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Abstract. We show that Alfven waves or Alfvenic surface waves can carry

enough energy into the corona to provide the coronal energy requirements.

Coronal loop resonances are an appealing means by which large energy fluxes

can enter active region loops. The wave dissipation mechanism still needs to

be elucidated, but a Kolmogoroff turbulent cascade is fully consistent with the

heating requirements in coronal holes and active region loops.

Introduction

The solar chromosphere and corona are heated mechanically. The energy

requirements of the chromosphere and corona are roughly comparable but one

usually speaks of 'the coronal heating problem', presumably because of the

spectacularly high temperatures there; it is probably a mistake to conceptu-

ally separate the chromospheric and coronal heating problems, but space

constraints require us to do so here. Spicules present the dual problems of

heating and accelerating the chromospheric gas. Locally, in a spicule, the

energy requirements are comparable to the chromospheric and coronal heating

requirements; again, it is probably a mistake to separate the spicule problem

from the overall energy balance of the solar atmosphere.

In this review we discuss theories which invoke waves to heat the corona.

If we are willing to interpret the word 'waves' broadly enough, there are good

reasons for invoking waves. First, any mechanical process requires that the

convection zone do work, followed by the mechanical transfer of energy upwards

_ the _= m_ _I_ _ .... _ ....... _ ..... if work _ _^ _^ A^--^....................... _ ................. and it

is a fact of life that virtually all motions in the solar atmosphere obey

hyperbolic equations which yield wave or wave-like solutions. For example,

the linearized versions of the twisting motions invoked by Parker in the next

paper obey the Alfvenic wave equation. Second, the corona is observed to
contain ubiquitous non-thermal motions of the order of 10-30 km s--(rms) (e.g.

Bonnet, 1978; Cheng et al., 1979; Doschek and Feldman, 1977; Feldman et al.,

1975). These motions are unresolved in space and time. For the reasons given

above, it is likely that these motions can be thought of as waves. We will

argue below that the observed motions may contain sufficient energy to heat

the corona, and a wave theory of coronal heating seems possible. Third, the

solar wind may serve as a prototype. Alfven waves (e.g. Belcher and Davis,

1971) and/or surface waves (Hollweg, 1982a) appear copiously in the solar wind

beyond 0.3AU and there is some radio evidence for the presence of significant

wave fluxes in the acceleration region of the wind (Hollweg et al., 1982a).

Successful Alfven-wave-driven solar wind models have been constructed (e.g.

Hollweg, 1978a). And the behavior of heavy ions in the solar wind suggests

the operation of wave-particle interactions (see Isenberg's review in this

volume). The solar wind may be telling us that the sun radiates energetically

significant wave fluxes, and that waves can heat (and accelerate) at least

part of the solar atmosphere.

In short, it seems that it should be possible to construct a successful

wave theory for coronal heating. And in view of the first point in the pre-

vious paragraph, it is possible that virtually every theory can at some level
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be thought of as a wave theory. Nonetheless, a successful wave theory has not

yet emerged. In the following we will summarize some current thinking on the

subject. We will point out where wave theories succeed and where they fail.

And we will suggest some possible routes to be followed in the future.

Some other recent reviews are Hollweg (1981a), Kuperus et al. (1981),

Priest (1982a), and Wentzel (1978a, 1981).

Energies Required and Available

We begin with a brief definition of the problem in terms of the energies

required to heat the corona. It is useful to split the corona into three

types of regions: i. coronal holes, out of which high-speed solar wind

streams flow (e.g. Hundhausen, 1977; Zirker, 1977); ii. quiet corona, con-

sisting of large-scale closed field regions, such as the helmet streamers;

iii. active region loops, consisting of small-scale coronal regions of en-

hanced pressure with a loop-like morphology, presumably tracing out closed

magnetic field lines (e.g. Rosner et al., 1978; Webb, 1981; Withbroe, 1981).

Convenient summaries of the energy requirements of these regions have been

given by Withbroe (1976, 1981).

Coronal holes and quiet corona lose energy via radiation and heat conduc-

tion back down into the chromosphere. In addition, coronal holes lose energy

by heat conduction out into the solar wind; this latter energy loss could be

very large if the high-speed streams are driven thermally, as discussed by

Olbert in this volume. Ho_es _nd quiet corona require an energy flux density

of a few times i0 _ erg cm-- s-- entering from below. And if the _igh-spee_

s_[eams are thermally driven, the holes may require as much as i0- erg cm

s . The volumetric heating rate can be estimated by dividing the energ_ flux

density°by the distance over which the heating occurs. If we take 3xl0 erg- -I -4

cm__ s fo_3thelflUx density, then the heating rate lies between i0 and
i0 erg cm s for heating distances in the range (0.05 - 0.5)r .

s
The active region loops lose energy via radiation and via heat conductlon

along the magnetic field lines back down into the chromosphere. In this case

a useful rule-of-thumb can be obtained by paraphrasing Rosner et al. (1978)

and Withbroe (1981). Let E H be the volumetric heating rate of the l_op

pla_ma:l The radiation loss out of the (optically thin) plasma is n -_ erg
cm s , where n is electron concentration and _ is a function ofeT

