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SUMMARY

A viscous-inviscid interactive calculation procedure is developed for

application to flow in cascades of two--dimensional airfoils. This

procedure has essentially three components. First, a numerical solution of

the Euler equations which can accommodate an arbitarily specified cascade

geometry is carried out on a nonorthogonal curvilinear grid mesh that is

fitted to the geom:,.y of the cascade. A method of grid generation has

been used which relies in part on a succession of conformal mappings.

Second, a viscous solution for use in boundary layer and wake regions has

been prrgrammdd. Finally, an interactive scheme which takes the form of a

source-sink distribution along the blade surface and wake centerline is

employed. Results have been obtained with this procedure for several

cascade flow situations, and some comparisons with experiment are

presented.
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I. INTRODUCTION

In recent years, a great deal of progress has been made in the

development of faster, more efficient numerical procedures for the

calculation of flow past aerodynamic shapes. Algorithms for the solution

of the iuler equations and Navier -Stokes equations have been available for

some time; for example, MacCormack's Method [1], an explicit time marching

procedure, has been widely used since its introduction in 1969. More

recently, time marching algorithin.a which have an implicit [2-41 or hybrid

[51 character have been introduced. These implicit methods are not subject

to the severe stability restrictions which explicit methods experience, and

are therefore less time consuming.

Ln addition to the need for an efficient flow calculation algorithm,

another requirement in aerodynamic calculations is some technique for

dealing with the complex geometries that often occur. Several different

grid generation schemes have been developed in recent years to meet this

requirement. Certainly among the most popular of these is a versatile

method for dealing with aerodynamic geometries developed by Thompson,

Thames, and Mastin [6, 71. In this method, which has been used in

calculating the flow about isolated airfoils as well as other aerodynamic

shapes, a non-orthogonal curvilinear grid mesh having .a grid line

coincident with the airfoil surface is generated by the solution of a

system of elliptic partial differential equations. The coordinate

transformation used in this method coresponds to the mapping of a region

which encloses the airfoil in the physical plane, onto a region which is

the interior of a rectangle in the computational plane. Steger [8] has

combined the Beam and Warming implicit finite difference algorithm [41 with i

2

i



' t	T

the grid generation procedure of Thompson et al, to simulate compressible

flow about isolated airfoils.

While similar in many respects to flow calculations for isolated

airfoils, flow calculations for cascades encounter some additional

difficulties in terms of Lhe geometry and the boundary conditions which

must be applied. The necessity for dealing effectively with complicated

geometries in cascade flow problems has led to the development of several

diverse geometry procedures (see for example (9-121). Recently, Steger et

al [13] have applied the approach used by Steger in the isolated airfoil

problem to flow through cascades.

In the present research effort, a body fitted nearly orthogonal

curvilinear grid is generated by a method which relies in part on a

succession of conform mappings. This is described in Section II. An

implicit time marching finite difference solution of the Euler equations is

then carried out on this grid in the manner described in References (8,13')

except for certain differences in the treatment of boundary conditions.

The inviscid flow solution is discussed in Section III. In the present

research effort, we have accounted for the effect of viscosity on the flow

by coupling the inviscid calculation with a separate viscous shear layer

calculation. This viscous calculation, which consists of a marching finite

difference calculation for turbulent flow, is initiated at the stagnation

point and proceeds through the blade boundary layers and into the blade

wake. We have attempted to assess the economy of including viscous effects

within the calculation in this manner, relative to the Navier-Stokes

approach of Reference [13].

3
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11. GRID GENERATION

The inviscid computations of the present work are performed on a

C-type body-fitted grid in which one family of lines forms open loops (C's)

around the blade and wake. The grid is periodic and nearly orthogonal.

This choice permits accurate resolution of the leading edge region and

provides an appropriate location for the interactive wake boundary

conditions to be described later.

The grid generation employs two analytical mappings which take the

5
multiply- connected exterior of a cpn cade of airfoils to the interior of a

s

simply connected domain. A numerically constructed mapping is then used to

t take this into a rectangular computational space. The first mapping

transforms the exterior of a staggered cascade of semi-infinite flat plates

in the z-plane into the interior of the unit circle in the w-plane.

Z?- - ^od'^[^. l^( IoW- l,'7C^ " 2,CdSQ ^OQ^^"^^]	 (2-1)

where is the stagger angle, s is the pitch, and ^^ ^ ( g/zlc^ex^ ( LY)

This form is ob%ained from the standar4 mapping for a cascade of finite

flat plates [14] by moving the singularities to 0 and +1 in the w-plane.

