
NASA-CR_172250
NASA Contractor Report 1722S0 19840004709

ICASE "......
I1101_f¢) i-_;i?+_,);_.,€'_g,;Do_.Il_f:,.:i

""- /_Oog-

DESIGN, DEVELOPMENT AND USE OF THE FINITE ELEMENT MACHINE

Loyce M. Adams

and

Robert G. Voigt

Contract Nos. NASI-17070, NASI-17130

October 1983

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING

NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association

I

National Aeronautics and l0 _.,'"9._ 1,983
Space Administration

Langley Research Center LANGLEYRESEARCHCENTER
Hampton,Virginia 23665 LIgRARY,NASA

H,",,",:PTON,VIRGI."IIA

DESIGN, DEVELOPMENT AND USE OF THE

FINITE ELEMENT MACHINE

Loyce M. Adams

Institute for Computer Application in Science and Engineering

Robert G. Voigt

Institute for Computer Applications in Science and Engineering

Abstract

In this paper we describe some of the considerations that went into the

design of the Finite Element Machine, a research asynchronous parallel

computer under development at the NASA Langley Research Center. The present

status of the system is also discussed along with some indication of the type

of results that have been obtained to date.

Research was supported by the National Aeonautics and Space Administration
under NASA Contracts No. NASI-17070 and No. NASAl-17130 while the authors were

in residence at ICASE, NASA Langley Research Center, Hampton, VA 23665.

i

INTRODUCTION

During the summer of 1976 a weekly seminar was held at ICASE to study

developments In parallel computing. The regular partlclpants were Rlchard

Brlce, Grlfflth Hamlln, Harry Jordan, John Knight, Davld Loendorf, Jerry

Tucker, and Robert Volgt wlth managerial support provided by James Ortega

(ICASE) and Robert Fulton (NASA). Prlor to that tlme David Loendorf had begun

to investigate ways to speed up the solution of structural analysis problems

by introduclng parallelism into the flnite element process utillzlng

mlcroprocessor technology. It was therefore natural that the group used

problems In structural analysis as a focal point for discussions.

Thls emphasls on an appllcatlon area was unlque. At that time only two

parallel systems were under development: the llllac IV eventually installed

at the NASA Ames Research Center and the C.mmp at Carnegle-Mellon

University. Both of these systems were essentlally general purpose devices;

the llllac IV was to be used for a variety of large scale scientific problems

and the C.mmp was primarily a vehlcle for research into a varlety of computer

sclence issues arlslng in parallelism. The group was interested in how an

appllcatlon area mlght drlve a deslgn and whether such a narrow focus mlght

lead to major simplifications In both hardware and software. The influence of

the appllcatlon wlll be dlscussed further in the next sectlon.

Another central theme of the dlscusslons was the role of mlcroprocessors.

At the tlme such devices were in their infancy. Slmple elght-blt processors

were readlly available but the more powerful slxteen-blt verslons were not.

Nevertheless , it was clear that microprocessors were golng to grow rapidly in

capabllity, and it was reasonable to conslder what could be accomplished by

developing a system out of many such devices.

Thus, the activity of the group focused on ways to utillze microprocessors

in a system for solving problems in structural analysis via the finite element

method. The ideas and concepts developed were organized into an initial

hardware design done by Harry Jordan and reported in Jordan [1978]. The

eventual manifestation of the design is known as the Finite Element Machine

(FEM) and is discussed more thoroughly in Section 3.

The FEM has had a long development period and the way the machine is to be

used has undergone numerous changes. Some of the reasons for the extended

development time are discussed in Section 4. Section 5 contains a brief

discussion of the type of results that have been obtained using FEM and the

paper concludes with some observations about developing research computers.

Finally, the bibliography contains all work that has been published on FEM as

of this writing. Many of these papers are not cited but are included here for

completeness.

2. MACHINE DESIGN ISSUES

We will now discuss some of the issues considered by the research group

which influenced the design of FEM. In its simplest form the finite element

method for the case of static stress analysis may be described as follows:

i. subdivide the region of interest into elements,

2. choose basis functions spanning the space in which the approximate

solution lles,

3. integrate the basis functions over each element to determine its

contribution,

4. assemble the contributions of all the elements into a single system

K x = f (2.1)

5. solve (2.1) for the approximate solution x.

For more details the reader is referred to the finite element literature, for

example, Strang and Fix [1973].

