NASA —CR~172; 252

NASA Contractor Report 172252

A MODEL FOR THE DISTRIBUTED STORAGE AND PROCESSING
OF LARGE ARRAYS

NASA-CR-172252
19840004674

Piyush Mehrotra
and

Terrence W. Pratt

LIBRARY COPY

beC 7 1983

L ANGLEY RESEARCH CENTER
Contract Nos. NAS1-17070, NAS1-17130 LIBRARY, NASA

October 1983 HAMPTON, VIRGIMIA

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING
NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665

A MODEL FOR THE DISTRIBUTED STORAGE AND PROCESSING

OF LARGE ARRAYS

Piyust Mehrotra

Institute for Computer Applications in Science and Engineering

Terrence W. Pratt

University of Virginia

BSTRACT

A conceptual model for parallel computations on large arrays 1is
developed in this paper. The model proﬁides a set of language concepts
appropriate for processing arrays which are generally too large to fit
in the primary memories of a multiprocessor system. The semantic model
is used to represent arrays on a concurrent architecture in such a way
that the performance realities inherent in the disfributed storage and
processing can be adequately represented. An implementation of the

large array concept as an Ada package is also described.

grant MCS78-00763 while the authors were in resideuce at the University
of Virginia and by NASA Contracts NAS1-17070 and NAS1-17130 while the
authors were in residence at I[CASE.

NG 2142

1. ntroduction

One of the major driving forces behind proposals {for large-scale
parallel multiprocessor architectures, such as CEDAR [4], MPP (3],
TRAC [16], and Blue CHIP (17], has been the need for more processing
power for large scientific and engineering applications. A major issue
in the effective use of such systems is the design of the input/output
aspects of the system, that is, the methods by which large quantities
of data may be effectively moved from secondary storage into the
system, routed to the appropriate processing elements for processing,
and then back to secondary storage. For example, in the NASA Massively
Parallel Processor (MPP), designed for processing LANDSAT-D satellite
images, the processing array has over 16000 proceﬁsing elements (128 x
128 array of PE’s), but each image consists of a éOOO x 6000 array of
pixels. To process such an image, more than 2000 blocks of data must
be moved from secondary storage through the PE’'s and back to secondary

storage.

In scientific and engineering problems, the large data objects of
interest are wusually arrays. Typically these arrays are too large to
fit in the central memory of even a large sequential computer. In a
multiprocessor, such an array may occasionally be distributed only
across the primary memories of the PE’s, but generally it must be

partitioned between secondary storage and the primary memories.

Appropriate hardware and operating system software for managing

the distributed storage and processing of large data objects in a

parallel system are only part of the problem. Stevehson and
Perrott [13] in a survey of the problems encountered in the use of
ILLIAC-IV report that one of the major programming problems was the
fact that the users had to resort to the use of relatively low-level
assembly language programs to handle the "backing store traffic"
required to move data in and out of the machine. If applications
programmers are to make’effective use of a -parallel system, a high-
level view of data storage and movement is needed at the applications

level.

Unfortunately, there are major performance realities associated
with data movement within a parallel system, both for data moving into
and out of the system and for data moving between processing elements.
A high-level abstraction should not hide these performance realities
from the programmer, a point strongly emphasized by Jones and
Schwarz (6] in their study of experience with multiprocessor
programming. Thus what is required is a high-level abstraction that
can reflect accurately the performance realities of a parallel system,
so that the applications programmer can make effective use of the

system without resorting to low-level primitives.

In this research, attention is restricted to arrays as the large
data objects of interest, because arrays form the major large
structures 1n many scientific and engineering applications. In this
context there are two coupled problems for which we seek an effective

language treatment:

(1)

(2)

The partitioning'of an array and its distributed storage on both
secondary storage and processor memories in a multiprocessor
architecture. To process a large data structure such as an array
requires a complex series of.data partitiénings and data movements
through the distributed system. We seek a solution that free§ the
user from the task of managing directly these partitionings and

movements, without masking the performance realities involved.

The partitioning of an array and its concurrent processing by the.
separate processors of the multiprocessor architecture. To
effectively utilize a multiprocessor architecture, the total
computational task must be divided into subtasks capable of'
executing in parallel. The subtasks need to access the data
structures involved simultaneously so as to be able to run
concurrentiy. The language should provide the appropriate higher
level primitives to express the appropriate division and sharing
of the data among these subtasks. These primitives should allow
large-scale parallel computation on the data structure without a
major overhead in subtask communication for the purpose of
synchronizing access to the data structure. Subtasks should be
able to traverse the data structure without unnecessary mutual

exclusion from concurrent access.

The goal of this research is to develop a conceptual semantic

model for parallel computations on large arrays that addresses these

two issues and that can be effectively implemented on a variety of

multiprocessor architectures. The next section provides some

background for the study. The following section presents the model,
with a rationale for the major design decisions. A general
implementation strategy, presented as an Ada' package, together with an
example of use of the model, follows. The characteristics of a
particular architecture obviously give rise to different performance
characteristics, and in some cases, necessary restrictions on the
model. Implementation strategies for various typical multiprocessor
architectures appear in t10]. Architectures based on shared memory and
architectures with no shared memory between processors suggest somewhat
different solutions to the design problem. The semantic model
presented here allows an effect@ve solution on both types of

architecture.
2. Backaround

Languages for programming multiprocessor architectures have
largely ignored the problems associated with concurrent processing of
large data structures. For example, languages proposed for SIMD
machines, e.g., PASCALPL (19}, IVTRAN (11), and ACTUS (12}, extend
sequential languages such as PASCAL or FORTRAN to take advantage of the
element-level parallelism exhibited by SIMD architectures. Thus a

statement of the form:
A:=B+(C

where A, B, and C are arrays of the same size, implies that for all I

and J the following statement:
All,J) := B{I,J] + CII,J]

is to be executed in parallel. For array sizes smaller than the size
of the hardware matrix of processing elements, the above statement can
often be executed in a single machine cycle. But if the sizes of B and
C are larger than the hardware matrix, then they have to be partitioned
into blocks before the computation can be carried out. Typically the
languages provide only rudimentary constructs for making this partition
and managing the movement of data between secondary storage and

processing element memories.

For MIMD architectures, the programming problem is wusually more
difficult. The large data structure not only has to be distributed
among processor memories and secondary storage, but the separate
asynchronous tasks involved may require different size partitions of
the data. Languages designed for MIMD architectures, such as CSP (5],
ARGUS (8], and Ada [2], wusually provide no special features for
processing large data objects other than files. Data objects, whethér
large or small, are considered to be owned by a single task and the
access to the data structure is controlled by the task. To effectively
utilize a multiprocessor architecture while processing a large data
structure in parallel, independent tasks need to have the capability of
accessing independent parts of the data structure concurrently. of
course, two tasks have to be prevented from simul taneously updating the

same portion of the data structure. Languages designed for MIMD

processors do not provide the higher level view of distributed control
of a single data structure while providing mutual exclusion between the

tasks where appropriate.

