
NASAContractorReport i7225z
NASA-CR-172252
19840004674

ICASEo '
_OT TO.t£ ¢&::f,e "-_1=, _..

A MODEL FOR THE DISTRIBUTED STORAGE AND PROCESSING

OF LARGE ARRAYS

Piyush Mehrotra

and

Terrence W. Pratt

LIBRARVCOPY
[J_C7 1983

LANGLEYRESEARCHCENTER
Contract Nos. NASI-17070, NASI-17130 LIBRARY,NASA

October 1983 HAMPTON, VIRGIrIIA

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING

NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association

National Aeronautics and
Space Administration

Langley Research Center
Hampton,Virginia 23665

A MODEL FOR THE DISTR]ilUTEDSTORAGE AND PHOCESSING

OF LARGE AFJL_YS
°

" Piyush Mehrotra

Institute for Computer Applicationsin Scienceand Engineering

Ter!enceW. Pratt

Universityof Virginia

ABSTRACT

A conceptual model for parallel computations on large arrays is

developed in this paper. The model provides a set of language concepts

appropriate for processing arrays which are generally too large to _it

in the primary memories oi a multiprocessor system. Tile semantic model

is used to represent azrays on a concurrent architecture in such a way

that the performance realities inherent in the distributed storage and

pxocessing c_m be adequately represented. An im_]ementation of the

large array concept as an Ada pack_.qe is also described.

Thiswork supportedin partby theNationalScienceFoundationunder
. grantHCS78-00763whiletheauthorswere in resideuceat theUniversity

of Virginiaaridby NASAContractsNASI-17070and 1_AS.I-17130while the
authorswere in residenceat [CASE.

i

_. _ntFoduct%on

One of the major drivin9 forces behind proposals for large-scale

parallel multiprocessor architectures, such as CEDAR [4], MPP [3],

TRAC [16], and Blue CHIP [17], has been the need for more processing

power for large scientific and engineering applications. A major issue

in the effective use of such systems is the design of the input/output

aspects of tilesystem, that is, the methods by which large quantities

of data may be effectively moved from secondary storage into the

system, routed to the appropriate processing elements for processing,

and then back to secondary storage. For example, in the NASA Massively

Parallel Processor {MPP), designed for processing LANDSAT-D satellite

images, the processing array has over 16000 processing elements (128 x

128 array of PE's), but each image consists of a 6000 x 6000 array of

pixels. To process such an image, more than 2000 blocks of data must

be moved from secondary storage through the PE's and back to secondary

storage.

In scientific and engineering problems, the large data objects of

interest are usually arrays. Typically these arrays are too large to

tit in the central memorv of even a large sequential computer. In a

multiprocessor, such an array may occasionally be distributed only

across the primary memories of the PE's, but generally ir must be

partitioned between secondary storage and the primary memories.

Appropriate hardware and operating system software for managing

the distributed storage and processing of lalge data objects in a

2

parallel system are only part of the problem. Stevenson and

Perrott [13] in a survey of the problems encountered in the use of

ILLIAC-IV report that one of the major programming problems was the

fact that the users had to resort to the use of relatively low-level

assembly language programs to handle the "backing store traffic"

required to move data in and out of the machine. If applications

programmers are to make effective use of a parallel system, a high-

level view of data storage and movement is needed at the applications

level.

Onfortunarely, there are major performance realities associated

with data movement within a parallel system, both for data moving into

and out of the system and for data moving between processing elements.

A high-level abstraction should not hide these performance realities

from the programmer, a point strongly emphasized by Jones and

Schwarz [6] in their study of experience with multiprocessor

programming. Thus what is required is a high-level abstraction that

can reflectaccuratelythe performancerealitiesof a parallel system,

so that the applicationsprogrammer can make effective use of the

system without resortingto low-levelprimitives.

In this research,attention is restricted to arrays as the large

data objects of interest, because arrays form the major large

structuresin many scientificand engineering applications. In this

context there are two coupled problems for which we seek an effective

language treatment:

{I) The partitioningof an array and its distributedstoraqe on both

secondary storage and processor memories in a multiprocessor

architecture. To processa large data structure such as an array

requiresa complex series of.data partitioningsand data movements

through the distributedsystem. We seek a solution that frees the

user from the task of managing directly these partitioningsand

movements,without masking the performancerealities involved.

{2} The partitioningo£ an array and its concurrentprocessingby the

separate processors of the mu/tiprocessor architecture. To

effectively utilize a multiprocessor architecture, the total

computational task must be divided into subtasks capable of

executingin parallel. The subtasks need to access the data

structures involved simultaneously so as to be able to run

concurrently. The languageshould provide the appropriate higher

level primitives to express the appropriatedivision and sharing

of the data among these subtasks. These primitives should allow

large-scale parallel computationon the data structurewithouta

major overhead in subtask communication for the purpose of

synchronizing access to the data structure. Subtasks should be

able to traverse the data structure without unnecessary mutual

exclusionfrom concurrentaccess.

The goal of this research is to develop a conceptual semantic

model for parallel computationson large arrays that addresses these

two issuesand that can be effectively implemented on a variety of

multiprocessor architectures. The next section provides some

4

background for the study. The following section presents the model,

with a rationale for the major design decisions. A general

implementation strategy, presented as an Adaz package, together with an

example of use of the model, follows. The characteristics of a

particular architecture obviously give rise to different performance

characteristics, and in some cases, necessary restrictions on the

model. Implementation strategies for various typical multiprocessor

architectures appear in [10]. Architectures based on shared memory and

architectures with no shared memory between processors suggest somewhat

dilferent solutions to the design problem. The semantic model

presented here allows an effective solution on both types of

architecture.

_. B$_karound

Languages for programming multiprocessor architectures have

largely ignored the problemsassociatedwith concurrentprocessingof

large data structures. For example, languages proposed for SlI_D

machines, e.g., PASCALPL [19J, IVTRAN [llJ, and ACTUS [12], extend

sequentiallanguagessuch as PASCAL or FORTRAN to take advantageof the

element-level parallelism exhibited by SIMD architectures. Thus a

statementof the form:

A,=B+C

where A, B, and C are arrays of the same size, implies that for all I

' Ada is a registered traaemarkof the Departmentof Defense

5

and J the followingstatement:

All,J]:=B[I.J]+ C[I,J]

is to be executedinparallel.Forarraysizessmallerthan the size

of the hardwarematrix of processing elements,the above statementcan

often be executed in a single machine cycle. But if the sizes of B and

C _re larger than the hardware matrix, then they have to be partitioned

into blocks before the computationcan be carriedout. Typically the

languagesprovideonly rudimentaryconstructsfor making this partition

and managing the movement of data between secondary storage and

processingelementmemories.

For MIPIDarchitectures,the programmingproblem is usually more

difficult. The large data structurenot only has to be distributed

among processor memories and secondary storage, but the separate

asynchronous tasks involved may requiredifferentsize partitionsof

the data. Languagesdesigned for HIMI)architectures,such as CSP [5],

AIRGUS[8], and Ada [2]. usually provide no special features for

processinglarge data objects other than files. Data objects, whether

large or small, are consideredto be owned by a single task and the

access re the data structureis controlledby the task. To effectively

utilize a multiprocessor architecture while processinga large deta

structurein parallel,independenttasks need to have the capabilityof

accessing independent parts of the data structureconcurrently. Of

course, two tasks have re be preventedfrom simultaneouslyupdating the

same portion of the data structure. Languages designed for MIYd)

/

s

6

processorsdo not provide the higher level view of distributed control

ol a single data structurewhile providingmutual exclusionbetween the

tasks where appropriate.

