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SOLID IMPINGEMENT EROSION MECHANISMS AND CHARACTERIZATION
OF EROSION RESISTANCE OF DUCTILE METALS
P. Veerabhadra Raol and Donald H. Buckley

Natfonal Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

ABSTRACT

This paper presents experimental results pertain-
ing to spherical glass bead and angular crushed glass
particle impingement. A concept of energy absorptio:
to explain the failure of material is proposed. The
erosion characteristics of several pure metals were
correlated with the proposed energy parameters and with
other properties. Correlations of erosion and material
properties were also carried out with these materials
to study the effect of the angle of impingement. Anal-
yses of extensive erosion data indicate that the prop-
erties - surface energy, strain energy, melting point,
bulk modulus, hardness, utlimate resilience, atomic
volume - and the product of the parameters - linear
coefficient of thermal expansion x bulk modulus x tem-
perature rise required for melting, and ultimate re-
silience x hardness - exhibit the best correlations.

It appears that both enerqy and thermal properties
contribute to the total erosion.

INTRODUCTION

The energy crisis and difficulties with nuclear
power have forced many new power plants to use fossil
fuel. This has caused severe erosion/corrosion prob-
lems and resulting SO emissions have polluted the
air, One piece of legislatiorn now before Congress is
the Clean Air Act (1983) which would reg.late and con-
trol emissions. Physical cleaning of coal is the
cheapest method of reducing sulfur emissions from the
combustion process. The coal conversion, combustion
and gasification processes lead to severe erosion prob-
lems in cyclones, piping, gasifiers, pumps, and valves,
The energy conversion plants are expected to operate
for more than 20 000 hours without a major shutdown,
The high number of erosion related failures has, how-
ever, established erosion as a serious design consider-
ation. The problems of component erasion due to par-
ticulate laden gases will continue to increase as sys-
tem temperature and process speeds in various systems
are increased, While coal gasification is one area

Icieveland State University, Cleveland, Ohio
44115,

where erosion is a critical problem, there are other
areas such as injection of debris into aircraft engines
and particle impact on space vehicles which are also of
major concern. A better understanding of basic proces-
ses and mechanisms involved in erosion is therefore of
utmost importance.

Many attempts have been made to correlate the ero-
sion rate of various ductile materials with their phys-
ical, mechanical, and other properties. However, no
universal correlation using a single property or a com-
bination of properties has been established. Table 1
presents the correlation attempts and suggestions made

by different investigators [1 to 20] using a variety of
properties. The particle geometry, sizes and shapes,
the angle of impingement, and the velocity of impact
are also recorded in the table.

Thus far, the different properties examined by
various investigators have been: hardness [1, 3, 5,
8, 13, and 14], surface layer hardness [16], dynamic
hardness [20], elastic modulus [2, 8, and 13], ductil-
ity [5, 8, 14, 16, and 20], localized ductility [19},
melting temperature [6], tensile strength [8 and 14],
yield stress 58 and 14], impact strength [14], fracture
toughness [14], linear coefficient of expansion [14],
product of hardness x elongation [1], 'thermal pres-
sure' [7], product of density x specific heat x melting
temperatfrg differential [9], (mean molecular weight/
density)l/3 x (1/(thermal conductivity x melting tem-
perature x enthalpy of melting)) [10], mstal-metal
bonding energy [11], ultimate resilience¢ [12], spe-
cific melting_energy [15], cohesive energy [17], and
strain energy3 [183¥ Pure physical properties of
metals such as density [4] and specific gravity [8]
have also been tried with nominal success. A majority
of these investigators used erosion data reported
either by Finnie, et al. [3] or Tadolder [21] or both.

From a physical understanding it is logfical that
the energy adsorbed by the material until it yields or

2 timate resilience = (tensile strength)zl
{2 x elastic modulus].

