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ABSTRACT

this paper presents a new numerical method for computing incompressible
turbulent flows. The method is tested by calculating laminar recirculating flows
and is applied in conjunction 'with a modified k-E model to compute the flow over
a badkward..facing step. In the laminar regirne, the computational results are
in gObd agreement with the experimental data. The turbulent-flow study shows
that the reattachment length is underpredicted bY,the standard k-E model. The
hddition of a term to the standard model that accounts for the effects of rotation
bn turbulence improves the results in the recitculation region and increases the
~omputed reattachment length.

NOMENCLATURE
.Ax
.Ay
Cp
CIk

C1,02
Ca
Dx
Dy

f
h
H
Hi
I

=mlxve-fx, viscous operator in the x-directibn
=tre/yve-/y, viscous operator in the y..direction
pressure coefficient
constant in the viscosity model (=0.09)
constants in the E-equation(=1.44, 1.92)
constant for the rotation term in the t-equation
convection and viscous operator in the x-direction
convection and viscous operator in the y-direction
flow quantity
step height
block-diagonal matrix, defined in appendix
=-8(UiUi)/oxi, differenced convective term
identity matrix
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= ~uj,uj., turbulence kihetic energy
length of separation bubble
= C~/4k3/2 / f, dissipation length scale
number of grid points in the x.ditection
number of grid points in the y"ditection
=p/fJ + ik
prtssure
=~l/TSiJ'Sii' production term in k-equation
=C1f/kPk, production term in f-equation
=tJh/l/, ReyI10lds number
source term, defined in appendix
=MfJUi/8xi +fJUj/fJxi), strain-rat~ tensor
mean velocity component in the i..direction
velocity fLuctul:1tion in the i-direction
maximum inlet velocity
reattachment length on step wall
separation point on no-step wall
reattachment point on no-step wall
pal'tial derivative operator
partial differencing operator on a staggered grid

kn+1 - k n ) tim.e-increment of k
increment vector
time-step (=t n+1 - tn )

grid spacing in the x-direction
= fn+1 - ftt, time-increment of f
dissipation rate of k
laminar kinematic viscosity
=1 + l/T, effective kinematic viscosity
turbulence kinematic viscosity
density
Prandtl numbers for k and £: (=1.0, 1.3)
=- u~uj'+ ikoiJ'; Reynolds stress
=p +O( ~), scalar related to pressure
shifted cosine transform of <P
_(1.('), ,n, ,)1/2 rotation term- 'JHZJUZJ ,
=~(fJud8Xj -. (JUj/{JXi), rotation-rate tensor

Superscript
... value evaluated at intermediate state
n value evaluated at time-step tn = E~ 11i.ti
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SUbscript
iii indicate direction. z', i
x,v indicate direction x, Y

I, INTRODUCTION

Recirculation bubbles are recurring problems in many flows of practical inter­
e$t. the flow over a backward-facing step is an example ()f such flows. In this flow,
the location of the separation point is fixed and the region where th~ flow reattaches
can be isolated. One can then study the separatibn-reattachmebt process without
any ~omplexities resulting from motion of the separation point. lt is this feature of
the flow combined with the simplicity of its geometry that make it a prime candidate
for both experimental and numerical investigations.

At the 1980-81 AFOSR-HTTM Stanford Conference on Complex Turbulent
Flows, 11 groups using 15 methods computed the turbulent flow over a 2:3 sudden
e:xpansiotl (Eaton 1982). It was found that all the methods \ising the standard
k-f model underpredicted the reattachment length as measured by the experiment.
These results indicate that a modification to the model is necessary. To test different
tnodels, an accurate numerical method should be used where no artificial viscosity
is necessary to stabilize the solution.

One of the objectives of this paper is to present such a method for the incom­
pressible Na-vier-Stokes equations. This method is used to test the effect of adding a
rotation term to the k-f. turbulence model on predicting the flow over the 2:3 sudden
e~pansion of Kim, Kline,and Johnston (1980). The particular method (developed
in §3) uses central differencing on a staggered grid (Harlow and Welch 1965) in
space and a partially implicit time-advancement algorithm combined with a direct
Poisson solver to obtain a divergence-free velocity field at each time-step. Results
for laminar and turbulent computations are presented in §4.