Language concepts for file processing,in fact, are similar in

important ways to those required for large array processing,as

discussed in more detail in the next section. The concept of a

"moveable window", in particular, is useful for both file and large

array processing,where the window representsa part of the data object

currently available for processing. The utility of "window"concepts

for partitioningand processingarrays has occasionallybeen recognized

in sequential languages, most notably i_ the languageOL/2 [14]. In •

OLI2 a powerfuland flexiblemechanism for definingand using windows

on arrays is developed, which allows an array to be partitionedfor

processing in very natural _rays. The mechanismallows windows to be

hierarchically decomposed into smaller windows to as many levels as

desired. We developa similarbut simplerset of window concepts for

the case of distributedstorageand processing,a case not considered

in the OLI2 design.

2. &Hod el for ArravProcessinq

In defininga model for concurrentprocessingof large arrays, the

roots of our approach are found in traditionallanguage constructs for

file processingrather than array processing. In sequential languages

linear arrays _d files are distinguished,although structurallyeach

is a linear sequenceot elementsot some type. Files, however, have

several characteristics that distinguishthem from arrays. For this

discussion,the most importantare:

a

(I) A file is a distributed data structure, stored primarily on

secondary storage,rather than in centralmemory. Only a part is

presume_ to be available in centralmemory for processing at any

time. This latter fact is reflectedby using a window (buffer

variable in PASCAL} on the file which makes only a part of the

file (usuallya single elementJ visible to the programat a time.

(2) Processinga file consistsof alternatingsteps of (a) positioning

the window on the file and (b} processingthe elementor elements

visiblewithin the window. Hovement of the window to a new

position is conceptually a separate step from the processing

itself.

(3] A file has a lifetime (potentially) longer than that of the

programs processing it, and hence the structureof the file is

delined independentlyol the programs that access it.

(4) Implementationof file processingusually involvesa limited form

of concurrency. Typically two processescooperate,one executing

the user programand the other managing the bufferingof blocks of

"data between secondary storage and buffers in centralmemory.

From the buffer a local copy of the data visible in the processing

window is provided to the program. As the window is moved, the

buffermanager process determineswhen transferof an entire block

to secondary storage is necessary. The user is effectively

8

protectedfrommanagingthesetransfershimself,but the language

concepts of "window" and "moving the window" reflect more

abstractly the performance realities inherent in the

implementationstructure.

The modeldeveloped here for large array processingutilizes

similar concepts. In thissectionthemajorfeaturesof themodelare

presentedin a machineand languageindependentform. We stateeach of

the major semantic aspectsof themodel,togetherwith the rationale

for its inclusion.In the next section,themodel is presented more

fully as an Ada "largearray"abstractdata type(package),whichthen

providesbotha syntaxand an implementationmodel in terms of Ada

semantics.The majorfeaturesof the modelare the following:

_. Larae array organization. A "large array" is seen by the

programmer as a single data object with the same logical organization

as an ordinary array. That is, a one-dimensional large array is a

linear sequence of homogeneous elements, a two-dimensional large array

is a grid of rows and columns, and so forth.

Rationale. The programming burden is greatly simplified if the basic

formulations of algorithms in terms of matrix algebra and other array

processing structures can be retained without a major reorganization.

2- _ 9/ larqe arrays. The lifetime of a "large array"

ordinarily is different from that of a program which processes it.

Thus its Structure is defined independently of a program, and a program

gains access to it through an OPEN operation similar to that used for

9

access to a file. A CLOSE operation terminates access to the array

without destroying it.

. Rationale. In applications, large arrays ordinarily represent data such

as images or structural models that are constructed by other software

systems or by other phases of a large program complex. They are often

saved between processing phases and may be processed repeatedly by

several different programs.

_. gindows. A "large array" is not visible to a single task as a

unit at one time. Instead, a task needing to access it defines a

"window" on it, where a window is a subarray of the whole. The

elements visible in the window are available to the task for

processing, treating the window elements as the elements of an ordinary

(small) array.

Rationale. Restricting visibility to a window allows distributed

storage of the array, with only the window elements present in the

primary memory of the processor running the task that owns the window.

The remainder of the array may reside on secondary storage, in other

processor memories, or in other parts of a memory hierarchy.

_. Fixed-size wipdows. The size of a window is fixed when it is

created and remains invariant throughout its lifetime.

Rationale. Dynamically changing window sizes (e.g., as found in OL/2

[14]} require substantial run-time overhead for referencing and storage

management. Fixed size windows which can overlap array boundaries (see

10 below) are simpler to implement, although somewhat less flexible.

10

5. Movementof windows. A window may be positionedat any

arbitrary pointon a largearray(absolutemovement)or movedfromits

currentpositionto a new positiondefined in terms of its current

position(relativemovement],e.g.,by movinga specifieddistancein a

specifieddirectionrelativeto the current position. Thus if the

entire array is to be processed,a windowis positionedat an initial

positionand thenprocessingalternateswith relative movement until

the entirearrayhas been traversed.

Rationale."Windowmovement"representsabstractlythe primary cost

associatedwith large array processing,because moving a window

ordinarilyinvolvessome transferof datain and out of primarymemoir.

The abstractionallowsuse ol variousblockingand bufleringmechanisms

in the implementation,as described in the following section. In

addition, regular traversalpatterns can be tied to iteration
#

structuresin theunderlyinglanguage(e.g., the "iterators"of CLU

[7])with the implementationprovidingprefetchingof the nextblockof

data intoa stagingareaduringa previousiteration,thus overlapping

processingin a window with the input-outputrequiredfora later

iteration.

_. Accessrightsgi windows. A windowmay be restrictedto be

"read-only","write-only",or may be "read-write".A read-onlywindow

allowsreferencingbut not assignmentof valuesvisiblein the window.

A write-onlywindowallowsassignmentof new valuesonly.

Rationale. Read-only windows provide different performance

characteristicsfrom read-w_irewindows, because read-onlywindows

11

require fewer data transfexs and less mutual exclusion between tasks.

in general, to maintain consistency of the data in a large array, only

a single read-write window may be positioned over any given element,

but multiple read-only windows over an element are acceptable. Write-

only windows need not be initialized from secondary storage and require

fewer data transfers when moved. Write-only windows are natural when

extending an array or filling a newly created array.

!- gindows provide _ local copy of the data. A window provides a

local copy of the data visible in the large array. Updating of the

actual large array values occurs only when the window is moved to a new

position, or through an explicit WRITE operation, or when the window is

ULOSE'd. An explicitREAD operationallows updating the local copy of

the large array values without window movement (e.g. when one task may

be writing in an area chat another is reading). Similarly the [JRITE

operation updates the large array with values from the local copy of

the window without moving the window.

Rationale. For performancereasonsagain, we do not want updating of a

window element via assignment to imply input-output to secondary

storage. Insteadonly window movement (or explicitWRITE or CLOSE of a

window} should cause input-output. This design allows efficientuse of

fairly large windows that minimize secondarystorage traffic.

_. Multiple windows on differentarrays. A task may have windows

on several different arrays simultaneouslyand those windowsmay be

moved asvnchronously. A window may be opened or closed on an array at

any time during execution.

12

Rationale. Many algorithms require simultaneous access to several

arrays, e.g., to scan one while creating another.

9. Multiplewindows on the same array. Several tasks may have

windows concurrently on the same array. To preserve the basic

integrityof the data as these windows move, a read-writeor write-only

window (an update window) cannot overlap other update windows. A

read-onlywindow is allowed to overlapwith other types of windows. A

task wishing to move an update window to a positionoverlappingthe

positionof anotherupdate window must wait until the latterwindow is

either moved or closed. The checkingand waiting involved is part of

the MOVE operationsemanticsand requiresno specialprogrammeraction.