3Work done to cause failure/unit volume and can
be calculated from the area of the curve of an engi-
neering stress-strain curve. ’
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fails in a tension test is a simple property that is
expected to roughly rep-esent erosion resistance of
ductile materfals [22]). Although this type of corre-
lation has recently been attempted [18] for pure metals

f?ﬁ. the correlations do
not appear to be better than earlier attempts [7, 8,
10, 12, 14, 16, 18, and 19] using the same experimen-
tal data. Hence, an analysis of the energy .bsorption
charactaristics as well as melting due to the impinging
particles and the experimental verification to assess
the merit of the material properties in predicting ero-
sion are necessary.

The mechanism of material removal during particle
impingement has been attributed to extrusion, ductile
fracture, melting, low-cycle fatigue, delamination,
localized adiabatic shear, achesive material transfer,
and so forth [22]. Most of these postulations have re-
sulted from wear debris and metallographic analyses.
However, the platelet or flake-typr wear debris ob-
served on eroded material surfaces due to spherical
particle impingement have not been observed for angular
particle impingement. As shown in Figure 1 these phe-
nomena have been named as deformation and cutting wear
(with spherical and angular particle impact), respec-
tively. The wear debris generation processes have been
clearly illustrated in otier papers as well [22 to 26].

More recently it has been made clear that two or
three mechanisms can fully explain the erosion process
with different shapes and sizes of particles [23 and
24]. Also, Brown and Edington [27] observed that ma-
terial was lost via three different processes, namely,
melting, dusting, and sheet formation. The microgra-
phic observations in the literature [23, 25, and 27]
and those of the present authors [22, 24, and 26] sup-
port the suggestion that the erosion process does not
result from a single mechanism,

This paper assesses the erosion characteristics
and mechanisms of pure metals to fully identify those
properties best used for erosion prediction.

BACKGROUND OF MODELING EFFORTS

There have been several models proposed by differ-
ent investigators for single and multiple spherical or
angular particle impingement erosion. Excellent over-
views of the subject have been presented by Ruff and
Wiederhorn (28], Adler [29], Tilly [30], and Schmitt
[31]. However, for completeness and to appraise the
readers the models developed by various researchers are
briefly highlighted. Finnie [32] in 1958 presented the
dynamic equations governing the motion of the angular
particle after it strikes the surface (using the con-
cept of a rigid cutting tool removing a chip of mate-
rial) considering the flow stress of material. This
model has been modified later as discussed in referen-
ces [29 and 23]. Bitter [34], categorizing deformation
and cutting phenomena, developed an analytical equation
based on an energy balance consideration of (1} recov-
erable elastic and elastic-plastic deformation energy
and (2) nonrecoverable plastic deformation energy.

Wood and Hafer [35] and Neilson and Gilchrist [36] have
simplified the equations proposed by Bitter [34] to in-
corporate (1) the threshold normal velocity component
and (2) the critical impingement angle of particles.
The amounts of kinetic energy which have to be absorbed
to remove a unit mass of materfal by cutting and defor-
mation wear mechanisms have been discussed [36].

Mamoun [37] formulated a model to analytically
predict material removal during spherical particle im-
pingement using the Hertzian theory of contact and
semi-empirical relationships pertaining to the fatigue
1ife as a function of strain amplitude. He categorized
the matorial response into six cases to consider his

prediction efforts for both ductile and brittle mate-
rials. Head and cowonrkers [10 and 382 roposed a model
considering the energy transfer from (1) the impinging
particles and (2) the nature of the response of the
target, and the nature of the erosive media. Despite
the fact that this model was developed for natural
soils, it had a remarkable ability to predict particu-
late erosion because a parameter called modulus of
toughness (similar to strain energy) was incorporated

in the model. Tabakoff and his associates [39 and 40]
have considered both particle trajectories and erosion
in turbomachinery - gas turbine and compressor - com-
ponents 0 model solid particle erosion using the sta-
tistical nature of the impact and the rebound charac-
teristics. The intial model was fitted with small and
large impingement angle dominant mechanisms. Further
development and advances of their different models have
recently been discussed by Tabakoff [40].

Hutchings, et al. [41] have contributed not only
to an understanding of the individual mechanisms
namely, plowing, cutting I and cutting II, but also to
formulating a model based on the concept of a rigid
sphere impacting normally on a rigid plastic plane.
Later, Hutchings [20 and 42] presented a fatigue-type
model using the concept of critical fracture strain to
remove an elemental volume of the target material.