(electron temperature) only. If we neglect flows, the energy equation e'is

2

V • q = EH - n _ (i)e

where _is heat conduction. Assuming that q is classical electron heat
s%_

conducfion along the magnetic field, we can rewrite (1) in the form

_ 1 2 IEHTe5/2 K Ipe22 qe = K dT o _ T ½ dT (2)
o e <2 e e

where it has been assumed that the loop's cross-_$_tional area is constant (<
is Boltzmann's constant, p is pressure, and K T " is the heat conductivity).

o e
We now take E , # and p to be constants The loop is assumed to have a maxi-

H e "

mum temperature T where qe = 0, and it is assumed that qe ÷ 0 as T + 0;max e
the latter constralnt requires

7 pe 2 _5
(3)

EH- 3 <2 T 2
6 max



and we obtain

oe20qe 2 _ 4 2 T 3/2 _ (_e_) (4)
3 < e max

The quantity # can be eliminated in favor of the loop length as follows:

the usual expression for qe we have

K T 5/2 aT (5)
o e e

ds =

Iqel
where s is distance along the loop. Inserting (4) into (5) and integrating

from T = 0 to T = T gives
e e max

Pe L _ (T) _max I (6)

From

where L is twice the distance from T = 0 to T .

gives finally e max

TE H L % 7K 7/2
L max

Inserting (6) into (3)

(7)

Since _ does not appear in (7), it is probable that errors associated with

restricting # to be a constant will not be very significant. Equation (7)

gives the required energy flux density if all the energy comes up along the

loop from one of its footpoints; half that value is required if equal flu_s

come up both footpoi_ts. For a6short (long) loop we take L _ 6x10- (6x10--)

cm and T = 2 x_10 (2.5 x.10 ) K, a_d wSth K = 8.4 x !0- (c.g.s.) we ob-
. X I _ --_ -± O , •

tazn E..L_.I x i0 (2.4 x IQ ) erg cm_ s ; th_ eo[respondzng volumetrlc
heating rates are 1.8 x i0 -j (4 x i0 -°) erg cm -_ s- . It is interesting to

note that both the energy flux density and the volumetric heating rate are

smaller on longer loops; it is the task of theory to explain this.

Can the observed nonthermal velocities in the corona supply the required

energy flux densities? It is easy to show that slow (sound) waves cannot do

the job, and we will henceforth ignore them. For2the fast or Alfven modes, we

calculate the energy flux density to be 2p _v v where v A is the Alfven
o rm_ , A

speed and p is the coronal density (the factor 2_.allows _or 2 polarlzation
O -ID --J

states). For coronal holes we take p = 3.3 x i0 gm cm. , B = 8^Gau_s,
-I O . V D -Z --

6v = 30 km s , and the energy flux deD_zty is _.4 x i0 erg cm s . For

ac_ve region loops we take p = _.2 xl0 gm cm (for a mean2molecular

we'_ght of _, this density yieYds a tota__i pressure of 2 dyne cm- 7if T = _2_3 X_l
i0 K), B = i00 Gauss, _v = 30 km s , and we obtain 3.7 x i0 erg cm s

, S 1

for the energy flux densl_y. Thes_ energy fluxes are adequate to supp_y the
required energies, if the 30 km s- nonthermal motions are fast or Alfven

waves.

Can the nonthermal velocities supply the required volumetric heating

rates? Write

2)
E H = 2m i (2Po_Vrm s (8)

where _. is the imaginary part of the wave (angular) frequency (the second

facto_ %2' again a_lows for 2 polarization states). Coronal holes require E

< i0- erg cm-- s--, and (8) implies _i/_ 0.4 if the wave period is 300s (t_e
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-3 -3
later figure is a guess). Active region loops require E 5 2 x i0 erg cm

s -g, and (8) implies _./_< 0.17 if the period is 100s (th_ _eason for this

choice of period will _e given below). Our estimates of _i/_ are not larger

than i, and it can be meaningful to talk about propagating, but damped, waves.

Finally, we must ask whether the convection zone can do enough work on the

system. We will assume that the work is done on the intense photospheric

magnetic flux tubes (for a review see Spruit, 1981a). If the energy propa-

gates as an Alfven wave, the convective motions can supply an energy flux

density to the corona of

2Pc 6v 2 v. (Bcor/B c)c_rms AC (9)

Here the subscript 'c' refers to the top of the convection zone,the factor '2'

allows for two polarizations, and the factor (Bcor/B c) represents the area ex-

-7 -3 1
passion of the flux tube. Taking p = 3 x i0 _gm cm and _v = km; . C / -Z -I C rms
s--, we obtain energy flux densl_les of 295 Xll0 erg cm s l_ a coronal
hole (B = 8 Gauss) and 3 x i0 erg cm-~ s-- in an active region loop (B

cor
= i00 Gauss). These values exceed the requirements by more than an order-_ {

magnitude. As we shall see, this is fortunate, since most of the wave energy

is reflected before reaching the corona. (Strictly speaking, equation 9

ignores the details of the wave generation process at the top of the convec-

tion zone. A detailed analysis of the coupling between convection and the

photospheric flux tubes is really needed, but not available.)

