirl velocity profiles with Prv = 0.7, as shown in8
Figure 8.1-9, are significantly different from those with Prv8 = i.
The location of the predicted peak V@ is farther from the axis as

the Prandtl number is reduced. But the predicted results with Prv8
= 1 are in better overall agreement with the data than those with

Prv8 = 0.7, indicating that the Prandtl number should be around 0.9
as has been generally used.

The additional strain in swirling flows can be approximately

accounted for by introducing the swirl Richardson number, defined

as
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ve (rve)
Riv@ = raU 2 _ V8 2

(_-_) + (r _-{ [--{ ])

The Richardson number can be used to modify the turbulence model

constant C 2 in the E equation by the relation

C 2 = 1.92 exp (-0.2 Riv@)

This correction can account for the extra turbulence production due

to the streamline curvature. However, this correction is appli-

cable only to small values of the Richardson number, and the value

of C 2 is constrained to vary between 1.45 and 3.84.

The mean axial velocity profiles predicted by the k-E1 model

with Richardson number correction are presented in Figure 8.1-10.

The Richardson number correction predicts a slightly faster decay

of centerline axial velocity compared to the k-E1 model (Figure

8.1-6). The swirl velocity profiles predicted by the k-E1 model

with Richardson number correction are illustrated in Figure 8.1-11.

These profiles indicate a slightly faster jet spreading rate com-

pared to the ones without the streamline curvature correction.

These results demonstrate that the Richardson number correction

does not predict appreciably different velocity profiles compared

to the k-E1 model.

The predicted results obtained from the ASM for the Morse

swirling flow are presented in Figures 8.1-12 through 8.1-19.

Figure 8.1-12 illustrates the ASM predictions and data for mean

axial velocity. The ASM slightly underestimates the centerline

velocity decay compared to the data. However, the ASM predictions

are in better agreement with the data than the standard k-E model,

with no necessary heuristic modification of the turbulence model

constants.
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The ASM predictions for tangential velocity are shown in

Figure 8.1-13. The ASM underpredicts the decay of the swirl

velocity but nevertheless is in better agreement with the data than

the standard k-_ model.

The ASM predictions for the RMS axial velocity fluctuations,

u', predicted by the ASM and the data are presented in Figure

8.1-14. The ASM slightly underpredicts the magnitude of u' near

the axis of the jet. However, the location of the peak value is

correctly predicted. The ASM predictions for radial RMS velocity

fluctuations, v', are presented in Figure 8.1-15. The ASM under-

estimates the magnitude of v' compared to the data by as much as 40

percent at X/D = 2. However, at X/D = i0, the data and Predictions

are in good agreement. Most of the differences between the data

and the predictions are in the region close to the axis, where sig-

nificant differences in the mean velocity components between data

and predictions exist.

The tangential component of RMS turbulence velocity fluctua-

tions, w', are presented in Figure 8.1-16. The ASM predictions are

shown by solid lines, and the data correspond to symbols. In the

ASM, the w' components are computed from the relation

-W' = (2k - _ - v2)

The ASM initially underestimates the centerline w' values and at

X/D = 10, it overestimates the w' values by about 20 percent. A

similar trend was also observed in the predicted turbulence kinetic

energy profiles. The underestimation of the centerline k values is

partly responsible for the low centerline axial velocity decay

rate. In Figures 8.1-14 through 8.1-16, the predicted results at

X/D = 0.5 were deduced from the initial conditions for k.
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The predicted Reynolds shear stress component, u--v,is illus-

trated in Figure 8.1-17. These profiles exhibit a trend very simi-

lar to the normal stress components (Figures 8.1-14 through

8.1-16); namely, the peak uv values are initially underpredicted

and beyond X/D = 6, they are overestimated by the ASM. At X/D = 4

and X/D = 6, the ASM predicts the location of u--vpeak closer to the

axis than the data does. These effects are due to the differences

in the mean velocity profiles between the data and the predictions.

The comparison between the measured and predicted Reynolds

stress component, v-_,is shown in Figure 8.1-18. The ASM predicts

a large negative value for vw values at the axis, while the data

shows a zero value there. But the peak v--wvalue and its location

are in good agreement with the data. The ASM predictions and mea-

surements for the Reynolds stress component, u-_are illustrated in

Figure 8.1-19. The predicted u--wprofiles are only in qualitative

agreement with the data. It is recalled that the Reynolds stress

components vw and uw are functions of swirl velocity gradients.

When the agreement between the data and the predictions is poor,

the Reynolds stress comparisons are not expected to be good.

The standard k-E model underpredicted the axial and tangential

velocity decay. When a Prandtl number of 0.7 was used for VS, the
diffusion rate for swirl velocity was increased, and hence a

slightly faster swirl velocity profile decay was predicted. The

decay of axial and swirl velocity was still lower than the data.

The k-E1 model, which was shown to give good results for circular

jets (Section 6.0), predicted the axial velocity profiles accur-

ately, and yet the decay of the swirl velocity profiles was under-

predicted. The k-€l model results were in much better agreement

with the data than the standard k-_model. When Prv_ = 0.7 was
u

used in the k-E1 model, there were no substantial improvements in

the predicted results. The Richardson number correction for this
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swirling flow did not appreciably improve the k-E1 model predic-

tions. The ASM also underpredicted the decay of mean axial and

tangential velocity peak values. However, the ASM predictions were

in better agreement with the data than the standard k-E model. The

ASM predicted lower turbulence intensity values at the axis in the

regions near the exit plane of the jet, and at X/D>6, the predicted

turbulence intensities were slightly higher than the data. The

turbulent mean stress, u-w,follows the same trend as the turbulence

intensity profiles. The predicted v--wvalues near the axis of the

jet were in disagreement with the data, while the peak v-_values

were in good agreement with the measurements. The predictions for

uw were in qualitative agreement with the measurements. The ASM

needs further refinement to improve the quantitative correlations.
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Figure 8.1-i. Test Setup for Swirling Air
Injected into Stagnant Air.
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Figure 8.1-7. k-e 1 Turbulence Model - Mean Tangential Velocity
Profiles.
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Figure 8.1-11. k-€ 1 Model with Richardson Number Correction -
Mean Tangential Velocity Profiles.
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Figure 8.1-12. ASM - Mean Axial Velocity Profiles.
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Figure 8.1-14. ASM - u' Profiles.
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Figure 8.1-15. ASM - v' Profiles.
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Figure 8.1-16. ASM - w' Profiles.
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Figure 8.1-19. ASM - (uw) Profiles.

464



8.2 Nonreacting Swirlin9 Combustor

One of the early investigations at Garrett104 involved a cold-

flow mapping of a can combustor (shown in Figure 8.2-1) along with

estimated airflow splits. A co-rotating set of two radial inflow

swirlers with 60-degree vanes established a swirling recirculating

flow region within the primary zone. The can combustor employed

two dome swirlers and four cooling slots as indicated in Figure

8.2-1. A calibrated three-hole wedge probe was used to determine

axial and swirl velocity components at different stations from the

dome: R--X= 0....33, 0 55, 0 75, 1.25, 1.47, 1 72, 1.94, 2.17, 2.63 and
2.86 where R, radius of the can, is 8.27 cm.

Computations for this test case were made using the 2-D

elliptic program with 30 x 25 finite-difference nodes. Calcula-

tions were made with the standard k-_ model using uniform inlet

velocity profiles corresponding to the flow splits shown in Figure

8.2-1. The comparison between predicted and measured mean axial

velocity profiles is presented in Figure 8.2-2. The k-_ model

accurately predicts the recirculation zone near the axis of the

combustor. However, the agreement in the vicinity of the combustor

wall is only qualitative. The differences between data and predic-

tions are probably due to discrepencies in the flow split and

boundary condition specification, and k-_ model limitations.

The k-_ model predictions for angular momentum, rV@, and the

measured values are illustrated in Figure 8.2-3. Near the axis of

the combustor, the predicted and the measured profiles are in

agreement. The region near the combustor wall contains discrepen-

cies between data and predictions.
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Figure 8.2-2. Comparison Between Measured Axial Velocity
and k-E TUrbulenceModel.
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8.3 Confined Swirler Flow

Another early investigation at Garrett103 involved cold flow

laser Doppler velocimeter (LDV) measurements in a 12.7 cm diameter

can combustor with different inlet swirl angles and swirler con-

figurations in regard to the expansion ratio. Among the inlet

swirl angles considered in the measurements were the zero degree

(non-swirling) and 60° swirler. Different inlet configurations

were used with the 60-degree inlet swirl angle. The geometries of

the test cases are illustrated in Figure 8.3-1. For each of these

flow tests, the inlet mass flow rates were measured. Computations

for these tests used the 2-D elliptic code with standard k-E model.

The computations were started upstream of the swirler station with

a uniform velocity corresponding to the mass flow rate. The inlet

turbulence kinetic energy was assumed to be constant with a value

of 0.003 O_
in.

Flow Around a Disk

The standard k-E model predictions for the flow around a disk

were obtained by using a grid network consisting of 70 axial and 25

radial nodes. The inlet axial velocity for this case was 19.54

m/sec. Figure 8.3-2 shows a typical comparison between predicted

and measured mean axial velocity profiles at five planes located at

X/H = 0.048, 0.92, 1.87, 2.22 and 5.68 downstream of the disk; here

H denotes the radius of the disk. The predicted recirculation zone

is shorter than the measured value, and the predicted maximum

reverse flow velocity magnitudes are also smaller than the measured

values. However, at the far downstream station (X/H = 5.68), the

agreement between data and k-E model predictions is very good.