At the leading edge zl of the central plate dz/dw = 0. Solving for wl and

substituting into Eq. (2-1) gives

zo = -41 + 2A^YSiV^Y+ Cos ^IO^C^.COS ^ 	 (2-2)

Wheft this mapping is applied to a real geometry, such as the turbine

cascade in Figure 1, the flat plate is taken to run from a point just

inside the leading edge through the downstream end of the wake.

The second mapping transforms the interior of the unit c y cle in the

w-plane, with a branch cut from 0 to +1 along the real axis, to the

interior of the infinite strip between the real axis and -in/2 in the

-plane.
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Figure 1. Turbine Cascade

with Mapping Nomenclature

in z-Plane.
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' "N%1^z(1/2.)	 (2-3)
Note that reflection of ' through the origin leaves w unchanged. This

will be used later as a convenient means for analytical continuation. The

image of the turbine cascade and straight wakes in the I -plane (Figure 2)
is a pair of parallel straight lines connected by a roughly s-shaped curve.

Note the locations of corresponding points 1 to 5 along the contour in

Figures 1 and 2 and the angle -/$ between the flat plate and the wake.

Reflection of 1, i.e. 's-f 1 produces the opposite boundary of the

analytically continued domain in the j-plane.

In actual practice w is eliminated between Eqs. (2-1) and (2-3) and

the transformation of the blade and wake from z to I is obtained by complex
Newton iteration proceeding from point to point around the contour. To

ensure that the branch cuts of the two logarithms are never crossed, the

arguments of these logs are monitored and if either one changes by more

than +7K between adjacent points, the value of the associated log at the

new point is incremented by :h M i, i.e., in the opposite direction.

The final mapping transforms the infinite strip in the I - plane,
bounded by the blade-wake contour and its reflection, into a rectangular

domain with coordinates F = 'S+  iVL. If F is the complex potential for

flow through the strip and ,;e require F(J) = -F(-J) and VL= -1 along the

contour, then F can be represented as a contour integral.

FCI)	
CO

t

with C = (2/h)exp (-i/3). Here C,(3, and h are, respectively, the complex

velocity, flow angle, and channel width in the far field. Now set

6
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Figure 2. Image of Turbine Cascade

and Wakes in ^-Plane.
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where s is arc length and q t , qn are the vortex and source densities,

respectively. We choose qn to cancel S'-ne normal, component of C.

9j =	 , C. 
C cj-t )	 (2-15)

This should minimize the magnitude of qt. For I on the contour,V = -1 and
the imaginary part of eq. (2-4) gives an integral equation for qt.

00

^- ^^t R^ Coo t^^) 	 ^Ctio 	 ^^-^)Tit ^ ^	 ^ J- oc►

+, (c^
Equation ( 2-7) is solved by a simple panel methad with flat panels and

locally constant q t and qn. Once q t is known, the real part of Eq. (2 -4)

gives	 along the contour.

17r, 
Cho

on
Y

C t -s

C	 ^^^
Generation of the grid in the rectangular (1,YL) space proceeds in two

stages. First, points are located on the boundaries suh that the physical

z-plane coordinates willbe periodic and continuous across the wake. As we

shall see the YL= 0 line transforms into the periodic boundary in the

z-plane. Grid periodicity is enforced by distributing pairs of points

symmetrically about the origin along the $-axis. Continuity across the far

wake is achieved by selecting a constant mesh spacing in this region such

that the z-plane spacing is an integer fraction of (s)siniki where 
13W 

is

8
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the wake angle. Together these requirements imply tha'° grad point location

in (J,YL) is an odd function of ^ which becomes U near for large III . A

fifth order polynomial is used for small M in order to provide for

clustering around the leading edge. The values of j along the contour are

found by inverse interpolation in the I vol solution. Ln general the
z-plane coordinates will stall be discontinuous across the wake near the

trailing edge as a result of contour curvature. A local straining is

introduced to place a pair of points at the trailing edge and then pairs of

neighboring points across the wake are adjusted until their z-plane images

coincide. The distribution of points with Y , at the two ends of the domain

is arbitrary and a linear variation is uaed here.