Language concepts for file processing, in fact, are similar in
important ways to those required for large array processing, as
discussed in more detail in the next section. The concept of a
“moveable window", in particular, is useful for both file and large
array processing, where the window represents a part of the data object
currently available for proceséing. The utility of "window” concepts
for partitioning and processing arrays has occasionally been recognized
in sequential languages, most notably im the language OL/2 {14]). In-
OL/2 a powerful and flexible mechanism for defining and using window§
on arrays is developed, which allows an array to be partitioned for
processing in very natural ways. The mechanism allows windows to be
hierarchically decomposed into smaller windows to as many levels as
desired. We develop a similar but simpler set of window concepts for
the case of distributed storage and processing, a case not considered

in the OL/2 design.

3. A Model for Arrav Processing

In defining a model for concurrent processing of large arrays, the
roots of our approach are found in traditional language constructs for
file processing rather than array processing. In sequential languages
linear arrays and files are distinguished, although structurally each

is a linear sequence of elements ot some type. Files, however, have

several characteristics that distinguish them from arrays. For this

discussion, the most important are:

(1) A file is a distributed data structure, stored primarily on

(2)

(3)

(4)

secondary storage, rather than in central memory. Only a part is
presumed to be available in central memory for processing at any
time. This latter fact 1is reflected by using a window (buffer
variable in PASCAL) on the file which makes only a part of the

file (usually a single element) visible to the program at a time.

Processing a file consists of alternating steps of (a) positioning
the window on the file and (b) processing the element or elements
visible within the window. Movement of the window to a new
position 1is conceptually a separate step from the processing

itself.

A file has a lifetime (potentially) 1longer than that of the
programs processing it, and hence the structure of the file is

defined independently of the programs that access it.

Implementation of file processing usually involves a limited form
of concurrency. Typically two processes cooperate, one executing

the user program and the other managing the buffering of blocks of

"data between secondary storage and buffers in central memory.

From the buffer a local copy of the data visible in the processing
window is provided to the program. As the window is moved, the
buffer manager process determines when transfer of an entire block

to secondary storage 1is necessary. The wuser is effectively

protected from managing these transfers himself, but the language
concepts of “window” and ‘“moving the window" reflect more
abstractly the performance realities inherent in the

implementation structure.

The model developed here for large array processing utilizes
similar concepts. In this section the major features of the model are
presented in a machine and language independent form. We state each of
the major semantic aspects of the model, together with the rationale
for its inclusion. In the next section, the model 1is presented more
fully as an Ada "large array” abstract data type (package), which then
provides both a syntax and an implementation model in terms of Ada

semantics. The major features of the model are the following:

1. Large arrav organization. A "large array" 1is seen by the
programmer as a single data object with the same logical organization
as an ordinary array. That is, a one-dimensional large array is a
linear sequence of homogeneous elements, a two-dimensional large array
is a grid of rows and columns, and so forth.

Bationale. The programming burden is greatly simplified if the basic
formulations of algorithms in terms of matrix algebra and other array

processing structures can be retained without a major reorganization.

2. Lifetimes of large arrays. The lifetime of a "large array”
ordinarily is different from that of a program which processes it.
Thus its structure is defined independently of a program, and a program

gains access to it through an OPEN operation similar to that used for

access to a file. A CLOSE operation terminates access to the array
without destroying it.

Rationale. In applications, large arrays ordinarily represent data such
as 1images or structural models that are constructed by other software
systems or by other phases of a large program complex. They are often
saved between processing phases and may be processed repeatedly by

several different programs.

3. Windows. A "large array” is not visible to a single task as a
unit at one time. Instead, a task needing to access it defines a
“"window" on it, where a window is a subarray of the whole. The
elements visible in the window are available to the task for
processing, treating the window elements as the elements of an ordinary
(small) array.
Rationale. Restricting visibility to a window allows distributed
storage of the array, with only the window elements present in the
primary memory of the processor running the task that owns the window.
The remainder of the array may reside on secondary storage, in other

processor memories, or in other parts of a memory hierarchy.

4. Fixed-size windows. The size of a window is fixed when it is
created and remains invariant throughout its lifetime.
Rationale. Dynamically changing window sizes (e.g., as found in OL/2
{14]) require substantial run-time overhead for referencing and storage
management. Fixed size windows which can overlap array bounda;ies (see

8 10 below) are simpler to implement, alithough somewhat less flexible.

10

5. Movement of windous. A window may be positioned at any
arbitrary point on a large array (absolute movement) or moved from its
current position to a new position defined in terms of 1its current
position (relative movement), e.g., by moving a specified distance in a
specified direction relative to the current position. Thus 1if the
entire array is to be'processed, a window is positioned at an initial
position and then processing alternates with relative movement until
the entire array has been traversed.

Rationale. “Window movement“ represents abstractly the primary cost
associated with large array processing, because moving a window
ordinarily involves some transfer of data in and out of primary memory. -
The abstraction allows use of various blocking and buffering mechanisms
in the implementation, as described in the following section. In
addition, regular traversal patterns can be tied to iteration
structures in the underlying language (e.g., the “iterators” of CLU
{7]) with the implementation providing pretetching of the next block ot
data into a staging area during a previous iteration, thus overlapping
processing in a window ﬁich the .inpuc-output required for a later

iteration.

6. Access rights of windows. A window may be restricted to be
“read-only”, "write-only", or may be "read-write". A read-only window
allows referencing but not assignment of values visible in the window.
A write-only window allows assignment of new values only.

Rationale. Read-only windows provide different performance

characteristics from read-write windows, because read-only windows

11

require fewer data transfers and less mutual exclusion between tasks.
In general, to maintain consistency of the data in a large array, only
a single read-write window may be positioned over any given element,
but multiple read-only windows over an element are acceptable. Write-
only windows need not be initialized from secondary storage and require
fewer data transters uhep moved. Write-only windows are natural when

extending an array or filling a newly created array.

7. Windouws provide g ;gégl copy of the data. A window provides a
local copy of the data visible in the large array. Updating of the
actual large array values occurs only when the window is moved to a new
position, or through an explicit WRITE operation, or when the window is
CLOSE’d. An explicit READ operation allows updating the local copy of
the large array values without window movement (e.g. when one task may
be writing in an area that another is reading). Similarly the WRITE
operation updates the large array with values from the local copy of
the window without moving the window.

Rationale. For performance reasons again, we do not want updating of a
window element via assignment to imply input-output to secondary
storage. lInstead only window movement (or explicit WRITE or CLOSE of a
window) should cause input-output. This design allows efficient use of

fairly large windows that minimize secondary storage traftic.

8. Multiole windows on different arravs. A task may have windows

on several different arrays simultaneously and these windows may be
moved asynchronously. A window may be opened or closed on an array at

any time during execution.

12

Rationale. Many algorithms require simultaneous access to several

arrays, e.dg., to scan one while creating another.

9. Multiple windows on the same array. Several tasks may have

windows concurrently on the same array. To preserve the basic
integrity of the data as these windows move, a read-write or write-only
window (an update window) cannot overlap other update windows. A
read-only window is allowed to overlap with other types of windows. A
task wishing to move an update window to a position overlapping the
position of another update window must wait until the latter window is
either moved or closed. The checking and waiting involved is part of
the MOVE opgracion semantics and requires no special programmer action.
Ratjonale. In working with large numbers of tasks moving windows
asynchronously on the same array, it is relatively simple for the
language run-time support programs to provide mutual exclusion and
waiting when windouws collide (as detailed in the next section). To
require the prograﬁmer to do the checking explicitly would make
programming much more difficult. - 0f course the mutual exclusion
provided by the system raises the issues of deadlock and starvation,

which must be addressed when implementation is considered.