60-Degree Swirler with Expansion Ratio of 1.2

For the configuration having a 60-degree swirler with an

expansion ratio of 1.2, the average inlet velocity was 7.26 m/sec.
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For this case, the calculations were performed by using 65 x 30

nodes. The computations were started at a station located one pipe

radius upstream of the swirler. Figure 8.3-3 shows a comparison

between data and the k-_ model predictions for mean axial velocity

at X = 1.17, 2.44, 5.0, 7.52, 15.14 and 20.22 cm downstream of the

swirler. Near the swirler exit, the velocity profile in the recir-

culation zone is correctly predicted by the data. However, in the

core of the flow, the data shows much larger radial gradients than

the predictions. At the far downstream stations, the agreement

between data and predictions is only qualitative. The discrepen-

cies between the data and predictions are probably due to the

boundary condition specification in addition to the model deficien-

cies.

60-Degree Swirler with Expansion Ratio of 2.2

This configuration has two axisymmetric steps, one at the hub

of the swirler and the second at the tip Of the swirler. The radius

of the swirler hub was 2.67 cm and the swirler tip radius was 5.08

cm. The average inlet velocity upstream of the swirler was 5.33

m/sec. Computations for this case were started one pipe radius

upstream of the swirler with a uniform inlet velocity of 5.33 m/sec

and a turbulence kinetic energy level of 0.0203 m2/sec2. Predic-

tions were obtained from the standard k-_ model by using 56 x 35

nodes. Comparison between predictions and the data for mean axial

velocity are illustrated in Figure 8.3-3 for different axial sta-

tions: X = 5.0, 7.52, 15.14 and 20.22 cm downstream of the swirler.

The predicted profiles are in qualitative agreement with the data.

The predicted velocities in the recirculation zone are smaller than

the measurements. Consequently, the predicted maximum positive

velocities are also smaller than the data in order to satisfy the

conservation of mass. The predicted and measured locations of peak

axial velocities are in good agreement.
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In conclusion, the standard k-E model predictions are in good

agreement with the measurements, especially outside the recircula-

tion zone of nonswirling flows. In the recirculation region, the

production of turbulence is relatively high, and the structure of

turbulence is expected to be anisotropic. In such anisotropic

regions, the standard k-_ model predictions are not expected to be

accurate. In swirling flows, the standard k-E model results are

only in qualitative agreement with the data.
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Figure 8.3-2. Comparison Between Predicted and Measured Axial Velocity
Profiles Behind a Confined Disk.
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8.4 Swirl Combustor with Cooling Air

Experimental Description

The velocity and turbulence measurements of Brum and

Samuelsen144 (Figure 8.4-1) have been compared with calculations of

the 2-D elliptic program. The flow field measured was a nonreact-

ing, confined swirling flow in an 8-cm-diameter tube (see Table

ii). The tube was 50 cm long with rectangular windows on each side

to measure the axial and swirl components of velocity using forward

scatter measurement techniques with a two-color laser anemometry

system. Two electronic counters and a minicomputer were used to

acquire and separate the mean and time fluctuating components of

velocity and determine the crosscorrelation u'w' levels. The swirl

was generated by a 12-vane sheet metal swirler at the inlet cross-

section. The hub of the 60° swirler was 19 mm in diameter and the

tip was 57 mm in diameter with solid body rotation. In the hub or

centerbody, a cone/annular nozzle was installed for injection of

CO2 in the nonreacting measurements. The nozzle had an 8.65-mm
outer diameter, a l-mm gap, and a 20° included half angle. Dilu-

tion or cooling air was admitted between the outer diameter of the

swirler and duct wall. For these measurements a 50-percent split

of swirler to cooling air was maintained.

2-D EllipticModeling Considerations

Computations were made with a rectilinear node arrangement of

45 axial nodes, extending from -4.5 mm to 280 mm, and 31 radial

nodes, where the swirler exit was located at X = 0.0. The radial

node spacing duplicated the hardware dimensions with 7 nodes in the

center body, 14 nodes in the swirler, and 9 in the outer annulus.

Three nodes were provided before the inlet boundary to facilitate

the radial pressure gradient development caused by upstream inter-

action of the flow field. Axial grid spacing started with 1.5-mm

spacing at the inlet and expanded geometrically to the exit.
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Inlet profiles were taken partially from bulk flow measure-

ments and laser anemometer measurements near the inlet (5 and 1 mm

downstream). The outer annulus had a bulk velocity of 15.4 m/sec,

zero swirl and a turbulent kinetic energy (k) taken from the mea-

sured profile. The swirler mean velocity components and turbulence

kinetic energy were taken from the measured profiles. Turbulence

length scale was assumed to be 1.6 mm.

A total of three different sets of calculations were performed

in this investigation. It has been recognized for some time13 that

in two-stream mixing within a recirculating flow field, the inlet

profiles cannot be independently defined. Instead, they are

strongly influenced by interaction between the streams as well as

by the flow field they establish. Therefore, in the first set of

calculations, inlet profiles were specified for both streams at a

station 4.5 mm upstream of the swirler exit. The second and third

cases were computed starting with inlet stream profiles at the

swirler exit. Measured velocity and turbulence profiles at the

swirler exit were used in the second case, whereas solid-body rota-

tion with a constant axial velocity component was assumed in the

third set of calculations.

The predicted results of the first case are presented in Fig-

ures 8.4-2 through Figure 8.4-7. These results are converged solu-

tions with the total mass source error of about 0.04 percent. In

these figures, the predictions are represented by the solid line,

and the symbols correspond to the data. Figure 8.4-2 illustrates

the comparison between predicted and measured centerline axial

velocity. The predicted maximum flow reversal velocity is approxi-

mately -5.3 m/s, while the corresponding measured value is about

-8.8 m/s. The length of flow reversal region along the centerline

is measured to be about 0.105 m, while the prediction results show

a value of about 0.051 m. Furthermore, the location of the maximum

negative velocity is predicted closer to the swirler exit compared

to the data.
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The predicted radial profiles of the mean axial velocity com-

ponent are shown in Figure 8.4-3. The data shown in this figure

were obtained with 1.3 percent CO2 injected along the centerline.

The estimated injection velocity of CO2 based upon the mass flow
and nozzle area was quite high (27.9 m/s). Such velocities would

tend to eliminate the recirculation zone. Accurate inlet injection

velocity measurements are needed to correctly predict the flow
field in the recirculation zone. Since that data is not available

for this case, the CO2 flow was not included in the computations.

Furthermore, the CO2 flow rate is a small percentage of the total
mass flow rate and is not expected to alter the flow field substan-

tially in the regions far downstream (greater than approximately 10

nozzle diameters) of the injector. The predicted results shown in

Figure 8.4-3 do not include the CO2 injection. This accounts for
the difference between predicted and measured velocities near the

axis at X = 5 mm. However, in the regions corresponding to the

swirler and the cooling air region, the predicted axial velocities

are in agreement with the data. The predicted maximum flow rever-

sal velocities are smaller than the data. However, beyond the

recirculation zone, the data and predictions are in good agreement.

Figure 8.4-4 shows the comparison between predicted and mea-

sured swirl velocity profiles. The predicted peak swirl velocity

values are about 15 percent higher than the data up to the station

where recirculation exists. However, at the far downstream sta-

tions, the swirl velocity profiles are accurately predicted.

A comparison between predicted and measured turbulence kinetic

energy profiles is shown in Figure 8.4-5. In this figure, the data

was obtained by assuming isotropic turbulence structure with the

measured u' values. The overall levels of the turbulence kinetic

energy are correctly predicted. In swirling flows, the assumption

of isotropy is questionable, and the actual turbulence kinetic en-

ergy profiles are unknown.
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The measured and predicted normalized streamline contour plots

are presented in Figure 8.4-6 and 8.4-7, respectively.

Comparison between these two figures shows that the measured

maximum recirculation mass is 3 percent, while the predicted value

is 0.5 percent. The predicted reattachment length is considerably
shorter than the data.

A second set of calculations was made wherein the inlet condi-

tions were applied at the swirler exit (X = 0) using the measured

values of velocity and turbulence intensities. The grid network

used in this case was identical to the one used in the first set of

calculations. The predicted results for the second set of calcula-

tions are shown in Figures 8.4-8 through 8.4-11. These results are

very similar to the first set of calculations, shown in Figures

8.4-2 through 8.4-5.

The third set of calculations was made in which the inlet

axial velocity profile was assumed to be uniform and a solid-body-

rotation profile was used for the inlet swirl velocity. These

inlet profiles were applied at the swirler exit, (X = 0). The

results of these computations are illustrated in Figures 8.4-12

through 8.4-15. The predicted length of the recirculation zone in

this case is about 0.03 m, which is even smaller than predictions

in the previous sets of calculations. The predicted mean axial

velocity profiles in this case (Figure 8.4-13) are significantly

different from the data, especially near the inlet station. How-

ever, beyond X = 10 cm, the predicted axial velocity profiles are

in good agreement with the data.

The predicted swirl velocity profiles (Figure 8.4-14) show

larger peak values than the data. However, near the axis of the

tube, the predicted profiles are in agreement with the data beyond

X = 4 cm. The predicted turbulence kinetic energy profiles are
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smaller than the data by a factor of 2 up to X = i0 cm. Beyond X =

i0 cm, the turbulence kinetic energy levels are correctly pre-

dicted.