This model produced useful results using the dynamic
hardness and the ductility of the metal.

A "localization" model has recently been proposed
by Sundararajan and Shewmon [43] using the critical
plastic strain criteria defined as the strain which th2
deformation in the target localizes and hence results
in the lip formation. The investigators contend that
this model is superior to fatigue-type models and other
models proposed thusfar because their model is able to
demonstrate and explain the excellent correlation be-
tween the erosion rate and the "thermal pressure®.

Although several other investigators made modeling
efforts, it would be too time consuming to discuss all
of these models in this paper.

MATERIALS, EXPERIMENTAL APPARATUS AND PROCEDURE

Materials
Specimens of copper, cobalt, nickel, indium, lead,

and magnesium were used in this investigation. The
specimens were 6 mm thick, 25 mm wide, and 37.5 mm
long. Before exposure to erosion, 2all specimens were
polished with 600-grit emery paper, then with 3 um
gi?mznd paste, cleaned with distilled water, and air

r e L]

Apparatus and Procedure

A sandblasting facility was used to continuously
impact test specimens at normal incidence. Commercial
grade no. 9 spherical glass beads of 20 um average
diameter and commercial grade no. 10 crushed glass of
30 um average size were used. The particle size dis~
tribution and SEM micrographic details of the glass
beads have been presented by Rao, et al., [22, 24, and
26]). In the sandblasting facility the distance be-
tween the specimen and nozzle (1.18 mm diam) was 13 mm,
Argon was used as the driving gas. The average jet
velocity of the particles with both crushed glass and
glass beads was 87 m/s. The velocities were measured
by a double disk apparatus. The jet divergence was
about 2  relative to the centerline and the glass bead
and crushed glass flows were 0.89 and 0.22 g/s,
respectively.

Profiles of the eroded surfaces were recorded with
a profilometer and depths were measured with a depth
gage. The eroded surfaces were observed with a scann-
ing electron microscope (SEM) and chemical analvses




were obtained by means of energy dispersive X-ray spec-
troscopy (EDS).

EXPERIMENTAL OBSERVATIONS

Dauag; and Material Removal Ouring Incubation Period
Taure 2 presents profilometer traces recorded on
the pure copper specimen surface during glass bead and
crushed glass impingement as a function of distance
between the nozzle and the specimen, denoted in the
figure by d. The experiments were conducted durin
incubation periods (2 s for crushed glass and 15 s for
glass beads) for a particle jet velocity of 87 m/s.
The profiles show two important aspects: (1) macro-
scopic flow of material during impingment and (2) 13 ¢
of glass beads (Fig. 2(a)) induce more surface rough-
ness than 0.44 g of crushed glass particles (Fig.
2(b)). These twc observations support the suggestions
that the flow of material, melting (on macroscopic
level) and extrusion processes play important roles
during the incubation period and the subsequent erosion
process. _

It is also evident from the traces in Figure 2
that strain hardening plays an important role as gho-
tographically shown in Figure 3. The weight loss
measurements of the specimens have not shown any loss
of material. The surface traces in Figure 2 indicate
a2 small material loss due to pit formation. This con-
tradicting result may be attributed to two factors:
(1) the embedment of particles and particle dust may
be more than anticipated in earlier tests [22, 24, and
26) and (2) the strain hardening of the surfaces of
materials as discussed in [43 and 44] may be extremely
high so that the top thin layers of the material may
be of higher density. Surface traces further explain
the repeated extrusion and final low-cycle fatigue
failure during glass bead impingement which is a mani-
festation of deformation wear. This is opposed to
Jagged, angular craters and cut surfaces with chips
formed during cutting wear. These two mechanisms are
photographically shown in Figures 1 and 2.

