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Abstract

Two time periods are studied for which comprehensive data coverage is

available at both 1 AU using IMP-8 and ISEE-3 and beyond using Voyager 1. One

s 	 ,
of these periods is characterized by the predominance of corotating stream

i"	
interactions. Relatively small scale transient flows characterize the second

period. The evolution of these flows with heliocentric distance is studied

using power spectral techniques. 	 The evolution of the transient dominated

period is consistent with the hypothesis of turbulent evolution including an

i
inverse cascade of magnetic helicity to large scales. The evolution of the

corotatJng period is consistent with the "entrainment" of slow streams by

i

faster streams in a deterministic model.
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1. Introduction

Gosling and Hundhausen (1976) suggested that the interplanetary medium

acts like a low pass filter in that short wavelength structures that pass a

r spacecraft in N 1 to u days at 1 AU are generally absenti, in the speed profile

at - 5 AU. Similar time scales occur in two classes of flows identified by

Burlaga (1975), viz. "irregular fluctuations" and "compound streams".

"Irregular variations' ; were defined as relatively small speed changes lasting

only one or two days. A "compound stream" is a stream lasting - 2-4 days

superimposed on another stream; together these structures have a duration of

several days. Because the change in bulk speed in "irregular variations" is

generally leis than the magnetoacoustic speed, Burlaga argued that pressure

gradients associated :.could significantly alter the speed profile as time

progressed. On the other hand, Gosling and Hundhausen (1976) and Hundhausen

(private communication, 1983) suggested that the disappearance these short

wavelength variations in bulk speed was a result of the formation of interact-

ing shook waves.	 The filtering of short wavelength structures in compound

streams discussed by Gosling and Hundhausen (1976). Using Pioneer plasma data

and a one dimensional gas dynamic code, they showed that with increasing

distance a slower stream ahead of a faster stream might disappear leading to

the formation of a single longer wave-length stream.

A related process that can redistribute fluid energy in spatial scale is

the observation by Burlaga (1983a) that large pressure waves be found in the

outer heliosphere even in the absence of fast streams. Burlaga suggested that

these pressure waves can interact with one another to form new configurations.

Pizzo (1933) showed quantita;tivel) , how this can happen for a series of similar

corotati , ,g streams.	 Burlaga et al. (1983a) argued that fast streams might

,a i n
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sweep-up pressure waves from different sources (e.g., shocks and slower

streams) into a smaller region, and that these pressure waves 'might coalesce

as a result of a magnetohydrodynamie (MHD) interaction to form new structures;

a process called "entrainment". Using a 2-D MHD code developed by Pizzo

together with IMP-8 data as input, Burlaga et al. (1983b) showed how entrain-

ment can produce qualitative changes in the pressure profile. Burlaga (1983b)

suggested that as a result of entrainment small-scale features that move past

the spacecraft in an interval of the order of one day are erased,=,jand magnetic

energy coalesces to larger scales as the flows move outward. Ie this view,

energy is not necessarily "filtered out" but rather evolves in'a deterministic

way from a scale of the order of one or two days to larger scales. This

scenario is reminiscent of the evolution predicted for three dimensional

incompressible isotropic MHD turbulence in which a transfer of magnetic energy

from short to long scales is expected (Frisch et al., 1975; Matthaeus and

Montgomery, 1980; Matthaeus and Goldstein, 1982; and Montgomery, 1983)•

However, turbulent evolution is a4dynamical process involving a simultaneous

transfer of magnetic energy, magnetic helicity and cross helicity (the three

invariants of incompressible MHD turbulence) to both larger and smaller

scales. One of the objectives of this letter is to investigate the relation-

ship between these two viewpoints, in a effort to further our understanding of

how the solar wind evolves with heliocentric distance and as well as to

explore the extent to which the interplanetary medium behaves as a turbulent

MHD fluid.