Rationale. In workingwith large numbers of tasks moving windows

asynchronously on the same array, it is relativelysimple for the

language run-timesupport programs to provide mutual exclusion and

waiting when windows collide Cas detailed in the next section). To

require the programmer to do the checking explicitly would make

programming much more difficult. Of course the mutual exclusion

provided by the system raises the issues of deadlock and starvation,

which must be addressedwhen implementationis considered.

10. Windows and array boundaries. A window may extend beyond the

boundary of the array. At the time of creation of a read-onlyor

read-writewindow,a default value for elements beyond the array

boundary may be specified. The default value is returned for any

reference to such an element. Assigning a value to an element outside

the array boundary changesonly the local copy of the window elements.

13

The array itself is not extended by such an assigmient, k_en the

window is moved, values outside the array boundary are lost. The single

exception to this rule is the case of a linear array with a write-only

window positioned just past the last element (greatest subscript).

Assignments within such a window extend the array and are retained when

the window is moved. An "end-of-structure" function allows a program

to test whether a window extends over an array boundary.

Rationale. "Edge effects" when moving a window within a large array

are a major source of programming problems. For example, when

processing a symmetric matrix, one often wants to store only the upper

triangular portion and move a window down the rows, starting with the

element on the main diagonal. The rows get shorter as the window

approaches the lower-right corner of the matrix, and it is convenient

il the same window can be used, simply extending past the matrix

boundary as needed. Similarly, if processing an i,mge (matrix of

pixels] with a fixed size window moving in fixed size increments, it is

convenient if the window can overlap the image boundary at the end of

each processing sweep.

Writingnew values outside the array boundary has a simple

semantics m_d implementation only in the case of extendinga linear

array. For a matrix, the semantics is complex if an extension of the

array is intended, and the implementationis also troublesome. For

simplicity,therefore,no dynamic extensionof large arrays is allowed,

except in the simple case. The "end-of-structure"functionis the

analogue ot the usual "end-o_-file"function for files and has similar

14

uses.

II.S_bwindows.A taskmay subdividea windowintosmaller parts

calledsubwindows.A subwindowis a subarrayof a window. A subwindow

may be passedas a parameterto a subtask(anothertask]for concurrent

processing. However, a subwindow is semanticallydistinctfroma

windowin threeprimaryways:(a]a subwindow cannot be moved, (hi

assignmentto a subwindow element implies immediateupdateof the

correspondingwindowelement,and (c) overlappingsubwindowsdirectly

access the same element of thewindow(thereare no localcopiesof

subwindowelements).Processingusingsubwindowsproceedsin distinct

phases:(a] The main taskpositionsits windowappropriatelyon a large

array,(b] subwindowsare passedto subtasksfor processing,and (c]

when all subtaskshave terminated(or paused)themain taskmovesits

windowto a new positionand the cyclerepeats.

Rationale.Processingusingwindows implies some secondary storage

tralfic and system overheadtotmutualexclusion,particularlywhere

severaltasksare processingthe same large array simultaneously.

Subwindowsallow severaltasksto operateon the samepartol a large

arraywithoutmajorsystem overhead. Because subwindowscannot be

movedindependently,no secondarystoragetralficis involved.Because

no localcopiesof arrayelementsare maintainedand assignmentcauses

immediateupdate of an elementin all subwindowswithinwhichit is

visible, the programmeris responsiblefor mutual exclusion and

consistency of the data, rather than the system. For many

applications,thisalternativeis appropriate.For example, a window

15

may be positioned over several dozen rows of a large array. A subtask

may be initiated to process each row, with a subwindow on the

appropriate row. Since these subwindo_s can never overlap, consistency

within the window is not an issue, and the system overhead for checking

is not required. Also, secondary storage traffic is greatly reduced by

moving the large window as a unit rather than each "row" subwindow

individually. At the same time, system checking and mutual exclusion

on movement ot the larger window allows other tasks in the system to

process the same large array for other purposes concurrently. Shared

memory architectures allow subwindows to be implemented as simple

descriptors (dope vectors) with essentially no overhead in their

concurrentprocessing. In non-sharedmemory architectures, references

and assignments to subwindows require communicationto the task owning

the window, which may substantiallyincrease the cost of use. For this

reason,subwindowsare particularlyattractive for use where taskshave

shared memory available.

Examples. Several short examples are presented here, with a more

extended example in a followingsection. Since we have no syntax for

programmingthese examples,only an intuitivesketch of the semantics

is provided.

Example1. Ordinary _ file Drocessina. Sequential file

processing is the simplest case of large array processing. A task

positionsa read-onlywindow at the start oI a large linear array (to

read the array file). The window is the equivalentof the PASCAL

"buffer variable" Processing the element{s} within the window

16

alternates with advancing the window until the entire array has been

traversed. To write the array, a write-only window is positioned one

element beyolldtlleend, and assignment to the window elealentalternates

with forward movement until all data has been written. Note that the

large array semantics allows the usual implementation structures for

file processing to be adapted to this larger conceptual model for array

processing.

E_dmple Z. UNIX=-like pipes. A pipe in UNIX-iike systems is a file

that is. written by one task while a second simultaneously reads and

processes the newly written elements. The second .task may lag

arbitrarily far behind the first in its processing. The large array

model allows this structure to be represented by the first task having

a write-only window at the end of the array-file (as in Example I

above} and the second task having a read-write window positioned on

some existing parr of the array and advancing toward the first window.

Note however that the array is not "consumed" by the second task

reading it, so several tasks may have windows that allow them to'read

and process the array concurrently.

Example _. Factorirla_ banded symmetric _. In solving a large

system ot equations in matrix form:

°

AX=B

the matrix is often symmetric and "banded", meaning each row has only a

UNIX is a trademark of Bell Laboratories.

17

maximum of some constant "beta" non-zero elements, starting with the

element on the main diagonal. "Beta" is termed the "bandwidth" of the

. matrix. Only the elementswithin the non-zero band are stored,as an N

x "beta" matrix if the original matrix _ras N x N. A factoring

algoritluntypicallymight work down the band, instantiating "beta"+1

tasks, each of which works on one row of the matrix at a time. The

first task takes the first row, the "pivot row", and sends it to the

other tasks. Each of these tasks uses the pivot row to perform

calculationson the row it is currentlyassigned. Figure I illustrates

this processingstructure.

\ \

\ \

•,,,, ."K,\ "bet.:'_,_o_s
\ * \ l

\

r-,T.
\ ",
\ ,.
\

\
\

\
\

%

Figure I. Solution of a banded matrix

18

Only "beta"+l tasks are needed because only the rows with at least one

non-zero element in the same column as a non-zero of the pivot row need

to be processed in each step.

After sending the pivot row to all other tasks, the first task

moves its window down to the row "beta"+l rows below its current row.

The second task then has the new pivot row, and the process repeats.

The tasks progressively move their windows down the band until the

entire array is processed.

i. An Implementation _del

In the last section an overview of the language concepts needed

for concurrent processing of large arrays has been provided. In this

section an implementation model for these concepts is sketched briefly.

An actual implementation as an Ada package is presented in the next

section.

The implementationmodel for large arrays parallels to some extent

the implementationof file processingon sequentialmachines. As noted

before, lot sequential file processing,a bufferingprocessmanages the

transferof blocks of file componentsbetween the secondaryand primary

storage, copying the componentsof the file into and from the buffer

variable associatedwith the lile as needed. The conceptof windows on

a large array, as seen in the last section,already embodies the idea

of a private copy of the elements of the large array visible through

the windows.

19

The large array itself is divided into subarrays or blocks for

implementation purposes as shown in Figure 2. The I/0 of the large

" array is performed in terms of the blocks, i.e., the large array is

stored on the secondary storage as blocks _a_d the blocks are

transferredin mxd out of primary storageas needed.