The interior values of I are obtained from a finite difference
solution of the complex Laplace equation

►̂ J^ 4-'_ ,_ Q	 (2-9)
a Y^%

Values of 5 are specified along V^= --1 and 'S=±J and the anti-symmetry
MAX

property is used along V^= 0. Art ADI relaxation procedure is used to

solve the finite difference equations with the YI-inversion for fixed

performed simultaneously with that for 4 Estimates of the maximum and

minimum eigenvalues of the I and q matrices [15] are used to obtain a near

optimum sequence of acceleration parameters. Figure 3 shows the grid

distribution in the "f)-plane for the turbine cascade of Figure 1. The

upper plot boundary corresponds to Yl= 0 and maps into the upper and lower

periodic lines in the cascade plane.

9
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The final grid 'n the z-plane (Figure 4) is obtained by conformal

mapping from the 
,s
 -p1:::^e using the two analytical functions (2-3) and (2-1).

In this case continuity across the wake was obtained at the expense of a small

amount of nonorthobnnality. The rounded cap at the upstream boundary was

obtained by extrapolation from the next two inner loops. Generation of this

grid (99 x 7 points) required 1.4 seconds of CPU time on an IBM 3033 computer.
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III. THE INVISCID SOLUTION

The Euler equations are written in a conservative form appropriate for

a general curvilinear coordinate system.

^Q	 ) Ed	 (3-1)

a ta	 °a ^ 

where

U	 /V
/0 u	 /° U U + 5 x	 /^ VLV+ V^x"P.

J

	

Cep-^.)U	 (e 

and where,
.^xY^y°

V = v, k x + v Vl-y

In this equation, u and v are the x and y components of velocity, while U

and V represent the contravariant velocity components in the ^ and h,

directions. These directions and velocity components are shown in Figure 5

along with us and un, the physical velocity components that are

respectively tangent and normal to an k coast. grid line. Also,f ► is the

density, p is the pressure, e is the total energy per unit volume, and the

fluid is assumed to obey the Perfect Gas Law. This equation was used by

Steger in the study described in Reference [81, and since much of the

theory of the i.nviscid solution used here is taken from that work, we will

be content to present only a brief outline of this theory.

The solution of equation (3-1) is accomplished by an implicit time

marching algorithm, which is expressed in the "delta form" (see [41) as,

13
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y,v

x,u

Figure 5. The cascade coordinate system.
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I + At a W- i A tea'̀- 3-)(1+   At) a"a^

n.

^C	 4^ (3-2)
(dE	 ^F

Here, A and B represent the Jacobian matrices `^Q^ and	 , and the

superscripts (n) and (n + 1) indicate the time level at which a quantity is

evaluated. C^and	 are the coefficients for the artificial dissipation

terms, which have been added to the algorithm in both an implicit and

u plicit manner as suggested in [161.

Boundary Conditions

For the description of the boundary conditions on the invisicid

solution which follows, the reader may refer to Figure 5 where a typical

computational grid mesh is displayed. Blade surface boundary conditions

are obtained by first extrapolating 

/

p and U to the blade surface from the

interior of the solution region. At the trailing edge, which is taken to

be a cusp, extrapolated values of 1P, p, and IU^ , are then averaged. The

impermeability of the blade surface gives V = 0. Then the surface pressure

is obtained by solving the tridiagonal system of equations that results

from di.fferencing the normal momentum equation

._
(Y` Y1 X

+
Y^Y^ 

+
(Y^- X ^- ^. Y 	 (3-3)

Boundary conditions along the wake centerline and periodic boundarieo

are obtained by averaging extrapolated values of/0, pu ) pv, and e, at

15
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coincident or periodic pairs of points.	 Along the unmatched portion of the

wake centerline boundary,	 the averaging of extrapolated values is carriod
4
i

out between the unmatched boundary points and the point on the bottom of Y

the centerline which is farthest downstream. 	 This portion of the boundary

of the computational domain is associated with the step-like form of the

downstream boundary, which is introduced in an attempt to relieve the

skewing in the coordinate system that would otherwise occur in highly

staggered cascades.	 it may be seen in Figure 5, and in the other

computational grads displayed in this paper, that the coordinate skewing

that results in 'these step-like grids is acceptably slight. 	 The reduction

in skewing is achieved at the expense of introducing this anomalous portion

of the boundary; however, the treatment of this boundary segment did not

prove to be a difficult problem since the calculation appeared to be

i

relatively insensitve to the boundary conditions applied at this location.

The treatment of the downstream boundary used here, follows the

approach of Rudy and Strikwerda	 [17].	 Their suggestion,	 for a rectangular

computational domain with the downstream boundary oriented so that the

outward normal is in the x-direction, was as follows.	 First, values of u,

v, and T (temperature), are extrapolated to the boundary, and then the

pressure is obtained by solving the equation,

C.