When the above process is implemented on a serial computer the majority of

the time is consumed by steps 3 and 5. In addition certain solution

techniques for Eq. (2.1) do not require the actual formation of the stiffness

matrix K. Thus the activity of the research group focused on steps 3 and 5.

In order to have a focal point for discussion consider the simplified

planar structure in Figure I.

B

A

Figure I. Example Structure

Assume we are interested in determining the stresses in the structure if a

force is applied as indicated by the arrow. Further assume that the structure

is modeled by different elements such as beams and plates and that an

appropriate set of basis functions has been chosen. Then from step 3 the

basis functions must be integrated over each element. These integrations may

be done in parallel for each element. However since the elements may be

different or since similar elements may have different material properties, it

is not possible to execute the same instruction sequence across all of the

elements. Thus in order to achieve the maximum degree of parallelism it was

considered desirable for FEM to be a parallel system of multiple-lnstructlon-

multlple-data (MIMD) type in the classification of Flynn [1966].

For the solution of Eq. (2.1) both direct and iteratlve methods were

considered. For most applications of interest the matrix K is symmetric,

positive definite and banded with bandwidth B as indicated in Figure 2.

m

mm

Figure 2. Form of the Stiffness Hatrix

In a direct method such as Cholesky factorlzatlon, at the ith step

conceptually rows i + i through i + B are modified using the pivot row

i. It is possible for these modifications to be done in parallel; however,

row i + B + I can not be modified until computation on row i + I has been

completed. Thus the degree of parallelism in the sense of Hockney and

Jesshope [i981] is limited to 8 unless one is prepared to consider

parallelism at the operation level within each row. The latter is possible

but raises serious questions about interprocessor communication for the

element in the ith column of the pivot row must be made available to all

processors containing elements of the ith column that are due to be modified

by the pivot row.

Finally there is the usual problem of fill associated with direct methods.

In general all elements within the band will become non-zero during the

factorization. This destroys the sparsity of the matrix and greatly increases

the storage requirements.

Iterative methods do not suffer from the fill associated with direct

methods. In addition it is easier to obtain a higher degree of parallelism.

For example, if we consider the iteratlve method

k+l
x = Bxk + d, (2.2)

where xk represents the approximate solution vector, the degree of

parallelism is N, the number of nodes of the discretizatlon. This leads to

the concept of a node per processor.

In addition to the increased parallelism this approach also offers the

advantage of requiring primarily only local communication. Writing equation

(2.2) as

k+l k

xi = [bljxj + di,
J€l i

we see that x_+l depends only on a
relatively small number of values of

xk as indicated by the index set Ii which consists of those nodes which are

physically connected to node xi. Thus it is desirable to have communication

paths between the processor containing xi and the other processors

containing xj for all j E Ii. Therefore it was decided that each processor

should be connected to its eight nearest neighbors in the plane so as to

support the communication required by trlangles, an important part of many

real structures, see Figure 3.

© ©

© ©

Figure 3. Eight nearest neighbor communication paths for processor i.

It should be noted that the connectivity sets Ii do not all represent

the same pattern or number of connections. For example contrast the

connectivity of nodes A and B in Figure I. This means that the

computations required for updating each node will not be the same and hence

reinforces the requirement that the system be of MIMD type.

Equation (2.2) is the prototype of the classlclal Jacobl iteration which

exhibits the maximum degree of parallelism but does not have as desirable

convergence characteristics as methods llke Gauss-Seldel. In Gauss-Seldel

llke methods, x_+I depends on other values at the (k+l) step and thus
was

not thought of as a parallel method. However, many authors have pointed out

that Gauss-Seldel can be turned into a parallel method by employing the so-

called red-black or checkerboard ordering, see for example, Ortega and Volgt

[1977]. Thus the eight nearest neighbor connection would support the use of

modern iteratlve methods on FEM.

A significant problem remains: one must be able to map the dtscretized

structure of interest onto the processors of the FEM so that all nodes that

are connected lie on processors that are connected. This turns out to be a

nontrivial problem even if the degree of connectivity of every node is eight

or less, see for example, Bokhari [1979]. However many structures contain

nodes that are connected to more than eight other nodes as node C in Figure

1. Communication required by such nodes obviously cannot be supported

directly by the eight nearest neighbor connections. Thus it was decided to

augment the so-called local processor connections with a global bus which

provides a connection between an_y two processors. The work of Bokhari focused

on finding mappings of the nodes onto the processors so as to minimize the use

of the global bus which was viewed as a resource that could be easily

saturated.