A window,when stationedon the large array, may fall completely

within a block or may overlap several blocks (see Figure 2). To

I 1 I I
i I I I I

I I J_ .J__l_

I I I II I I j_J__
I ! i I I

--_-I _j_/ ..1_ _

w -i-
I I 1_._1 __1__
I I I I I

,l I, i i , ,I

Figure 2. A large array divided into blocks
with tour windows on it.

indicatesblock boundaries
indicateswindo_ boundaries.

2O

provide a copy of the elements, tile appropriate portions of the blocks

covered by the mindo_ are transferred sequentially to the window. Nhen

the window is moved, the old values are m-itten back. This implies

that each of the blocks overlapped by the window in the old position

must be updated.

The division ot large arrays into blocks also supports

concurrency. As long as two windows are stationed on the large array

so that they cover totallyseparate blocks,all processing requiredlot

the movements of the windows can be performedin parallel. Such a

situationis depicted by the two windows on the 1elf in Figure 2. On

the other hand, if the windows are stationedso that they overlap

common blocks (the two windows on the right in Figure 2}, then access

to the common blocks has to be serialized so as to preserve the

integrityof the data. The tasks owning the windows can still process

the window copies of the elements in parallel,with the serialization

occurringonly during the reading and writing process between the

window and the actual elements of the large array.

A block of the large array is required to be resident in the

primary memory only if there is a window covering it. Thus a simple

demand paging policy can be implementedwherein a block is paged in

from secondarystorage only when a window moves onto it. The block can

be replacedwhen the window moves on and no other window has covered it

in the meantime.

21

The model presented above attempts to find a solution to the two

related problems in the concurrent processing of large arrays as

• discussed at the beginning of the section. Uindows provide a means of

specifying the elements at a large array needed by the task for further

processing witl_out the programmer having to code the details of data

movement between the primary and secondary storage. Tasks can use

independent windows stationed on the same large array to process the

array in parallel. The windowsmutually exclude each other from the

same portion of the array (when required). This provides for the

maximum possible concurrent activity with no window unnecessarily

inhibitingthe processingin anotherwindow when such mutual exclusion

is not needed. The model allows the languagestructure to reflect the

performancerealitiesof distributed storage eald processing without

unduly burdeningthe user with implementationdetails.

_. An Ade _mplementation of Larqe Arrays

1_e model for processing large arrays in parallelneeds to be a

part of a system which provides other primitives necessary for

distributed processing such as creation of independent tasks,

communication between tasks, etc. To providea precise semantics{and

syntax)for the conceptsol the model, we can consider "largearray" as

a new abstract data type. AlthoughAda does not provideany higher

level constructsfor the distributedcontrol of data structures, it

does provide a generic package facilitywhich may be used to define

this new abstract data type. The Ada tasking facility provides a

"virtual computer" that may be consideredas an abaftact distributed

22

machine. Within this machine, the large array package defines a

detailed implementationol the model for processingol large arrays in

parallel. The packageconsists of all the necessary type definitions

for large arrays, windows and subwindows along with procedureand

functiondefinitionsfor the relevmlt operationson the above defined

types. Such a packagedefinition providesa clear and precisesyntax

{althoughnot entirely ideal} for creating and operating on large

arrays in algorithmsdesigned for concurrentprocessingof arrays.

Since the large array package is coded in Ada, a working knowledge

of the language is assumed for the purposes of describing the package.

The large array package has been implemented on a VAX 11/780 using the

UNIX implementation of the NYU/Ada ED translator and interpreter.

_-l- The LarvaeArravPacka_e

In this section the basic structureof the package is described.

Most of the scientificapplicationsinvolvinglarge arrays generally

requireonly two-dimensionalarrays. Hence the package, as presented

here, supports only two-dimensionallarge arrays. The extensionof the

package to higher dimensionedarrays is straightfor_rard. The public

part of the packagehas been provided in Appendix A. For a detailed

listingof the package refer to [I0].

.L1.

The generic package LARG/_AHR,4Y_PKGEcan be instanriared with

any predefinedor user defined type being suppliedas actual parameter

23

tomatchtheformalparameter ELEMENT. The followingstatements

declare _0A7 ARP_Y as a new instantiation oi the generic package to

supportarrayswith elementsof type _ZOAT:

package FLOAT_ARRAY is new LARGE_ARRAY_PKGE(FLOAT) ;
use FLOAT_ARRAY;

Preexistingarraysin externalfilescan be accessedby attaching

one of these large arrays via the procedure OPF_LARGEARRAY while

new arrays can be created using the procedure CREATE_LARGE_ARIMY.

External files are named by a characterstring. The row and column

bounds o1 a large array are specifiedat the rime of associating the

large array with _unexternal file and remain fixed during the existence

of the arrays. For example

A, X. LARG&ARRAY;

OP,t_rLC._&AP,P,AY (A,
row_low_bd=,i,
row_high_bd=,n,
co1_1ow_bd -" 1,
col_high_bd=, n,
name =• "A_fiIe");_

CHEATE_LAHGE_ARP,AY (X,
row_low_bd =, I,.
row_high_bd=, n,
col_low_bd =, I,
col_high_bd=, m,
name =, "X_lile"};

* Ada allows parametersto a particularsubprogrameither as a list,
which associates actual and formal parameters by position,or by
precedingthe actual parameterby "formal_name=," where formal_nameis
the name of the associated formalparameter. Explicitlynamed parame-
ters are used _or clarityin many of these examples, but positional
parametelsare used where no contusionis likely.

24

A and X are declaredas LARGE_ARRAYs. The large array A is

associated with an already existing external file A_lile and is

specifiedto be an n by n array while a file X_file is created to be

associated" with the n by m large array X. Procedure

CLOSA_LAHG_ARRAY can be used to sever the associationof an internal

large array with its associated external file while procedure

D£LETE_LARG_hARRAY deletes the associated external file:

Internallya large array is viewed as a sequenceof blocks, each

block being defined as a square subarrayof the large array as shown in

Figure 2. The blocks are numbered sequentiallystarting from the top

left corner and increasingalong the columnsand then rows.

The row and column bounds are used to determinethe total number

of blocks needed for the large array. For each of the blocks

constitutingthe large array a "monitor"-liketask - BLOCK_CONTROLLeR

- is initiated to control access to the block. The reading in and

writing out o_ the blocks to secondary storage is performed by the

associated task as and when required. Note that the BLOCK_CONtROLLER

tasks are internal to the packageand are not visible to the user.

.i.. Windows

Windows are attached to a particular large array using the

procedure CREATE_WINDOW. The same procedureis also used to specify

the size ot the _indow and its privileges,i.e., whether it is read-

only(R), write-only(W) or read-write(RQ). The row and column

incrementsto be used for relativemovement of the w_ndow are also

25

passed as parameters to the procedure. The user can specifyan

edge_elementwhich will be used to fill out the portion of the window

which does not lie within the bounds of the associated large array when

the window is moved past the edge of the array. The statements

A_window,)[_window: WINDOW;
CREATE_WINDOW(A_window,

row_size => n, col_size =, n,
inmode =,H,
row_inc => O, col_in¢ :) O,
ar =_ A,

edge => FALSe.',edge_elemen_=> 0.0];

CREATE_WINDOW()[_window,
row_size=>n, col_size=>I,
inmode => W,
row_in¢ => O, col_inc :, I,
aT => X,
edge _> TRUE, edge_elemen_=> 1.0);

declare two windows A_window and X_window. The window A_window

is associated with the large array A. It is a read-onlywindow and

its size is n by n. The move incrementsare set to zero, implying that

it will not be moved via reiativemovements. The X_window is a n by

I write-onlywindow associatedwith the large array X. The move

increments are (0,1), i.e., each relativemove will displace it one

column to the right on the large array. An edge_element ol 1.0 is

specified so that if the window is positioned such t[at it lies

partiallyoutside the large array, the elements of the window not

overlapping the array will be set to 1.0. The exception

NON_TISTENT_ABRAY_F2ROR is raised il the large array on which window

is to be stationedhas not yet been createdor opened.