The followingconclusionscan be made for the computationsof
a swirl combustorwith cooling air:

o The initialaxial and swirl velocityprofileshave a dom-

inant effect on the predictionsdownstream.

o The size of the recirculation zone and the maximum flow

reversal velocities are underestimated by the k-E model,

even though the trends are correctly predicted. The pro-

files in the far field (beyond X = i0 cm) are accurately

predicted by the model. This is consistent with the con-

clusions of Paragraph 8.3.

o When plug flow axial velocity and solid-body-rotation

swirler velocity profiles were used at the inlet, the

predicted results were in poor agreement with the data.

However, the predicted profiles in the far field are in

good agreement with the data.
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Figure 8.4-4. Comparison Between Measured and Calculated Swirl
Velocity Profiles.
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Figure 8.4-5. Turbulence Kinetic Energy Profiles.

486



0
'NI"
o
•_ X - 14 CM. TURB KIN ENERGY

0

0

•-- 0 0

° ?_::D°
--0

.<

0
o

I C) I
0.0 20.0 40.0

K ( M/S )**2

o

•_ X - 24 CM: TURB KIN ENERGY
o

0

2
0

_ 0

0

o Oo
o

o I I
0.0 10.0 20.0

K (MIS )**2

Figure 8.4-5. Turbulence Kinetic Energy Profiles (Cont'd).

487



CONTOURVALUE
O@
CO l -0.03O0

2 -0.0200
3 -0.0100

15 4 -0.0050
14 5 0.0000

3 6 0.0050
? 0.0100

2 8 0.0500
9 0.1000
10 0.2000

l
11 0.4000
12 0.6000

13 0.8000
0 14 0.9000

15 1,0000

Figure 8.4-6. Measured Streamline Plot.



STRF'RtILINEFUNCTION (ROISECI

-0.03 -0:02 -0.+01 x ,_. • x - ,_-0.005 _ 0.05 0.!0 _200.005 0.01
I1( Z I •

0.04 _ 0.00 0.80 0.90 '

I I i I i I i i 1 J

_,e_I- I | I I i I 1 I II I I I I 1 I i I I

• • • zz Z • • • • • • • • • • •
ZZ

• imm m m m m • • • • • • • • m •

_ x m i • I • • • • • i

f_,) x x x • x x x x
_. x x x x x x x x x x x x

x xX •
x x x

0 wXX x Y Y y y y y y y y y y Y Y
GC Y Y Y Y
(_ YY Y Y Y y Y

y y Y Y Y Y Z Z Z Z Z Z Z

__ Z Z zZZ Z Z ZZ Z Z Z Z Zz z z zZZ z z zz z z

e4 • + x x x
• x

4, e o_ + 4. 4,

x x x x x x x • • • . ,h_ 4, x x x , x
• - _ 9 9 x x

o _ x x x x xx • e ,m. 9 +
e4p 'P 9

4' "

40

g. j ,
°0.00 0.70 11.41 21.11 21-81 31.52 41"22 41"92 51"62 61"33 ?i'D3 )1"_3 81"44 91"14 91"84 LD'55

AXIAL DISTANCE (CM)

Figure 8.4-7. Calculated Streamline Plot.



G

CENTERLINE kX VF__OCITY

Figure 8.4-8. Second Set of Calculations - Centerline Axial
Velocity Development.

490



o o
c,. X - 0.5 CM '_._ )' - ' _JM
o" c,

o

-.-_ c.. _c,

o° o o° o
0 C_

0 i 0 I i 0 0 I I i I
-4.0 5.0 _4.0 23.0 lO.t" C_.0 _O.t" _O.f 50.0

d - VEL ( M/S ) d - '/EL ( M/S )

Y - ,' CM y - 4 CM
o o

m_° o oo° oo_o_& _o _&-

,,<: ,<_

o

o _ o

0 I I I I o 0 I I I
-I0.0 0.0 fO.O 20.0 30.0 I0.0 0.0 !0.0 20.0

U - VEL (M/S) U - VEL (M/S

._ y - i CM ._ X = 10 rjM
o c,

_ 20
m_ m_

•_ °_

o o

N o oo o
o , l , G el i t

-I0,0 0,0 I0.0 20,0 -I0.0 0.0 lO.O 20.0

U - VEL (M/S) U - VEL (M/S)

Figure 8.4-9. Second Set of Calculations - Axial Velocity
Profiles.

491



o o
X - 14 Cl4 X - 24 CU

0

_ O 0m_ m_°

_-, c.

o O I I o I !
0 10.0 20.0 I0.0 15.0 20.0

U - VEL {M/S) U - VEL (_I/S)

Figure 8.4-9. Second Set of Calculations - Axial Velocity
Profiles (Cont'd).

492



o o
o X = 0.1 CM _ X - ! C_
o o

m_ m_

o oc,

0 _) I | ! o | I I I
-- .0 g.O Ig.o 29.0 -l.O 6.0 V3.0 20.0 Zi'.O

_/ - VEL (_I/S1 _ - VEL (_/S)

o c,

o o

o

o I I I o I I I
-1 0 1.0 15.0 23.0 -I,O [.0 15.0 23.0

W VEL (_/S) W - VEL (_/S)

•_ X - f CM _ X - _0 Cl_
o o

0

m ° o m °

_ oo
o I I I I o I I I

O. 5.0 10.0 !5.0 ZO.O .0 5.0 _0.0 T5.0

_/ - VEL (M/S) i'/ VEL (_/S)

Figure 8.4-10. Second Set of Calculations - Swirl Velocity
Profile.

493



c.

o X - 14 CM ._ X - 24 CM
o- o

°)
o

U')_ €.¢.)_ 0

• Q
.,_ .<

o
G c._

o I _ I o I I
0.0 b.O I0.0 15.0 0.0 5.0 10.0

W VEL (M/S) W - VEL (M/S)

Figure 8.4-10. Second Set of Calculations - Swirl Velocity
Profile (Cont'd).

494



Figure 8.4-11. Second Set of Calculations- Turbulence Kinetic
Energy Profiles.
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Figure 8.4-14. Third Set of Calculations - Swirl Velocity
Profiles.
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8.5 Swirlin 9 Flow in a Pipe Expansion

Another benchmark test case selected was the swirling flow in

a pipe expansion. Measurements in this flow field were made by

Janjua, 100 et al., using a six-orientation, hot-wire anemometer

with and without swirl. A schematic of this test setup is shown in

Figure 8.5-1.

This figure illustrates the geometry of the test section for

both swirling and nonswirling cases. For the nonswirling case,

however, the hub radius of the swirler vane was equal to zero. Com-

putations were started with plug flow at the inlet 4.0 cm upstream

of the pipe expansion plane. Along the axis of the pipe, symmetry

conditions were specified, and at the near wall nodes, wall

boundary conditions were specified through the use of wall func-

tions. At the exit boundary, zero axial gradient conditions were

specified. The computational domain extended from 4.0 cm upstream

of the sudden expansion to 220 cm downstream of the step in the

axial (X) direction and from R = 0 to R = 15 cm in the radial direc-

tion.

Computations were made for nonswirling and swirling flows

using the 2-D elliptic code with the following models:

o Standard k-_ model

o k-_ model with Richardson number correction

o Algebraic stress model

Janjua Nonswirling Flow

For the nonswirling flow, the average inlet axial velocity up-

stream of the expansion was 5.385 m/sec. The inlet turbulence

kinetic energy and length scale were assigned uniform values of

1.075 m2/sec 2 and 0.003 meters, respectively. The inlet average
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velocity is used to nondimensionalize the flow variables of inter-

est in presenting the results.

Figure 8.5-2 presents for the nonswirling flow the standard

k-_ model predictions and the data of Janjua, et al., for mean

axial velocity profiles. In the region behind the step, the data

does not show any recirculation zone even at X = 19 cm (X/D = 0.5).

However, the predicted velocity profiles show the recirculation

zone extending up to X = 64 cm (X/D = 2.0). Because of this, the

predicted axial velocity values near the axis of the pipe are

larger than the data.

In nonswirling flows, the streamline curvature effects are

represented by the Richardson number, Rii, defined in Equation 18.
The Richardson number is used to modify the turbulence model con-

stant C2 in the k-e model to account for the extra turbulence pro-
duction according to Equation 22. When the Richardson number cor-

rections are included in the k-€ model, the predicted recirculation

zone near the wall (Figure 8.5-3) has slightly higher reverse-

velocity values than the standard k-€ model results.

The algebraic stress model predictions with Richardson number

correction for the nonswirling flow in a pipe expansion are shown

in Figures 8.5-4 and 8.5-5. The comparison between Janjua data and

ASM predictions for mean axial velocity is shown in Figure 8.5-4.

The algebraic stress model also predicts a recirculation zone that
X 2. ASM results are similar to the k-_ modelextends up to _ =

results beyond X = 64 cm.

The ASM predictions for u', v', and u'v' are shown in Figure

8.5-5 along with the data of Janjua, et al. The predicted u' values

are slightly higher than data in the recirculation zone. Near the

tube centerline, the algebraic stress model underestimates the u'

values. Very similar characteristics are also seen in the v' pro-

files. The predicted u--vvalues are larger in magnitude than the
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data in the recirculation zone. At the axis of the pipe, the data

X while the predictions show ashows a nonzero u-vvalues beyond _ = i,
value of zero at the axis.