The framework of -this effort is' the suggestion by Burlaga (1975) that one

might construct models of very general time varying source functions of the

sa'Al,ar wind to describe variati .ons.. in the fluid parameters over intervals of

many days	 The motivation is that the source function of the solar wind is
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probably an irregular, function reflecting the complexity of the corona.	 This

4
paper represents a step in such a program. 	 The source function is taken from

measurements made at 1 AU and the time interval considered is of the order of

r 100 days.	 Comparing the magnetic field profiles measured at 4 AU to - 6 AU

with the corresponding profiles measured at 1 AU, we show that a transfer of

t	 ^

magnetic	 energy	 from mall	 scales to large	 scales does take	 place at	 freq-

uencies	 4	 10
-5
	Hz,	 Two	 ways	 in	 which	 this:	 might	 occur	 hire 	 discussed:

a
f	 {{ ^

entrainment and an inverse cascade in MHD turbulence.

 the^ .	 Observations of	 Radial Variation ofx

.

	is

^, q	 !k Magnetic Field Strength Fluctuations

We .:onsider two time intervals in data obtained at	 1 AU:	 Interval A from

S
August	 14,	 1978	 to	 February	 5,	 1979;	 and	 Interval B	 from	 March	 29,	 1979 to

q

a June 30,	 1979.	 Corresponding intervals in data obtained by Voyager 1	 between

w 4.1	 AU	 and	 5.2	 AU	 were	 identified	 by	 ll corotat^ng'v	time	 series	 of magnetic

'
h

field	 strengthB	 and	 bulk	 seed	 V	 from	 the^^^	 p	 pusition	 of	 Earth	 to	 the

positions	 of	 Voyager	 1,	 assuming	 a	 constant	 solar	 wind	 speed	 of	 400	 km/s.

These	 f'corotated"	 intervals	 are	 September	 7,	 1978	 to	 February	 20,	 1979

(Interval A),	 and	 April	 11,	 1979 to July 10, 	 1979.	 Magnetic field data for	 1

a.
AU were obtained from the NSSDC.	 They consist of IMP-8 data from the magnetic

field experiment of N. Ness and ISEE-3 data from the magnetic field experiment
P

of E. Smith.	 Magnetic field data from Voyager 1 are from the experiment of N.

Ness.

Magnetic field strength versus time for Intervals A and B is shown at the
x

top of	 Figure	 1.	 Comparing the measurements made	 at	 1	 AU with those	 from

Voyager 1, the basic result of this letter begins to	 emerge.	 High frequency

-5-
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fluctuations in )BM are more prominent at 1 AU than near - 5 A Ut or conversely

low frequency fluctuations in 121 are more prominent at larger distances from

the sun..	 This qualitative and subjective result can be expressed more

precisely by means of the power spectra for B, which are shown at the bottom

of Figure 1.

These power spectra were computed using the Blaelanan-Tuckey mean-lagged-

product technique, with 20 degrees of freedom. The time series at 1 AU were

nearly continuous, and at Voyager 1 the data are more than 90% complete. The

small data gaps were linearly interpolated. Power levels at Voyager 1 are

lower than those at 'i AU, because the interplanetary magnetic field strength

decreases with distance from the sun. Our concern is not with the absolute

pbwer levels, but rather the relative change in power with frequency at

Voyager as compared to that at 1 AU. For example, 	 .er the ratio P of

power at 10-6 Hz to that at 10`5 Hz, P = P(10-6 	(1,"o Hz) . In Interval

A, this ratio is P - 10 at 1 AU ante°P - 60 at Voya ger 1, indicating relatively

more power at low frequencies at larger distances. Similarly, in Interval B,

the ratio is P w 10 at 1 AU and P - 120 at Voyager 1 showing an even larger

enhancement in power at low frequencies at larger distances.

Comparing the power spectra 6?f; JBI for Intervals A and B (Figure 1) one

sees significant differences in A shapes of the spectra measured by Voyager

at - 5 AU. Whereas the power spectrum is close to k -5/3 from 10-6 Hz to 10"4

t
Hz for Interval A, it cannot be described by a power law for Interval B. In

Interval B, there is an "excess" 'of magnetic energy near periods of 	 4 to 10

days and a "deficit" of energ y
 ,¢^

gy nelir periods of 2-3 days, but there is no such

distribution of energy for InteMk A. These differences can also be inferred

in the time series B(t) measured°)4y Voyager 1 (Figure 1) . In Interval B there

are large recurrent enhanceman4 . and depressions in magnetic field strength

-6-



with a half-period of the order of 10 days, while there are few large

amplitude changes with separations of the order of a day or two. By contrast,

in Interval A there is a broad ' speetrum of fluctuations with neither an excess

of power near 10 -20 days nor a' deficit near 2 to 3 days. At 1 AU, the shape

of power spectra for JBI measured in Interval A is similar to that for

Interval B. In both cases, at frequencies greater than - 3 x 10 -6 Hz the

spectrum is close to a k-5/3 law.