At this point the design appeared to hold considerable promise for the

classical iterative methods, but there was also interest in studying the more

modern accelerations of these methods, as well as the conjugate gradient

method and its many variants. A key step in these methods requires parameters

which are obtained by computing inner products involving the approximate

residual and direction vectors. In the scenario described above the

approximate solution is distributed across the processors and it requires

O(n) steps to accumulate an inner product using local connections on an

nxn array. To overcome this delay a separate circuit was designed that

connects the processors in a classical binary tree. This made it possible to

find the maximum element of a vector or to sum the elements of a vector in

O(log n) tlme when the elements were distributed across the nxn array. For

additional details see Jordan et al. [1979].

At this point the basic concepts of the FEM were fixed and a preliminary

design for 1024 processors was done by Harry Jordan (see Jordan [1978]) under

support from the Structures Division at the NASA Imngley Research Center

(LaRC). In 1979 LaRC began fabrication of an experlmental system under the

leadership of David Loendorf with hardware integration support provided by

Frank Mewszel; in 1981 David Loendorf left Langley and Olaf Storaasll assumed

responsibility for system development. The prototype presently contains eight

processors with expansion continuing; a 36 processor version is shown in

Figure 4. The system is discussed in more detail in the next section.

!

CONTROLL

"i..........I®

I \ I*"
! \

I '°'°'Ipoint I Jnke /"
un I t s S

/ sS
" LOCAL L INKS GLO6AL BUS

, ARRA Y
%,

_.___

Figure 4. Finite Element Machine System• _D

i0

3. THE CURREI_r FINITE ELEHENTHACHINE

In this section we describe the hardware and system software for both the

controller and the nodal processors. More detailed descriptions of the

hardware may be found in Jordan [1978], Jordan, et al. [1979], and Loendorf

[1983]. A summary of the current system software may be found in Storassll,

et al. [1982] and detailed descriptions of the controller support software and

array software may be found in Knott [1983a] and Crockett [1984] respectively.

Hardware

The controller consists of a TI 990/10 minicomputer with 128K words of

memory, four 5-megabyte disk drives, a Kennedy 9000 tape drive, and a llne

printer. The purposes of the controller are to serve as the user interface to

the FEM array by providing program development and problem definition tools,

to provide mass storage for programs and nodal processor input and output

data, and to initiate and monitor activity on the array.

Each nodal processor in the array is comprised of three hardware boards:

the CPU board, the I0-I board, and the 10-2 board. The CPU board contains a

Texas Instrument 9900 16-blt microprocessor, 16K bytes of erasable

programmable read only memory (EPROM), 32K bytes of random access memory

(RAM), and an Advanced Micro Devices AM9512 floating point chip. The EPROM and

4K of RAM are reserved for system software. The remaining 28K RAM is

available for program code, run-tlme data structures, and input data. The

AM9512 floating point chip with a clock frequency of 2 MHz provides single

precision (32-blt, 25-blt mantissa) and double precision (64-blt, 57-blt

mantissa) add, subtract, multiply, and divide operations. To use this

capability, the operands must be loaded by the nodal processors" system

software which requires approximately 360 microseconds for two single

II

precision numbers (this number was obtained through private discussions with

Tom Crockett). Once the operands are loaded, a single precision floating

point multiply can be performed in approximately I00 microseconds.

The IO-I board contains twelve local communication links and the

summatlon/maxlmum hardware. Each llnk is a 1.5 MHz blt serial interface with

an associated hardware FIFO buffer capable of storing 16 16-blt words of input

data from a neighboring processor. The links are normally configured in an

eight nearest neighbor with torroldal wrap around scheme but may be changed

before each program execution to support other strategies. Likewise, an

output register holds values that have been transferred from the memory on the

CPU board for transmission to neighboring processor(s). The summatlon/maxlmum

hardware allows p values, one per processor, to be added in log2p time by

providing a binary tree structure with the processors initially at the leaves

of the tree. This hardware works independent of the other communication

networks of the machine and was designed specifically to perform summations

(needed by inner products) and determine maximum values (desirable for norm

calculations).