2. GOVERNING EQUATIONS

The Reynolds-averaged incompressible Navier-Stokes and continuity equations
are

(1)

8
-Ui = 0 (2)
8Xi

Here, all the variables are nondimensionalized using the step height h and the
maximum inlet velocity. All quantities not specifically defined in the text are defined
in the nomenclature.
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2.1 Turbulence Modtl

To close the above set of equations we need to express the Reynolds stresses,
TiJ', in terms of mean flow quantities. An eddy-viscosity tnodel is used:

(3)

where,
lit k2

lie = Cl17 (4)

Here k is the turbulence kinetic energy and 6 1s the dissipation rate of k. The
governing equations for ~ and 6 can be derived from the equations of motion; they
contain several terms that need to be modeled. "the abbvl'l eddy-viscosity model fOr
Tii combined with the modeled equations for k and 6 are known as the k-E model
(jones and Launder 197~) . The high-Reynolds"nl1mber form of the k-6 model is
known to produce poor results in the presence of rotatiol1. Several modifications to
the model are proposed ill the literature to take into account the effects of rotation
(Rodi 1979; Launder, Priddin, and Sharma 1917; Bardiha, Ferziger, and Rogallo
1983). In this work, the term propos~d by Bardina, Ferziger, and Rogallo(1983) to
account for the effects of rotation is used in conjunction with the k-6 equations:

(5)

(6)

When

8 8 6
2 1 8 ( VT {J )

-I: + -UJ"E == P€ - C~- - C20E + -'"""'- --f
8t {}xi k Re {)xJ' (J€ {)Xj

When C3 = 0 is used, we refer to the model as the standard k-E model.
C3-:1 0 we refer to the model as the modified k-€ model.

2.2 Boundary Condi~ions

To solve for the system of equations (1-6), boundary conditions are specified for
all variables except pressure. With Becond-ordet differencing on a staggered grid,
the continuity equation at the interiot cells, together with the momentum equations
at the interior grid points and the velocity boundary conditions, provides a closed
system of algebraic equations for pressure (Moin 1982).

2.2.1 Inlet. All variables except pressure are prescribed at the inlet section. For
the laminar cases, the streamwise velocity profile (u(y)) is taken to be parabolic. For
the turbulent cases, the experimental profile (Kim, Kline, and Johnston 1980) for
u(y) at x/h = 0 is used. The k profile was set to k = 3(U'2 + vl2 )/4 using the
experimental values of u'2 and v'2 at x/h = -1.33. The inlet length scale was set
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(Launder 1982) equal to £ = m£n{2.5y,0.56}, where y is the distance to the wall
and 6 the boundary-layer thickness (= 0.25h).

2.2.2 Exit. All variables except pressure are extrapolated to the exit plane
using oflax = o.

2.2.3 Wall. At solid-wall boundaries, no-slip is used for the laminar cases. ror
turbulent cases, resolution restrictions, as well as the use of the high-Reynolds­
number form of the k"E model, require us to use near·wall submodels to bridge 'the
gap between the wall and the first grid point away from the wall. In this model,
the normal velocity cbmponent was set to zero at the wall. To specify the shear
stress at the wall, we assume that the tangential velocity profile between the first
grid point away from the wall and the wall is given by the law-of-the-wall (Kays
1966) as follows:

u" =y+
u" =-3.05 + 5lny+
u" =5.5 + 2.5lny+

y+ <5
5 < y+ <30
30< y+ «2000)

(7)

where u+ = u/u*, and y+ = yu*Re. Then given u and y, we can find the value
of u'" using the Newton iteration method. From the definition of u* we have

Twall 1 au .2--=--.- =u
p Re 8y walt

The Neumann boundary condition, 8k/8n = 0 was used for the k-equation.
The dissipation equation at the cell center adjacent to the wall (point 2) was replaced
by (Morel et a1. 1981)

(
k

3
/

2
)t2 = C 3!4 .2-

P. £2

where the dissipation length scale £2 was obtained by interpolation, assuming that
the dissipation length scale varies linearly between its value on the wall (£1 ::::::: 0)
and the value at the second cell away from the wall (£3 = (CV4k~/2)/ t3).

3. NUMERICAL METHOD

The equations of motion are discretized on a staggered grid uniform in the x­
direction but not necessarily uniform in the y-direction. Central differencing is used
to approximate the spatial derivatives. The velocities are defined on cell surfaces,
while p, k and E are defined at cell centers. The equations are then advanced in
time using a fractional step method (Chorin 1968, Temam 1979) combined with the
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approximate-factorization technique (Douglas and Gunn 1964; Beam and Warming
1976; Briley and Mcbonald 1977).