26

With each variable of type WINDOW, the following data structures

are visible to the task declaring the variable:

type PINDOP is access gINDOU_D£SC;

tFpe PINDO_I_#ESC is
record

win = I_4_IX_ACCESS;
info : gINDOW_IHFO;

end record;

Thus a window is viewed by the user as a local array of specified size

(the component win) along with inlormationwhich is private to the

package (the component info) The processingof the elementsof the

large array visible through the _indow is hence performedin a manner

analogous to the processingof an ordinary small array. That is ro

say, the accessingof window elements is done throughsubscripting the

component win relative to the origin of the window rather than the

origin of the large array. In the following statement, the value of

the (2,3)thelementof the A_window is assigned to the {4,1)th

element of X_window:

X_window.win(4,I) := A_window.win(2,3);

The positionof the windows on the large arrays determines the actual

elements of the large arrays used in the above assignmentstatement.

Thus if the)[_window is positionedat the fifth col_nn of the large

array X then X(4,5) is actually assigned.

27

Windo_______wmovement

Two methods of window movement are provided: absolute and

relative. The SET procedure moves the window to the indicated

absolute position on the array. Thus SET can be used to establish

the initial position of the window on the array. In the following

statements, the A_wJndow is set at position (i,i} on the large array

A so as to cover the whole array while X_window is.set at position

11,5} so as to cover the 5th column of the large array X:

SE1'(A_window,new_tom => I, new_col =_ 11;

SET{X_window, ned_row =, I, new_col =_ 5);

The MOVE procedure, on the other hand, uses the row mid column

increments defined while creating the window, to move to a new position

relative to the present position. The procedure MOVE just calls

SET with the new absolute position. The statement

MOVE (X);

uses the move increments specified during the creation of X_uindow to

move the window one column to the right, i.e., the 6th column of large

array X.

_henever a window is moved, a copy of the elements visible through

the window is provided in the local array win (component of

PINDOU_DESC) _rnen the window is moved again, the values ol the

elements are written back to the external large array before the move

28

is executed. Thus each task processes its private copy of the elements

visible through the window. The actual array is updated only when the

window is moved away. The reading and writing of the window elements

is obviously dependent on the privileges of the window, i.e., no

writing is done for read-only windows while no reading is performed for

write-onlywindows.

ProcedureR_4D canbeusedto copy the large"arrayelements

covered by the window into the local array of the window without

actually moving the window. Similarlyprocedure 7IT£ is available

to update the large array from the local array withoutmoving the

window.

Dependingupon the size o_ the window and the position of the

window within the large array, the window may partiallyor fully cover

one or more blocks of the array (see Figure 2]. Internally ior each

window a list of blocks covered by the window is maintainedas

block_list. The procedure READ makes an entry call ro each of the

tasks associated with the blocks in this list sequentially,to update

the appropriateportionsof the window. Similarly, WRI?E makes an

entry call to the tasks for updatin_ the appropriateportions of the

blocks.

When a window is ro be morea to a new position,several steps are

performed by the procedure SET. First the elementsat the present

positionare updated (for update windows only) by calling the €.WI7_

procedure, The procedure REL_L4SK_BLOC'KSis then called to detach the

29

window from the blocks it was covering. RELEASE_BLOCKS makes entry

calls to the. tasks controlling the blocks covered by the window to

detach the window from the blocks. Note procedures gRIT£ and

RELEAS_'_BLO_XS are called only if the block_list is nonempty. An

empty block_list indicates that either the window has not yet been

initially stationed on the array or that its position is such that it

is totallyoutside the array and hence is not covering any of the

blocks of the array.

Next the blocks thet would be coveredby the window in the new

positionare determined. SET calls the procedure OBTAIN_HLOCKS for

this purpose. -ODTAIN_BLO_S determinesthe position of the window

with respect to the large array and the blocks covered by the window at

this position. Entry calls are made to the tasks controlling these

blocks to "attach" the window to the blocks. If another incompatible

window covers the same elements, the "attach"call is delayeduntil the

other window is moved. Once attach entry calls for all the blocks

coveredby the window have been successlullvcompleted,the elementsat

the new positionare read into the window via the procedure READ (for

read-onlyand read-writewindows only], thus completing the operation

of moving a window to a new position. The procedures RELEASE_BLOCKS

and OBTAIN_DLOCXS are not visible to the programsusing the package.

, _.i._. _ubwindows

Subwindows can De overlayed on a window via the procedure

CHEAI'E_SUBWINDO_ provided for this purpose. The window with whlch

30

thesubwindowis to be associated,its size,and its position within

thewindoware passedas parameters.The followingstatements

A_sw : array{1..n)of SUHWINDO_];
X_sw - SUBUINDOW;

for i in 1..n
loop

CREATE_SUBWINDOW(A_sw{i),
row_size :_ n, col_size =_ I,
row_pos =, I, col_pox =, i,
wind :, A_window);

end loop;

CREATE_SUBWINDOW(X_sw,
row_size=, n/2, col_size=_ I,
row_pos =, I, col_pos :_ I,

wind =_ X_window);

declarea subwindowX_sw and an a,'rayof subwindowsA_sw. Each of

the A_sw subwindowsis createdto be a n by 1 subwindowassociated

with thewindow A_window. The i'thsubwindow A_sw(i) is overlayed

on the i'thcolumno_ the A_window. The X_sw subwindowis created

so as to coverthe topn/2 elementso[the X_window.

The subwindowshouldlie entirelywithinthewindowwithwhich it

is associated,otherwise the exception SUI]WINDOW_OUTSIDE_WINDOUis

raised. For each window a list of subwindowsoverlayingit is

maintained. On creation the subwindowis attachedto the endof the

subwindow_lis_for theassociatedwindow.

Procedure ASSIGN can be used to assign a value to a particular

element of the subwindow. Function GET returns the value of the

specified element. For example, here

31

ASSIGN(X_sw,4,I,GET(A_sw(5),I,i));

resultsin the firstelementof the 5th A_sw subwindowbeingassigned

to the 4th elementof X_sw. Thesetwosubprogramswork directlyon

thewindowto _hichthesubwindowis attachedsince a subwindow does

not have its own privatecopyof the elements.

Note thatthereare no proceduresformovingsubwindows.0nlythe

window on m_ichthesubwindowis overlayedcan be moved. Thuswhen a

windowis moved,conceptuallyall the subwindowsattached to it are

automaticallymovedwhilepreservingtheirrelativepositions.

-1-. End of Structure Functions

The functions EOS can be used to determine if a window or

subwindow has reached the end of the structure, i.e., the edge oi the

large array on which the window is stationed. A window can be totally

inside the large array or totally outside it. The window can also be

straddling the large array along one of the edges or one of the

corners. The functions EOS returns a value of the enumeration type

DI_ECTIONS. A value INSIDE is returnedif the windowor subwindow

is totally inside the largearraywhile OUTSIDE is returnedit the

windowor subwindowis totallyoutsidethe large array. The compass

directionsare returnedfor theothereightpossiblepositionsot the

windowor subwindowwithrespectto the large array. Thus N is

returned when the topedge is straddled,N_ is returnedit the top

lefthand corneris straddledand so on.