Chaturvedi Nonswirlin@ Flow

In their publication, Janjua, et al., had compared their mea-

surements with the hot-wire data of Chaturvedi.217 In that report,

significant differences were seen between the data of Chaturvedi

and Janjua. To further elucidate flow field through a pipe expan-

sion, Figures 8.5-6 through 8.5-9 show comparison between calcula-

tions and Chaturvedi data.

Figure 8.5-6 presents the results with the standard k-E for

mean axial velocity. These results are in good agreement with each

other. The k-E model as well as the Chaturvedi data show flow re-
X

versal regions near the wall of the pipe up to _ = 2. The k-E model
predictions are also in agreement with the data near the axis of

the tube.

Figure 8.5-7 shows the mean axial velocity comparison between

Chaturvedi data and predictions obtained from a k-E model with

streamline curvature (Richardson number) corrections. These pro-

files are similar to the ones shown in Figure 8.5-6. The magnitude

of maximum reverse velocities predicted is slightly greater when

the Richardson number corrections are applied.

The comparison between Chaturvedi data and ASM predictions is

shown in Figures 8.5-8 and 8.5-9. Figure 8.5-8 shows the results

for mean axial velocity and u'. The mean axial velocity profiles

are in good agreement with each other, especially in the recircula-

X the ASM predictions for nondimensionalizedtion zone. At _ = 0.5,

RMS axial turbulence velocities (u'/URef) are in good agreement
with the data in the region behind the pipe expansion step. The u'
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values are slightly overpredicted in the region near the axis of
X

the pipe. Beyond _ = i, the u' values near the axis of the tube are
underestimated. However, the predicted u' profiles in the region

behind the step are in good agreement with the data. A similar

trend is also seen in the results for the RMS radial velocity fluc-

tuations (v'), as shown in Figure 8.5-9.

The ASM predictions and Chaturvedi data for the Reynolds shear

stress (uv) are shown in Figure 8.5-9. The data and predictions
X

are in good agreement at _ = 0.5. Beyond this station, the ASM
overestimates the magnitude of u--vin the recirculation zone. The

Chaturvedi data shows a faster decay rate of the peak uv value

than the predictions. In the region close to the axis of the tube,

the Chaturvedi data and predictions are in good qualitative agree-
ment.

Swirlin@ Flow

Velocity measurements in a swirling flow through a pipe expan-

sion were made by Janjua, et al., in a test setup shown schematic-

ally in Figure 8.5-1. The average inlet axial velocity was esti-

mated to be 10.5 m/sec. For the swirl angle of 38 degrees, the

average inlet swirl velocity was 8.2 m/sec. Computations for this

case also were started 4.0 cm upstream of the sudden expansion,

with uniform profiles for axial velocity, turbulence kinetic

energy, and length scale of 10.5 m/sec, 3.308 m2/sec2, and 0.003 m,

respectively. The 2-D elliptic code with 2200 nodes was used to

obtain solutions. Computations were made with the following turbu-

lence models:

o Standard k-E model

o k-E model with streamline curvature correction due to

swirl

o Algebraic stressmodel.
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The standard k-_ model predictions are presented in Figure

X 0 5, the predictions show flow reversal regions8.5-10. At _ = .
near the axis as well as in the region behind the axisymmetric

step. The data shows a recirculation zone near the axis of the

pipe. The measured recirculation zone height is much larger than

the predictions. The data as well as the k-E model predictions

show a maximum reverse velocity of about 32 percent of the refer-

ence velocity. The location of the maximum reversal velocity is

predicted to be at the axis, while the data shows it to lie off,
X

axis. The peak reverse-flow velocity values at _ = 0.5 are under-
X _ i, the agreement between datapredicted by the k-_ model. At _ -

and predictions is improved. The predicted profile shows the loca-

tion of the peak u-velocity occurring at a higher radial location
X

than that at _ = 0.5. This is because of the centrifugal accelera-
X 1.5 the agreement between data andtion caused by swirl. At _ = ,

predictions is good.

The k-E model predictions and the measured values for tangen-

tial velocit_ are shown in Figure 8.5-10. The k-_ model predic-
tions as well as the data show a solid-body rotational structure

X
(W/r = const.). At 5 = 0.5, the data shows some scatter near the
peak location, but the data indicates that location of the peak

tends to shift toward the axis of the pipe. In view of the centrif-

ugal acceleration caused by a swirl, it is reasonable to expect the

peak W values to occur closer to the wall of the pipe. This be-

havior is correctly predicted by the k-E model.

The predictions obtained from the k-E model with streamline

curvature corrections due to swirl are illustrated in Figure

8.5-11. The streamline curvature correction due to swirl is

applied in a manner identical to that outlined in Paragraph 8.1.

The figure shows the comparison between data and predictions for
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mean axial and tangential velocity profiles. The predicted pro-

files in this figure have similar characteristics to those obtained
X

from standard k-E model. At _ = 0.5, a slight reduction in the peak
positive as well as negative values is predicted with the

Richardson number correction compared to the standard k-E model re-

sults. Similarly, a slight reduction in the peak W values can be

seen in the swirl velocity profiles when compared to the standard

k-E model results. At the downstream stations, the effects of

streamline curvature correction are negligible.

The ASM predictionsare illustratedin Figures 8.5-12 through

8.5-17. The ASM results for mean axial velocityhave very similar
characteristicsto the k-_ model results. The agreementbetween

X _ 1 5 The ASM predictionsthe data and ASM results is good at _ - . .
for swirl velocity are also similar to the k-E model results.

The ASM predictions and the data for RMS axial turbulence
X thevelocity fluctuations are shown in Figure 8.5-13. At _ = 0.5,

predicted u' profile shows two peaks, one corresponding to the

shear layer from the hub of the swirler and the other from the tip

of the swirler vanes. The data shows only the peak corresponding

to the tip. The ASM overestimates the u' value in the recircula-

tion zone behind the hub and underestimates it in the region behind

the pipe expansion step. At _ = i, the agreement
between the data

and ASM prediction is poor; at _ = 1.5, the agreement is good.

The comparison between data and ASM prediction for the radial
X

turbulence intensity (v') is also shown in Figure 8.5-13. At 5 =
0.5, the ASM substantially overpredicts the v' magnitudes. But

further downstream the correlation is good. Similar observations

can be made for W' as shown in Figure 8.5-14.
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The Reynolds shear stress components (uv, uw and v-w)predicted

by the ASM are shown in Figures 8.5-15 through 8.5-17. Other than

(_) = 1.5), the agreement between the data and thethe last station

predictions is generally poor.

The results presented in this paragraph can be summarizedas
follows:

o The standard k-E model and the ASM predicts the mean

velocity profiles accurately for the nonswirling flow

through the pipe expansion. The ASM predictions for the

Reynolds stress are in agreement with the data of
Chaturvedi.

o In swirling flows, the standard k-E model correctly pre-

dicts the axial velocity far downstream from the step.

In the near wake region behind the sudden expansion, the

agreement is qualitative. Thepredictions for mean swirl

velocity are only in qualitative agreement with the data.

o The streamlinecurvaturecorrectiondue to swirl improves
the model predictionsslightly.

o The ASM predictions for mean velocity are similar to the

standard k-€ model results. The ASM predictions for

Reynolds normal stresses are in good agreement with data

for the downstream region. In the region near the sudden

expansion, the ASM predictions and the Janjua data are in

qualitative agreement. The agreement between data and

ASM predictions for shear stress is poor.
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Figure 8.5-1. Test Setup of Swirling Flow in a Pipe Expansion.
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Figure 8.5-2. k-_ Model for Nonswirling Flow - Axial Velocity Profiles.
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Figure 8 5-5 Nonswirling u' v' and uv Profiles
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Figure 8.5-9. ASM Predictions and Chaturvedi Data -
V n and u'_Profiles.
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8.6 Confined Swirl-Driven Flow

Confined swirl-driven flow field characteristics have been

recently reported by Altgeld, Jones and Wilhelmi.218 They used a

10-cm-diameter quartz tube 30 cm in length, as shown schematically

in Figure 8.6-1. A swirler was installed at the tube inlet. The

baseline swirler hub and tip diameters were 21 mm and 42 mm, re-

spectively. The swirler vane angle was 45°, with a corresponding
swirl number of 0.78.

The mean and fluctuating velocity components were made for a

fixed through-flow (3.3 m/sec reference velocity based on the tube

flow area).

Two configurations were investigated:

o Configuration I - The swirler has a 7-mm-diameter orifice

at the hub center. This orifice axially injected 20 per-,
cent of the swirler mass flow rate.

o Configuration II - The baseline swirler in the tube with

a 4-mm-thick baffle 67 mm in diameter. The baffle was

located 285 mm from the inlet.

A nonuniformly spaced node arrangement was used in the compu-

tations. It consisted of 53 axial nodes extending from 0 to 30 cm

and 26 radial nodes. The radial node spacing duplicated the hard-

ware dimensions with 3 nodes in the core jet, 6 nodes in the

swirler, and 20 nodes covering the baffle. The minimum node spac-

ing in each direction was 1 mm, and the axial nodes increased

geometrically to the exit, with the maximum node size being 10.3
mm.
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Uniform inlet profiles were used in the computations. The

swirler and core jet axial velocities were determined from the

specified reference velocity of 3.3 m/sec, the air flow splits, the

hardware dimensions, and an assumed 4-percent passage blockage.

For the swirler, the axial and circumferential velocities were

taken as equal. All radial and swirl velocities in the core jet

were modeled as zero. Inlet turbulence intensity was assumed to be

5 percent, and mixing length was taken as 3 percent of the inlet

passage height.