The 10-2 board contains the global bus connections, the signal flag

networks, and the processor's self-ldentiflcatlon tag. The global bus is a

1.25 MHz tlme-multlplexed 16-blt parallel bus that connects all processors to

each other and to the controller. The bus has hardware FIFO buffers on both

the input and output lines capable of storing 64 words of data for buffering

purposes. The bus serves as the vehicle for transmitting the program code and

data from the controller disk to each nodal processor. The bus is also used

during the execution of application programs to transmit data between non-

neighboring processors with each processor having equal priority for the bus

on a flrst-come, flrst-serve basis, see Knott and Crockett [1982]. The bus

12

can be used in the broadcast mode to send information to a set of processors

from another processor or the controller. The signal flag hardware connects a

processor to eight separate binary flag networks which span all processors.

Any or all of these hardware flags can be enabled or disabled during program

execution and allow for synchronization and decision making. A processor_s

physical self-ldentlflcat_on number is hardwlred on the 10-2 board and is

matched to the logical processor number of a particular application code by

the system software for use in interprocessor communication and decision

making.

At present, eight processors, all connected via local links to each other,

have been running application codes. Currently, another eight processor

system is being installed providing one system for hardware and any additional

software development and one for application users. The next step will be to

add eight processors to one system for a 4x4 FEM array. Eventually a larger

array may be built if studies performed on the 4x4 array indicate that such an

effort is warranted.

System Software

The system software consists of the vendor's standard software for the TI

990 controller, the FEM Array Control Software (FACS) that runs on the TI 990

and provides the user interface to the array, the NODAL executive operating

system that runs on each TI 9900 microprocessor in the array, and the PASCAL

Library extensions (PASLIB) that support access to the architectural features

of the array llke communication and synchronization. A short description of

each of these software components and how they work together to implement

applications programs follow.

13

The vendor's software for the TI 990 controller includes a screen editor,

an assembler, a reverse assembler, a Pascal compiler, and a llnk editor. The

applications programmer uses this software to edit, compile, and llnk his
r

program to be run on the array. Typically this program will be executed by

all the processors in the array with different data. The programmer can use

an interactive graphics interface or the text editor to model his problem and

partition this data to separate data files (stored on the controller) for each

processor in the array. Alternatively, a heuristic utility program may be

written to partition the data for the processors, Bokharl [1979].

After the program and data files for each processor have been stored on

the 990 disk, the FACS software is used in conjunction with the nodal EXEC

operating system on each of the nodal processors to initialize the Array,

select the array configuration, define the size of the data areas (memory on

the nodal processors that contains either initial data or intermediate data

between job runs), load any or all of these data areas from the data files on

the controller, and download (broadcast) the program linked code. All these

FEM commands are implemented as control language procedures in FACS which is a

natural extension of the menu-drlven command interpreter of the vendor

software. The programmmer must therefore create a command program which

describes which program(s) and data are to be down loaded and the appropriate

sequence for that downloading and execution. This command program in turn is

invoked by a single controller command. After the program begins execution on

the array, the controller enters an interactive execute mode and receives all

messages/errors from all array processors but displays on the user's terminal

information from only one preselected processor. During execution, the FACS

software maintains a file of all output data received from the array, errors

encountered by all the processors, and a log of the events during the job run

14

which can be post processed by utility programs at the end of the Job

session. FACS also provides interactive debugging commands that allow the

user to single step, halt, kill, resume, dump memory, set program breakpoints,

and inspect and change memory, status, and registers.

The two components of the system software that run on each TI 9900

microprocessor are the NODAL EXEC operating system and the PASLIB routines.

NODAL EXEC is stored in EPROM on each TI 9900 and provides interrupt handling,

basic I/O, timing, memory allocation, task management, and a command monitor.

In addition, NODAL EXEC contains a package of command routines which implement

all functions the Controller commands the TI 9900 to perform. Typical

functions include loading object code, loading data into the data areas,

establishing processor connectivity (local and global neighbors), executing

programs, performing debugging, and uploading results.

Perhaps of more interest to the applications programmer are the PASLIB

routines. PASLIB is a library of Pascal subroutines that allow the programmer

to use the local links, global bus, signal flag network, sum/max circuit, and

the AM9512 floating point unit as well as communicate with the controller.

The most commonly used routines are written in assembly language and stored in

EPROM. A few of these will now be described.

To synchronize using flag i, processors must first call the ENABLE (flag

i) routine to add this flag to the network, after which a call to the BARRIER

(flag i) routine will cause all processors with flag i enabled to synchronize.