3.1 Fractional Step
• •• - I

To advance the velocity field Ui from time..step J1 to n+1, the fbllowing tlme­
dBcretization bf the governing equations is used:

(8)

n+l 1II

ui .- ui, = "- --L4>"+1 (9)
~t OXi

LU~+l = 0(10)oXi f,

Note that the nonlineat terms are advanced by the ~ec0l1d-order explicit Adams­
:Bashforth scheme, Viheteas the diffusion terms are advanced by the second..order
Crank-Nicholson implicit scheme. Implicit treatment of the viscous terms eliminates
the numerical viscous stability restriction. The invetsion of eqn.(8) would require
O(N;N;) operations (for N x = Ny), and O(N;N;) 'Words of memory; this 'Wbuld
be costly. This problem is avoided by using an approximate-factorization method.
the equations are first 'Written in A-fotm:

(1 - AtA", -" AtAy)(u~ - u"!') = At(!(3H"!' - 11,,!,~1) + ...!.-~vn~u"!') (11)
2 '" 2 t t 2 t t Re ox' e ox' t

J J

the left-hand side of (11) is then approximated as follows:

(I - AtAx)(I"- AtAy)(u ~ _ u"!') = At(!(3H1'f _ 11,,!,--1) + _1 _6_lJn~u1'f) (12)
2 2 f, t 2 t t Re {j x' e (j x' t

J J

Note that eqn.(l2) is an. O(At3 ) appro:timation to eqn.(ll). One proceeds by first
solving a set of tridiagonal equations for Wi = (I -0. ~Ay)(u; - u?), and then for
(u; - uf). The solution of this system of equations tequites O(NxNy) operations,
a significant reduction in cost.

3.2 Poiss~n Equati?n Solver

To update the velocity (u?+ 1) using eqn.(9), 4»n+ 1 has to be determined.This
is accomplished by applying the numerical divergellce operator used in eqn.(10) to
eqn.(9):

(13)
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Poisson equatiohs such as (13) are efficiently solved using transform methods. We
first let (Williams 1969)

(14)

for i == 2,3, ..., N x , i = 2,3,.,., Ny. This cosine trlmsfdrmation will enforce a
boundary condition tor ~ consistent with the incompressibility condition and the
velocity boundary conditions on $taggered grids. SUbstituting eqn.(14) into eqn.(13)
and using the orthogonality property of cosine, we obtain

(15)

Here k~ = 2[1 - cos(N;':'r)]/Ax2 is the modified wave number, and Ax is the
uniform grid spacing in the x-direction. trhe above tridiagonal system of equations

can be inverted directly in the y-direction to yield ~n+l. Equation (14) is then used
to compute ~n+1. The velocity is updated using eqn.(9). Note that p = ~+O(~),

in the absence of variable eddy viscosity, i.e l/e =constant, direct substitution yield
p = ~ + vytt 8x~ixJ ~.

3.3 Update.of Viscosity

In eqn.(8) the effective viscosity (l/e) was lagged so that the k-E equations were
advanced separately. To integrate the k-E equations in time, the approximate­
factorization scheme in A-form was used. First the k-E equations are approximated
using a fully implicit Euler step:

Ak = C (kn+1)~ (2S~+lS~+1)_ En+ 1_ ~u~+lkn+l+~~l/n~kn+l
At JL En+1 ~j ~J 8xj J Reak 8xj T 8xj

(16)

AE = C C kn+l(2S~+1 S~+l) _ C (E
n
+

1
)2 ....... C On+1 En+l

At 1 IS ~J ~J 2 kn+1 3

8 n+l n+l + 1 8 n 8 n+l- --u· E --l/T-E
oXJ' J Rea(. 0Xj oXJ'

(17)
where Ak = kn+1 - kn , and aE = E",+1 - En. The above equations are then
linearized in time using Taylor series expansion about time.. level n to give

where

(H + AtDx + AtDy)Aq = AtS

7
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The block-diagonal matrix H, and the block vector S ltr~ given in the appendix.
The Dx and Dy terms are the convection-diffusion operators on a staggered grid in
the x- and y-direction, respectively. For any reastmable number of grid points the
inversion of eqfi.(18) is prohibitively expensive. 'this probl~m is circumvented using
factorization to approximate eqn.(18) as follows:

(20)

Equation(20) is an O(At3 ) approximation to eqn.(18). Two block tridiagonal matrix
inversibns and a matrix..vector multiplication will yield. the solution to eqn.(20).
Finally, k and f are updated and the eddy viscosity is computed using eqn.(4).