Figure 8.6-2 presents a comparison between measured and pre-

dicted mean axial velocity profiles of Configuration I at different

axial stations. At X = 2, 4, 6 and 8 cm, both measured and cal-

culated profiles show three distinct regions. Near the tube axis,

a high-velocity region is set up by the jet from the hub center.

This jet is responsible for destroying the center portion of the

swirl-induced recirculation zone. Consequently, only a part of

this reverse-flow region exists as shown in Figure 8.6-2. Beyond

X = 10 cm, both model and data indicate no reverse-flow region.

Measurements show faster decay of the center jet than the calcula-

tions do.

Configuration I tangential (swirl) velocity profiles are shown

in Figure 8.6-3. There is some discrepancy between predictions and

data in the initial portion of the tube, but further downstream the

agreement is reasonable. The model is predicting a slightly less

angular momentum decay rate. Overall, the correlation is satisfac-

tory.

Figure 8.6-4 presents axial velocity profiles for the second

configuration (exitbaffle). The outer portion of the tube is well

predicted by the k-E model, whereas in the reverse-flow region the

model predicts higher flow rate than the data indicates. The tan-

gential velocity profiles are shown in Figure 8.6-5. Initially,
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the agreement is quite acceptable. Further downstream, predictions

show solid-body rotation near the center portion of the tube. That

appears plausible. However, data indicates relatively uniform Va
in the radial direction.
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8.7 Combustin@ Spray in Confined Swirlin@ Flow

Internal flow fields of most of the practical combustors have

fuel spray interacting with swirling air, the swirl being intro-

duced for flame stabilization. The flow field in such a system is

characterized by the turbulence, kinetic and spray combustion

models. For the benchmark test case selected in this category,

measurements were made by E1 Banhawy and Whitelaw179. A schematic

of their experimental arrangement is shown in Figure 8.7-1. The

test setup comprised a 155-mm-diameter combustion chamber and sys-

tems for supplying kerosene fuel, combustion and cooling air. The

combustion air entered the chamber through a swirler assembled co-

axially with a fuel atomizer, which was a rotating cup atomizer.

The fuel spray emerged from the atomizer in the form of droplets

with an average diameter of 33 microns. The droplet size was

determined from a separate spray test. For the test condition

selected, the inlet conditions were:

o Combustion air flow rate: 0.0556 kg/sec

o Kerosene flow rate: 0.00132 kg/sec

o Nozzle airflow rate: 0.00229 kg/sec

o Inlet air temperature: 300°K

o Inlet fuel temperature: 300°K

o Swirler vane angle: 60 degrees

The droplet velocity was measured by a laser Doppler velocimeter,

and the reported droplet velocity components were:

Up = 0.9 - 8 m/sec

Vp = 1.0 - 2.34 m/sec

Wp = 11.69 - 25.3 m/sec

The combustor internal flow field measurements included temperature

and species concentration profiles at different axial stations.
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Predictions for this case were obtained from the 2-D elliptic

program with the standard k-E model. Computations were made with

the two-step and the four-step kinetic scheme using the Garrett

spray model. Computations were made using 51 x 27 grid nodal

points. A partial layout of the grid system used for this test case

is shown in Figure 8.7-2. The fuel nozzle body shape was approxi-

mated by a stair-step boundary. The inlet velocity components and

turbulence kinetic energy were assumed to be constant, with

Uin = 7.708 m/sec

Vsin = 13.351 m/sec

k. = 0.713 m2/sec2in

The cooling air through the fuel nozzle body was introduced into

the combustor as radial jets, with velocities corresponding to the

droplet velocities.

The comparison between data and model predictions is shown in

Figures 8.7-3 through 8.7-6. Predictions were made with both two-

step and four-step schemes. The top parts of these figures show

the measured data, while the bottom parts show predictions with the

two-step and four-step models.

Figure 8.7-3 illustrates the results for temperature distribu-

tion. The predicted peak-temperature region is bigger than the

data. In obtaining four-step results, the rate constants recom-

mended by Hautman, et al., were used. The four-step model also

predicts bigger, higher flame-temperature regions than the data.

However, these contours are in better agreement with the measure-

ments than the two-step results. The data shows that temperature

contours are pushed radially outward closer to the wall compared to

the data. This implies that the heat flux in the radial direction
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is underpredicted by the k-€ model. This trend is consistent with

the characteristics observed in other diffusion flame calculations.

The measured and predicted CO mole fractions are illustrated

in Figure 8.7-4. The measured peak CO mole fraction is ii percent,

while the predicted peak CO concentration is 4 percent with the

two-step model. However, the location of maximum CO concentrations

is correctly predicted by the model. The CO concentrations pre-

dicted by the four-step model are much smaller than the data. The

maximum CO mole fraction predicted is about 3 percent. The loca-

tion of the peak CO is in agreement with the data.

The CO2 mole fractions measured and predicted by the two-step

model are illustrated in Figure 8.7-5. The maximum CO2 concentra-
tion in data and predictions are 13 percent. However, the pre-

dicted peak CO2 concentrations occur farther downstream compared to

the data. The high CO2 isopleths are also located in the regions
where high isotherms are predicted. The four-step predicted peak

CO2 concentration zone is smaller than that indicated by the data;

the predicted peak CO2 value was 12 percent.

Comparison of measured and predicted oxygen mole fractions is

shown in Figure 8.7-6. With the two-step scheme, the predicted

regions of low oxygen concentrations occur further downstream com-

pared to the data. The four-step predictions and measured contours

are in better qualitative agreement than the two-step model.
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EL-BANHAWYANDWHITELAW

CYLINDRICALCOMBUSTORWITHROTATINGCUP
ATOMIZERANDAIRINTRODUCEDTHROUGHA SWIRLER
SURROUNDINGTHEATOMIZER

r1 = 0.0125M
r2 = 0.021M
r3 = 0.049M
R = 0.0775M

I| = 0.05M
L = 0.758M
UAIR = 8.53M/S
WAIR = 14.21M/S
TAIR = 300°K
SMD= 33pM

TFUEL= 300oK

Figure 8.7-1. Combusting Spray in Confined Swirling Flow
(El Banhawy and Whitelaw Test Setup).
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Figure 8.7-6. Contour Maps of 02 Volume Concentrations(%)-
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9.0 Dilution Jet Mixing Validation

Modern advanced technology combustor designs require shorter

combustors and higher turbine inlet temperatures. In such combus-

tion systems, the role of the dilution zone to achieve the turbine

inlet radial profile quality plays an important part. It is very

important to characterize the mixing of the dilution jets with the

hot combustor gases. The dilution jet mixing flow is a very com-

plex 3-D flow characterized by highly turbulent scalar transport.

Detailed analytical flow characterization of such flows can be done

only by a 3-D flow computation. As a part of the NASA HOST (Hot

Section Technology) Program, temperature field measurements were

made at Garrett as in several idealized dilution zone configura-

tions. Some of these test results were used to validate the 3-D

analytical model.

One of the major difficulties in the 3-D models lies in ob-

taining grid-independent solutions. The predictions obtained can

depend upon grid density distributions as well as the number of

grid points. A detailed discussion on the grid insensitivity is

presented in Paragraph 9.1. Paragraph 9.2 contains the discussion

on the effects of size and spacing for a single row of jets injected

from one side into a ducted cross flow. For this case of single-

sided injection, the effects of the jet-to-cross-flow momentum

ratio and the cross-stream nonuniform temperature profile are pre-

sented in Paragraph 9.3. The effects of injection from two sides

into a confined cross flow with in-line as well as staggered jets

are described in Paragraph 9.4.

9.1 Effects of Finite-Difference Grid Distribution

The 3-D calculations for the jet mixing test cases were per-

formed for the geometry shown schematically in Figure 9.1-1. All

the computations were made for the case of a single row of jets
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injected perpendicularly to the ducted cross stream. The cross

stream had a constant duct height, H0, of 10.16 cm. The diameters
of the jets were equal, and the jets were spaced apart at a dis-

tance, S. The walls of the mainstream duct were insulated. The

distances along the mainstream were measured from the plane formed

by the injected air from the row of jets, and the distances across

the duct were measured from the duct wall where the jets are

located. Computations were performed from mid-plane to mid-plane

along the Z direction using cyclic boundary conditions at the first

and the last planes. The computational domain extended from the

top wall to the bottom wail. In the streamwise direction, the grid

network was extended up to x/H0 = 2 although in some test cases the

computations did not extend beyond x/H0 = 1.5.

One of the jet mixing test cases selected consisted of 12 jets

(1.27 cm diameter) with a jet-to-mainstream momentum ratio, J, of

25.32. The momentum ratio, J, is defined as

2
J = PjVj PmUm2

The ratio of orifice spacing to diameter in this test case was 2.0,

and the ratio of duct height to diameter was 8.0. The flow condi-
tions were:

Average mainstream velocity, Um = 15.04 m/s

Average mainstream temperature, Tm = 648.7°K

Jet exit velocity, Vj = 51.87 m/s

Jet exit temperature, Tj = 308.3°K

Mainstream static pressure, Pm = 97,726 n/m2
Mainstream turbulence kinetic energy = 1.27 m2/s 2

Jet turbulence kinetic energy = 8.07 m2/s2
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Calculations for this case were made by using 45 x 26 x 17

(19,890) grid nodes in the axial, radial and transverse directions,

respectively. The grid network selected for this computation is

shown in Figure 9.1-2. In this case, a total of 49 nodes were used

inside the jet. The mainstream inlet conditions were assumed to be

uniform with Um, Tm and inlet turbulence intensity as obtained from
the measurements.