Note that these routines must be called by all processors wishing to

synchronize. The BARRIER routine may be used in iterative algorithms to

synchronize before a call to the ALL (flag i) routine is executed to check for

global convergence.

15

To send n words of data that are stored in memory starting at location

£ to processor p the programmer would call the PASLIB routine SEND(p,£,n)

or SEND2(p,£,I,n) if data is distinguished by an index tag i. Data may also

- be broadcast to all local and global neighbors by SENDALL(£,n) or

SENDAL2(£,I,n).

Data is received from another processor in either a synchronous or

asynchronous mode (which has to be defined by the programmer in the command

file on the controller). For the synchronous mode, input from the sending

processor is queued in the order it is received and must be read by the

receiver in this order. For the asynchronous mode, only the most recently

received record (for each index tag) is saved. By providing these two modes

of communication, the system software must necessarily be more general and

therefore more expensive; however, they provide a mechanism for studying both

synchronous and asynchronous algorithms.

To use the AM9512 floating point unit, the operands must be loaded via

PASLIB routines. For example, to multiply two numbers x and y and store

in z, the appropriate statement would be z := MULT(x,y). This adds a cost

of 358 Bs to execute the MULT procedure compared to the 99 Bs for actually

performing the multiply on the AM9512. (This tremendous overhead is due to

the incompatibility of the AM9512 and the TI 9900 that could not be avoided at

the time the hardware selections were made.)

P

4. FEMDEVELOMNT EXPERIENCES

FEM development to date has provided a number of learning experiences

which may be useful to share. Progress has been slower than anticipated for a

variety of reasons involving both hardware and software issues.

16

At the time the microprocessor was selected, the TI 9900 was the only 16-

bit processor available. As development progressed a number of unexpected

small hardware purchases were required. Significant delays in procurement

were encountered due both to delay in manufacturer delivery and to federal

procurement policies. In hindsight the low-bldder competitive procurement

process of the government was often not the most effective strategy to

purchase small quantities of scarce parts to meet the requirements of an

evolving research system. Any cost benefits from competitive procurements

were negated by delays in system .development incurred while waiting for

deliveries. A better strategy might have been a master contract for all parts

with the specifics to be determined as work progressed.

The design itself required the usual modifications but a serious weakness

was the omission of any hardware error detection. The latter situation caused

significant delays in the debugging process that was already complicated by

the presence of several processors functioning independently.

As with most research projects funding was limited and staffing levels

were barely adequate to encompass the hardware, software, numerical analysis

and applications disciplines. Furthermore when some initial hardware became

operational, it was difficult to satisfy the needs of both those doing

hardware enhancement and those doing systems/appllcatlons development --

activities equally important for such research projects. The competition for

access was finally resolved by establishing a dual system, presently

consisting of eight processors for hardware development and another eight for

software.

Not surprisingly there were also difficulties in the software development.

The original idea of choosing a controller with the same instruction set as

the processors in the array and thereby using that software as a basis for the

17

array software seemed sound. However, the software underwent such slgnflcant

changes that it might have been better to develop an all new software system.

Major issues revolved around the adaptation of Pascal to the operating

. environment of the array. For example floating point arithmetic had to be

adapted to account for the presence of the AM9512. This involved facilities

for moving data to that device as well as converting the data to the

appropriate format.

Perhaps the biggest issue was to provide support for the variety of

communication mechanisms available. Since tbls is a major issue in any

parallel computing system we will discuss it in more detail below. It should

be noted first however that the fact that the FEM software provides an

effective environment for the user is a credit to the efforts of Tom Crockett

and Judson Knott. Their task was further compllcated by changes in the way

users expected to utilize the array, an example of which follows.

As discussed earlier, the original concept of the FEM involved considering

a node, or possibly an element, of the dlscretlzation per processor. The

implementation of a standard iteratlve method would then require frequent

communication in which a processor would send a value to each of its neighbors

and receive a value from each. As it turned out such frequent bursts of

communication involving only a few words of data were inefficient.

This inefficiency can be better understood by considering the steps a

processor must complete to actually send data:

i. interrupt the processor,

2. copy the data to be sent to an output buffer,

3. place the output buffer in a queue for either local or global

transmission,

4. generate a send interrupt,

18

5. execute the send interrupt,

6. transmit the data.