32

The LARGK_ARRAY_PACKAGE also provides various other functions to

determine the propertiesol large arrays,windows and subwindows. The

package has been described in greater detail in [10].

5._. _utual _xclusion and Deadlock

The semantics of the Ada tasking facilities have been used to

provide mutual exclusion to tasks wishing to access the same block oi

the large array simultaneously. Since an independent

BLOCK_CONTROLLER task controls each of the blocks, the

BLOCK_CONTBOLL£B task performs the role of a "monitor"for the block.

As long as two tasks are moving their windows over differentparts of

the large array, the movement can be performedin parallel. It is only

when the two windows have to move onto the same block that their

movementsare carriedout in a sequentialmaimer. Also the readingand

writing can be perJormed by only one task at a time. This does not

inhibitparallel activity,since once a copy of the relevant portionof

the block has been made into a window, independenttasks can process

their windows concurrently.

Windows can be moved asynchronouslyover a large array by the

tasks owning the windows. In moving the windows, the tasks are

requesting "resources",i.e., making attach entry calls to the tasks

controlling the blocks of the large array in an independentand

asynchronousmanner. A task can be blocked if the movement of the

window would cause an incompatibleoverlapwith another windo_ already

stationedon the block. Thus a deadlock could potentiallyoccur if two

33

windows each simultaneously request to be attached to blocks on which

the other is already stationed in such a fashion as to cause an

incompatible overlap in both blocks. Such a deadlock is avoided by a

simple resource ordering strategy. The blocks of a large array are

numbered sequentially and must be requested by each task in a fixed

sequence. A SET operation [and hence the MOVE operation) proceeds

by first releasing the blocks covered by the window in the old position

and then attaching the window to the blocks in its new position in the

order of the block numbers. No reading or writing of the window

elements at the new position may occur until the window has been

successfully attached to all the blocks that it has to cover. This

ensures that two windows cannot each be vying for a block already

covered by the other window, thus avoiding deadlock.

.. _lg__size

Each large array is internally divided into blocks. The size oi

the blocks is dependent on several competing factors. Since the block

is used as a unit for transfer of data between secondary storage and

primary memory[s), the optimum size for I/O transfer influences the

block size. Each block is controlled by an independent task. Thus ii

the block size is small,thenumberof taskscontrollingtheblocks

willbecomelarge.On theotherhand,if theblocksizeis large then

the concurrencyavailable duringthemovementof windowsis reduced.

Thetradeoffbetweentheamolmtof parallelismand thenumberof tasks

has to be weighed in conjunctionwith theoptimumI/Otransfersize

whendeterminingthesize o| the blocksof the largearrays.

34

_. Array Processinq:An Example

An algorithmfor solving a triangular system of equations is

elaborated in this section. The equations are representedby the

followinsmatrix equation:

Ax = b

where the matrix A is an n by n upper triangular matrix. The

algorithm, coded in Ada (see Appendix B}, essentiallyuses a direct

back solve method for solving the equations for a set of m right hand

side vectorsb.

The algorithmutilizes n subtasks for solving the system of

equations- n-I _AcK_SoLvE subtasks and one IfAIN_BACK_SOLVE. The n

subtasks are conceptuallyarranged in a linear chain, each having a

right and left neighbor [except of course the subtasksat the end

points). The subtask IYAIN_BACK_SOLVEis the n'th subtask in the

chain.

The algorithmis set up so that each subtask views one column of

the array A and calculatesone element of the solution vector x. The

subrask YL41N_BACK_SOLVf"receives"the right hand side vector b and

calculates the n'th element of x using the n'th element of b and the

A(n,n) element. It also calculatesthe contributionof the n'th column

of the array A to the solution vector and passes on the partially

calculatedx vector to its left neighbor. The id'th subtaskBACK_SOLVE

receives the partially calculated x vector from its right neighbor,

calculates the id'th element of the x .vector and passes on the

35

partially calculatedvalues o£ x, updated by contributionof the id'th

column of the array A, to its left neighbor.

The procedure MAIN declares A, X and B as IMRGE_ARRAYs

and opens A and 8, associatingthem with already existingexternal

files A_file and B_[i]e respectively. It also createsa new file

X_lile, to be associated with the L4RGE__P,4Y X. A read-only

window A_window, is also defined by MAIN mld associated with the

LARGE_ARRAY A. The window A_window is as large as the array

itself and is positionedso as to cover the whole array.

Each of the BACK_SOLVE subtasks declaresa subwindow A_sw on

the window A_window and overlays it such that the subwindowfor

subtask id is at the id'th column of the window (see Figure 3(a)).

Also a one elementwrite-onlywindow is declaredby each subtaskon the

LAHGE_AI{IMY X and initiallypositionedon the first column of the

id'th row.

The subtask tL41N_BACKSOLV_',in addition to the A_sw subwindow

and the X_window also has a window, B_window, on the LARGF._AHRAY

8 (Figure3(c}}. This window is initiallypositioned at the first

coltm_ of the array B. After setting the B_window ou the first

column ot the B array, the subrask calculatesthe n'th elemento_ the

x vector and writes it in the X_window. It then passes the partially

" calculatedn-I values to its left neighbor, subtaskn-l, and then moves

the B_window and)[window one position to the right on the

respectivearrays so as ro process the next b vector (Figure 3(b} &

36

I 9 Q

Ca)

r'!l-'!
II.° JlI....=,..,I

[.jl"l

_'"I I""1

CbJ Cc}

Figure 3. Windows and subwindows lot the back solve process
Ca) Window and subwindows on large array A
(b) Movement of windows on large array X
(c) Movement of the window on large array D

37

3[c)). Note that the move increments for both the windows are

appropriately set when defining the windows. Processing is continued

until the end of structure is reached { EOSCB_GIINDOW) = OIITSID_').

The id'th subtask BACK_SOLVE receives id elements of the

partiallycalculatedx values from its right neighbor and generatesthe

id'th elementof the x vector in the X_window. It communicates

partially calculated x values to its left neighbor and then moves its

X_windoN (Figure3(b]). This iS repeateduntil all the right hand

sides have been processed. For each right hand side vector,the id'th

subtask produces the id'th elementof the correspondingx vector. Thus

the end of processing is signifiedby the fact that the)[_window has

been moved outside the X array (EOS(X_window) = OUTSIDE) When all

subtasks have finished processing the main program closes all the

large_arrays.

As noted before, the above algorithmhas been described without

assuming an underlying architecture. An implementation of the

algorithmon the NASA Finite Element Machine is describedin [9].

Z. Conclusion

The minimal support for large data structures in proposed

languages for multiprocessor architectures has led to the present

investigation. The basic aim of the conceptualmodel presentedin this
e

paper, is to lay the groundwork for incorporatingthe conceptof large

arrays into parallel languages. The model provides the user with an

easy means of specifyingnot only the distributedstorage but also the

38

distributedprocessingof large arrays in a high level languagewithout

resorting to low level coding within his program.

The basic data structure "largearray" is the same as that of an

ordinary smal] array, but it is clear that the manner in which a large

array is ro be processedin a multiprocessorenvironmentcannot be the

same because of the performancerealities involvedin its processing.

A similar dichotomycan be seen in sequentiatlanguageswhere the two

concepts of files and vectorsare not merged even though files can be

regardedas vectorsof records.

The conceptualmodel for parallel processingof large arrays, as

presented in this paper, is an attempt to fill the gap betweenwhat is

providedby the presentday parallel languagesand what is needed by

the users of such languages. The central concepts of the model,

windows and subwindows,provide the means for representing both the

distributed storage and concurrent processing of large arrays in

programs in a way that is natural for array processing.