10. Windows and arrav boundarjes. A window may extend beyond the
boundary of the array. At the time of creation of a read-only or
read-write window, a default value -for elements beyond the array
boundary may be specified. The default value is returned for any
reference to such an element. Assigning a value to an element outside

the array boundary changes only the local copy of the window elements.

13

The array itself is not extended by such an assignment. When the
window is moved, values outside the array boundary are lost. The single
exception to this rule is the case of a linear array with a write-only
window positioned just past the last element (greatest subscript].
Assignments within such a window extend the array and are retained when
the window is moved. An “"end-of-structure" function allows a program
to test whether a window extends over an array boundary.

ational . "Edge effects” when moving a window within a large array
are a major source of programming problems. For example, when
processing a symmetric @atrix, one often wants to store only the upper
triangular portion and move a window down the rows, starting with the
element on the main diagonal. The rogs get shorter as the window
approaches the lower-right corner of the matrix, and it is convenient
it the same window can be wused, simply extending past the matrix
boundary as needed. Similarly, if processing an image (matrix of
pixels) with a fixed size window moving in fixed size increments, it is

convenient if the window can overlap the image boundary at the end of

each processing sweep.

Writing new values outside the array boundary has a simple
semantics and implementation only in the case of extending a linear
array. For a matrix, the semantics is complex if an extension of the
array 1is intended, and the implementation is also troublesome. For
simplicity, therefore, no dynamic extension of large arrays is allowed,
except in the simple case. The "end-of-structure” function is the

analogue of the usual "end-ot-file" function for files and has similar

14

uses.

11. Subwindows. A task may subdivide a window into smaller parts
called subwindows. A subwindow is a subarray of a window. A subwindow
may be passed as a parameter to a subtask (another task) for concurrent
processing. However, a subwindow is semantically distinct from a
window in three primary ways: (a) a subwindow cannot be moved, (b)
assignment to a subwindow element implies immediate update of the
correspoﬁding window element, and (c) overlapping subwindows directly‘
access the same element of the window (there are no local copies of
subwindow elements). Processing using subwindows proceeds in distinct
phases: (a) The main task positidns its window appropriately on a large
array, (b) subwindows are passed to subtasks for processing, and (c¢)
when all subtasks have terminated (or paused) the main task moves its
window to a new position and the cycle repeats.

Rationale. Processing using windows implies some secondary storage
traffic and system overhead for mutual exclusion, particularly where
several tasks are processing the same large array simultaneously.
Subwindows allow several tasks to operate on the same part of a large
array without major system overhead. Because subwindows cannot be
moved independently, no secondary storage traffic is involved. Because
no local copies of array elements are maintained and assignment causes
immediate update of an element in all subwindows within which it is
visible, the programmer 1is responsible for mutual exclusion and
consistency of the data, rather than the system. For many

applications, this alternative is appropriate. For example, a window

15

may be positioned over several dozen rows of a large array. A subtask
may be initiated to process each row, with a subwindow on the
appropriate row. Since these subwindows can never overlap, consistency
within the window is not an issue, and the system overhead for checking
is not required. Also, secondary storage traffic is greatly reduced by
moving the large window as a unit rather than each “row" subwindow
individually. At the éame time, system checking and mutual exclusion
on movement of the larger window allows other tasks in the system to
pfocess the same large array for other purposes concurrently. Shared
memory architectures allow subwindows to be implemented as simple
descriptors (dope vectors) with essentially no overhead in their
concurrent processing. In non-shared memory architectures. references
and assignments to subwindows require communication to'the task owning
the window, which may substantially increase the cost of use. For this

reason, subwindows are particularly attractive for use where tasks have

shared memory available.

Examples. Several short examples are presented here, with a more
extended example 1in a following section. Since we have no syntax for
programming these examples, only an intuitive sketch of the semantics

is provided.

Example 1. Ordinarv sequential file bprocessing. Sequential file
processing 1is the simplest case of large array processing. A task
positions a read-only window at the start of a large linear array (to
read the array file). The window 1is the equivalent of the PASCAL

“buffer variable". Processing the element(s) within the window

16

alternates with advancing the window until the entire array hﬁs been
traversed. To write the array, a write-only window is positioned one
element beyond the end, and assignment to the window element alternates
with forward mo;ement until all data has been written. Note that the
large array semantics allows the usual implementation structures for
file processing to be adapted to this larger conceptual model for array

processing.

Example 2. UNIX?-like pipes. A pipe in UNIX-iike systems 1is a file
that 1is_written by one task while a second simultaneously reads and
processes the newly written elements. The second - task may lag
arbitrarily faf behind the first in its processing. The large array
model allows this structure to be represented by the first task having
a write-only window at the end of the array-tile (as in Example 1
above) and the second task having a read-write window positioned on
some existing part of the array and advancing toward the first window.
Note however that the array is not “consumed” by the second task
reading it, so several tasks may have windows that allow them to'read

and process the array concurrently.

Example 3. Factoring a banded svmmetric matrix. In solving a large

system of equations in matrix form:
AX=8B

the matrix is often symmetric and "banded“, meaning each row has only a

- . e o e it s . 28 S S . e -

4 UNIX is a trademark ot Bell Laboratories.

17

maximum.of some constant “"beta" non-zero elements, starting with the
element on the main diagonal. "Beta" is termed the "bandwidth" of the
matrix. Only the elements within the non-zero band are stored, as an N
x "beta" matrix if the original matrix was N x N. A factoring
algorithm typically might work down the band, instantiating "“beta"+1
tasks, each of which works on one row of the matrix at a time. The
first task takes the iifst row, the "pivot row"”, and sends it to the
other tasks. Each of these tasks uses the pivot row to perform
calculations on the row it is currently assigned. Figure 1 illustrates

this processing structure.

N N\
N \\
N N \‘
N\ .
AN LN *beta’ windows
\ . N\
\ . \
\ \
o —— ——— "N .
[\aputatafedbubaibl \
\ \
N
AN N
\ N
AN
AN
AN
\

Figure 1. Solution of a banded matrix

18

Only “beta"+1 tasks are needed because only the rows with at least one
non-zero element in the same column as a non-zero of the pivot row need

to be processed in each step.

After sending the pivot row to all other tasks, the first task
moves 1its window doﬁn to the row "beta"+1 rows below its current row.
The second task then has the new pivot row, and the process repeats.
The tasks progressively move their windows down the band until the

entire array is processed.

4. An Implementation Model

In the last section an overview of the language concep&s needed
for concurrent processing of large arrays has been provided. In this
section an implementation model for these concepts is sketched briefly.
An actual implementation as an Ada package is presented in the next

section.

The implementation model for large arrays parallels to some extent
the implementation of file processing on sequential machines. As noted
before, for sequential file processing, a buffering process manages the
transfer of blocks of file components between the secondary and primary
storage, copying the components of the file into and from the butfer
variable associated with the file as needed. The concept of windows on
a large array, as seen in the last section, already embodies the idea
of a private copy of the elements of the large array visible through

the windows.

19

The large array itself is divided into subarrays or blocks for
implementation purposes as shown in Figure 2. The 1/0 of the large
array is performed in terms of the blocks, i.e., the large array is
stored on the secondary storage as blocks and the blocks are

transferred in and out of primary storage as needed.