Reflection and Transmission

Fast waves

The coronal pressure is small compared to the_magnetic pressure. The fast
• . 2 2 2

mode disperslon relatlon is then approximately m = k v , where k is the
A

wavenumber. Upon splitting k into horizontal (h) and vertical (v) components,

we obtain

k 2 = _-/-_
v VA 2 - kh2 (10)

Taking the _ - k h structure for the known solar motions in2the photosphere and
chromosphere, HoIlweg (1978b) found that the sun yields k < 0 in the corona.

v .
Fast waves can be expected to be evanescent in the corona_ i.e. they suffer

total internal reflection somewhere below the corona. Fast waves can not be

expected to supply the required energies to the corona. Moreover, the situa-

tion is worst in the _ctive regions, which have the greatest energy require-

ments; the reason is that the active regions are observed to be highly struc-

tured (implying large k. ) and to have strong magnetic fields (implying large

v_). Leroy and Schwart_ (1982) and Schwaztz and Leroy (1982) concur with this
A

conclusion. (See also Osterbrock, 1961.)

However, we note that interesting results have been obtained by Habbal et

al. (1979). They postulate the presence of coronal fast waves with a period

of 3s. They use ray-tracing techniques to follow the propagation of the wave

energy, and emphasize the tendency of the fast waves to refract into regions

with smaller v ; some waves can even be trapped inside a dense loop, in

analogy with t_e trapping of light in an optical fiber. They consider the

Landau/transit-time damping of the waves (e.g. Barnes, 1966). 2 An interesting
feature of the damping is that it increases with 8 = , if 8 is small

P 8_pp/B P

8



(the subscript 'p' refers to the protons). In the isothermal model of Habbal

et al., 8 is largest where v is smallest. Thus the waves refract toward

regions o_ larger damping. This means that the fast waves can heat some

coronal regions more strongly than others. The effect is enhanced by a

'positive feedback', whereby local heating increases 8 along a given field

line (since heat conduction spreads the heat along B),Pwhich in turn increases

the heating, and so on. A 'catastrophic' situation can occur in which once

fast waves begin heating the plasma, they dump all their energy in a small

flux tube. Habbal et al. suggest that such a scenario can account for the

highly structured nature of the corona in a natural way. But it has to be

shown that the waves exist, and that equation (i0) can be overcome.

Alfven waves

Unlike fast waves, these waves never totally internally reflect, and we

consider them in some detail. Hollweg (1981b) has considered the propagation

of small-amplitude (linearized) axisymmetric twists on a background potential

magnetic field which has an axisymmetric untwisted fleur-de-lis structure. If

the axis of symmetry is vertical, the twisting motions do not couple to

gravity or to the radiation field, and they are non-compressive. If the

motions vary as exp(i_t), they obey

B
o

-m2r2x - 4_p ° _s [r2Bo _ ]
(ii)

_m2y = r2Bo _s [

B
O

4_Po r2
_s ] (12)

imy = r2B _X (13)
os _s

where X _ _vs/r, y E r 6B_, the subscript 'o' refers to the background, the

prefix '8' r_fers to the wave, 8 is the angle about the axis of symmetry, s is

distance along any field line, and r(s) is the distanc_ from the axis to the
field line. For field lines near the axis we expect r B _ constant, and (ii)

becomes o

32 6ve_
- 0 (14)( v 2 + _2 )

_s2A r

Equation (14) is the Alfvenic wave equation; we deal with it in what follows.

If v A _ e s/2h, then (14) has the solution

6v8 (i) (2)

r [aHo (E) + b H ° (_)] eimt (15)

where _ = 2h_/VA(S), and a and b are complex constants. From (13)



-Jr Bos [aHl(1)(_) + bHl(2)_)] ei_t
6B8 = VA

The time-averaged Poynting flux, <_>, is along the magnetic field:

(].6)

B

<S>. = - 4_~--°°<_Ve _B8> (17)