Material Loss and Energy Absorption

concepts of thermal pressure [7], specific
heat x density x temperature difference between the
temperature of the metal and its melting point [9], ul-
timate resilience [12], specific melting energy (ther-
mal energy density) [15], mechanical energy densit
[18), and localization model [43] using critical plas-
tic strain have contributed to an understanding of the
erosion process and characterization of erosion resis-
tance. However, the impinging spherical and angular
particles as schematically shown in Figure 4 induce
different deformation modes, namely, Sl) elastic de-
formation, (2) plastic deformation, (3) plastic flow
and 1ip formation, and (4) extrusion of material and
melting (failure and splashing), resulting in material
loss. Most of the time, the volume of the crater in-
duced by an impact is not equal to the volume loss.
This is due mainly to the fact that material deforms
plastically and flows as a 1ip (Figs. 4(c) and (d)).

4yolume loss values were obatained by weighing
specimens before and after thefr exposure to the ero-
dents and dividing by density. The sensitivity of the
balance was #0,01 mg.

5This is also called the strain energy per unit
volume of a materfal in a tensile test and aa nxi-
mately represents the area under the curve ¢ an engi-
neering stress-strain curve.
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The Concept of Enerqy Absorption and Erosion

The voluma Toss measurement s an index of mate-
rial erosion and it represents a part of total enerqy
absorption efficiency of a material {(to a first order
of approximation) during solid particle impingement.
Thus, the overall energy absorption efficiency n on
the material surface may be defined as

n= “absorbed’“inpact
« erosion rate/1/2 mvzpf(o) (1)

~f(material property)/1/2 mvzpf(o) (2)

where m is the mean particle mass, V 1is the mean av-
erage particle velocity, p is the factor accounting
for the velocity exponent deviations, und f(e) is a
factor representing scattering and angle of impinge-
ment, and size and shape of the p-~ticles. I{ is be-
lieved that only a part of the kinetic energy® from

the impinging particles is absorbed by the surface of
the material to cause damage and materfal removal. It
was mentioned by Hutchings [20] that the energy balance
during the particle impingement s as follows: 1 to 10
percent of the kinetic energy may rebound, 1 to 5 per-
cent may be dissipated as elastic wave energy, and ~90
percent may be dissipated in plastic work (>80 percent

_heat and <10 percent stored energy).

Micrographs in Figure 2 and schematic failure
modes in Figure 4 appear to indicate that energy ab-
sorption (along with thermal melting) plays a signiti-
cant role. In order_to investigate the energy absorp-
tion characteristics’ and their relation to erosion,

a simple relation of the following type is used:

Erosion rate

= A/f(energy absorption property of material) (3)

where A is a constant which depends on impact veloc-
ity, angle of impingement, and size, shape and concen-
tration of particles. When a particle impinges on to a

6Erosive damage is sometimes a cumulative effect
of series of impacts that do not individually produce
any deformation visible under an optical microscope,
but such impacts produce small increments of nucleation
and expansion of dislocations in the crystalline struc-
ture surrounding the area of impact. These later in-
teract to form cracks and eventually result in a low-
cycle fatigue-type failure,

7A metal surface can store or absorb the kinetic
energy of the solid particle in three different ways:
(1) by elastic deformation, (2) by plastic deformation,
and (3) by fracture. Figure 5 represents these three
modes of energy absorption in a simple tensile test.
Under these three modes the energy adsor?tion expres-
sfons can be calculated using proof resilience [(yield
stress)¢/(2 x elastjc modulus)], ultimate resilience
[(tensile strength)/(2 x elastic modulus)] and strain
enargy (work done to cause failure = area under the
stress-strain curve). The relative contributions of
these parameters in determining damage depend upon
the impact velocity, particle size, concentration, and
shape, anjle of impingement, and material properties
(such as yield stress, ductility, tensile strength and
elastic modulus). The erosion process depends upon the
strain rate, contact time and area, local melting, de-
formation depth and area. The resulting erosion {s
thus ¢ cumulative effect of all these factors.
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surface, depending on the energy absorption of the ma-
terial and considering the energy absorption modes in
Fi § the following conditions exist resulting in
different deformations:

only elastic

1._.,2p
condition (a) 0 ¢ n, 3™ < Pp deformation

only plastic

%mvz" SU‘
deformation

condition (b) Pp < ny.

failure only

condition (c) U< 21_“2:: < Se
by fracture

where PR is proof reiilience (= YZIZE. U is the ul-
timate resilience (= T</2E), Se 1s the strain energy
to failure (= [(T + Y)E1/2]), Y is the yield strength,
T 1is the tensile strength, £ 1{s the elastic modulus,
and El is the percent elongation.