^ t	 (3-4) 
where:

c - local speed of .sound

p^ - exit pressure of the converged solution
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pC - a parameter whose value is chosen to optimize convergence

By analogy, for the more complicated domain of Figure 5, we extrapolate

values of u, v, and T, and obtain the pressure by solving,

as -^^	 a . + ^^ v 	1,))=C -C	 C	 ^^ ,	 _ (3 5)

where,

C^^^-	 - Cg ► - dX	 coast. or equivalently
y

It may be seen in Figure 5 that the downstream boundary consists of two

distinct and separate pieces; the approach to obtaining boundary values is

the same at both the upper and lower portions of the downstream boundary.

The solution of equation (3--4) is relatively easy to implement, since the

only storage of values from the preceding time step required is at boundary

points.

At the upstream boundary, our approach is to specify vX,i and

^u + 2c	 where ^ is the ratio of specific heats. A value for (u - 2c
`	 25-1

at each upstream boundary point is then obtained from

(3-8)

To solve equation (3-8), it is first rewritten as,

C+ ( U`- C-) Cox ?^ + 	 n.^	 z 1 -- 0 ( 3-9)

and then explicitly differenced in time. This simplified characteristics

treatment of the upstream boundary is open to several objections., most

notably perhaps in that the compatibility equation used here (equation

(3-8)) is suitable for signal propagation in the negative x-direction.

17
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However, signal propagation in a direction that is essentially normal to

the boundary is what one usually tries to accomodate with the method of

characteristics treatment of boundaries (see for example (181), and it is

easily seen in Figure 5 that the x-direction is at best only somewhat

normal to the upstream boundary. While a more sophisticated treatment of

the upstream boundary would be more esthetically pleasing, we have chosen

the present approach because it does not appear to degrade the numerical

solution in any way and it is comparatively easy to implement.

It is important to note that the boundary pr(^cedures described in this

section were employed only after simpler approacha!s had failed. For

example, the Rudy and Stridwerda approach to tha downstream boundary was

adopted after the method of extrapolating u, v, and T, and specifying p was

found to cause the solution to become unstable. While such procedures are

often employed in isolated airfoil calculations to assist with the

convergence rate of the solution, it was our experience that in the absence

of such precautions the cascade solution either converged to a result with

noticeable errors or did not converge at all. It would appear that

sophisticated boundary procedures, which can be an assistance for isolated

airfoil calculations, are a necessity for cascades. In this regard we

would mention specifically the nonreflecting downstream boundary condition,

the characteristics treatment of the inflow boundary, and the use of the

normal momentum equation to obtain the blade surface pressure.

(OW-W
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IV. THE VISCOUS SOLUTION AND INTERACTIVE PROCEDURE

The viscous solution consists of a finite difference marching

calculation which is c.pable of dealing with blade boundary layers on both

the pressure and suction surfaces, and of proceeding from there divectly into

the blade wake. The calculation can accomodate a flow which is compressible

and turbulent; the turbulence modeling used is the two layer algebraic eddy

viscosity of Cebeci and Smith [19]. Additional features of the viscous

solution include transition modeling [20], and a specialized turbulence

modeling in the wake region [21]. The viscous calculation is initiated at

the stagnation point in the following manner. First, the sign change of the

velocity component us is used to determine the two adjacent blade surface

paints in the cascade grid which bracket the stagnation point` . Second,

the values of us at these points are used to locate the stagnation point

within the interval by interpolation, and the boundary layer is advanced to

the bracket points by the similarity solution for stagnation point flow (see

for example [221). The suction surface and pressure surface calculations are

then started from these locations and values. For the numerical marching

calculation, we have employed a marching algorithm described in Reference

[23].

Since the contravariant velocity component U might seem to be the
most obvious quantity to monitor for a sign change to locate the stagnation
point, it is noted in passing that u s and U do not necessarily share the
same sign at blade surface points if there is a non-zero velocity component
normal to the surface. A surface injection distribution is specified for
subsequent inviscid solutions within the viscous-inviscid iterative
process, so a non-zero normal velocity component can be expected in this
calcuation. In this case, us and not U is the appropriate choice.