From (15) and (16) we obtain

B 2r2

<S > = _ (lal 2 - Ibl 2 ) (18)

s 82hm

From the form off_8), we interpret the H (I) part of (15) as the upward-going
o

wave, and the H "-" part of (15) as the downward-going wave (Hollweg, 1972).
O ,

Now the exponentlal behavlor of vAused in (15) - (18) roughly represents

the probable behavior in the chromosphere and transition region of a flux

tube, but v is much more nearly constant in the coronal part of a flux tube

(Figs. 3 an_ I0 of Hollweg, 1981b). If the corona extends to infinity, as in

a coronal hole, it is possible to obtain some useful analytical results by

considering a two-layer model, in which

v A = v A = constant, s > 0 (19a),cor

s/2h
v A = v A e , s < 0 (19b),cor

Here s > 0 represents the corona, and s<0 represents the chromosphere and

transition region. Equations (15) - (18) apply in s < 0, while the usual

harmonic solutions apply in s > 0. At s = 0 we apply the matching conditions

that _vl and _B_ be continuous (this ensures continuity of <S >). The

matchin_ 8 sconditlons give

H (i) _ i H1(1)
: o

- (2) _ i HI(2) (20)a Ho

where the argument of the Hankel functions is 2hm/v_ _ e. From (20) we
cot

can calculate the reflection coefficient, R, i.e. t_ ratio of downward-going

energy flux to upward-going:

R = Ibl2/lal 2 (21)

In the limit of small _, we obtain

R % l-2_e (22)

(Equations 19-22 have been given by Leer et al. (1982). They are a special

case of Hollweg (1972).) Since equations (20) - (22) are obtained from the

matching conditions at s = 0 it seems natural to think of the reflection as
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occurring at the discontinuity in scale height there (Hollweg, 1972).

However, Wentzel (1978b), following Tolstoy (1973), and Leroy (1980) have

argued that R is really the accumulated reflection off of the entire chromo-

sphere and transition region. The latter interpretation is probably correct,

but we are then perplexed as to why R can be calculated solely from the

matching conditions at s = 0.

For a flux tube__ntering a coronal hole we might have h = 250 km, and

v. = 1200 km s . If the wave period is 300s, the energy transmission

c_[cient is I-R = 0.055. In the7Previous2sec_ion we estimated that the

convective work c_n _upply 2.5 x I0 erg cm- s- . Multiplying by I-R gives

1.4 x i0- erg cm--s-- available to the corona. This is enough to supply the

energy requirements.

The situation is different on an active region loop. We imagine the loop

to be stretched out so that (possibly important) complications arising from

the curvature are ignored (e.g. Wentzel, 1978b). But we must now at the very

least consider a 3-1ayer model, since there is a chromosphere and transition

region at each end of the loop (an 18-1ayer model was considered by Hollweg,

1981b). We take

v = v exp(s/2h), s < 0
A A,cor

(23a)

v A = VA,co r, 0 < s < L (23b)

v A = VA,co r exp [-(s-L)/2h'], s > L
(23c)

We imagine there to be a source at the far end of the loop, in s > L. We

impose the boundary condition that there be only an outgoing (from the source)

wave in the region s < 0. The other two regions have both upward-and

downward-going solutions. Applying matching conditions at s = 0 and s = L

allows us to calculate the ratio of downward-going energy flux to upward-going

flux in the region s > L. Again calling this ratio R, we obtain

R IN/DI= (24)

where

[ (I) (2) (i) (2) _N = H 1 _)Ho (_) + Ho (8)H 1 (_) cos kL

H (i) (8)HI(2) (e) _ H (i) (8)H (2) (_)]sin kL+ 1 o o

(25)

and

D = [HI(2) (8)Ho(2) (U) + Ho,(2)(8)HI(2) (C*)] cos kL

[ (2) (2) (2) (2) ]+ H 1 (8)H 1 (_) - Ho (8)H o (_) sin kL (26)

We have defined e= 2hm/VA,cor, 8 = 2h' m/v A and k =,cor' _/VA,cor"
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Expressions (24) - (26) have not yet been analyzed in detail. But they
take a simpler form if e = 8, and if e, 8 << I. Then

and

N_ Y_sin kL + 2 YoYI cos kL (27)

D_ N + 2iY1 cos kL (28)

It is interesting to note that N can be exactly zero at certain resonant
frequencies which are approxmately given by

res _ m_VA,cor/L (29)

where m = 1,12, 3... (For example, the resonant period is 40s if m = i, v
= 3000 km s- , and L = 6 x i0- km.) At these frequencies the reflections A'c°r

vanish, and a large energy flux can pass through the corona and out the other

end of the loop. In the vicinity of one of the resonances it is possible to

use (24), (27) and (28) to obtain the following expression for the energy

transmission coefficient:

I-R =
1

i + (YiL/2VA,cor)2(m-O_res)2 (30)

Denoting the full-width-at-half-maximum by A_, we find

res L (31)
A_ - Q % 4_h

(Q denotes the quality). If L = 6 x 104 km and h = 150 km, then Q = 32; the

resonance is moderately high quality.

We h_ve__iready estimated that the convection zone work can supply 3 x 108

erg cm s . If this power is in a band width B , then the energy flux

density passing through the corona in one resonan_ peak is

A_ _ (32)
Fre s = (3 x 108) Be 2

where the factor (_/2) comes from integrating2th__. _ area under (30). From Fig.
3 of Ionson (1982), we estimate B _ 3 x i0 s . Then from (29) and

(31)-(32) we find _ _

Fres = 6.2 x 1011mh VA,cor/L 2
(33)
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Note that longer loops receive less p_wer, as (qualitatively) observed. If we
take h = 150 km, v = 3000 km s--, L = 6 x i0- km and m = I, then

7 A- cor -2 -i _
F = 7.8 x i0 _rg cm s . rnis is more than enough energy to supply the
res

oop, but this energy goes right through the loop, since we have put no damp-

ing into the calculation. The calculation with damping still needs to be

done, but work in progress shows that adequate energies can reach and stay in

the loop, since damping tends to broaden the resonance peak, compensating for

its reduction in height.