Executing these steps in order to send two words of data requires

approximately 1.8 milliseconds with the actual transmission contributing only

a few microseconds. When one compares this time with the approximately .46

milliseconds required by a floating point operation, one is led to try to

organize the computation so that the frequency of transmission is decreased

while the amount of data per transmission is increased.

One way to accomplish this change in transmission style is to place

several nodes or elements in each processor. In fact, note that if a two-

dimensional region is stored in each processor then for many iteratlve methods

only the boundary data must be exchanged between the processors. If the

region is q×q then the amount of data transmitted is 0(4q) while the

computation per processor is O(q2). This provides a mechanism for balancing

the communication time with the computation tlme. However the array is now

being used dlfferently than was originally intended further compllcatlng the

software development.

5. USE OF THE FEM

The results obtained on FEM so far can be put into two separate

categories; namely, parameter results and numerical algorithm results

especially appropriate for static stress analysis.

Tom Crockett and Judd Knott have timed the system software routines that

send and receive data and perform synchronization using the flag network.

These parameters are given in Adams [1982] and were used there as input to a

model to predict performance of some numerical algorithms as the number of

19

processors increased. Smith and Loendorf [1982] have also obtained FEM

parameters for use in performance evaluation. For the most recent version of

the operating system software, Knott [1983b] has timed the PASLIB routines

that send and receive a package of numbers between neighbor processors as a

function of the package size. The results of his study have given guidance to

application programmers as to the tradeoffs in package size selection.

Execution times of several iteratlve algorithms for fixed sized problems

with the number of processors varying from one to five have been obtained.

These times were used to compare the algorithms as a function of the number of

processors and to obtain speedup results for a given algorithm. The iteratlve

algorithms include multl-color SOR as described in Adams and Ortega [1982]

with results reported in Adams [1982], conjugate gradient (Adams [1982]), and

m-step preconditioned conjugate gradient (Adams [1983a] and [1983b]). In

addition, execution time and speedup results for assembling the finite element

stiffness matrix K of (2.1) in parallel is glven in Adams [1982].

Additional studies are underway to determine execution time and speed up

results for a variety of algorithms and applications. Direct methods for

solving the system (2.1) are being compared particularly for multiple right

hand sides. Direct and Iteratlve methods for trldlagonal systems are also

being compared. This problem is particularly important as a building block

for other more general iteratlve methods.

A new application under study involves computing the nonlinear dynamic

response of a structure under a prescribed load condition. The technique is

highly parallel and preliminary results indicate that excellent speedups are

possible.

20

6. CONCLUSIONS

The FEM is important as a model of the kind of research system that is

required to understand the issues in parallel computing and to evaluate

various techniques for making such systems useful. While the development of

the FEM took longer than anticipated, a great deal has been learned during

that process. A collection of researchers have been able to evaluate

techniques for programming HIMD systems. They have developed an understanding

of how to use communication among the processors and have actually measured

the performance of that communication in solving real problems. They are

beginning to learn just how hard it can be to debug a program for a system of

asynchronous processors. This kind of experience may lead to improved

techniques for tracking and isolating errors in MIMD systems.

There is no scarcity of ideas in the computer science community about how

one should design an MIMD system. There is a scarcity of systems on which to

evaluate these ideas. Such systems are absolutely essential if we are to

develop the knowledge required to produce useful MIMD systems. Despite some

shortcomings, the FEM is an excellent example of how important such a test bed

can be.

Acknowledgement

The authors are indebted to Robert Fulton for many useful discussions and

for suggestions for improving the manuscript.

21

_FE_N_S

[I] Adams, G., D. Mullens, and A. Shah [1979], "Software Design Project:

Finite Element System Executive," Report No. CSGD-79-1, Computer Systems

Design Group, Unlverlsty of Colorado.

[2] Adams, L. M. [1982], "Iteratlve Algorithms for Large Sparse Linear

Systems on Parallel Computers, Ph.D. Thesis, University of Virlglnla;

also published as NASA CR-166027, NASA Langley Research Center,

November.

[3] Adams, L. M. [1983a], "M-Step Preconditioned Conjugate Gradient

Methods," NASA CR-172130, NASA Langley Research Center, Hampton,

VA, April.

[4] Adams, L. M. [1983b], "An M-Step Preconditioned Conjugate Gradient

Method for Parallel Computation," Proc. of the 1983 Intl. Conference on

Parallel Processing, IEEE Catalog No. 83CH1922-4, August, pp. 36-43.