Now compare the spectra measured at 1 AU with those measured at Voyager.

In Interval A the 1 AU and Voyager 1 spectra have the same form at frequencies

> 10-6 Hz, and they %ifference in power levels decreases as one goes to

frequencies below - 3 x 10-6 Hz. Thus, the relative changes in the power at

long wavelengths with increasing distance occurs only at periods a 4 days. Yn

Interval B, on the other hand, the 1 AU and Voyager s pectra have different

forms at all frequencies above 10-6 Hz. 'n particular, there is a significant

increase in the difference between the 1 AU and Voyager 1 power levels as one

goes from - 10-6 to 8 x 10-6 Hz, and it appears that there is a loss of energy

at periods between -1.5 days and -5 days as the plasma moves from 1 AU to - 5

AU. The physical significances of these differences will be discussed in the

next section.

One approach to classifying the differences between Intevals A and B is tq

recall the two types of flow systems distinguished by Burlaga et al. (1982)

and Burlaga (1983), viz. the well-known systems of corotating or recurrent

flows and systems of transient flows. Systems of transient flows may contain

shocks, flare ejecta, magnetic clouds, short-lived streams, etc., i.e., a

mixture of non-recurrent flows and field patterns that are observed at a given

point for at least two solar rotations. Goldstein et a1. (1983) have

discussed systematic differences in the statistical properties of the magnetic

-7-
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field for these two types of systems.	 Interval B resembles a system of

corotating flows in this respect, while Interval A is more like a system of

transient, flows.

3. Discussion of Possible Physical Processes

The differences between the Voyager 1 spectra for Intervals A and B

suggest that at least two physical processes may be involved in°,changing the

distribution of powerin JB) at frequencies 4 10' Hz as the flows move from 1

AU to N 5 AU; one being dominant r ing, Interval A the other in Interval H. The

simple power law spectrum observed over a wide range of frequencies by Voyagar

1 in Interval A and the irregularity of the corresponding B(t) profile suggest

1 that 
turbulent rGeessesvha u t^lft V aI C[14 prvaLases are 7.nVO1Ved in this interval.	 On the other hand,

the regularity of the B(t) profile observed by Voyager 1 in Interval B and the
a

lack of a simple power law fit to the corresponding spectrum of magnetic

fluctuations suggests that deterministic MHD flow models and the concept of

entrainment might be more appropriate for this interval. In this section we

explore there ideas further. Since neither the theory of MHD turbulence nor

that of entrainment is well-develb'Pod, our discussion is necessarily qualita-

tive.	 Our aim is to gain some . insight and to stimulate further studies,

rather than to provide a definitive interpretation'of the observations.

Turbulence theories generally identify three frequency or wavelength

ranges. Of central importance is,-the "inertial range ll . The inertial range is

bounded at longer wavelengths by the correlation length which is a measure of

the scale of the energy conta' iln,g structures. 	 At the small wavelength

boundary of the inertial rang;;►, the spectrum is exponentially damped by

dissipative processes, this is eO dissipation range and will not concern us

G ^:
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here. Quantitative predictions for MHD turbulence,are difficult to obtain,

however, some turbulence models predict an inertial range spectrum of k -•5/3

(Kolmogoroff, 19k1a,b; Obukhov, 1941) or k -3/2 (Kra.ohnan, 1965) for isotropic
A

(incompressible) MHD turbulence. in the long wavelength regimen Frisch et al.