Based on the preceding information, equation (3)
may be written as

Erosion rate AI(PR,U,Se)" (4)

In order to understand the dependence of the three en-
ergy absorbing parameters Pp, U, and Se on erosion
rate, correlations were carried out using the relation
in equation (3). Table 2 presents the statistical pa-
rameters obtained using the least-squares fit of the
extensive erosion data reportéd earlier [3 and 21] in-
cluding the data pertaining to the change of the angle
of incidence. It is evident that correlations are good
and more consistent with Se than with Pp and U at
different particle velocities and angles of incidence.
This intuitively indicates that complete failure of the
material surface is a major factor contributing to the
material loss. Ultimate resilience U is very good
for certain sets only (Table 2). As mentioned earlier,
volume loss is a part of the total damage to the sur-
face. Hence, PR and U play relatively less sig-.
nificant roles.

Attempts to correlate strain energy with erosion
rate have been moderately successful [18 and 35]. UI-
timate resilience was suggested by Eyre [12] for solid
particle impingement erosion. The concepts of strain
energy and ultimate rsilience were originally proposed
by Thiruvengadam [45) and Hobbs [46], respectively, for
cavitation and liquid impingement erosion.

For certain groups of metals it is observed that

Yield stress Y « hardness H (5)

and
Tensile strength T « hardness H (6)

When some sets of the erosion data exhibited good cor-
relations wit ha;dness Hz 1%2;;E;ather s:rpris%ng :
that Pp (= Y</2E) and U (= are nqt comple
success ug at high impingement angles (36915 e <90 ).
Hence, these correlations suggest that the erosion
process is more complex than the pure energy absorption
considerations, ur than what was considered earlier.

In real situations, however, the following
additional conditions may exist apart from conditions
(a) to (c):

condition (e) 0 n,. %mvz" < Se

elastic and
plastic
deformations

condition (d) 0 ¢ ny, 3 m2P ¢ U

elastic and
plastic
deformatfons
and fracture

condition (f) = ; mvzp‘z Se complete
. ductile

fracture

abs

In view of this, it may be advisablo to consider a re-
lation similar to

Erosion rate = 1//(A1p31 + AZU"Z + A3Se"3) (7)
or

Erosion rate = A//(%gl + UnZ . Se"3) ‘(8)

in order to fully understand the extent of elastic,
plastic and failure energies involved in the erosion
process and the relation between local melting and duc-
tile fatlyre at different velocities of impact, angle
of impingement, and sizes and shapes of particles.

Other Material Property Correlations

The main purpose of correlations is to charac-
terize the erosion resistance of various metals with
some other property. Most of the time, it is neces-

‘sary that the material property should exhibit all the

complex processes involved in erosion, yet be simple
and straightforward in order to be used by design
engineers,

Table 3 presents statistical parameters obtained
for the correlation of the extengive erosion data [3
and 21] with varfous properties.® The properties
considered are surface energy, yield stress, tensile
strength, density, hardness, melting point, elastic
modulus, bulk modulus, acoustic impedence, coefficient
of expansion, cohesive energy, atomic volume, metal-
metal bond energy, CopaT, aKaT, ultimate resilience
x hardness, and (Debye temperature)¢ x atomic weight.
The majority of properties were obtained from reference
[478. Data pertaining to different angles of impinge-
ment are also presented in this table.