[5] Adams, L. M. and J. M. Ortega [1982], "A Multi-Color SOR Method for

Parallel Computation," Proc. of the 1982 Intl. Conference on Parallel

Processing, IEEE Catalog No. 82CH1794-7, August, pp. 53-56.

[6] Bokhari, S. H. [1979], "On the Mapping Problem for the Finite Element

Machine, Proc. of the 1979 Intl. Conference on Parallel Processing, IEEE

Catalog No. 79CH1433-2C, August, pp. 239-248.

22

[7] Bokharl, S. H. [1981], "On the Mapping Problem," IEEE Trans. Computers,

Vol. C-30, March, pp. 207-214.

[8] Bokharl, S. H. [1981], '_AX: An Algorithm for Finding Maximum in an

Array Processor with a Global Bus," Proc. of the 1981 Intl. Conference

on Parallel Processing, IEEE Catalog No. 81CH1634-5, August, pp.

3O2-303.

[9] Bokhari, S. H. and A. D. Raza [1983], "Reducing the Diameters of Array,"

Report No. EECE-83-OI, Department of Electrical Engineering, University

of Engineering and Technology, Lahore, Pakistan, June.

[i0] Bostic, S. W. [1983], "TEKLIB Graphics Library," NASA TM-84633, NASA

Langley Research Center, Hampton, VA, March.

[II] Crockett, T. W. [1984], PASLIB Programmer's Guide for the Finite Element

Machine, preliminary draft, to appear as NASA Contractor Report, NASA

Langley Research Center, Hampton, VA.

[12] Chughtal, M. Ashraf [1982], "Complete Binary Spanning Trees of the Eight

Nearest Neighbor Array," Report No. EECE-82-01, Department of Electrical

Engineering, University of Engineering and Technology, Lahore, Pakistan,

November.

[13] Gannon, D. [1980], "A Note on Pipellnlng a Mesh Connected Multiprocesor

for Finite Element Problems by Nested Dissection," Proc. of the 1980

Intl. Conference on Parallel Processing, IEEE Catalog No. 80CH1569-3,

August, pp. 197-204.

23

[14] Hockney, R. W. and C. R. Jesshope [1981], "Parallel Computers," Adam

Hilger Ltd., Bristol, Great Britain.
r

[15] lqbal, M. Ashraf and S. H. Bokhari [1983], "New Heuristics for the

Mapping Problem," Report No. EECE-83-02, Department of Electrical

Engineering, University of Engineering and Technology, Lahore, Pakistan,

June.

[16] Jordan, H. F. [1978], "A Special Purpose Architecture for Finite Element

Analysis," Proc. of the 1978 Intl. Conference on Parallel Processing,

IEEE Catalog No. 78CH1321-9C, August, pp. 263-266.

[17] Jordan, H. F., ed. [1979], "The Finite Element Machine Programmer's

Reference Manual," Report No. CSDG-79-2, Computer Systems Design Group,

University of Colorado, Boulder, CO.

[18] Jordan, H. F. and D. A. Podsladlo [1980], "A Conjugate Gradient Program

for the Finite Element Machine," Computer Systems Design Group,

University of Colorado, Boulder, CO.

[19] Jordan, H. F. and D. A. Podsiadlo [1981], "Operating Systems Support for

the Finite Element Machine," Report No. CSDG-81-2, Computer Systems

Design Group, University of Colorado, Boulder, CO.

[20] Jordan, H. F. and P. L. Sawyer [1978], "A Multi-Microprocessor System

for Finite Element Structural Analysis," Trends in Computerized

Structural Analysis and Synthesis, A. K. Noor and H. G. McComb, Jr.,

eds., Pergamon Press, Oxford, pp. 21-29.

24

[21] Jordan, H. F., M. Scalabrin, and W. Calvert [1979], "A Comparison of

Three Types of Multiprocessor Algorithms," Proc. of the 1979 Intl.

Conference on Parallel Processing, IEEE Catalog No. 79CH1433-2C, August,

pp. 231-238.

[22] Knott, J. D. [1983a], "FEM Array Control Software User's Guide," NASA CR

172189, NASA Langley Research Center, Hampton, VA.

[23] Knott, J. D. [1983b], "A Performance Analysis of the PASLIB Version 2.1X

SEND and RECV Routines on the Finite Element Machine," NASA CR 172205,

NASA Langley Research Center, Hampton, VA.