A window, when stationed on the large array, may fall completely

within a block or may overlap several blocks (see Figure 2). To

l 1 1 1 {
] ! | | I
A S U DUNR [UN B
| | [I I
et AL NS IS S DN I
| ! { | l
I ey L RN A D O
I I | ! I
|
AR LA LS TN () I I O
l ' | | |
IR A RN ISR U IO
' ! l l l
| | 1 1 |

Figure 2. A large array divided into blocks
with four windows on it.

---- indicates block boundaries
indicates window boundaries.

20

provide a copy of the elements, the appropriate portions of the blocks
covered by the window are transferred sequentially to the window. When
the window is moved, the old values are written back. This implies
that each of the blocks overlapped by the window in the old position

must be updated.

The division of large arrays into blocks also supports
concurrency. As long as two windows are éiationed on the large array
so that they cover totally separate blocks, all processing required lor
the movements of the windows can be performed in parallel. Such a
situation is depicted by the two windows on the left in Figure 2. On
the other hand, if the windows are stationed so that they overlap
common blocks (the two windows on the right in Figure 2), then éccess
to the common blocks has to be serialized so as to preserve the
integrity of the data. The tasks owning the windows can still process
the window copies of the elements in parallel, with the serialization
occurring only during the reading and writing process between the

window and the actual elements of the large array.

A block ot the large array is required to be resident in the
primary memory only if there is a window covering it. Thus a simple
demand paging policy can be implemented wherein a block 1is paged in
from secondary storage only when a window moves onto it. The block can
be replaced when the window moves on and no other window has covered it

in the meantime.

21

" The model presented above attempts to find a solution to the two
related problems in the concurrent processing of large arrays as
discussed at the beginning of the section. Windows provide a means of
specitying the elements of a large array needed by the task for further
processing without the programmer having to code the details of data
movement between the primary and secondary storage. Tasks can use
independent windows stafioned on the same large array to pfocess the
array in parallel. The windows mutually exclude each other from the
same portion of the array (when required). This provides for the
maximum possible concurrent activity with no window unnecessarily
inhibiting the processing in another window when such mutual exclusion
is not needed. The model allows the language structure to reflect the
performance realities of distributed storage and processing without

unduly burdening the user with implementation details.

5. An Ada]mplementation of Large Arravs

The model for processing large arrays in parallel needs to be a
part of a system which provides other primitives necessary for
distributed processing such as creation of independent tasks,
communication between tasks, etc. To provide a precise semantics (and
syntax) for the concepts of the model, we can consider "large array" as
a new abstract data type. Although Ada does not provide any higher
level constructs for the distributed control of data structures, it
does provide a generic package facility which may be used to define
chis new abstract data type. The Ada tasking facility provides a

“virtual computer” that may be considered as an abstract distributed

22

machine. -Uithin>this machine, the large array package defines a
detailed implementation of the model for processing of large arrays in
parallel. The package consists of all the necessary type definitions
for large arrays, windows and subwindows along with procedure and
function definitions for the relevant operations on the above defined
types. Such a package definition provides a clear and precise syntax
(although not entirely ideal) for creating and operating on large

arrays in algorithms designed for concurrent processing of arrays.

Since the large array package is coded in Ada, a working knowledge
of the language is assumed for the purposes of describing the package.
The large array package has been implemented on a VAX 11/780 using the

ONIX implementation of the NYU/Ada ED translator and interpreter.

95.1. The Large Array Package

In this section the basic structure of the package 1is described.
Most of the scientific applications involving large arrays generaliy
require only two-dimensional arfays. Hence the package, as presented
here, supports only two-dimensional large arrays. The extension of the
package to higher dimensioned arrays is straightforward. The public
part of the package has been provided in Appendix A. For a detailed

listing ot the package refer to [10].

2.1.1. Large Arrays

The generic package LAHGE ARKAY PKGE can be 1instantiated with

any predefined or user defined type being supplied as actual parameter

23

to match the formal parameter ELEMENT . The following statements
declare FLOAT_ARRAY as a new instantiation of the generic package to

support arrays with elements of type FLOAT:

package FLOAT_ARRAY is new LARGE_ARRAY FKGE(FLOAT);
use FLOAT_ARHAY;

Preexisting arrays in external files. can be accessed by attaching
one of these large arrays via the procedure OPEN_LARGE_ARRAY while
new arrays can be created using the procedure CREATE LARGE _ARRAY.
External files are named by a character string. The row and column

bounds of a large array are specified at the time of associating the

large array with an external file and remain fixed during the existence

-

of the arrays. For example

A, X : LARGE_ARRAY;

OPEN_LARGE _ARRAY (A,
row_low bd => 1,
row_high_bd => n,
col_low bd => 1,
col_high_bd => n,
name => "A_file”");’

CREATE _LARGE_ARRAY (X,
row_low bd =>1,.
row_high_bd => n,
col_low_ bd => 1,
col_high_bd => m,
name => "X file”);

2 Ada allows parameters to a particular subprogram either as a list,
which associates actual and formal parameters by position, or by
preceding the actual parameter by "formal_name =>" where formal_name is
the name of the associated tormal parameter. Explicitly named parame-
ters are used for clarity in many of these examples, but positional
parameters are used where no contusion is likely.

24

A and X are declared as LARGE ARRAYs. The large array A is
associated with an already existing external file A_file and is
specified to be an n by n array while a file X_file 1is created to be
associated with the n by m large array X. Procedure

CLOSKE_LAHGE_ARRAY can be used to sever the association of an internal
large array with its associated external file while procédure

DELETE _LARGE_ARRAY deletes the associated external file:

Internally a large array is viewed as a sequence of blocks, each
block being defined as a square subarray of the large array as shown in

Figure 2. The blocks are numbered sequentially starting from the top

left corner and increasing along the columns and then rows.

The row and coiumn bounds are used to determine the total number
of blocks needed for the large array. For each of the blocks
constituting the large array a “"monitor"-like task - BLOCK_CONTROLLER
- is initiated to control access to the block. The reading in and
writing out of the blocks to secondary storage is performed by the
associated task as and when required. Note that the BLOCK_CONTROLLER

tasks are internal to the package and are not visible to the user.
2.1.2. Windows

Windows are attached to a particular large array using the
procedure CREATE_WINDOW. The same procedure is also used to specify
the size of the window and its privileges, i.e., whether it 1is read-
only(R), write-only(W) or read-write(RW). The row and column

increments to be used for relative movement of the w:ndow are also

25

passed as parameters to the procedure. The user can specify an

edge_element which will be used to fill out the portion of the window

which does not lie within the bounds of the associated large array when

the window is moved past the edge of the array. The statements
A_window, X_window : WINDOW;

CREATE_WINDOW(A_window,
- row_size => n, col_size => n,

inmode => R,

row_inc => 0, col_inc => 0,

ar = A,

edge => FALSE, edge_element => 0.0);

CREATE_WINDOW(X_window,

row_size => n, col_size => 1,
inmode => W,
row_inc =»> 0, col_inc => 1,
ar = X, -
edge => TRUE, edge_element => 1.0);
declare two windows A_window and X_window . The window A_window

is associated with the large array A. It is a read-only window and
its size is n by n. The move increments are set to zero, implying that
it will not be moved via relative movements. The X_window is a n by
1 write-only window associated with the large array X. The move
increments are (0,1), i.e., each relative move will displace it one
column to the right on the large array. An edge_element of 1.0 is
specified so that if the window is positioned such that it lies
partially outside the large array, the elements of the window not
overlapping the array will be set to 1.0. The exception
NONEXISTENT_ARRAY_EKROR is raised if{ the large array on which window

is to be stationed has not yet been created or opened.