(1975) and Montgomery et al (1978) have conjectured that a k -1 spectrum will

form.	 Accompanying the k-1 spectrum these conjectures predict an inverse

cascade of magnetic helicity. 	 This inverse cascade should be initially

apparent at scales somewhat longer than the correlation length,

For the data in Interval A, the correlation lengths, as defined by

Batchelor (1970) and Matthaeus and Goldstein (1982), are 0.19 AU at 1 AU and

0.15 AU at Voyager, corresponding to 1.56 x 10-5 Hz and 2.0 x 10 -5 Hz,

respectively. The power in the fluctuations of all components of B

f theea	

(specifi

call Y/_ 
t
he trace o	 spectral M nSor ^	 I. aI--	 as	 C

_y A ir^^	 .,r,vvv	 vv
b

 A1 ..+YL.	 i } N
/	 u VAAV..4+ G1	

fu
a i %A VA.3̂n G1

frequency in Figure 2. A k`5/3 spectrum is observed at scales smaller than
h

the correlation length both at 1 AU and at Voyager, consistent with the

presence of an inertial range of turbulence. Note that the k-5/3 spectrum

extends over a broader frequency range at 5 AU than at 1 AU, which suggests

that turbulence occurs over a broader range of spatial scales at - 5 AU. At

scales longer than the correlation length, the spectra can be approximated by

a k-1 law, again consistent with the presence of turbulence. There is also

evidence for an inverse cascade of magnetic helicity in the power spectrum of

the wave number times magnetic helicity (kHm) shown in Figure 2. A peak in

kHm is observed near the correlation length at 1 AU and it extends to lower

frequencies in the Voyager spectrum. Thus, the spectra in Figure 2 for

Interval A are consistent with the expectations MHD turbulence theory. At the

very least, one can conclude that turbulence theory provides a language and

gvantitative measure suitable for describing these observations.

_9_
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In deterministic models, (e.g., Hundhausen, 1972; Pizzo, 1983; Burlaga,

1983) one speaks of flows, flow interactions, pressure waves and interactions

of pressure waves, all on a scale of a 1 day, These models usuall y- consider

only isolated streams or binary interactions. Power spectra are generally not

discussed in regard to such models. The wodels consider Forces due to

gradients in magnetic and thermal pressures. Fluctuations in the direction of

B and forces associated with the curvature of magnetic field lines are of no

dynamical importance in such models. Alfvenic fluctuations, Having appsrent-=

frequencies < 1 day, are treated either as waves propagating on a background,

field or as inertial range turbulence.

For a single stream at 1 AU, two scales are important: the duration (or

time or passage) of the stream and Ore duration of the associated interaction

region. The duration of a large stream is typically of the order of several

days and that of an interaction region is - 1 day, 	 in general, there are

other structures present including^j small streams with time scales of the order

of 4 or 5 days and "irregular f1motuations" with time scales of - 1 or 2 days,

as discussed in the introduction, so that a spectrum for a time series of -

100 days at 1 AU, might contain power at all frequencies between 10 -6 Hz and N

10
-5
 Hz, as we have seen in Figure 1. The corresponding speed profile for

Inter,%al B at 1 AU, (Figure 3) explicitly shows streams and "irregular

variations" with scales ranging from M 1 day to ;- 10 days.

F	 Ae the flows move to larger distances, carrying the magnetic field

patterns with them, the large fast flows overtake small slow flows, bringing

interaction regions and pressure, w ves closer together so that they m y

c4 Y

coalesce to form larger pressure: waves and interaction regions. This process

F
of "entrainment" of small-scale} structures by large-scale structures transfers

magnetic energy from scales of - T to 4 days to larger scales. Fast flows are

.

-10-
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decelerated as they do work against pressure gradients, and slow flows are
t	 ^f

j€	 accelerated by the pressure gradients of opposite sign, ao that t"he result is

a new speed profile characterized by an absence of large peaks or troughs,

?€	 with the some mean speed as observed at 1 AU (wee Figure 3). Thus, "entrain.-`

ment oar, qualitatively account for the ohanges in speed profile and it

 provides a natural explanation for the Voyager 1 spectrum in Interval B

r ( Figure 1) , whicia shows a def'ioit of energy at scales of 1 to 4 days and an

i}
i

excess of energy at .scales of	 10 days,

l
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Figure Captions

Figure 1. Top.	 BI versus t observed at 1 AU by IMP-8 and ISEE-3 for two

time intervals, and similar results obtained by Voyager 1 between 4 AU and - 5

AU for two corresponding intervals determined from corotation delays,

Bottom.	 Power spectra of IB(f)I (in nT 2 ) for the time series

shown at the top of the figure.

Figuro 2. The trace of the reduced power spectral matrix of the components

of B. The triangles and circles are the positive and negative values of the

reduced helieity spectrum multiplied by frequency, N  M.

Figure 3. The bulk speed versus time observed at 1 AU by IMP-8 and ISSE-3

and between 4 AU and 5 AU by Voyager 1 for the intervals described in Figure 1.
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