19
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Governing gquations

For the viscous marching calculation we take as the governing equations;

L (/ LL) + a ( v̂> a	 (4-1)

	

U	 ay

	

V
1au. 	 lloo +	 LL --/3(U"V^^) (4-2)y^x	 J ay	 ax y a l

^^) ^, +(/D„^^^, ` ^L^/qo--
aX	 ^y	 x	 (4-3)

	7 Y	 ^ C ^^ C ^° day

	

y	 y	 Y

R 	
(4-4)

)-k 1̂  Z r-(T/ REFl

^, = c.p T 	(4-6)

where Pr, c p ,and w, are taken as constants, and the subscriptoo denotes

evaluation at the free stream. ( In contrast to the notation used with the

inviscid solution, x and y are now used to denote the streamwise and

streamnormal directions.) Furthermore if we write,

(4-7)

20
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V' `'1 )	 (4-8 )

and let	 _ 	 (+ = -.^ , and Prt = 
E	 , where Prt is a

specified constant, then Equations (4-2) and (4-3) may be rewritten as;

LL -X + ^^^ u _ ^	 u + ^ ^^ .^ +'au.l
^y	

^,	
Xy	 M ay 

I (4-9)

U,	 +{ v X17 emu.	 ^ ^ +	 +E+ au.

r

+ vv ^^'L	[ + ^^- 1
a	 P?	 C +	 ! 	

(4-10 )
t	 Y	 \	 ?Y-	 Y

Equations (4-1) and (4-4) - (4-10) form the basic system of equations which
c

the marching calculation solves, exclusive of the turbulence modeling. To

model the turbulence, the two-layer algebraic eddy viscosity of Cebeci. and

Smith [19] has been used.

For y<Yt,

C w,^ = L. I vi
	 (4-11)

}

L=o,4y(l—txP(— yiA))
	

(4-12)

U'^V 714^

21
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II	 oo
	 ^	 ^^

1	 (^.4 C ^^
(4-14)1AX t

oV^u
d^ x

LL	 VTW	 (4-16)

where the subscript w indicates that a quantity is evaluated at the wall

(Y = 0).	

/
For y> n l Cm 4mo

OQ

o	 y	 (4-1$)

The boundary between the inner and outer layers (y = Y1 ) is taken as the

location where	
/	

M

Equations (4-11) - (4-18) are ased to treat the blade boundary layers.

In the wake the modeling used is somewhat different;, and follows the

three-layer approach described in Reference [21).
a

For-y<yg, 6 m 'LnS
a

(Ms= 0.y ( u-)
T. 

yC
E.

(4-19)

22
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where y = ye when u = 1.10 (u) T.E. , and the subscript T.E. denotes evaluation

at the trailing edge,

For Y^{Y^,yt^Cm ^C'm4

Equation (4-11) is appl ied in this region with,

L 	
(4- 2 0)

rot y>Yl: m `^^ m 0

Equation (4-18) is applied in this region without alteration.

4	 The boundaries between the layers, y = y l and y - y2, are taken as the

locations where 
^^`^o 

and EVA-
	 L

6M . , respectively. Furthermore, if

	

then ^,,is taken to equal	 for all y.

An additional, Feature of the turbulence modeling used in this study is the

R	 transition intermittency factor ( ^ tr). This Y t r, which multiplies the eddy

viscosity determined from the preceding formulas, is calculated according to

Equations (4-21) and (4-22) which follow from the work of Chen and Thyson
4

[2Gf

x

!	 00 
CLX	 (4-21)

	. 
Q' Q

u- act - 

	

(4-22)

	

o.^	 t N

A value for the transition Reynolds number (Rex, h) is specified f9r the

calculation.
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Grid Mesh For the Marching Calculation

Tile viscous marching calculation is carried out on a grid that is

considerably more dense than the one used for the inviscid solution. In the

streamwise direction along the blade surface and wake centerline, 30 boundary

layer grid divisions correspond to each single inviscid solution grid space.

In the direction normal to the blade and wake, a variable grid spacing

technique described in Reference (191 has been employed in an attempt to

better resolve the large gradients which characterize a turbulent shear layer.

For this approach, in which the ratio (K) of consecutive grid spacings is

Y K) values for the first	 lFixed (i.e.,	 , 	 grid interval (0y) and the

ratio (h) are specified.

The Numerical Scheme

As mentioned previously, a marching algorithm described in [23] has been

used in the viscous solution. For the grid system described in the preceding

section, Equations (4-1), (4-9), and (4-10) result in the following finite

difference equations.