Predictions were obtained with the standard k-€ model, wherein

the wall functions were used to specify the adiabatic wall boundary

conditions. At the exit axial plane, diffusion in the upstream

direction was set equal to zero. For the jet midplanes in the

transverse direction, cyclic boundary conditions were applied. The

predicted temperature distributions are expressed in nondimen-

sional form by the variable 8, defined as

Tm - T
r T

m - Tj

Thus, higher 8 values correspond to colder regions, and low

values correspond to hot zones.

The comparison between data and predictions obtained with 49

nodal points simulating the jet is presented in Figure 9.1-3. The

predictions shown in this figure are converged results with the

total mass source error of about 0.02 percent of the total mass

flow rate after 350 iterations. The top part of the figure shows

the predicted and measured isopleths of 8 at three axial planes,

x/H0 = 0.5, 0.75 and 1.0. For each axial plane, the figure on the
left shows the predicted results and the one on the right shows the

measurements. The bottom part of the figure shows the comparison

between predicted and measured _ profiles along the centerplane of

the jet. In this figure the jets are injected from the top.

The predicted jet penetrationis slightly less than the data.
The predictions show much larger temperature variations in the
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transverse direction than the data. The predicted peak _ values

are slightly larger than the measured values. The predicted radial

profiles are in qualitative agreement. It is also important to

recognize that in this case a difference in the value of theta,

(48), by a magnitude of 0.i corresponds to a temperature differ-
ence of 34°K.

In most gas turbine combustor flow calculations even with

20,000 nodes, it is not possible to have as many as 49 nodal points

to simulate each of the radial jets. In practice, two nodes in the

axial and two nodes in the transverse direction are used. In order

to determine the accuracy of the predictions in such cases, cal-

culations were made with a new grid system in which only four nodes

were located inside the jet. The grid network selected for this

computation is shown in Figure 9.1-4. The centerline was situated

between I = 5 and 6 along the axial coordinate and between K = 4 and

5 along the transverse coordinate. For this case, a total of 27 x

26 x 8 (5616) nodes were used. This grid system is quite coarse

compared to the one shown in Figure 9.1-2. Predictions obtained by

using this grid system are shown in Figure 9.1-5. These results

had a total mass residual of about 0.02 percent, which is compar-

able to the results shown for the fine grid network. The coarse

grid results are in very good agreement with the data. The coarse

grid results also show smaller gradients in the transverse direc-
i

tion compared to the fine grid results. The centerplane radial

profiles of 8 are in excellent agreement with the data.

A comparison of the centerplane temperature profiles for the

fine-grid and the coarse-grid predictions are shown in Figure

9.1-6. In the fine grid, the computations were made up to x = 14.3

cm, while the coarse grid predictions were performed up to x =

16.72 cm. Near the exit boundary, the 8 contours are horizontal,

which is a result of the zero axial gradient boundary condition.
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However, at the upstream stations, the exit boundary condition does

not have any influence on the temperature profiles.

In order to ascertain that this behavior is not a character-

istic of a specific momentum ratio range, these computations were

also made for a high momentum ratio of 107.8. The grid systems used

in these efforts were identical to those shown in Figure 9.1-2 and

9.1-4. The fine grid predictions (45 x 26 x 17 nodes) for nondimen-

sional temperature are illustrated in Figure 9.1-7. At x/H 0 = 0.5,

the data and the predictions show the jet penetration to be about

70 percent of duct height. As observed in the case of J = 25.3, the

fine grid predictions underpredict the mixing, and hence the peak

values are overestimated by the model. The predicted 8 distribu-

tions show larger gradients in the transverse direction than the

data.

The predicted e distributions with four nodes inside the jet

at a momentum ratio of 107.78 are presented in Figure 9.1-8. These

results have converged to within approximately 0.02 percent in

total mass source error after 350 iterations. The predicted

contours are in very good agreement with the data. The coarse grid

results again show smaller gradients in the transverse direction

than the fine grid results (Figure 9.1-7). The radial profiles

predicted with the coarse grid are in excellent agreement with the

data.

The centerplane temperature contours for the fine grid and

coarse grid results for J = 107.78 are shown in Figure 9.1-9. These

figures also show that the upstream effects of the exit boundary

conditions are minimal.

The results shown for the fine-grid and the coarse-grid system

clearly demonstrate that the predictions are not grid-independent

solutions. However, the computer memory available at Garrett was
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limited to a total of 20,000 nodes and hence the number of grids

could not be increased further. However, it is possible to

rearrange the grid density. Since the fine-grid system seemed to

give higher transverse gradients than the coarse-grid network, it

was deemed important to increase the number of grids in the trans-

verse direction. Since the exit boundary is much farther than the

region of interest, it is possible to shorten the length of com-

putational domain in the axial direction and pack the nodes closely

to increase the resolution in the region of interest.

Calculations were made with a fine-grid system and an even

finer grid system wherein the grid density was increased by a

factor of 1.4. An increase in grid density by a factor of 1.4 is

achieved by increasing the number of nodes in the axial and trans-

verse directions by about 18 percent in the region of interest.

Predictions for the two-grid system were obtained for the case

of a single row of jets with diameters of 1.8 cm spaced 5.08 cm

apart. The jet-to-cross-flow momentum ratio was 25.48. The grid

network used in the fine-grid system is illustrated in Figure

9.1-10. For this case, 35 x 33 x 17 nodes were used in the computa-

tional domain. The computational domain was extended up to

17.48 cm in the axial direction. A total of 51 nodes were located

inside the jet so that sufficient resolution was obtained near the

jet exit plane.

The standard k-e model predictions for this case are shown in

Figure 9.1-11. The left side of the contour plot for each axial

location corresponds to the prediction, and the figure on the right

= 0.25, the predicted and measuredrepresents the data. At x/H 0

contours are in good agreement, even though the predicted peak

values are slightly larger than the data. The radial profiles at

this plane are in good agreement except that the predicted jet
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penetration is slightly smaller than the data. Very similar char-

acteristics can be seen at x/Ho = 0.5 and 1.0. The predicted
contours still show larger transverse gradients than the data.

The grid system used in the finer network is shown in Figure

9.1-12. For this case, 32 x 29 x 21 grid nodes were used in the

computational domain. The computational domain in this case was

limited to 13.6 cm in the axial direction. A total of 69 nodes were

located inside the jet to increase the resolution near the jet exit

location. The predicted results for nondimensional temperature

distribution by using the finer grid network are presented in Fig-

ure 9.1-13. These contours are similar in character to those shown

in Figure 9.1-11. The predicted peak @ values are closer to the

measured value at all three axial stations than the results shown

in Figure 9.1-11. The differences between these two predictions

are not substantial. By increasing the number of nodes inside the

jet by about 35 percent, the solutions seem to approach grid-

independence criteria. Although thistest was performed with the

intention of addressing grid-independence criteria, substantially

more grid nodes are required to verify the grid independence of the
solution scheme.
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COORDINATEORIGINIS LOCATEDAT CENTEROF ORIFICE
Um,Pro,Tm = MAINSTREAMVELOCITY,DENSITY,ANDTEMPERATURE
Vj, pj, Tj = INITIALJET VELOCITY,DENSITY,ANDTEMPERATURE
Ho = TEST-SECTIONHEIGHTAT INJECTIONPLANE
H = TEST-SECTIONHEIGHTAT ANY X-Y PLANE
S = ORIFICESPACINGALONGZ (TRANSVERSE)DIRECTION
D = ORIFICEDIAMETER

DJ = _/r-_ D
ZTS = TEST-SECTIONTRANSVERSEDIMENSION= 305ram

Figure 9.1-i. Multiple Jet Mixing Coordinate System and
Important Nomenclature.
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Figure 9.1-6. PredictedCenterplaneTemperatureContours With
the Fine and Coarse Grid Systems,J = 25.32,
S/D = 2 and H0/D = 8.
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Figure 9.1-9. Predicted Centerplane Temperature Contours with
the Fine and Coarse Grid Systems, J = 107.78,
S/D = 2 and R0/D = 8.
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9.2 Single-SidedJet Injection: Effects of Jet Size and Spacing

The 3-D elliptic program was used to analytically predict the

effects of orifice size and spacing. A total of four test cases

were run covering three different orifice sizes (D = 1.27, 1.80 and

S 2 83 and 4.0) The analyti-2.54 cm), and three spacings (_ = 2.0, .
cal results along with the corresponding data are discussed in the

following paragraphs

Jet orifice size (and hence H0/D) and spacing greatly influ-
ence jet mixing characteristics as shown experimentally in Refer-

ence 219. Figures 9.1-3 and 9.1-13 compare between predicted and

measured effects of jet size and spacing on mixing behavior at con-

stant momentum ratio. In the first figure,the jet orifice diam-

eter, D, was 1.27 cm, and the hole spacing, S, was 2.54 cm, with an

attendant S/D of 2 and H/D of 8. For the results presented in

Figure 9.1-13 the jet diameter was 1.8 cm and the hole spacing was

5.08 cm, with an S/D of 2.83 and H/D of 5.66. In order to further

assess analytically the effect of hole size, predictions were ob-

tained for a row of 2.54 cm orifices spaced 5.08 cm apart having S/D

of 2 and H/D of 4. For this jet geometry, measurements were avail-

able for a momentum ratio of 21.59. Computation for this case was

performed with 45 x 23 x 19 (19,665) grid nodes, of which 72 nodes

were located inside the jet. Computations were performed until the

total mass source error was about 0.09 percent. The converged re-

sults for this case are presented in Figure 9.2-1.