Equations (25)-(33) are new, but some of these ideas have been considered

previously. Ionson (1978) was the first to show that standing waves can be

excited on active region loops. The first paper to show that resonances can

eliminate the reflections and allow Alfven wave energy to enter the corona was

by Hollweg (1981b). The same point was made independently by Zugzda and

Locans (1982), but their Alfven wave equation differs from (Ii) and (12)

above. Ionson (1982) has discussed the resonances using RLC circuits as an

analogy. This approach omits some physics, however. For ex_mple,4in the

absence of dissipation Ionson gets Q = _, and he uses Q = i0--- i0- in his

paper; by contrast, we find Q = 30 or so, even in the absence of dissipation.

An interesting point made by Ionson (1982) is that there appear to be two

classes of loops (active region loops and 'large scale structures'). There

may also be two peaks in the photospheric power spectrum. Ionson suggests

that a narrow-band resonance is a natural means by which the details of the

power spectrum could be mapped into the corona, and thus a double-peaked

spectrum can give rise to two classes of loops.

Alfvenic Surface Waves

The corona is highly structured. In the limit that the structuring takes

the form of discontinuities, it is possible to find new wave modes supported

by the surfaces. These surface waves have recently been of considerable

interest. See Edwin and Roberts (1982), Gordon and Hollweg (1983), Hollweg

(1982a), Ionson (1978), Roberts (1981a, b), Wentzel (1979).

Consider a cold, stationary background plasma which varies only in the X -

direction. The background magnetic field vector varies in X, but its magni-

tude is constant. The system supports small-amplitude fluctuations obeying

_v

[__ _] (34)
e_Vx = _X q2 _X

2 2 2 2 2 • 2
where q _ k - _ /v_ and e K 4_p _ - (_ _ ) ; the fluctuations vary asA O _ O

exp[ik y + ik z - i_t]. Now2assume that everything is uniform except at a
discontinuity _t X = 0. If q > 0 everywhere, it is possible to find solu-

tions which evanesce away from the discontinuity as exp[±qx]. The dispersion

relation for these surface waves follows by requiring that 6v and

(e/q2)_v /_X be continuous at X = 0. x

For example, suppose B is constant and in the z-direction. Suppose also
_o 2 2

that k is large, so that q _ k . The dispersion relation turns out to be
Y Y

m 2 _ Bo2

kz2 4_0av (35)

where O is the average of the densities on the two sides of the discontinu-
av

ity. Equation (35) is similar to the dispersion relation for Alfven waves.

These surface waves generally turn out to be rather similar to Alfven waves.
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In particular, they propagate energy along B . Much of what was said about
_o

Alfven waves in the previous section applies to surface waves as well. They

may be suitable candidates for coronal heating, although many details, such as

their ability to propagate energy through the chromosphere and transition

region, remain to be worked out.

It is interesting to note that surface waves may be present in the solar

wind (Hollweg, 1982a).

Wiggles of Thin Flux Tubes.

Spruit (1981a, b) has considered transversal oscillations of thin vertical

magnetic flux tubes imbedded in a field-free gas. If the tube is in pressure

and temperature equilibrium with its surroundings, then the (small) horizontal

displacements of the tube obey:

(28t+i) a2_ - g _z + 2
at 2 P

(36)

where g is the gravitational acceleration, and 8tI=f constant is the ratio of
gas to magnetic pressures inside the flux tube. the atmosphere is

isothermal, we can take _exp[ikz-i_t] and (36) yields:

where

_2

k = 4_pp [-i + ( _ - 1) % ] (37)
c

2 2
mc = $ p

8P (28t+i)

(38)

The waves have a low-frequency cutoff. If the temperature is 104K, if the

molecular weight is 1.3, and if 8 = i, we find from (38) that periods longer

than 900s are evanescent; this istnot a severe restriction.

These waves carry energy along the magnetic field. If _ >> m , the phase

and group velocities are comparable to the sound speed. They c_uld carry

energy into the low chromosphere. However, the tubes cease to be thin above

the low chromosphere, and a more detailed analysis is necessary. They could

couple some energy into the fast and Alfven modes, which could carry the

energy to greater heights.

Dissipation

The general conclusion of the previous section is that Alfven or Alfvenic

surface waves, and to some extent transversal tube waves, can in principle

supply the corona with its energy requirements. This is the first

requirement of a coronal heating theory. The second requirement is that the

waves deposit energy as heat. Wave theories of coronal heating have so far

failed in this regard, but we will summarize some of the possibilities.