The Ada large array packagewas implementedso as to specify the

semantics of the above concepts in more concrete terms. Various

factorsdictated the choice of Ada as a vehicle for the specification

of the semantics. Ada provides excellent facilitiesfor implementing

abstract data types through generic packages. The Ada tasking

laciliries can be used to representa virtualabstract multiprocessor

system. Since the thrustof this research _ras the study of large

arrays in a parallel environment rather than the use oi concurrent

39

systems per se, Ada tasking facilities Provided a base on which the

large array model could be implemented.

P

The Ada package provides a particular implementation of the

general model ior parallel processing of large arrays without any

assumptions about the underlying architecture. However the performance

realities associated with each particular architecture have to be taken

into account when considering the implementation of the model on a

particular machine. The model provides a general framework which can

be tailored to fit the nuances ot a particular architecture. The

strategies for implementin_ the model on four architectures namely: the

NASAMPP [3J, the Intel 432 system [lJ,- the NASA Finite Element

Machine 118], and the 0niversity of Maryland ZMOB[15] have been

described in [10].

4O

_.. REFERENCES

I. "Introduction to the iAPX 432 Architecture," Inrel

Corporation(1981].

2. "ReferenceManual for the ADA Language," U. S. Department of

Defense,Washington,D.C. (July 1982).

3. Barcher,K. E. "Designof a MassivelyParallelProcessor," I_E

Transactions on Computer C-29,9 (Sept. 1980], pp. 836-840.

4. Gajski, D., Kuck, D., Lawrie, D., and Sameh, A. "Cedar - A Large

Scale Multiprocessor," Proceedings of the 1983 International

Conierence on Parallel Processing (August 1983), pp. 524-529.

5. Hoare, C. A. R. "Con_unicating Sequential Processes,"

Co_,unicatlons ot the ACM 21,8 (August 1978}, pp. 666-677.

6. Jones,A. and Sch_rarz,P. "Experience Osing Multiprocessor

Architectures - A Status Report," A_M Computing

Surveys 12,3 (June 1980), pp. 121-166.

7. Liskov, B., Snyder, A., Atkinson, R., and Schaffert, C.

"Abstraction Mechanism in CLU," Coe_unications of the

ACM 20,8 {August 1977}, pp. 564-576.

8. Liskov, B. and Scheifler,R. "Guardiansand Actions: l,inguistic

Support for Robust, DistributedPrograms." Ninth ACWSy_po_um

on Principleso£ Programmingl.mnguages (January 1982), pp. 7-

41

19, Albuquerque, NM.

9. Mehrotra, P. and Pratt, T. W. "Language Concepts for Distributed

Processing of Large Arrays," Proceedi_qs ACM Symposi_n on

Principlesof _istributedComputing (August 1882), , Ottawa,

C_,ada

I0. Mehrotra,P. "Parallel Computation on Large Arrays," Ph.D.

Thesis (August 1982), Universityof Virginia, Charlottesville,

Va.

11. Millstein,R. E. "Control Structures in ILLIAC IV FORTRAN,"

Communicationsof the ACM 16,1 0 {0ctobor 1973}, pp. 621-627. -

12. Perrott,R. H. "ALanguagefor Arrayand Vector Processors,"

ACM Transactions on Programming Languages and

Systems 1,2 {October1979},pp.177-195.

13. Perrott,R. H. and Stevenson,D. K. "User'sExperiencewith the

ILLIAC IV System and its ProgrammingLanguages," Sigplan

Notices 16,7 (July1981),pp. 75-88.

14. Phillips,J. R. and Adams, H. C. "DynamicPartitioningfor Array

Languages," Communications o[_he Association for Computing

Machinery 15,12 (December1972],pp.1023-1032.

15. Rieger, C. "ZMO8: A Hob of 256 Cooperative ZSO-based

Microprocessors," Proceedings image UnderstandingConlerence,

tosAngeles, CA. [1979), pp. 25-30.

42

16. Sejnowski,M. C., Upchurch,E. T., Kapur, R. N., Charlu, D. P.

S., and Lipovski,G. J. "An Overview of the Texas Reconfigurable

Array Computer," AFIl_Conference Proceedings 1980 NCC [1980},

pp. 631-641.

17. Snyder,L. "Introductionro the Conflgurable, Highly Parallel

Computer," Computer 15,1 (January 1982), pp. 47-56.

18. Storaasll,O. 0., Peebles,S. g., Crockett,T. W., Knott, J. D.,

and Adams, L. "The Finite ElementMachine: An Experimentin

Farallel Processing," Research in S#ructural and Solid

Hechanics, NASA Conference Publication 2245 (October 1982}, pp.

201-217, gashington, D.C.

19. _hr, L. "A Language for Parallel Processingof Arrays, Embedded

in PASCAL," TR-365, Computer ScienceDepartment,Universityof

Wisconsin-MadisonCSeptember1979).

43

APPKNDIXA

Ada GenericLARGE_AHRAYPackage

-- The following generic package, LARGE_ARRAY_PKGE, --
-- can be used tot para]]e.l processing ol large urrays. --
--]'he package defines the needed data types and --
-- subprograms lot such processJn.q. --
-- The package can be instantiated with any actual type --
-- corresponding to the formal parameter ELENENT. ----

mm

generi c

type ELEMENTis pri rate;

package LAHGg_ARRAY_PKGEis

type LARGEARRAY is private;

type MATRIX is array{INTEGER range _, INTEGER range o)
o! ELEMENT;

type MATRIX_ACCESS is access MATRIX;

type WINDOW_INFO is private;

tFpe WINDOW DESC is
record

win - IrATRIX_ACCESS;
inlo : gINI)OWINFO_

end record;

type gINDOW is access WINDOg_DEHC_

type SUBglNDOW is private;

type PRI,VILEGES .is(R ,W,RW.);

type DIRECTIONS is (N,S,E,W,NE,31W,SE,b_I,INSIDE,OUTSIDE);

44

-- Procedures to create or open large arrays

procedureCREATE_LAHGE_ABHAY{ar : in ouC LARGE_ARRAY;
row_low_bd,
[ow_high_bd,
col_low_bd,
col_high_bd: in IRT_.'GER;
name - in STRING);

procedureOPEN_LARGE_ARRAY (ar - in out LARGE_ARRAY;
row_lom_bd,
row_high_bd,
col_low_bd,
col_high_bd- in IJW'EGER;
n_ne - in STRING);

-- Procedures to delete or close large arrays

procedure DELET£_LARGE_APJL4Y(ar: in out LA£GE ARHAY);

procedure CLOSELARGE_ARRAY { at'.-in out ldLRUE_ARRAY);

-- Procedures to create windows and subwindows

procedure CRY:ATE_WINDOW{wind : in out WINDOW;
row size, col_size : in NATURAL;
inmode . in PItlVILEGES;
row_inc, col_lnc : in INTEGER;
ar : in LARGE_ARRAY;
edge : inBOOLEAN;
edge_element : in ELEIYENT);

procedure CREA'J'E_SIJBUIIVDOW{subwin : in out SUBWINDOU;
row_size, col_size,
row_pos, col_pos - in NATURAL;
inmode : in PRIVILEG£S;
wind : in WIRDOW) ;

d5

-- Procedures to move w_ndows.