The predicted @ contours are in qualitative agreement with the

data. The predicted results underestimate the mixing and hence

show larger gradients in the transverse direction. The peak cen-

terplane e values are slightly overpredicted by the model. At x/H0

= 0.5, the actual peak temperature difference between the data and

predictions is 41°K, compared to Tm - Ti = 343°K. The jet half-
width values, are correctly predicted by the model. Comparison

between Figures 9.1-3 and 9.2-1 show that, at a constant momentum
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ratio for the same S/D ratios, increasing the diameter increases

the jet penetration. However, increasing the jet diameter also

increases the transverse gradients. The same trend is also shown

by the data.

In order to examine the effects of S/D, computation was made

for the case of 2.54 cm diameter jets spaced 10.16 cm apart having

an S/D of 4 and H/D of 4 with a jet-to-mainstream momentum ratio of

26.68. For this case, computations were made by using 40 x 23 x 21

(19,320) nodes, of which 63 nodes were located inside the jet. For

this case, the mainstream velocity was 14.91 m/s, and the jet

velocity was 52.24 m/s. The predicted theta distributions for this

case are illustrated in Figure 9.2-2. The predicted results shown

are after 350 iterations with a total mass source error of 0.05

percent. The predicted distributions show much greater transverse

gradients than the measurements. Along the jet centerplane, the

predicted radial profile of e is in good agreement with the data,

with the peak _ value being slightly overpredicted. The jets pene-

trate to the opposite wall at x/H 0 = 0.5. Beyond this station, the

data shows a rapid mixing in both radial and transverse directions,

whereas the predictions show much slower mixing in the transverse

direction.

To summarize, the data and predictions are in good agreement

in predicting the centerplane profiles. Both of these results show

that increasing jet diameter for the same S/D and momentum ratio,

increases the jet penetration. Increasing the S/D and keeping the

same jet diameter and momentum ratio also increases the jet pene-

tration. However, the predictions show larger gradients in the

transverse direction than the measurements. The predicted trans-

verse gradients are larger when S/D is increased.
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9.3 Single-Sided Injection: Effects of Jet Momentum

.Ratio and Cross-Stream Temperature Profile

The results presented in Paragraph 9.2 illustrate the effects

of the geometrical parameters of the jet on the predicted mixing

characteristics. Another important parameter in the mixing of a

row of jets in a confined cross-flow is the jet-to-mainstream

momentum ratio (J).

Comparisons between 3-D predictions and data for the following

values of J are given in this section

D S Ho JM

(cm) D D

1.27 2 8 25.32, 107.78
2.54 4 4 6.14, 26.68

In Section 9.1, results were presented in Figures 9.1-3 and

9.1-7 for 1.27 cm orifices spaced 2 Diameters apart with J values

of 25.32 and 107.78, respectively. These results showed that by

increasing the momentum ratio, the jet penetration was increased

from about 40 percent to 70 percent of the duct height. The predic-

tions show higher transverse gradients than the measurements. The

gradients in the _ values for J = 25.32 and 107.78 were quite com-

parable.

Computations were also made for the 2.54 cm jets spaced 4

Diameters apart with low and medium momentum ratios. Figure 9.2-2

illustrates the results for J = 26.68. Both predictions and data

indicate jet impingement on the opposite wall of the duct. The

comparison between the two is reasonable. To further validate the

model, calculations were performed for the same orifice geometry

with a low momentum ratio of 6.14. For this case, the mainstream

velocity was 15.25 m/s and the jet velocity was 27.93 m/s. Compu-

tations for this case were performed with the same grid network as
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the one used for J = 26.68, having 40 x 23 x 21 (19,320) nodes.

Computations were continued until the total mass source error was

less than 0.02 percent. The predicted 8 distributions along with

the data are illustrated in Figure 9.3-1. At x/H0 = 0.5, the pre-
dicted 8 contours show slightly larger gradients than the measured

gradients. The mixing is also underestimated by the model. At the

downstream stations, the predicted radial profiles are in qualita-

tive agreement with the data. The peak 8 values are overestimated.

Comparison between Figures 9.2-2 and 9.3-1 show that the gradients

in the 8 contours between the two cases are comparable, even though

the jet penetrations for these cases are different.

In most combustor flow fields, the primary zone temperature

distributions are nonuniform, and the purpose of the dilution jets

is to alter the turbine inlet profiles to a desired distribution.

For the case of uniform mainstream profiles, it was shown that the

centerplane profiles are correctly predicted by the 3-D model.

However, the distributions in the transverse directions as indi-

cated by contour plots were only qualitatively well predicted. The

predictions were in better agreement with the data for S/D = 2 than

for the case of S/D = 4. In Figure 9.2-1, results were shown for

the case of uniform mainstream temperature profile; here the ori-

fice diameter is 2.54 cm, S/D = 2 at a momentum ratio of 21.59. For

this orifice geometry and a comparable momentum ratio (J = 22.63),

data is available with a nonuniform mainstream temperature profile.

In the test measurements, the hot mainstream air was mixed with

cold air from a cooling slot located well upstream of the jet

injection plane. The measured temperature profile upstream of the

jet injection plane is shown in Figure 9.3-2(a). In this figure,

the temperatures are nondimensionalized in the form,

Tmax - T=
Tmax - Tj
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Here Tmax is the mainstream maximum temperature which in this case
was 748.7°K. By using this expression, the value of @ should be

between 0 and 1 even for nonuniform cross-stream _ cases, and has

therefore been used to present the results for nonuniform main-

stream temperature profiles.

The temperature profile (upstream of the dilution orifices)

shown in Figure 9.3-2 indicates that the mainstream is cold near

the top wall and hot near the bottom wall of the duct. The corre-

sponding inlet mainstream velocity and turbulent kinetic energy

profiles are shown in Figure 9.3-2(b) and 9.3-2(c). The kinetic

energy profiles shown were obtained from hot-wire measurements.

Computations were performed using the same grid network as the

one used for the case of uniform mainstream profile, namely, 45 x

23 x 19 (19,665) nodes. The jet velocity and temperature were 59.68

m/s and 293.5°K, respectively. The predicted 8 profiles along with

the data are shown in Figure 9.3-3. At x/H0 = 0.5, the predicted
distributions and the data are in good agreement. The predictions

slightly underestimate the mixing in the transverse direction,

which is responsible for the larger gradients in the 8 contours

compared to the data. At the downstream stations, the jet spread-

ing is predicted reasonably well. The mixing is still underesti-

mated by the 3-D model. The predicted centerplane 8 profiles are

in good agreement with the data. Comparison between Figures 9.2-1

and 9.3-3 show that the nonuniform mainstream profile does not

significantly alter the mixing behavior of the jets. The main-

stream profile has a dominant influence on the temperature profiles

throughout the mixing region.

In summarizing the effects of flow parameters, momentum ratio,

and mainstream profile, the 3-D model qualitatively correctly pre-

dicts those effects on mixing characteristics. The model shows
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larger gradients for higher S/D, and these gradients are not al-

tered substantially by changing the momentum ratio. Application of

a nonuniform mainstream radial profile essentially changes the

radial profiles in the mixing region without substantially changing

the characteristics of mixing in the transverse direction. For the

case of the single-sided jet injection, the 3-D model consistently

underestimates the mixing and hence predicts larger gradients,

especially in the transverse direction.
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9.4 Two-Sided Jet Injection

In most annular combustors, the dilution orifices are located

on both the inner and the outer walls of the combustor. In order to

understand the mixing characteristics of such systems, it is essen-

tial to study the flow field in idealized configurations wherein

dilution jets are injected from both the top and bottom walls.
41

Detailed temperature measurements were made at Garrett under

NASA Contract No. NAS3-22110 with opposed jets in several jet con-

figurations. Some of this test data was used in this program for

evaluating the 3-D analytical model.

The test setup for the case of opposed injection is shown

schematically in Figure 9.4-1. In this case, two rows of jets in-

jected air into the ducted cross flow at the same axial station,

one row from the top and another from the bottom. The jets could be

either in line or staggered. For model validation two test cases

were selected, one with an in-line configuration of jets and the

other with a staggered arrangement. The jet orifice diameter and

S/D were 1.27 cm and 2, respectively.

For the in-line arrangement of the jets, the jet-to-mainstream

momentum ratio, temperature, and velocity of the top jets were

24.95, 306.8°K and 53.26 m/s, respectively. The corresponding

values for the bottom jet were 24.76, 305.2°K, and 52.92 m/s,

respectively. The velocity profiles were uniform with a value of

646.6°K and 15.58 m/s. The mainstream turbulence intensity was 7.5

percent, and the jet turbulence intensities were about 5.5 percent.

Computations were made with 45 x 26 x 17 (19,890) grid nodes

that extended from 2.3 cm upstream of the jet injection plane to

23.1 cm downstream of the jet injection plane in the axial direc-

tion. In the radial (cross-stream) direction, the computations

were performed from the top to the bottom wall. The transverse
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direction computational domain extended from mid-plane to mid-plane

between two jets. Calculations were performed for 350 iterations

with the total mass source error less than 0.02 percent. The pre-

dicted 8 distributions and the data for this case are presented in

Figure 9.4-2.

At x/H0 = 0.25, the predicted 8 contours are in very good
agreement with the data. The measured @ contours show the jet

penetrations slightly shifted away from the jet centerplane in the

transverse direction. It is believed that this was because of very

slight misalignment of the jet injections. The predicted radial

profiles at this location are in excellent agreement with the data.