26

With each variable of type WINDOW, the following data structures

are visible to the task declaring the variable:

type WINDOW is access WINDOW_DESC;
type WINDOW_DESC is
record
win : MATRIX_ACCESS;
info : WINDOW_INFO;
end record;
Thus a window is viewed by the user as a local array of specified size
(the component win) along with information which is private to the
package (the component info) . The processing of the elements of the
large array visible through the window is hence performed in a manner
analogous to the processing of an ordinary small array. That 1is to
say, the accessing of window elements is done through subscripting the
component win relative to the origin of the window rather than the
origin of the large array. In the following statement, the value of

the (2,3)th element of the A_window is assigned to the (4,1)th

element of X window:
X window.win(4,1) := A_window.win(2,3);

The position of the windows on the large arrays determines the actual
elements of the 1large arrays used in the above assignment statement.
Thus if the X _ window 1is positioned at the fifth colunn of the large

array X then X(4,5) 1is actually assigned.

Window movement

Two methods of window movement are provided: absolute and
relative. The SET procedure moves the window to the indicated
absolute position on the array. Thus SET can be used to establish
the initial position of the window on the array. In the following
statements, the A_window 1is set at position (1,1) on the large array

A so as to cover the whole array while X window 1is-set at position

(1,5) so as to cover the S5th cotumn of the large array X:

SET(A_window, new_row => 1, new_col => 1);

SET(X window, new_row => 1, new_col => 5);

The MOVE procedure, on the other hand, uses the row and column
increments defined while creating the window, to move to a new position
relative to the present position. The procedure MOVE just calls

SET with the new absolute position. The statement
MOVE (X);

uses the move increments specitied during the creation of X _window to
move the window one column to the right, i.e., the 6th column of large

array X.

Uhenever a window is moved, a copy of the elements visible through
the window is provided in the local array win (component of
WINDOW_DESC) . When the window is moved again, the values of the

elements are written back to the external large array before the move

28

is executed. Thus each task processes its private copy of the elements
visible through the window. The actual array is updated only when the
window is moved away. The reading and writing of the window elements
is obviously dependent on the privileges of the window, i.e., no
writing is done for read-only windows while no reading is performed for

write-only windows.

Procedure READ can be used to copy the large ‘array elements
covered by the window into the local array of the window without
actually moving the window. Similarly procedure WRITE is available
to update the large array from the local array without moving the

window.

Depending upon the size of the window and the position of the
window within the large array, the window may partially or fully cover
one or more blocks of the array (see Figure 2). Internally {for each
window a 1list of blocks covered by the window is maintained as

block_list. The procedure READ makes an entry call to each of the
tasks associated with the blocks in this list sequentiélly. to update
the appropriate portions of the window. Similarly, WRITE makes an
entry call to the tasks for updating the appropriate portions of the

blocks.

When a window is to be moved to a new position, several steps are
performed by the procedure SET. First the elements at the present
position are updated (for update windows only) by calling the WRITE

procedure., The procedure RELEASKE_BLOCKS is then called to detach the

29

window from the blocks it was covering. RELEASE BLOCKS makes entry
calls to the. tasks controlling the blocks covered by the window to
detach the window from the blocks. Note procedures WRITE and
RELEASK BLOCKS are «called only if the block_list 1is nonempty. An
empty block_list indicates that either the window has not yet been
initially stationed on the array or that its position is such that it
is totally outside the array and hence is not covcring any of the

blocks of the array.

Next the blocks that would be covered by the window in the new
position are determined. SET calls the procedure OBTAIN BLOCKS for
this purpose. -OBIZJALBZbGKS determines the position of the window
with respect to the large array and the blocks covered by the window at
this position. Entry calls are made to the tasks controlling these
blocks to "attach" the window to the blocks. If another incompatible
window covers the same elements, the “"attach” call is delayed until the
other window is moved. Once attach entry calls for all the blocks
covered by the window have been successfully completed, the elements at
the new position are read into the window via the procedure READ (for
read-only and read-write windows only), thus completing the operation
of moving a window to a new position. The procedures RELEASE_BLOCKS

and OEfALN_BLOCKS are not visible to the programs using the package.

5.1.3. Subwindows

" Subwindows can be overlayed on a window via the procedure

CREATE_SUBWINDOW provided for this purpose. The window with which

30

the subwindow is to be associated, its size, and its position within
the window are passed as parameters. The following statements
A_sw : array(l..n) of SUBNINDOW;
X_S’N H SUBUINUUU;
for i in 1..n
loop
CREATE_SUBWINDOW(A_sw(i),
row_size => n, col_size => 1,
row_pos => 1, col_pos =» 1,
wind => A_window -);
end loop;
CREATE_SUBWINDOW(X _sw,
row_size => n/2, col_size => 1,
row_pos =»>1, col_pos => 1,
wind => X_window);
declare a subwindow X_sw and an array of subwindows A_sw. Each of
the A_sw subwindows 1is created to be a n by 1 subwindow associated
with the window A_window. The i'th subwindow A_sw(i) 1is overlayed

on the i’th column of the A_window. The X sw subwindow is created

So as to cover the top n/2 elements of the X window.

The subwindow should lie entirely within the window with which it
is associated, otherwise the exception SUBWINDOW OUTSIDE WINDOW is
raised. For each window a ligt of subwindows overlaving it is
maintained. Qn creation the gubwindow is attached to the end of the

subwindow_list for the associated window.

Procedure ASSIGN can be used to assign a value to a particular
element of the subwindow. Function GET returns the value of the

specified element. For example, here

31
ASSIGN(X sw, 4, 1, GET(A_sw(5), 1, 1));

results in the first element of the S5th A_sw subwindow being assigned
to the 4th element of X_sw. These two subprograms work directly on
the window to which the subwindow is attached since a subwindow does

not have its own private copy of the elements.

Note that there are no procedures for moving subwindows. Only the
window on which the subwindow is overlayed can be moved. Thus when a
window is moved, conceptually all the subwindows attached to it are

automatically moved while preserving their relative positions.
$.1.4. End of Structure Functions

The functions £0S can be used to determine 1if a window or
subwindow has reached the end of the structure, i.e., the edge of the
large array on which the window is stationed. A window can be totally
inside the large array or totally outside jt. The window can also be
straddling the large array along one of the edges or one of the
corners. The functions K0S returns a value of the enumeration type

DIRECTIONS. A value INSIDE 1is returned if the window or subwindow
is totally inside the large array while OUTSIDE is returned it the
window or subwindow is totally outside the large array. The compass
directions are returned for the other eight possible positions of the
window or subwindow with respect to the large array. Thus N is
returned when the top edge is straddled, M/ is returned it the top

left hand corner is straddled and so on.

32

The LARGE_ARRAY_PACKAGE also provides various other functions to
determine the properties ot large arrays, windows and subwindows. The

package has been described in greater detail in [10].