+j+1 LLj+ ►ji*r /0 ^j+1 Uzj+, j —( )i+1,1+1 (PV -+I j _ O
CoX^ t.+^	 cAy^ j+l 	 (4-23)

> r 	 ll~ Ll( JI	ui+l,j^l—U4+1,j-	 '!	 W) L+ ^	 4

+ )

s

_) C y);
(4-24)

^ ^i±t,^,> 1, - ► 	 U. ^+,,fi t" WoI - t

24
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The system of difference equations consisting of (4-23), (4-24), and

(4-25), together with the various property relations and turbulence

equations, are solved subject to appropriate boundary conditions These

boundary conditions are applied at free stream, blade surface, and wake

centerline locations; iL is in this regard that we mention the one-sided

difference representation of %.

u

(3-K)(Uy )^+I

The procedure for advancing the solution from the (i,) station (presumed known

to the (i+1) station (presumed unknown) is as follows:

(i) Solve Equation (4-24) to obtain ui+l , j for all j. A tridiagonal

°	 inversion is required.

(ii) Solve Equation (4-25) to obtain hi+l,j for all j. A tridiagonal

inversion is required. (Due to the adiabatic wall and wake center-

line symmetry boundary conditions, 
116h 0 at y = 0, the matrix is

WX
noL tridiagonal, but iL will take this form after one Gauasian
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elimination step. A similar preconditioning of the matrix is

required when kjolving Equation (4-24) in the wake).

(iii) Equation (4-•4) and (4-5) and (4-6) are solved for Ti+l,j,	 i+l,,ji

and A i+l,J

(iv) Equation (4-23) is marched from y - 0 to the outer edge of the

shear layer to obtain (iov)i+l,j-

(v) The turbulence modeling equations (0-11)- (4-22)) are solved to

obtain (^m+)i+l,a•

The solution has now been advanced to station (i+l). Although this numerical

scheme is a low order method, we have found it to be simple, inexpensive, and

very stable. We have perceived these virtues of the method in a previous

study [24), as well as in the present work. The reliability of the method

was an important feature in a calculation that was expected to encounter

laminar-turbulent transition, boundary layer separation, and the sudden

change in boundary conditions that occurs when marching off the trailing edge

and into the wake. It was for this reason that our first choice of a

marching algorithm, the Keller Box Method (see for example [191), which is

significantly more accurate than the present scheme; was replaced with a

method which -appeared to be less sen4;.tive• We have attempted to compensate

for the lower accuracy of the method by an increase in grid density.

Additional Computational features

Two additional computational features of the viscous solution remain to

be discussed. As the first of these, it is noted that the calculation

procedure includes provisions for extending the grid in the y-direction,

should the shear layer approach the outer edge of the grid too closely„ This

feature enables the calculation region to grow with the boundary layer and to
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contain it as economically as possible. Second, to equip this direct

boundary layer solver with at least some ability to cope with regions of

separated flow, we have altered the streamwise convection terms in Equations

(4-24) and (4-25) for reverse flow in the manner of Rehyner and Flugge-Lot?

[25].

The Interactive Procedure

The interactive procedure in this calculation consists of an iteration

between the inviscid and viscous solutions previously described. The effect

of the presence of the viscous shear layer on the inviscid solution, is

modeled as a source-sink distribution along the blade surface and wake

centerline. This source-sink distribution is obtained from the viscous

solution according to the following expression;

co

/^

o	
(4-27)

x /'

where the notation used in the -viscous solution (Section IV) appears on the

right side of this equation, and the left side conforms to the notation of

the inviscid solution (Section III). Once values of(/0un) have been

calculated and supplied to the succeeding inviscid solution, there are some
K

alterations in the treatment of the blade surface and wake centerline

boundary conditions which we described Section II'I.

Blade surface boundary conditions retain the form described earlier,

except that the specification of V = 0 is replaced with the specification of

(Pun ). The surface pressure is still obtained by a tridiagonal numerical

solution of Equation (3-3). Along the wake centerline, values of (lours)

calculated from the preceding viscous solution are summed at coincident
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U+

points, and these sums are taken to represent a discontinuity in the values

Of I?unl at those lowations. The equality of

/ U

s , and p, at coincident

points is enforced by averaging extrapolates.
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V. NUMERICAL RESULTS AND DISCUSSION

The results that have been obtained with the numerical procedure

described in the preceding sections are presented here. The procedure has

been applied to three cascades: an unstaggered cascade of NACA 0012 blades

with a gap—chord ratio of (1.0), a 45 0 staggered cascade of NACA 65-410

blades with a gap-chord ratio of (0.777860), and a 2$.5 0 staggered cascade

of NACA 65 — (12)10 blades with a gap —chord ratio of (1.0). Results are

presented for several different flow situations in each of the three

cascades including different Mach numbers and angles of attack. In certain

cases where the viscous marching solution was incapable of dealing with the

separated regions that occurred, and it was therefore impossible to perform

an interactive calculation, we have presented results from the sole

inviscid solution. The cascade of NACA 0012 blades and the cascade of NACA

65-410 blades were chosen as simple test cases to evaluate the performance

of the numerical procedure. The cascade of NLCA 65—(12)10 blades has been

the subject of an experimental study of Briggs [261, and was chosen as it

afforded the oportunity for comparison with experimental results. It is

hereafter referred to as the Briggs cascade. The results obtained in each

of the three cascades are discussed separately. However, the blade chord

length is .25 ft and the flow is air in all of the test cases considered.