4. RESULTS

The method described in §3 was used to simulate the flows over backWard­
tacing steps in both laminar and turbulent regimes. 'the geometries of interest are
those in which the channel wallS are parallel so that the apparatus acts as a flo"\\'
diffuser with strong adverse pressure gradient in the streatnwise direction.

4.1 Laminar flow results. The laminar flow studied experimentally and numeri­
cally by Armaly et aI. (1983) was chosen for this study. The particular geometty is
Ii 1:2 sudden expansion with the inlet channel long enough so that the axial velocity
profile at the step is parabolic. Computations were carried out using a 130 X 130
uniform grid for the Reynolds number (Re) range 100-800. The present results for
the reattachment length1, Xr , as 'a function of Re together with the experitnen­
tal and numerical results of Armaly et aI. are shown in Fig. 1. At Re = 600
the present results start to deviate from the experimental measurements. At this
Reynolds number, mesh-refinement studies, as well as a check on the effect of the
location of the exit boundary on the reattachment length, were carried out. From
these investigations we conclude that the deviation from the experimental results is
not due to numerical accuracy. A possible explanation for the deviation is that the
experi:ro.entalllow becomes three-dimensional at this Reynolds number (as Armaly
et aI. pointed out). Comparison with the numerical results of Armaly et aI. shows
that the present results, in the Reynolds number range 600....800, yield a much higher
teattachment length than theirs.

Figure 2 shows the streamlines for Re = 600. Note the appearance of a
tecirculation bubble on the wall opposite the step. Unfortunately, no measurements
are reported for Re < 1000 for this recirculation bubble. At Re = 1000, the first
station where measurements are reported, the length of the bubble, Lb(= X5 - X4),

t •

1Defined as the point where the velocity changes sign.
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o 00 Data from Armaly et.a/.

Computaion of Armaly el.al.

Present results

14.0

12.0

10.0

8.0

6.0

4.0

2.0

0.0 2.0 4.0 6.0 8.0

Re X 10-2

Figure 1. Reattachment length as a function of Reynolds number in the laminar
range.

I z, ~

........ -

Figure 2. Streamlines at Re = 600: expansion ratio = 1:2.

is 10.4 step heights (h). For Re > 1000, the length of the experimentally observed
bubble decreases with increasing Re. Our computations show that at Re = 600 the
flow first separates on the no-step wall at X4 = 8.5h, and reattaches at X5 = 16.3h,
resulting in a bubble length Lb = 7.8h. At Re = 800, we compute a bubble growth
to Lb = 11.5h.
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0.0 5.0 10.0 15.0 20.0 25.0

x/h
(c) Case 3, C3 = 0.15.

-6.0 0.0 5.0 10.0. 1&.0 20.0 25.0-5.0

'V'h
(b) Case 2, C3 = 0.075.

-6.0 0.0 &.0 10.0 16.0 20.0

x/h
(a) Case 1, C3 = O.

CIA ...
0.3 .. .... .. .
0.2

U."

0.1

0.0

Figure 3. Pressure distribution on the no-step side wall; symbols are the experimen­
tal data (Kim et al. 1980).

4.2 Turbulent Flow Results. At high Reynolds numbers, the flow over a backward­
facing step becomes turbulent, and the mean :flow in this regime exhibits one recir­
culation bubble behind the step. The turbulent flow selected for this study is
the same as one of the flows selected for the 1980-81 AFOSR-HTTM Stanford
Conference. The geometry is a 2:3 sudden-e~pansion (Kim, Kline, and Johnston
1980), and the Reynolds number at which extensive measurements are provided is
Re = 44,580. When this flow was simulated by different groups using the stan­
dard k-E model, it was found that the reattachment length is underpredicted by
the model. Indeed, using the standard k-f model and the boundary conditions
prescribed in §2, we compute a reattachment length Xr = 5.2h. The reattachment
length measured experimentally is about Xr = 7h, with an uncertainty of one step
height. When we compare our numerical results for the pressure rise on the Do-step
wall with the experimental data (Fig. 3a), we find that a short reattachment length
results in a shifted (with respect to the experimental data) pressure coefficient, Cp ,

profile.