5.2. Mutual Exclusion and Deadlock

The semantics of the Ada tasking facilities have been used to
provide mutual 'exclusion to tasks wishing to access the same block of
the large array simultaneously. Since an independent

BLOCK_CONTROLLER task controls each of the Dblocks, the

BLOCK;CONTROLLER task performs the role of a "monitor” for the block.
As long as two tasks are moving their windows over different parts of
the large array, the movement can be pertormed in parallel. It is only
when the two windows have to move onto the same block that their
movement§ are carried out in a sequential manner. Also the reading and
writing can be performed by only one task at a time. This does not
inhibit parallel activity, since once a copy of the relevant portion of
the block has been made into a window, independent tasks can process

their windows concurrently.

Windows can be moved asynchronously over a large array by the
tasks owning the windows. In moving the windows, the tasks are
requesting "resources”, i.e., making attach entry calls to the tasks
controlling the blocks of the large array in an independent and
asynchronous manner. A task can be blocked if the movement of the
window would cause an incompatible éverlap with another window already

stationed on the block. Thus a deadlock could potentially occur if two

33

windows each simultaneously request to be attached to blocks on which
the other is already stationed in such a fashion as to cause an
incompatible overlap in both blocks. Such a deadlock is avoided by a
simple resource ordering strategy. The blocks of a large array are
numbered sequentially and must be requested by cach task in a fixed
sequence. A SET operation (and hence the MOVE operation) proceeds
by first releasing the blocks covered by the window in the old positioh
and then attaching the window to the blocks in its new position in the
order of the block numbers. No reading or writing of the window
elements at the new position may occur until the window has been
successfully attached to all the blocks that it has to cover. This
ensures that two windows cannot each be vying for a block already

covered by the other window, thus avoiding deadlock.
9.3. Block size

Each large array is internally divided into blocks. The size of
the blocks is dependent on several competing factors. Since the block
is used as a unit for transfer of data between secondary storage and
primary memory(s), the optimum size for 1/0 transfer influences the
block size. Each block is controlled by an independent task. Thus if
the block size is small, the number ot tasks controlling the blocks
will become large. On the other hand, if the block size is large then
the concurrency available during the movement of windows is reduced.
The trade off between the amount of parallelism and the number of tasks
has to be weighed in conjunction with the optimum I/0 transfer size

when determining the size of the blocks of the large arrays.

34

6. Array Processing: An Example

An algorithm for solving a triangular system of equations is
elaborated in this section. The equations are represented by the

following matrix equation:

Ax = b
where the matrix A is an n by n upper triangular matrix. The
algorithm, coded in Ada (see Appendix B), essentially uses a direct
back solvé method for solving the equations for a set of m right hand

side vectors b.

The algorithm utilizes n subtasks for solving the system of
equations - n-1 BACK_SOLVE subtasks and one MAIN BACK_SOLVE. The n
subtasks are conceptually arranged in a linear chain, each having a
right and 1left neighbor (except of course the subtasks at the end
points). The subtask MAIN_BACK_SOLVE 1is the n’th subtask in the

chain.

The algorithm is set up so that each subtask views one column of
the array A and calculates one element of the solution vector x. The
subtask MAIN_BACK SOLVE “receives" the right hand side vector b and
calculates the n’'th element of x using the n'th element of b and the
A(n,n) element. It also calculates the contribution of the n’'th column
of the array A to the solution vector and passes on the partially
calculated x vector to its left neighbor. The id’th subtask BACK_SOLVE
receives the partially calculated x vector from its right neighbor,

calculates the id’th element of the x vector and passes on the

35

partially calculated values of x, updated by contribution of the id’th

column of the array A, to its left neighbor.

The procedure MAIN declares A, X and B as LARGE_ARRAYs
and opens A and [P, associating them with already existing external
files A_file and B_file respectively. It also creates a new file

X file, to be associated with the LARGE ARRAY X. A read-only
window A_window, is also defined by MAIN and associated with the
LARGE _ARRAY A. Thg window A_window is as'large as the array

itself and is positioned so as to cover the whole array.

Each of the BACK_SOLVE subtasks declares a subwindow A_sw on
the window A_window and overlays it such that the subwindow for
subtask id is at the id’th column of the window (see Figure 3(a)).
Also a one element write-only window is declared by each subtask on the

LARGE_ARRAY X and initially positioned on the first column of the

id’'th row.

The subtask MATN_BACK _SOLVE, in addition to the A_sw subwindow
and the X_window also has a window, B_window, on the LARGE_ARRAY
B (Figure 3(c¢)). This window is initially positioned at the tirst
column of the array B. After setting the B_window on the first
column of the B array, the subtask calculates the n’th element of the
x vector and writes it in the X_window. It then passes the partially
calculated n-1 values to its left neighbor, subtask n-1, and then moves

the B_window and X_window one position to the right on the

respective arrays so as to process the next b vector (Figure 3(b) &

36

—
. . .
L] -
(a)
D r=1
- L1
£30] b
r-1 1
.2 : :
|
11
L] 1
I
[|
' 1t 1
[|
) [
[|
I
1
11
r~- vt
l.}D | .

(b) (c)

Figure 3. Windows and subwindows for the back solve process
(a) Window and subwindows on large array A4
(b) Movement of windows on large array X
(c) Movewent of the window on large array B

e o 4 et e - 45 - oy e e 0 S e e i 6 > - ——— = =~ o ——— — o=

37

3(c)). Note that the move increments for both the windows are

appropriately set when defining the windows. Processing is continued

until the end of structure is reéched (EUS(B_WINDOW) = OUTSINK) .

The 1id’th subtask BACK_SOLVE receives 1id elements of the
partially calculated x values from its right neighbor and generates the
id’th elemenc of the x vector in the X_window. It communicates
partially calculated x values to its left neighbor and then moves its

X window (Figure 3(b)). This is repeatgd until all the right hand
sides have been processed. For each right hand side vector, the id’'th
subtask produces the id’th element of the corresponding x vector. Thus
the end of processing is signified by the fact that the X window has
been moved outside the X array (FOS(X_window) = OUTSIDE) . When all
subtasks have finished processing the main program closes all the

large_arrays.

As noted before, the above algorithm has been described without
assuming an underlying architecture. An implementation of the

algorithm on the NASA Finite Element Machine is described in [9].

7. Conclusion

The minimal support for large data structures in proposed
languages for multiprocessor architectures has led to the present
investigation. The basic aim of the conceptual model presented in thi§
paper, 1is to lay the groundwork for incorporating'the concept of large
arrays into parallel languages. The model provides the user with an

easy means of specifying not only the distributed storage but also the

38

distributed processing of large arrays in a high level language without

resorting to low level coding within his program.

The basic data structure "large array” is the same as that of an
ordinary small array, but it is clear that the manner in which a large
array is to be processed in a multiprocessor environment cannot be the
same because of the performance realities involved in its processing.
A similar dichotomy can be seen in sequential languages where the two
concepts of files and vectors are not merged even though files can be

regarded as vectors of records.

The conceptual model for parallel processing of large arrays, as
presented in this paper, is an attempt to fill the gap between what is
provided by the present day parallel languages and what is needed by
the users of such languages. The central concepts of the model,
windows and subwindows, provide the means for representing both the
distributed storage and concurrent processing of 1large arrays in

programs in a way that is natural for array processing.