One point to note at the outset is that the observed coronal motions, if

interpreted as magne ic waves, are uite linear In a ronal hoe we might
-_ q • __ -½ . .

have v _ 1200 km s (if B = 8 Gauss and p = 3.3 Xll0 gm cm ), while In

an actlve region loop we might have v A _ 4000 km s- (if B = i00 Gauss and p =

14
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5.2 x i0
wind.

gmcm-3) . In all cases 6Vrms/V A << I, in contrast to the solar

Viscous Heating.

Coronal viscosity is mainly due to the protons. Following Braginskii

(1965), the proton collision time in an electron-proton plasma is

T = 0.75T 3/2 -i
n s (39)

P P P

for a Coulomb logarithm of 22. In the corona _ T >>i (_ is the proton

cyclotron frequency) and the protons are well-t_dPto the_iel@/½ines. Of the

five viscosity coefficients given by Braginskii, _ _ IQ- T _" (cgs) is byo -z

far the largest; shear viscosity is smaller by (_cpTp) (roUghly). If only

_o zs considered, the viscous heating rate is

1 2 _v _Vz 2

Qp = _o [3 (q " v)~ -2 _z V • v~ + 3(_-) ] (40)

where_z is along the magnetic field. For purely parallel motion Q = (4/3) n

(V.y) z while for purely transverse^motions Q = _ (V • y)2 /3. A_ a rule-of °

thumb we will take Q = n (V • v)Z. p o

In an active region lo°p we o_serve Q < 2 x 10 -3 erg cm-3s -I. U_ing the
equation of continuity, this requires _pP /p < 0 8 if T = 2 3 x i0 K and if

s o _ " p -4 -3 -i
the wave period is 100s. In a coronal hor_e w_ observe Q < i0 erg cm s .

This requires 6p /p < 0.9 if T = 1.5 x l0 b K and if _h_ wave period is

300s. Such largerm_en°ity fluctuations may occur occasionally in small regions

in the corona, but they are not compatible with the requirements of heating

the emtire corona by any of the waves discussed so far.

Heat Conduction

Coronal heat conduction is due mainly to the electrons. They too are tied

to the field lines and the heat conduction is along the magnetic field. The

plasma heating rate due to heat conduction damping of waves is

_T 2

(____e) T -i (41)
Qe = KI_,e _z oe

where the heat conductivity is < = 8.4 x 10 -7 T 5/2 (cgs) for a Coulomb

logarithm of 22. u,e e

Low-frequency waves induce nearly adiabatic temperature fluctuations, i.e.

I_T I _ (y - I) T IV • 6_I/_, where y = 5/3 is the ratio of specific heats.
eo

We _hen find (taklng T e = Tp)

Qe
-- = 8.4 x 109 (y-l)2T k 2/ 2 (42)

Qp e z

If T = 2 x 106Ki we find that viscous heating dominates heat conduction if

m/k e> 860 km s- Coronal Alfven speeds generally exceed this value, and we

deduce that heat conduction will be even less effective than viscosity in

damping the waves.

For completeness we should mention that heat conduction smooths out the

temperature fluctuations in high-frequency waves. This reduces the
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effectiveness of heat-conduction damping even further. See Gordon and Hollweg
(1983).

Shocks.

We have already mentioned that Alfven, fast, or Alfvenic surface waves are

to a good approximation linear in the corona. Shocks probably do not form in

the corona. However, Hollweg et al. (1982b) have suggested the possibility

that shocks can form in the chromosphere, on their way to the corona. Hollweg

et al. considered Alfven waves, which steepen into a train of shocks which are

nearly switch-on shocks (see, for example, Boyd and Sanderson, 1969). These

shocks enter the corona, and can carry substantial energy fluxes. Hollweg et

al. suggested that some of the impulsive events observed in the transition

region (see the article by Dere in this volume) could in fact be the shocks.

The volumetric heating rate due to a periodic train of weak switch-on

shocks with period T is

B 2 Av 4
_ o t

Qsos 32_T ( _ ) (43)
VAo

if the coronal pressure is small compared to the magnetic pressure ( Hollweg,

1982b) ; Av is the jump in the velocity component transverse to the shock
t -z

normal. Since Q _ B , this mechanism yields negligibly small heating rates
• . O . . .

mn active regions. However, it could concelvably work mn corona] holes or

quiet corona if B and T are small enough, and _f Av t is large enolgh. For

o iexample, if B = 5 Gauss,5P = 3.3__ i0 _v gm cm--, Av t = 200 km s , and T =
100S, we obta°n Q = i0 erg cm s The corona can be heated over an

s s
extended distance _y thls mechanism.