At x/H0 = 0.5, the data shows a faster mixing than the predicted

results. This effect is also seen in the radial profiles. At x/H0

= i, the data shows that the jets are completely well mixed with the

mainstream, and the temperature distributions are nearly uniform in

the transverse direction corresponding to the equilibrium value

(@EB = 0.3179). However, the predicted results show significant
gradients in the radial and transverse directions.

For the staggered arrangement of jets, the test case consisted

of 3 jets of 2.54 cm diameter on each side with the jet spacing-to-

diameter ratio, S/D, of 4. The jet-to-mainstream momentum ratios

for the top and the bottom jets were 26.4 and 26.1, respectively.

The mainstream temperature was uniform with a value of 644.7°K, and

the average mainstream velocity was 16.85 m/s. The temperatures of

the top and the bottom jets were 307.4°K and 303.6°K, respectively.

The jet velocities for the top and bottom jets were 59.43 m/s and

58.59 m/s, respectively.

Tm - T"8=
Tm - Tj
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Computations for this case were performed with 22 x 27 x 33

(19,602) finite-difference grid nodes. The computational domain

extended from 1.4 cm upstream to 14.8 cm downstream of the jet

injection plane in the axial direction. In the radial (cross-

stream) direction, the computational domain extended from the top

to the bottom wall, and in the transverse direction. The computa-

tions were made from mid-plane to mid-plane of the top row of jets.

With respect to the bottom row of jets, the computational domain in

the transverse direction extended from centerplane to centerplane

of the two adjacent jets. Along the boundaries in the transverse

direction, cyclic boundary conditions were employed. This is valid

even though these end planes correspond to the jet centerlines.

Calculations were performed until the total mass source error con-

verged to about 0.1 percent.

The predicted _ distributions and the measurements are illus-

trated in Figure 9.4-3. At X/H0 = 0.25, the predicted 8 distribu-
tions and the data are in good qualitative agreement. The predic-

tions show larger gradients in the transverse direction than the

data. The radial profiles of the predicted results are in qualita-

tive agreement with the data. The peak 8 values are overestimated

by the 3-D model. At x/H0 = 0.5, both the data and the predictions
show gradual mixing in both radial and transverse directions. The

predicted mixing rate is slower than the measured mixing rate. At

x/H0 = i, the data shows that the jets are completely well mixed and
reach the equilibrium @ value of 0.3271. But the predicted results

show larger variation along the transverse direction. The pre-

dicted radial centerplane profile, however, is in good agreement

with the data.

To summarize, the predicted results for opposed injection are

in qualitative agreement with the data. In the near field (x/H0 =

0.25), the predictions are in good agreement with the measurements

for the in-line configuration. However, in the mixing region down-
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stream, the 3-D model underestimates the mixing in both radial and

transverse directions. For the case of staggered injection, the

model correctly predicts the mixing in the radial direction, but

significantly underestimates the mixing in the transverse direc-

tion. In this regard, it has the same characteristics as the

single-sided jets.

The conclusions reached in this program are based upon calcu-

lations with approximately 20,000 nodes. Even though these results

are not strictly grid-independent, effort was made to demonstrate

that these computations approach grid independence by increasing

the grid density. Further work with a finer grid network is needed

to address grid independence of the solution.
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i0.0 CONCLUSIONS AND RECOMMENDATIONS

Important specific conclusions for each of the sections in

Chapters 6 through 9 were provided at the end of each section.

General conclusions of this study and recommendations for future

investigations are presented here in Sections i0.i and 10.2,

respectively.

10.1 Conclusions

General conclusions for an extensive investigation, such as

the present one, can be made in a number of ways. Here the conclu-

sions are made for each of the major submodels and what their capa-

bilities are in predicting various types of flows: simple, complex

nonswirling, swirling, and dilution jet mixing. Observations are

also made concerning numerical accuracy and grid-independence of

the solution. Throughout this chapter, statements are frequently

made regarding a model giving good results, reasonable results,

trends, or unsatisfactory results. This implies the following: A

model is termed good when it can correlate data within ±25 percent.

A reasonable correlation implies within a factor of 2.0. When a

model is called qualitatively good or is described as predicting

trends, no claim is made in regard to quantitative accuracy of this

model. Predictions of such a model when used in a design system

should be cautiously interpreted for guiding an engineering design.

k-E Turbulence Model

This includes the standard k-€ model of turbulence and its

various modifications including corrections for the low Reynolds

number, additional strain due to streamline curvature and swirl

(Richardson number correction), and other ad hoc assumptions for

changing empirical constants CD, C2, and Prandtl/Schmidt numbers.
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The following general conclusions are made regarding the k-_ model

capabilities:

o Gives good correlation for simple flows

o Requires low Reynolds number correction for predicting

wall shear layers

o Requires different model modifications for accurately

predicting curved (convex and concave) boundary layers

o Gives good correlation for the far-field regimes of com-

plex swirling or nonswirling flows involving regions of
recirculation

o Gives reasonable results for nonswirling recirculating

flows. The correlation is not as good in the vicinity of

reattachment points

o Gives reasonable correlation for confined disk flow with

jet at the center

o Gives good correlation for nonrecirculating swirling

flows

o Outer regions of strong swirling flows can be predicted

well. A reasonable correlation is achieved for the shear

layer between the outer region and the recirculation

zone. Trends are properly predicted for the recirculat-

ing flow regions

o Gives reasonable correlation for most of the flow region

established by a confined swirler with expansions on both

hub and shroud sides
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o Predicts trends for confined swirler with no outer expan-

sion.

Algebraic Stress Model and Its Modifications

This model predicts mean flow field properties as well as the

k-€ model does. Therefore, the comments in the previous paragraph

apply to the ASM as far as the mean velocity field is concerned.

The following conclusions are made in regard to the Reynolds

stresses, both normal and shear stress components:

o All Reynolds stress components are predicted reasonably

well for simple flows.

o A low Reynolds number correction is required for predict-

ing wall shear layers.

o Different modifications are required for predicting con-

vex and concave wall shear flows.

o Normal stress trends are correctly predicted in nonswirl-

ing recirculating flows. The shear stresses are reason-

ably well predicted in such flows.

o For flows with swirl, the normal stress components are

predicted with reasonable accuracy. The shear stress

predictions, especially the ones involving the tangen-

tial component, are unsatisfactory.

o Further model refinements are needed to improve the

accuracy of the ASM predictions.
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Scalar Transport Model

The k-E model with specified Prandtl number predicts scalar

fluxes reasonably well for the flows where gradient diffusion

approximation is valid. The proposed algebraic scalar transport

model has shown advantages over the k-€ modeling approach. Further

work is needed to establish its validity for recirculating swirling

flows.

Turbulence/Chemistry Interaction Models

Both two-step and four-step reaction schemes show promise for

application in gas turbine combustors. They need to be further

validated with simple flames (plug flow reactor, diffusion and

premixed laminar, and turbulent jet flames) to establish rate

constants so that major species including unburned fuel, CO and H2
can be accurately predicted.

The modified eddy breakup model predicts trends and should be

pursued because this can be easily extended to multistep kinetic

schemes, unlike other more vigorous approaches.

Bilger's two-reaction zone model gives good results for jet

flames but needs to be further evaluated for gas turbine combustion

application. Its deficiency in regard to PDF specifications needs
to be addressed.

Dilution Jet Mixing

For dilution jet mixing calculations, it is extremely impor-

tant to determine the grid independence of the predicted results.

Although good agreement between predictions and measurements may be

obtained in some cases with 7000 nodes, those results are not grid-

independent. However, by increasing grid density and the number of
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nodes, it was shown that the predictions tend to approach a grid-

independent solution. The predicted results with 20,000 nodes were

in good agreement with the measurements.

The Garrett 3-D model correctly predicts the jet centerplane

profiles. However, in the transverse direction, the predicted

results underestimate the mixing. The effects of jet geometrical

parameters (S/D, H/D, etc.) as well as the momentum ratio (J) are

well predicted by the model. The effects of nonuniform cross-

stream profiles are well correlated by the 3-D model.

For the case of two-sided jet injection, with an in-line con-

figuration of jets, the model accurately predicts the temperature

distribution in regions close to the jet injection plane. The

mixing in regions farther downstream is underestimated by the

model. For the case of staggered configuration of the jets, the

predicted results are in good agreement throughout the region of

interest in the flow field.
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10.2 Recommendations

Due to numerical diffusions involved in analyzing recircu-

lating flows, it has been difficult to assess model accuracy in

predicting such flows. It is therefore considered vital to develop

a numerical scheme with a higher order of accuracy to minimize

numerical errors.

During the course of the present investigation, it was recog-

nized in many instances that there was a lack of a benchmark qual-

ity data base relevant to gas turbine combustion. Such a data base

is badly needed for making further model assessment.

It appears that significant improvement in turbulence modeling

may be achieved after a major investment of money and time. There-

fore, turbulence/chemistry interaction models need to be developed

and calibrated without using turbulence modeling techniques that

are more complicated than the algebraic stress models, which

include various modifications for low Reynolds number, additional

strain due to streamline curvature, and swirl.

Although current aerothermal models give reasonable predic-

tions, an intensive model development and validation effort should

be continued, especially for the following submodels:

o Algebraic stress model

o Algebraic scalar transport model

o Two-step and four-step kinetic schemes

o PDF approach for a two-step scheme

o Double reaction zone model.
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