With single properties, surface energy, melting
point, oulk modulus, strain energy, hardness, and
atomic volume are good for correlating erosion rates
of metals (Tables 2 and 3). The properties, bulk mcd-
ulus and ultimatie resilience, become less signficant as
the angle of ‘apingement reaches 90°. However, surface
energy, atomic volume, Se, and hardness seem to be het-
ter even at this impingement condition than the other
properties.,

Figures 6 to 8 present typical plots of the ero-
sfon rate of several metals as a function of surface

8The properties of metals obtained depend on
(1) the purity of the metal, (2) the surface treatment
used, (3) the type of device employed, and (4) the
method adopted for evaluation. Hence, it is necessary
to assess metal properties more precisely.




energy, atomic volume, and melting point. Thesa fig-
ures show the permissible data scatter and the good
correlation. characteristics. The leapt-square lines
of the curve fit for 30 , 50, and 90 angle impinge-
ment were only the ones plotted omitting. the dats
points. The data obtained by the present authors and
others [4, 8, 48, and 49] are also presented. The good
correlation with melting point (Fig. 8) and strain en-
ergy (Tables 2 and 3) support the experimental obser-
vation of possible melting and flow of the materfal
surface in Figure 2. ,

When considering multiple proparties, thermal
pressure (-KQT). ultimate resilience x hardness, (Debye
temperature) x atomic weight and CpoaT are listed
in decreasing order of merit. There is good correla-
tion with thermal pressure .ompared to other properties
even at normal incidence.

Figu~e 9 presents a typical plot of erosion rate
s a function of thermal pressure. It is to be remem-
bered that "thermal pressure® contains both bulk modu-

" Tys and melting point (which are good correlating

y ingle properties to represent erosion). Ultimate re-
si .ence x hardness is not much superior to ultimate
resilience and hardness considered individually.

From the correlation of properties of mate-
rials, the following inferences can be made: (1) the
erosion process is afther (fracture) strain energy or
thermal energy related resulting in ductile tearing or
2 local melting process; (2) the energy absorption
capability of the material surface is always related to
the erosion process. At this juncture it is logical to
assume that both fracture and thermal energy properties
are interrelated during the complex erosion process.
The melting point [6] and specific melting energy [15]
have been successfully correlated with erosion.

The good correlation of erosion rate with atomic
volume indicated that the damage process is submicro-
scopic in nature. The generation of wear debris is a
concerted effort of both mechanical and thermal energy
;ntercction resulting in gross damage and material

0ss.

Erosion Resistance

It is generally observed that the erosion rates of
different metals from Bi to W vary by two orde > of
magnitude. Most of the properties such as co..esive en-
er*y, metal-metal bond energy including surface energy,
melting point, atomic volume, and bulk modulus vary
only by one order of magnitude. Despite this fact sur-
face energy and atomic volume are better correlating
oroperties than cohesive energy, metal-metal bond en-
ergy, density, linear coefficient of thermal expansion,
and CpoaT. It is, in general, observed that proper-
ties of materials from Bi to W not varying at least
over two orders of magnitude may not appear to be good
for correlation purposes to represent a wide spectrum
of metals.

On the other hand, hardness, ultimate resilience,
strain energy, and aKAT vary approximately over two
orders of magnitude. Hence, these parameters along
with surface energy and atomic volume may be better
properties to represent the erosion resistance of a
wide spectrum of metals.

Discrepancies in Earlier Correlations - :

$EE different property correlations proposed by
earlier investigators [1 to 18] are not in agreement.
The main reasons for the disagreement are the following:
(1) most of the earifer investigators used erosion data
at 20° incidence [3] (A detafled statistical analysis
as presented here clearly shows the im ‘rtance of var-
fous properties as the angle of impingement changes.),

iz& data tor pure metals and alloys were not separated,
3) material properties except hardness were not ob-
tained at the time of testing, (4) the majority of cor-
relation studies were done with angular particles (in
which cutting wear predominates) except by Jennings,

et al. {10] and the present invostifitors. (5) some
metals for example, B1 and W, exhibited brittie-type
metal failure similar to glass [3] instead of ductile-
type failure, and (6) the entire spectrum of materials
were not considered. The qroupin?s of metals tested

by various tnvestigators were different.