-- Note that a move implies
-- writing the last position (il the window is not read-only}
-- readin,q the new position (il the window is not write-only}.

procedure MOVE(wind : in out UINDOW); -- relative movement

procedure SDfT (wind : in ou_ WINDOW;
new row,

new_col : in INTEGER); -- absolute movement

-- Procedures to read and write windows without moving them.

procedure HEAD { wind= in out WINDOW_;
procedure WRIT_.'{wind: in _IINDOW);

•-- Subprograms to assign and reLriewe values of specilied
-- elements of subwindows.

procedure ASSIGN (subwin : in ouL SUBWINDOW;
row, col = in NATIIRAL;
value - in ELEMENT);

function GET (subwin : in SUHW[NtlOW;
row, col - in NATURAL) return _.'L_.'MENT_

-- Functions to determine the end of structure.

function EOS(wind: in WINDOW) return DIRECTIONS;
function EOS(wind: in _UBWINDOW) return DIRECTIONS;

-- Various ltlnctionsto determine properties ol large arraFs,
-- windows and subwindows.

-- ExcepLion._ that can be raised in _he packa,qe.

ARRAY_SIZ_.'_EHHOR : exceptzon;
ARRAY_DIFFERENT_ERROR : exceptzon;
IiEAD_WRI'TE_MODE_EHROR : exceptlon;
NONEXIHTENT_AHRAY_ ERROR : exceptlon_
NONEXISTENT_ WINDOW_EHHOH . exceptlon;
SUBWIRDOW_OUTSIDE WINDOW ..excep t'ion;

end LAHGE_ABRAY_PKG_.';

46

APPENDIX B

Ada Program lot the Back Solve Process

with LARGE_ARRAY_PKGE;
procedure MAIN is

package FLOAT_ARRAY _s new LARGEARRAY_PKGE(FLOAT];
use FLOAT_ARRAY;

n : constant NATURAL _ -- Size of the A matrix
m - constant NATURAL _ -- Number of right hand sides

A,X,B " LARGE_ARRAY;
A_window.- WINDOW;

begin

OPEN_lARGE_ARRAY(A, row_low bd => I, row_high_bd => n,
col_low_hal => I, col_high_hal=> n,
name --> "A_lile ");

OPENLA£G_:_AHRAY(B, row_low_bd => I, row_high_hal => n,
collow bd => I, col_high_bd :> m,
name => "B_file");

CREATE_LARGE_ARRAY(X, row_iow bd =_ I, row_high_bd =_ n,
col_low bd =_ I, col_high_hal=> m,
name => "X_lile"1;

CRF_4TE_WINDOW{A_window, row_size => n, col_size => n,
inmode => R,
row_inc =_ O, col_inc =_ O,
ar =" A,

edge =_ FALSE, edge_element =_ 0.0);
SET{A window, new_row =_ I, new_col =_ I);

declare

#ype VECTOR]s array(l..n) o! FLOAT;

task _ype BACK_SOLVE is

entry gHO_AM_l{self_id : NATURAL)_
entrv NEXT{ x : VECTOR);

end BACK_SOLV_.';

task MAINBACK_SOLVE is
end MAIN_BAUK_SOLVE_

solve : array(l..n-I} of BACK_SOLVE;

4?

Cask body MAIN_BACK_SOLVEis

B_window,X_wJndow : glM)Og_
A_sw - SUB_IIVDO_;

- partial_x - VECTOR;

begin

CREATE_SUBUINDOU(A_sw, row_size => n, col_size =_ I,

row_pos => l, col_pos =, n,
wind =_ A_window 1_

CREATE_gIRDOg{X_window,row_size => 1, col_size => 1,
inmode => g,
row_inc =_ O, col_inc =_ 1,
ar =, X,
edge => FAI_[.',edge_element=_ O.O)i

HET(X_window,new_row => n, new_col => 11_

CREATA'_WINDOU{H_window,row_size => n, col_size =_ I,
inmode => R,
rom_inc => O, col_inc => I,
ar => B,
edge => FALSk',edge_element=_ 0.0)_

Hk'T{Bwindow,new row =_ I, new col =_ i)_

sol re_ cycle:
loop

X_window.win(l,i) := B_window.win{n,I) / _ET(A_sw,n,I)_

for i in 1..n-I
loop
partial_z(i):= (Bwindow.win{i,11

- GK'I'(A_sm,i,I) • X_window.win{1,1))i
end loop;

sol ve(n-i). NEXT{partial_x)

#0VE(B_window)
ffOVh'(X_window)

exit solve_cyclewhen (EOS(H window) = OUTSIDE)_

end loop solve_cycle_

end MAIN_BAg'K_SOLVE_

48

task body BACK_SOLVE is

X_windom : gINDOW;
A_sw : SUBWINDOg;
id : NATURAL;
partial_x : VECTOHI

begin

accept WHO_PJI_I(sel/_id = NATURAL) do
id -= sel{_id;

end_HOAM_I;

CREATE_SUBWINDOW{A_sw, row_size => _J, col_size => i,
row_pus => I, col_pos => id,
wind => A_window 17

CREATE_WINDOW(X_window, row_size => I, colsize => I,
inmode => @,
row_inc => O, col_inc => i,
8r =>]_,
edge => FAJ,qK,edge_e]ement => 0.01_

S_.'T{X_window,new_row => id, new_col => I);

solre_cycle-
loop

" accept.N_.'XT(x..VECTOR] do
for i in l..Jd
loop
partial_x[i) ..= x[i);

end loop_
end NEXT;

X_window.win(l,l] == partial_x[id] / GET(A_sw,id,l);
for i in l..id-1

loop
partial_x{i) : = (partial_x{i]

-GET{A_sw, i, I) , X_window, win [1,1]) i
end loop;

i! id /= 1 then
solve{id-l}.NEXT(partial_x);

end il_

MOVE{X_window) ;

exiL"solvecFcle when [EOH[X window) = OOTSID_.');

end loop solve_cycle;
end BACK_H{)LVE:

49

begin -- declare

ior i in l..n-I
loop

, solvefi).WHO_AH_I(i)_
end loop;

end_ -- declare

CLOSE_LARGE_ARRAY(X);
CLOH_.'_LAHf_g_ARRAYfB.I;
CLOSE_LARGE_AP_AY{A);

end HAIN)

1. Report No. 2. GovernmentAccessionNo. 3. Recipient's'CatalogNo.
NASA CR-172252

4. Title and Subtitle 5. Report Date

October 1983
A Model for the Distributed Storage and Processing of

Large Arrays 6. PerformingOrganizationCode

7. Author(s) 8. PerformingOrganizationReport No.

Piyush Mehrotra and Terrence W. Pratt 83-59

10. Work Unit No.
9. PerformingOrganizationName andAddress
Institute for Computer Applications in Science

and Engineering 11. Contractor Grant No.

Mail Stop 132C, NASA Langley Research Center NASI-17070, NASI-17130

Hampton, VA 23665
13. Type of Report and PeriodCovered

12. SponsoringAgencyName and Addres_
Nationa± Aeronautics ana Space Administration Contractor report

Washington, D.C. 20546 "14.SponsoringAgencyCode

15._pplementaryNotesAdditional support: National Science Foundation Grant MCS78-00763.

Langley Technical Monitor: Robert H. Tolson
Final Report

16. Abstract

A conceptual model for parallel computations on large arrays is developed in this

paper. The model provides a set of language concepts appropriate for processing

arrays which are generally too large to fit in the primary memories of a multiprocesso:
system. The semantic model is used to represent arrays on a concurrent architecture

in such a way that the performance realities inherent in the distributed storage and

processing can be adequately represented. An implementation of the large array
concept as an Ada package is also described.

17. Key Words (Suggested by Author(s}) 18. Distribution Statement '

large arrays

concurrent programming 61 Computer Programming and Software

distributed storage Unclasslfied-Unlimited

19. SecurityQa=if.(ofthisreport) 20. SecurityCla=if.(ofthis_ge) 21. No. of Pages 22. _ice
Unclassified Unclassified 51 A04

.-30s ForsalebytheNationalTechnicalInformationService,Springfield,Virginia22161