The Ada large array package was implemented so as to specify the
semantics of the above concepts in more concrete terms. Various
tactors dictated the choice of Ada as a vehicle for the specification
of the semantics. Ada provides excellent facilities for implementing
abstract data types through generic packages. The Ada tasking
facilities can be used to represent a virtual abstract multiprocessor
system. Since the thrust of this research was the study of large

arrays in a parallel environment rather than the use of concurrent

39

systems per se, Ada tasking facilities provided a base on which the

large array model could be implemented.

The Ada package provides a particular implementation of the
general model for parallel processing of large arrays wi thout any
assumptions about the underlying architecture. However the performance
realities associated with each particular architecture have to be taken
into account when considering the implementation of the model on a
particular machine. The model provides a general framework which can
be tailored to fit the nuances of a particular architecture. The
strategies for implementing the model on four architectures namely: the
NASA MPP {3), the Intel 432 system (1), the NASA Finite Element
Machine {18], and the University of Maryland ZMOB [15] have beeﬁ

described in [101}.

8.

1.

10

REFERENCES

“Introduction to the iAPX 432 Architecture,"” Intel

Corporation (1981).

“Reterence Manual for the ADA Language," U. ' S. Department of

Defense, Washington, D.C. (July 1982).

Batcher, K. E. "Design of a Massively Parallel Processor," IKEE

Transactions on Computer (-29,9 (Sept. 1980), pp. 836-840.

Gajski, D., Kuck, D., Lawrie, D., and Sameh, A. “Cedar - A Large
Scale Multiprocessor," Proceedings of the 1983 International

Conference on Parallel Processing (August 1983), pp. 524-529.

Hoare, C. A. R. "Communicating Sequential Processes,"

Comnunications of the ACH 21,8 (August 1978), pp. 666-67T.

Jones, A. and Schwarz, P. “Experience Using Multiprocessor
Architectures - A Status Report,*” ACM Computing

Surveys 12,3 (June 1980), pp. 121-166.

Liskov, B., Snyder, A., Atkinson, R., and Schaffert, C.
“Abstraction Mechanism in CLU," Communications of the

ACM 20,8 (August 1977), pp. 564-576.

Liskov, B. and Scheifler, R. "Guardians and Actions: Linguistic
Support for Robust, Distributed Programs,“ WNinth ACM Symposium

on Principles of Programming lLanguages (January 1982), pp. 7-

10.

11.

12.

13.

14.

15.

41
19, Albuquerque, NM.

Mehrotra, P. and Pratt, T. W. “Language Concepts for Distributed
Processing of Large Arrays,” Proceedings ACM Symposium on
Principles of Distributed Computing (August 1982). , Ottawa,

Canada

Mehrotra, P. “Parallel Computation on Large Arrays,” FPh.D.
Thesis (August 1982), University of Virginia, Charlottesville,

Va.

Millstein, R. E. "Control Structures in ILLIAC IV FORTRAN,"
Communications of the ACM 16,1 0 (October 1973), pp. 621-627. -

Perrott, R. H. "A Language for Array and Vector Processors,"”
ACM Iransactions on Programming Languages and

Systems 1,2 (October 1979), pp. 177-195.

Perrott, R. H. and Stevenson, D. K. "User’s Experience with the
ILLIAC IV System and its Programming Languages,” Sigplan

Notices 16,7 (July 1981), pp. 75-88.

Phillips, J. R. and Adams, H. C. "Dynamic Partitioning for Array
Languages, " Communications of the Association for Computing

Machinery 15,1 2 (December 1972), pp. 1023-1032.

Rieger, C. “ZMUOB: A Mob of 256 Cooperative Z80-based
Microprocessors,” Proceedings Image Understanding Conference,

Los Angeles, CA. (1979), pp. 25-30.

16.

17.

18.

19.

42

Sejnowski, M. C., Upchurch, E. T., Kapur, R. N., Charlu, D. P.
S.. and Lipovski, G. J. "An Overview of the Texas Reconfigurable
Array Computer," AFIPS Conference Proceedings 1980 NCC (1980),

pp. 631-641.

Snyder, L. “Introduction to the Configurable, Highly Parallel

Computer,” Computer 15,1 (January 1982), pp. 47-56.

Storaasli, 0. 0., Peebles, S. W., Crockett, T. W., Knott, J. D.,
and Adams, L. “The Finite Element Machine: An Experiment in
Pafallel Processing,” AResearch in Structural and Solid
Mechanics, NASA Conference Publication 2245 (October 1982), pp.

201-217, Washington, D.C.

Uhr, L. "A Language for Parallel Processing of Arrays, Embedded
in PASCAL," TR-3645, .Computer Science Department, University of

Wisconsin-Madison (September 1879).

AFPPENDIX A
Ada Generic LARGE_ARRAY Fackage

== The following generic package, LARGE_ARRAY PKGE, --
- can be used for parallel processing of large arrays. --
-- The package defines the needed data types and --
-~ subprograms for such processing. -
-- The package can be instantiated with any actual type --
== corresponding to the formal parameter ELEMENT. --

generic
type KLEMENT is private;
package LAHGE ARRAY PKGE is
type LARGE_ARRAY is private;
type MATRIX is array(INTEGER range <>, INTEGEK range <>)
: of ELEMENT;
type MATRIX_ACCESS is access MAIRIX;
type WINDOW_INFO is private;
type WINDOW DESC is
record
win : MATRIX_ACCESS;
info : WINDOW_INFO;
end record;
type WINDOW is access WINDOW_DESC;
type SUBWINDOW is private;
type PRIVILEGES is (R,W,RW);

type DIRECTIONS is (N,S,E,W,NE,NW,SE,SW, INSIDE,OUTSIDE);

43

44

-- Procedures to create or open large arrays

procedure CREATE_LAKGE_ARRAY(

procedure OPEN_LARGE ARRAY (

ar : in out LARGE_ARRAY;
row_low_bd,
row_high_bd,
col_low_bhd,
col_high_bd : in INTEGER;
name : in STRING};

ar : in out LAKGE_ARRAY;
row_low_bd,
row_high bd,

col_low_bd,
col_high_bd : in INTKGER;
name : in STRING);

== Procedures to delete or cluse large arrays

procedure DELKIE_LARGE_ARRAY(

procedure CLOSE_LARGE _AHRAY (

ar: in out LAHGK ARRAY);
ar: in out LARGE_ARRAY);

-= Procedures to create windows and subwindows

procedure CREATE_WINDOW(wind

row_size, col_size :
inmode
row_inc, col_inc

ar
edge

edge_

procedure CREAI'KE_SUBWINDOW(subwin

: In out WINDOW;
in NATURAL;
: In PRIVILEGES;
: In INTEGER;
: in LARGE_ARRAY;
H i!)'ﬂOOLKAN;
element : In ELEMENT);

: 1n out SUBWINDOW;

row_size, col_size,

row_pos, col_pos
inmode
wind

: in MTURAL;
: in PRIVILEGKS;
: in WINDOW);

45

~= Procedures to move windows.