Ex ts and Coefficients
in order to predict the erasion characteristics of

untested metals with the following known equation, both
A and n are necessary: :

Erosion rate = A/(material parameter)”

It s evident from Tables 2 and 3 that exponents in-
creased as the angle of impingement increases. How-
ever, the values obtained are fairly constant and agree
well with the two sets of data used [3 and 21]. Hence,
it may be stated that the variables such as angle of
impingement, size and shape of particles and impact
velocity do not seem to influence the exponent values.
The values of coefficients decrease as the value
of impingement increases from peak erosion (15 to 30°)
to normal incidence (90" ). Limited studies indicate
that the coefficient appears to vary as (sin opy/
sin ¢ )™, (m varying between 1 and 2), with the
sngle of impingement. The coefficients vary as VP
with the impact velocity. The value of p f{s avail-
able from the parametric studies and generally varies
between 1 and 7/4.

CONCLUSIONS

1. Both surface traces and SEM micrographs demon-
strated plastic flow and melting on the material sur-
face during impingement with spherical and anyular
particles.

2. Energy absorption charactaristics do not fully
represent the erosion behavior of a metal.

3. Analyses of extensive erosion data indicate
that surface energy, strain energy, atomic volume,
melting point, bulk modulus, hardness, and ultimate
resilience exhibit good correlations with erosion.
However, only surface energy, atomic volume, and
strain energy provide good correlations ac different
angles of impingement. In product parameters, coeffi-
cient of thermal expansion x bulk modulus x melting
point differential (aKaT) is found to be the best pa-
rameter for correlations with erosion rate followed by
ultim?te resilience x hardness, and (Debye tempera-
ture) x atomic weight.

4. The exponential values in the present studies
are consistent. The coefficients generally appear to
vary as VéP(sin ep/sin o )® with impact velocity V
and angle of impingement o¢. In this 1 <mc¢ 2 and
1<pg . .
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TABLE 2. - CORRELATIONS OF ENERGY PROPERTIES WITH EROSION®

[Erosion rate = A/(P, U
Se = strain energy »
E1 = elongation; V = particle velocity; 8 = angle of impingement.]

{

Se)n

. % = proof resilfence = Y2/2E; U - yltimate resflience = T2/2E;
T+ Y)EV/2; ¥ = yield stress; T = tensile strength; F = elastic modulus;

Energy property Correlation Tadolder [21] Finnie, et al. [3] data;
parameter data; SIC (250 um size)
quartz sand;
V= 8m/s; Ve 13m/s; | Ve76m/s; | VoT76m/s; | Val6m/s; | V= 76m/s;
o = 45° 0 = 20° e =20° 8 = 30° e = 50° 0 = 90°
Proof resilience, Py Corr. coef. R 0,977 0,734 0.702 0,647 0,548 0.431
Exponent 0.62 ¢.38 0.349 0.37 0.2% 0.17
Constant A 40! 1043 469 546 208 89
Ultimste resilience, U | Corr. coef. R 0.995 0.76 0.733 0.571 0.444 0.341
Exponent n 0.59 0.41 0.38 L. 357 0.22 0.1%
Constant A 904 n3 862 785 239 96
Strain energy, Se Corr. coef. R 0.996 0.971 0.955 0.94 0.874 0.837
Exponent n 0.816 0.737 0.695 0.65 0.49 0.4
Constant A 1568 8945 2037 1745 540 231

*A11 correlations were carried out using the units of erosion rate as mm/kg.
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TABLE 3. - CORRELATIONS OF MATERIAL PROPERTIES WITH SOLID PARTICLE EROSION®

v

ty".

V = particle velocity; 9 = angle of {mpingement; o = coefficient of expansion;

i Tm = melting point; T,eq = temperature of specimen; Cp = gspecific heat at con-