Unstaggered Cascade (NACA 0012 blades)

An unstaggered cascade of NACA 0012 blades with a gap—chord ratio of

(1.0) was chosen for use in the initial tests of the numerical procedure,

With the idea that an unstaggered cascade of symmetric airfoils would

minimize the geometry related difficulties and would permit attention to be

focused on other computational aspects of the method. The grid system used

for this cascade is shown in Figure 6.
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A subsonic flow at zero angle of attack was chosen as a first test

case for the interactive calculation procedure. More precisely, for the

upstream and downstream boundary conditions on the invscid solution we have

specified the following:

Upstream Tangential Velocity (v9	 ) - O.ft/sec
X--ao

Upstream Riemann Invariant (( LL + .ZC-^	 X

5980. ft/eec

Upstream Isentropic Constant (` "P-/Pw ) 4 K= 00)

948210. (p - lbf/it 2 , 
/

,1J - slugs/ft3)

Exit Pressure of the Converged Solution 	 - 2125. lbf/ft2

The specifications result in a velocity of 496 ft/sec. and a Mach number of

(.45) at the upstream boundary.

The interactive calculation procedure was run for four global

viscous-inviscid iterations in this test case with no apparent difficulty;

a sampling of the results may be found in Figures 7-9. In Figure 7, values

of the pressure coefficient on the blade surface ^v - I d	 j

from the first and last (fourth) inviscid solutions are displayed. Surface

pressure coefficient values have been plotted for all grid points on the

top and bottom surfaces of the blade; however, due to the symmetry in this

flow situation, these values for corresponding points on the top and bottom

}	 are largely indistinguishable. This figure demonstrates the expected

'	 result that for the case under consideration, the fluid viscosity has only
A

a slight influence on the surface pressure. In Figure 8, the convergence

history of each of the four inviscid solutions is shown. The maximum
4 i

residual, the decay of which is monitored in these plots, is calculated

according to the expression 	 I	 I	 where &p is the change in
MAX

Y
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pressure that occurs between two consecutive time steps, p v is the exit

presssure, and where points along the blade surface and wake centerline

have been examined. The trend towards convergence, in both the time

marching inviscid solutions and the global viscous-inviscid iteration, is

apparent. Further evidence of the convergence of the method is shown in

Figure 9, where plots showing the behavior of the mass injection rate (pun)

for each of the four global iterations are found. This behavior is

examined in a region centered about the trailing edge (t.e.), as this

region is one of special importance and sensitivity. Again, a trend

towards convergence is indicated.

For this calculation, a time step was used which was estimated to be

about 20 times larger than the Courant- Friederichs - Lewy (C.F.L.) Limit

based on the smallest grid spacing in the field. This value was chosen as

it was about the largest time step that could be used without destabilizing

the calculation. The time step was held fixed throughout the calculation;

no attempt was made to improve the convergence rate by cycling or varying

the time step in an;r way, nor was it necessary to use a smaller initial

time step to accomodat'e the calculation's impulsive start. (The only

concession made to this impulsive start was to enforce the impermeability

of the blade surface gradually, over 50 time steps.) The time step size

did not differ greatly from this value in any of the test cases described

in this section. For the artificial dissipation terms that appear in the

inviscid solution algorithm, values of L
	 /^

g	 ,	 `^_ .05 and (^'i/ e e) = 2

were used in this test case, and similar values were used in all subsequent

calculations. The value of 2 followed from suggestions made in Reference

[16], while ^e = .05 was chosen as it was about the largest value which did
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not destabilize the calculation. The numerical evidence of this and

subaegent calculations was that a stability limit of approximately (.06)

existed for ^ e . This observation conflicts with Reference [16], where the

introduction of implicit damping (E i) is advocated as a means of relieving

a stability limit on the basic algorithm (i.e. 6i = 0) of ^e 4 (- 0.625)•

This point will receive additional comment latex ;,n this section.