These results suggest that a modification to the standard model is necessary.
It is known that an additional term is needed in the E-equation to account for
the effects of rotation on the length scale (Launder et al. 1977). It is then not
surprising that the large recirculation bubble present in the backward-facing step
flows is mispredicted by the model. If we use the modified k-€ model (described
in §2) with the constant recommended by Bardina et aJ. (1983) (Cs = 0.15),
we find that we overpredict the reattachment length, X r = 9.5h. By increasing
the reattachment length, the Cp profile shifts in the desired direction (Fig. 3c).
However, by overpredicting xr , the shift is too severe. One can then adjust C3 to
match closely the experimental reattachment length. We choose to use a constant
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equal to half the value recommended by Bardina et aI. Fine tuning for a closer
match was not necessary for the following reasons. Using Cs = 0.075, the calculated
reattachment length is X r = 6.6h, resulting in good agreement with the data.
However, if we are interested in the pressure rise on the step-side wall, we find that
in all three cases, the calculated results underpredict the experimental curve in the
range x = 8-16h (Fig. 4). Fine tuning Cs will not improve the results in this range.

In what follows we will refer to cases 1, 2, and 3 to indicate results obtained
using C2 = O~, 0.075, and 0.15, respectively. With case 1, the effects of rotation
as modeled by Bardina et aI. are not included. Close examination of Fig. 4 shows
that accounting for the effects of rotation, case 3, will result in good agreement with
the experimental data in the range x = 0-7h. On the other hand, the recovery
region (x > 7h) is poorly predicted. The reasons for the discrepancies can be better
understood by oomparing the calculated mean profiles with the experimental data.

Figures 5-7 show the mean-velocity profiles at x = 5.3h, 10.7h, and 16h for the
three cases. Clearly, in the recirculation region (x < 7h, Fig. 5) the maximum
reverse velocity is best predicted with case 3, and is poorly predicted when the
rotation term is not included (case 1). Case 2 yields the best overall agreement with

0.4

Case 2, Cs = O~015.

Case 3, Cs = 0.15.

o oo 000 o, ~~_o _
0"-- .

/J'
"0 •" /, .

" /,
" 0

/
'

I I

: 0/". l ---- Case 1, C3 = O.

r '

\ ,',t
'\ Q.,pr , 1..
\ ,-6.....
\

0.1

0.3

0.0

0.2

-5.0 0.0 5.0 1(}.O 15.0

x/h
20.0 25.0

Figure 4. Pressure distribution on the step side wall. Symbols are the experimental
data (Kim et aI. 1980).
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3.0 ...---------.

2.0

1.0

-0.5 0.0 0.5 1.0

u/uo

(a) Case 1, Cs = O.

-0.5 0.0 0.5 1.0

u/uO

(b) Case 2, Cs = 0.075.

-0.5 0.0 0.5 1.0 1.5

U/Uo

(c) Case 3, Cs = 0.15. is.

Figure 5. Mean-velocity profiles at x = 5.3h; symbols are the experimental data
(Kim et aI. 1980).

the experimental data at x = 5.3h. The recovery of the mean profile (from one
showing reverse flow to a fully developed channel flow profile) is not well predicted.
in all cases (Fig. 6 and 7). In all cases, the calculated recovery is slower than what

3.0 ,.-----:---...,

2.0

1.0

. -0.5 0.0 0.5 1.0

u/Uo
(a) Case 1, Cs. = O.

_7Q.5 0.0 0.5 1.0

u/uo

(b) Case 2, Cs = 0.075.

-0.5 0.0 0.5 1.0 1.5'

u/uo

(c) Case 3, Cs = 0.15.

Figure 6. Mean-velocity profiles at x = 10.7h; symbols are the experimental data
(Kim et aI. 1980).
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-0.5 0.0 0.5 1.0 1.5

u/uo

-0.5 0.0 0.6 1.0
. u/uo

-0.5 0.0 0.5 1.0

u/UO

3.0 r---~---.

2.0

~ 0
0::» 0
0
0

1.0

(a) Case 1, C3 = O. (b) Case 2, C3 = 0.075. (c) Case 3, C3 = 0.15.