-- Note that a move implies

-~ writing the last position (it the window is not read-only)
-- reading the new position (if the window is not write-only).

procedure MOVE(wind : in out WINDOW); -- relative movement

procedure SKT (wind : in out WINDOW;
" new_row,
new_col : in INTEGER); -- absolute movement

-~ Procedures to read and write windows without moving them.

procedure READ (wind: in out WINDOW);
procedure WRITE(wind: in WINDOW) ;

~- Subprograms to assign and retrieve values of specified
-- elements of subwindows.

procedure ASSIGN (subwin : 1n out SUBWINDOW;

row, col : In NATURAL;
value : in ELEMENT);
function GET (subwin : in SUBWINDOW;
row, col : in NATURAL) return ELEMENT;

-- Functions to determine the end of structure.

function EOS(wind: in WINDOW) return DIRECTIONS;
function EOS(wind: in SUBWINDOW) return DIRECTIONS;

-- Various functions to determine properties of large arrays,
-- windows and subwindows.

-- Exceptions that can be raised in the package.

ARRAY SIZE ERROR : exception;
ARRAY DIFFERENT_ERROR : exception;
READ _WRITE_MODE_ERHOR : exception;
NONEXISTENT ARRAY_ERROR : exception;
NONEXISTENT_WINDOW_ERROR : exception;
SUBWINDOW _QUTSIDE WINDOW : exception;

end LARGE_ARRAY PKGE;

APPENDIX B

Ada Program for the Back Solve Process

with LARGE_ARRAY_ PKGE;
procedure MAJIN is

package KLOAT_ARRAY is new LARGE_ARKAY_PKGE(FLOAT);

use FLUAT_ARRAY;

n : constant NATURAL ; -- Size of the A matrix

46

m : constant NATURAL ; -- Number of right hand sides

A X, B : LARGR ARRAY;
A_window : WINDOW;

begin

v

OPEN_LARGE_ARRAY(A, row_low_bd
col_low_bd
name

h v on
v

v

v

OPEN_LARGE_AHRAY(B, row_low_bd
col_low_bd
name

v

"A_file");

“B_file");

1, row_high_bd => n,
1, col_high_bd => n,

1, row_high bd => n,
> 1, col_high bd => m,

CREATE_LARGE_ARRAY(X, row_low_bd =»> 1, row_high_bd => n,
col_low_bd => 1, col_high_bd => m,
name => "X_file");

CREATE_WINDOW(A_window, row_size =>
inmode
row_inc
ar
edge

SET(A_window, new_row => 1, new_col

W oy
v v Vv

declare

n, col_size
R,

0, col_inc
A

type VECTOR is array(1..n) of FLOAT;

task type BACK_SOLVE is

entry WHO_AM_I(self_id : NATURAL);

entry NEXT(x : VECTOR);
end BACK_SULVE;

task MAIN BACK_SOLVE is
end MAIN_BACK_SOLVE;

solve : array(l..n-1) of PACK_SOLVE;

./-'.l'lLSE', edge_
=) 1),-

=) n’

> 0,

element => 0.0);

task body MAIN_BACK_SOLVE is
B window, X window : WINIOW;

A_sw : : SUBWINDOW;
partial_x : VECTOR;
begin

CREATE_SUBWINDOW(A_sw, row_size => n, col_size => 1,
row_pos => 1, col_pos =>n,
wind => A_window);

CREATE_WINDOW(X_window, row_size => 1, col_size => 1,

inmode => W,

row_inc => 0, col_inc => 1,

ar = X,

edge => FALSE, edge_element => 0.0);

SET(X _window, new_row => n, new_col => 1);

CREATE_WINDOW(B_window, row_size => n, col_size => 1,

inmode => R,

row_inc => 0, col_inc => 1,

ar => B, :

edge => FALSE, edge_element => 0.0);

SET{B_wjnaoy, new_row => 1, new_col => 1);

solve_cycle:
loop

X window.win(1,1) := B_window.win(n,1) / GET(A_sw,n,1);

for 1 In 1..n-1

loop
partial_x(i) := (B_window.win(i,1)
- GEI(A_sw,i,1) *» X_window.win(1,1));
end loop;

solve(n-1).NEXT(partial_x);

MOVE(B_window);
MOVE(X_wmindow);

exit solve_cycle when (KOS(H_window) = OUTSIDEK);
end loop solve_cycle;

end MAIN_BACK_SOLVE;

48

task body BACK_SOLVE is

X_window : WINDOW;
A_sw : SUBWINDOW;
id : NATURAL;
partial_x : VECITOR;

begin
accept WHO_AM_I (self_id : NATURAL) do
id := self_id;
end WHO_AM_I;
CREATE_SUBWINDOW(A_sw, row_size => n, col_size => 1,
row_pos => 1, col_pos => id,
wind => A_window);

CREATE_WINDUW(X_window, row_size => 1, col_size => 1,

inmode => U,

row_inc => 0, col_inc => 1,

ar => X, :

edge - => FAISE, edge_element => 0.0);

SET(X_window, new_row => id, new_col => 1);

solve_cycle:
loop
accept NEXT(x : VECTOR) do
for i in 1..1id
loop ,
partial_x(1) :
end loop;
end NEXT;

x(1);

X window.win(1,1) := partial_x(id) / GET(A_sw,id,1);
for i in 1..id-1
loop
partial_x(i) := (partial_x(i)
-GET(A_sw,i,1) * X window.win(1,1));

end loop;
if id /= 1 then
solve(id-1).NEXT(partial_x);
end if;
MOVE(X_window);
exit solve_cycle when (EKOS(X_window) = QUTSIDE);

end loop solve_cycle;
end BACK_SOLVK:

begin -- declare

for i in 1..n-1
loop

solve(1).WHO AM_1(i);
end loop;

end; =-- declare

CLOSE_LARGE_ARRAY(X);
CLOSE_LARGE_ARRAY(B);
CLOSE_LARGE_ARRAY(A); .

end MAIN, H

49

1. Report No. 2. Government Accession No.

NASA CR-172252

3. Recipient’s Catalog No.

4. Title and Subtitie

A Model for the Distributed Storage and Processing of
Large Arrays

5. Report Date
October 1983

6. Performing Organization Code

7. Author(s)
Piyush Mehrotra and Terrence W. Pratt

8. Performing Organization Report No.
83-59

9. Performing Organization Name and Address
Institute for Computer Applications in Science

and Engineering
Mail Stop 132C, NASA Langley Research Center
Hampton, VA 23665

10. Work Unit No.

11. Contract or Grant No.

NAS1-17070, NAS1-17130

12 Sponsoring Agency Name and Addrezf
National Aeronautics and Space Administration

Washington, D.C. 20546

13. Type of Report and Period Covered

Contractor report

14. Sponsoring Agency Code

15. Supplementary Notes

Langley Technical Monitor: Robert H. Tolson
Final Report

Additional support: National Science Foundation Grant MCS78-00763.

16. Abstract

concept as an Ada package is also described.

A conceptual model for parallel computations on large arrays is developed in this
paper. The model provides a set of language concepts appropriate for processing
arrays which are generally too large to fit in the primary memories of a multiprocessoj
system. The semantic model is used to represent arrays on a concurrent architecture
in such a way that the performance realities inherent in the distributed storage and
processing can be adequately represented. An implementation of the large array

17. Key Words (Suggested by Author(s))
large arrays

concurrent programming
distributed storage

18. Distribution Statement

61 Computer Programming and Software

Unclassified-Unlimited

19. Security Classif. (of this report)
Unclassified

20. Security Classif. (of this page)
Unclassified

21. No. of Pages 22. Price

AO4

N-305 For sale by the National Technical Information Service, Springfield, Virginia 22161