Property Parameter Tadolder [21) Finnte, et al. [3] dats;
deta; SIC (250 um cize)
q\'r' mgzm‘; 136 o/ 7 Ve?s Vel6 Ve7s
. $; | Vo $; | Ve mn/s; . L H . $; . $;
o cut o = 20° 84208 AN o e-so" o-oo"’
Surface energy Constant A 4 988 256 230 126 73
Exponent n 1.77 1.50 1.42 1.26 1.00 0.92
Corr. coef. R 0.965 0.965 0.957 0.981 0.946 0.934
Hardness Constant A 1284 9920 2405 2.83x103 1332 766
Exponent n .76 0.74 0.7 0.7 0.60 0.54
Corr. coef. R 0.985 0.510 0.844 0.844 0.697 0.552
Melting point Constant A 1.87x105 1.68x146 3.96x105 7.04x105 2.09x10° 9.91x104
Exponent n 1.7 1,16 1.4 1.20 1.07 1.01
Corr. coef, R 0.956 0.933 0.923 0.905 0.789 0.659
Elastic modulus Constant A 1.29x104 9.74x104 2.20x104 1.82x104 5.93x103 2.74x103
Exponent n 1.14 1.09 1.06 1.01 0.83 0.73
Corr. coef, R 0.898 0.885 0.87 0.824 0.666 0.519
Bulk modulus Constant A 7.42x104 3.33x105 8.03x104 7.38x104 2.67x10¢ 1.37x104
Exponent n 1.5 1.35 1.34 1.32 1.17 1.09
Corr. coef. R 0.942 0.937 0.936 0,905 0.782 0.647
Coefficient of Corstant A 2.88x108 3.18x108 6.41x107 1.34x108 2.50x106 9.45x10%
thermal expansion Exponent n -1.38 -1.18 -1.15 -1.19 -0.87 -0.€1
Corr. coef. R 0,831 -0,652 -0.641 -0.652 -0.464 -0,288
Cohesive onergy Constant A 1.43x105 3.26x106 7.28x105 5.62x105 1.02x105 3.05x104
Exponent n 1.33 1.45 1.44 1.39 1.18 0.99
Corr, coef. R 0.746 0.765 0.766 0.768 0.636 0.477
Atomic volume Constant A 2.04x106 7.42x107 1.41x107 5,21x108 1.75x108 1.75x108
Exponent n -2.28 -2.57 -2,52 -1.37 -3.20 -3.35
Corr. coef. R -0.754 -0.873 -0.863 -0.861 -0.798 -0.744
Metal-metal bond Constant A 3.58x106 7.57x104 1.74x104 2.21x104 4.60x103 1.14x103
energy Erponent n 1.50 1.1 1.10 .1 0.82 0.57
Corr. coef. R 0.822 0.640 0.638 0.653 0.473 0.29)
CJ’“ Constant A 7.63x102 5,13x103 3.58x109 2.04x1010 1.12x109 1.08x108
Exponent n 0.863 0.71 0N 0.779 0.67 0.59
Corr. coef, R 0.897 0.819 0.828 0.827 0.696 0.519
aKaT (Coefficient of | Constant A 87.18 7 4x102 1.98x102 1.99x102 1.42x102 1.05x102
thermal expans.on Exponent n 1.04 0.93 0.92 0.98 .93 0.94
x bulk modulus x Corr, coef. R 09N 0.991 0.989 0.978 0.906 0.808
temperature
differential)
Ultimate resilience | Constant A 1.06x103 5.9x103 1.33x103 9.68x102 2.90x102 1.22x102
x hardness Exponent n 0.336 0.303 0.284 0.257 0.176 0.139
Corr. coef, R 0.999 0.990 0.982 . 0.834 0.829
(Debye temperature)?| Constant A 127010 9.52x10"! 1.74x101) 2.2x10") 5.65x109 4.54x108
x atomic weight Exponent n 1.35 1.34 .01 1,32 1.0 0.97
Corr. coef. R 0.827 0.852 0.842 0.84) 0.692 0.536

*Al1 correlations were carried out using the units of erorion rste as nn3/kg.

.
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STRAINED LAYERS

Figure 3. - Photograph showing strained \ayers on pure copper sur-
face during glass bead impingement.
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EXTRUSION OF MATERIAL AND MELTING

(@) Spherical particle

(b) Angular particle
impingement, . ;

impingement,

Figure 4. - Different forms of failure medes during solid particle
impingement,
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Figure 6. - Erosion rates of different metals as a function
of surface energy.
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