Figure 7. Mean-velocity profiles atx = 16h. Symbols are the experimental data
(Kim et aI. 1980).

the experimental data indicate. The good agreement observed for case 1 at x =
10.7h (Fig. 6a) is superficial. In case 1, a short reattachment length is calculated,
so the recovery length at x = 10.7h, Lr = 5.5h(== x - xr ), over which the profile
was adjusting, is much longer than the recovery length over which the experimental
profile adjusted (L r = 3.6h). In other words, if we had used the reattachment point
as the reference point, the mean profile would not show good agreement with the
data.

The profiles of the turbulent kinetic energy and shear stress at three axial
locations in the recovery region are shown with the experimental data for case 2 in
Figs. 8 and 9. In general, the location of the peaks and the shape of the profiles
are wen predicted. However, the magnitudes are underpredicted, suggesting that
the k-f. model underpredicts the magnitude of the dissipation length scale in the
recovery region.

5. SUMMARY AND CONCLUSIONS

In this study, a numerical method for computing the incompressible Navier­
Stokes equations has been developed. The method is time-accurate and the flow
field satisfies the continuity equation up to machine accuracy at every time-step.
The method was tested by calculating laminar recirculating flows and was applied
in conjunction with a k-E model to compute the turbulent flow over a 2:3 sudden
expansion.
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3.0 r:------...,

2.0

~ 0

::» 0 0

0

1.0 0
0

0
0

0 0
0 0

0 0
0

0

.l

o

0.000 0.025 0.050

k
0.000 0.025 0.050

k
0.000 0.025 0.050

k

(a) x = 7.7h (b) x =10.3h (c) x = lS.7h

Figure 8. Turbulent kintetic energy profiles for case 2; symbols are the experimental
data (Kim et al. 1980).

In the laminar regime the computational results are in good agreement with the
data up to Re = 500. For Re > 500, the descrepancy between the computations
and experiments is due to three-dimensionality in the experimental flow field. The
turbulent flow study shows that the reattachment length is underpredicted by the

0

0.0 1.0 2.0 0.0 1.0 2.0 0.0 1.0 2.0

y/h y/h y/h

x = 7.7h ,x = 10.3h x = IS.7h

0.015

cfb

NC
o 0

~
0.010

I~
I

0.005

Figure 9. Turbulent shear stress profiles for case 2. Symbols are the experimental
data (Kim et a11980).
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standard k-f model. The addition of a term that accounts tor the effect of rotation
to the standard model improves the results in the recircultion region and increases
the reattachment length. However, the recovery of the mean profiles is still not
adequately predicted.

APPENDIX

The linearization of eqns.(16) and (17) using Taylor series expansions and
dropping the terms O(at2) and higher yields:

a~ _ C 2k (2S~+ls~+1)ak+ C k\2S~+lS~+1)~f + a€ _ _ 1_.!.-vT-!.-ak
at JL f ~J ~J JLf2 ~J tJ ReCJkoxJ' oX

J
'

. 2

+ ~u,!,+1Ak = Ctt~(2S~+lS1!'+1) - £ + ~!.-VT~k - ~u1?+lk
OXJ' J f ~J ~J ReCJk otxi OXi OXi J

(AI)

~; ....... CICJL(2S~+lS0+1)Ak + 2c2 fA£ - C2 ~:Ak + c 3 0 n+1af

_ -2--o-VT~af+ .!.-u1?+la€ = CICJLk(2S~+1S~+1)- C2£2 _ C30 n +1£
Reaf, OXi OXJ' OXi J ~J ~J k

+ __I_.!.-vr_O_f _ .!.-U~+lf
ReCJf, OXi OXj OXj J

(A2)
All quantities without superscript are evaluated at time level n. Equations (AI) and
(A2) are rearranged in the compact form of eqn.(18) where H is a block diagonal
matrix with elements

At(Clik2(2srrtlslrtl )/f2 + 1»)
1 + At2C2£/k + C3 0n+1

(A3)
and S is a block vector with elements

s' _ ( CJLk2(2SrrtlSl,;tl)/£- f- 8~/uj+lk+~8~/l/T8~ik )

~ - C1CJLk(2Srrt1s~1) - C2£2/k - C30n+l£ - (5~s uj+l£ + RkO'~ (5~il/T~£
(A4)
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