[24] Knott, J. D. and T. W. Crockett [1982], "Fair Dynamic Arbitration for a

Multlprocessor Communication Bus," Computer Architecture News, Vol. I0,

No. 5, September, pp. 4-9.

[25] Loendorf, D. [1983], "Advanced Computer Architecture for Engineering

Analysis and Design," Ph.D. Thesis, University of Michigan, Aerospace

Engineering Department.

[26] McBride, W. E. [1980], "Simulations Solution Algorithms for the FEM,"

Modeling and Simulation, Vol. II, Part 2, Proc. of the llth Annual

Pittsburgh Conference on Modeling and Simulation, pp. 595-599.

[27] McBride, W. E. [1981], "Simulating the PAM (Purely Asynchronous Method)

on the FEM (Finite Element Machine)," Modeling and Simulation, Vol. 12,

Proc. of the 12th Annual Pittsburgh Conference on Modeling and

Simulation, pp. 413-416.

25

[28] Mehrotra, P. and T. W. Pratt [1982], "Language Concepts for Distributed

Processing of Large Arrays," ACM SIGACT-SIGOPS Symposium on Principles

of Distributed Computing, August, pp. 19-28.

[29] Mehrotra, P. [1982], "Parallel Computation on Large Arrays," Ph.D.

Thesis, University of Virginia.

[30] Ortega, J. and R. Volgt [1977], "Solutions of Partial Differential

Equations on Vector Computers," Proc. 1977 Army Numerical Analysis

Conference, pp. 475-526.

[31] Podsladlo, D. A. [1981], "An Operating System for the Finite Element

Machine," Report No. CSDS-81-3, Computer Systems Design Group,

University of Colorado, Boulder, CO.

[32] Rea, G. C. [1983], "A Software Debugging Aid for the Finite Element

Machine," Report No. CSDG-83-2, Computer Systems Design Group,

University of Colorado, Boulder, CO.

[33] Shah, A. K. [1980], "'Group Broadcast" Mode of Interprocessor

Communication for the Finite Element Machine," Report No. CSDG-80-1,

Computer Systems Design Group, University of Colorado, Boulder, CO.

[34] Smith, C. and D. D. Loendorf [1982], "Performance Analysis of Software

for an MIMD Computer," Performance Evaluation Review, Vol. II, No. 4,

Proc. of the 1982 ACM Sigmetrlcs Conference on Measurement and Modeling

of Computer Systems, pp. 151-162.

26

[35] Storaasli, O. 0., S. W. Peebles, T. W. Crockett, J. D. Knott, and L. M.

Adams [1982], "The Finite Element Machine: An Experiment in Parallel

Processing," NASA TM-84514, NASA Langley Research Center, July.

[36] Voitus, R. F. [1981], "MPSP: A Multiple Process Software Package for

the Finite Element Machine," Report No. CSDG-81-4, Computer Systems

Design Group, University of Colorado, Boulder, CO.

i

I. ReportNo. I 2. GovernmentAccessionNo. 3. Recipient'$CatalogNo.
NASA CR-172250 I

• 4. Title and Subtitle 5. Report Date

October 1983
Design, Development and Use of the Finite Element Machine

6. Performing Organization Code

i
7. Author(s} 8. Performing Organization Report No.

Loyce M. Adams and Robert G. Voigt 83-56

10. Work Unit No.

9. Performing Organization Name and Address

Institute for Computer Applications in Science
'11. Contract or Grant No.

and Engineering

Mail Stop 132C, NASA Langley Research Center NASI-17070, NASI-17130

13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address Contractor Report
National Aeronautics and Space Administration

Washington, D.C. 20546 14. SponsoringAgency Code

15. _pplementary Notes

Langley Technical Monitor: Robert H. Tolson

Final Report

16. Abstract

In this paper we describe some of the considerations that went into the design of

the Finite Element Machine, a research asynchronous parallel computer under

development at the NASA Langley Research Center. The present status of the system is

also discussed along with some indication of the type of results that have been
obtained to date.

i

17. Key Words(Suggested by Author(s)} 18. Distribution Statement

parallel processing 62 Computer Systems
finite element method 64 Numerical Analysis

Unclassified-Unlimited

19. Security_a_if.(ofthisreport) 20. SecuritvCla_if.(ofthis_ge) 21. No.of Pages 22. _ice

Unclassified Unclassified 28 A03

N-3os ForsalebytheNationalTechnicalInformationService,Springfield.Virginia22161

!