Switch-on shocks are probably a worst case. A best case for shocks is a

train of fast shocks propagating across the magnetic field. If the shocks are

weak and if the coronal pressure is small compared to the magnetic pressure,

the volumetric heating rate is

B 2

_ 0 Av )3
Qfs - 16_---_ (

VAo

(44)

where Av is the velocity jump across the sho_k. In an active region lOO_lWe
might have B =i00 Gauss and v = _000 km s. ". .If we take Av = 200 km s

o AO -_ -J -i

and T = 100s we find Qfs = 6 x i0 erg cm s . This is comparable to the

heating requirements of some moderate lengt_ loops. In a coronal hole we5

mi_t _ave B ° = 5 Gauss and v. = 800 km s , and we find Q_ = 7.8 x i0 erg_o . i
cm s- . The heating of the coronal hole is substantial in _his case.

Thus fast shocks propagating across B can yield substantial heating. The
_o

same is presumably true for fast shocks propagating at some not-too-small

angle to B . But where would such shocks come from? One guess is that they
_o

could form in the chromosphere in the manner investigated by Hollweg et al.

(1982b) for switch-on- shocks. In fact, the study of Hollweg et al. is

probably unrealistically restricted, since there is no reason to expect that

the sun will yield shock normals which are nearly aligned along the magnetic

field; in view of the strong cross-field structuring observed on the sun, the

opposite is probably the case, and further studies must be done. In any

event, we will ultimately have to rely on observations to tell us whether

shocks with the required frequency and amplitude do in fact form in the

chromosphere and enter the corona.
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Phase Mixing and Turbulence.

Consider two neighboring magnetic field lines along which energy is propa-

gating in the form of an Alfven wave. If the phase velocities are different

on the two field lines, then the motions on those field lines will not always

maintain the same phase relationship. The motions will move in and out of

phase, and (in the latter case) extremely large cross-field velocity gradients

can develop. Heyvaerts and Priest (1982) (see also Priest, 1982b) have

pointed out that this phase mixing is ripe for viscous dissipation. They

consider the special case where B is in the z- direction, 6v is in the
_O . , .

y-direction, and v A = VA(X) . Unfortunately, slnce the motlons in this case
are shears, the viscous damping will be weak, because m T >>i; this limita-

tion of the efficacy of viscosity was not considered byC_ey_aerts and Priest.

Heyvaerts and Priest consider also the possibility that large velocity

shears between neighboring field lines can result in Kelvin-Helmholz instabil-

ities. (They consider in particular the situation on coronal active region

loops, where the resonances discussed in section IIIB lead to nearly-standing

waves on the loops. A similar idea was mentioned earlier by Hollweg (1981b)

with regard to Alfven waves in the chromosphere. Since the solar atmosphere

is not homogeneous, and since there is no reason to expect phase coherence

between motions on different field lines, phase mixing may be a ubiquitous and

important effect.) Priest (1982b) estimates the Kelvin-Helmholz growth rate

to be _. _ k_, I_v I , where k, is the transverse wave number associated with the

velocit_ shears. But it must be kept in mind that the driving velocity shears

in this problem are time-dependent. For the analysis (which assumes that the

driving shears are steady) to hold i it is necessary that _. >> m. If we take
- i _ --i

m = 2_/(100S), and 16vl = 40 km s (corresponding to 6v _ 30 km s ), we
S "b

require lw_ = 2_/k!<< 4000 ks. This is not a strong constraint (the active

region loops are only a few thousand km in diameter), and Kelvin-Helmholz

instabilities may occur. The instabilities may initiate a turbulent cascade

to higher wavenumbers where viscosity (or some other process) can convert the

energy into heat.

Heyvaerts and Priest (1982) and Priest (1982b) consider also the possibil-

ity that the phase relationship between Alfven waves on neighboring field

lines J s such as to produce large magnetic shears. Tearing-mode instabilities

are then possible. (This idea was also discussed earlier by Hollweg, 1981b.)

Priest (1982b) estimates the tearing growth time to be

-4/7 -3/7 -10/7
(45)

1013 -3/2
where n _ 2 x T (cgs) is the magnetic diffusivity; in computing B wee
have taken the perpendicular electrical conductivity (Braginskii, 1965) and a

Coulomb logarithm of 22. (Note that _ is so small in the corona that classi-

cal electrical resistivity fails miserably as a dissipation mechanism.) For

the analysis (which assumes that the magnetic shears are steady) to be valid,

it is necessary that _Tt i << i. If the waye period is 100s, this_{equires
<< i0 km, where we have _aken T = 2.3 x I0 _ K, and l_yl = 40 km s _. It is _

e
not known whether the coronal waves are structured on these scales. But

tearing instabilities, if they occur, can initiate a turbulent cascade to

higher wavenumbers.

Suppose a turbulent cascade is initiated. How effective will it be?

Unfortunately, most turbulence theory has been developed for incompressible

fluids with isotropic turbulence. Neither condition can be expected to apply

in the corona. However, as Montgomery (this volume) says, "it's the only game
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in town", so we'll play anyway. For fully-developed Kolmogoroff turbulence
one expects

E(k) _ C e 2/3 k -5/3 (46)
O

where k is wavenumber, C % 1_5 is a universal (?) constant, IE(k)dk = <_v 2>,
• . 0.%

and e (dlmenslons = veloczty _ time -_) is the rate at which <_y2> cascades to

high wavenumbers. Integrating (46) from k to _ gives
O

k <_v2> 1/2
e o ~ (47)

= 2(1.5 Co)3/2

where it has been assumed that all the energy is in k > k . Now we can regard

e/(2<6_2>) as a measure of the damping rate, _., since th_ cascade pumps

energy to arbitrarily high wavenumbers where it is absorbed and converted into

heat. Equation (47) then yields (c.f. Section II)

23/2k°_°_Vrms3 (48)

E H =
(i.5 C )3/2

o

(we have again allowed for 2 polarization states). The problem is that we

are not sure what to put in for ko.. If we take ko = 2z/l,_ w_h l,=_ 3_00 km (a

reasonable gues£1for an active region io_), Pc _35"_i x i0 gm cm , and
6v = 30 km s , we find E = 2.5 x i0 erg cm s Comparison with

secr_on II shows that this i_ adequate to heat the active region loops. In a

coronal hole we might haye I, to be the mean distance between the photospheric

magnetic flux tubes %10 km, and wzth p = 3 3 x i0 gm cm we obtaln E
-5 -3 -i " H

= 4.7 x i0 erg cm s . Again, we obtain an adequate heating rate. We

tentatively conclude that a turbulent cascade can provide the required heat-

ing. But a theory for turbulence which is applicable to the corona must be

developed. We suggest that this subject be vigorously pursued in the future.

(The author thanks Dr. C. Smith for advice on this paragraph.)

Surface Waves

Ionson (1978) has considered the propagation of surface waves on

non-discontinuous 'surfaces' He considers the problem discussed previously,

which has (35) as its dispersion relation in the case of a truly discontinuous

surface. He finds, however, that m is now complex, with

mi = _ Po2 IkylaAvA(4_Pav )½
Pol + __ + 2)-1 B (49)
Po2 Pol o

where 'a' is the thickness of the 'surface' and Av is the difference between
A

the Alfven speeds on the two sides. Ionson interpreted _. as a damping rate,

but Lee (1980) pointed out that it _s not correct to thin_ of damping of a

normal mode, because there are no normal modes in this problem (unless a = 0).

Instead, the appearance of _. represents a readjustment of the system's energy

distribution. (Lee suggestslthat the situation is analogous to leakage of

particles out of a potential well, as in radioactive decay. _. represents the

leakage out of the well, but there is no net loss of particles_) The energy

flows into the surface. Steep gradients develop in the surface, and viscous

dissipation will eventually occur in a thin layer. It seems likely that the

dissipation in the thin layer w_ll adjust itself to absorb the energy flow
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into the surface, as suggested by Ionson (1978). The problem with dissipation

still needs detailed study, but it may represent a promising mechanism for

converting wave energy into heat in many thin layers in the corona. (See also

Lee et al., 1983).

Summary

-i
The corona is observed to move with velocities of 30 km s or so, rms.

Since most coronal motions obey hyperbolic equations, it is reasonable to

think of the motions as being waves.

If the motions are Alfven or Alfvenic surface waves, they can carry the

required energies into the corona. Some large fraction of the energy is

presumably reflected in the chromosphere and transition region, but theory

indicates that sufficient energy can be transmitted into the corona. Loop

resonances may play a special role in allowing energy to enter the active

region corona.

The problem is with the dissipation. Viscosity is the most promising

dissipation mechanism, but special conditions have to be fulfilled. The wave

energy must ultimately appear at sufficiently short spatial scales so that

viscosity becomes effective. Fast shocks may be suitable, since the shock

thickness automatically adjusts itself to yield the required entropy jump

across the shock. A turbulent cascade seems even more promising, but an

anisotropic compressive turbulence theory still needs to be formulated.

Surface waves may be yet another route by which the wave energy finds itself

at small enough spatial scales for viscous heating to be effective. But the

detailed analyses of these processes still need to be done.

Another area where more work is needed is the following: We have conceptu-

ally separated the coronal heating from the chromospheric heating. And we

have regarded the chromosphere and transition region as being fixed entities

which carry (and reflect) the waves. But the coupling between the chromo-

sphere, corona, and transition region may be an integral part of the entire

atmosphere's energy balance. And the coupling may be strong and dynamic. For

example, Hollweg (1981b) and Hollweg et al. (1982b) have argued that the

chromosphere and transition region may themselves be set into vigorous motion

as the waves propagate from the photosphere into the corona. (A possible

connection with the spicules has been noted by Hollweg et al. (1982b) and by

Hollweg (1982c).) It is not yet clear how this dynamic coupling affects the

ideas presented in this review.

Finally, we have been implicitly regarding the waves as non-impulsive. Yet

the observations discussed by Dere in this volume suggest the opposite: the

transition region moves violently and impulsively. What are the implications

of these observations for coronal heating? We have already mentioned that the

impulses could be shocks, but the issue is far from being resolved. These

observations demand further study.
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