As a second test case For the the interactive calculation procedure, a

flow into the unstaggered cascade at a 2 0 angle of attack was considered,

with a Mach number of (.45) at the upstream boundary. This flow situation

was chosen as a simple test of the ability of the method to treat a lifting

cascade. An interactive solution of three viscous-inviscid iterations was

performed, the convergence history of which differed very little from the

preceding test case. Values of the surface pressure coefficient from the

first and last inviscil solutions are shown in Figure 10. Again, the fluid

viscosity has an effect on the surface pressure distribution which though

noticeable is small.

In the third and fourth test cases, situations have been considered

where the effect of viscosity on the flow was more pronounced and the need

for a viscous-inviscid interactive capability more clearly demonstrated.

Both of these test cases involve flows in the unstaggered cascade at zero

angle of attack, but higher Mach numbers. The third test case involved a

3	
subsonic flow with an upstream Mach number of (.63). The surface pressure

4

coefficient For this case, which is shown in Figure 11, displays a larger
a

difference between the first and last solutions in the iteration, than

appeared in the previous test cases. The effect of the viscosity on the

surface pressure is stall more apparent if we consider a transonic .flow
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situation such as the fourth test case, with an upstream Mach number of

(.65). The surface pressure coefficient for this test case, shown in

Figure 12, indicates that a shock is now present in the cascade. While the

shock resolution in this case appears to be only fair, this shack smearing

enables our direct boundary layer solver to negotiate the region of shock

impingment on the boundary layer, and mattes a viscous-inviscid iterative

solution possible in this test case. We will return to the discussion of

shock resolution and its implications for the viscous solution later in

this section. For the present it will suffice to mention than the

iterative solution converged successfully although not as quickly as in the

subsonic test cases, and that the convergence history of this solution is

found in Figure 13.

45 0 Staggered Cascade (NACA 65-410 blades)

A cascade of NACA 65-410 blades staggered at a 45 0 angle with a

gap-chord ratio of (0.777860) was chosen to test the numerical procedu r e on

a more geometrically difficult cascade. The grid system used for this

cascade is shown in Figure 14. A subsonic flow that was well aligned with

the blades was chosen for the first test case, with a Mach number of (.47),

and a flow angle of 48.4 0 (i.e., an angle attack of 3.4 0 ) at the upstream

boundary. An interactive solution of three iterations was performed, the

results of which are displayed in Figure 15. Also, the convergence history

of this solution is shown in Figure 16.

An interesting feature of the surface pressure distribution in Figure

15 is the very low pressure that occurs on the pressure surface near the

leading edge. In the second test case for this cascade, we sought to

eliminate this feature by increasing the flow angle at the entrance. The
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speed of the flow was also increased so that the flow at the entrance

exhibited a Mach number of (.79), and a flow angle of 52.5 0 (7.5 0 angle of

attack). It may be seen in Figure 17 that the increase in angle of attack

has effectively removed the low pressure region on the pressure surface.

Also, the figure indicates the presence of an incipient shock on the

suction surface at about 25% of chord, due to the increased speed of the

flow. This shock is more apparent if the speed of the flow is increased

slightly. This has been done in the third test case, where the entering

flow had a Mach number of (.83), and a flow angle of 52.3 0 . As the surface

pressure coefficient distribution shown in Figure 18 indicates, a shock has

now formed, the location of which is clearly dependent on viscous effects.

While convergence tended to be somewhat slower for test cases with the

staggered, cambered blade cascade than those with the unstaggered cascade

of symmetric blades, nevertheless the interactive calculation procedure was

judged to have performed well in all cases considered.

28.5 0 Staggered Cascade (NACA 65-(12)10 blades)

The success that was experienced in a variety of preliminary Lest

cases prompted the application of the numerical procedure to a cascade

situation where a comparison with experiment could be made. The cascade

chosen for this purpose consisted of NACA 65-(12)10 blades at a stagger

angle of 28.5 0 and spaced with a gap-chord ratio of (1.0). The grid system

used for calculations in this cascade was displayed previously, in a

different context, in Figure 5. Comparisons have been made with data

collected by Briggs [26] over a range of Mach numbers. In these

comparisons we have restricted our attention to the data in [26] which

satisfies that author's stated two-dimensionality criterion. The stated
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flow angle in all Brig¢r' data is 45 0 , which corresponds to an angle of

attack of 16.50.

A somewhat disappointing result of the numerical cal ,tulat.ons carried

out on the Briggs cascade, was that a significant boundary layer separation

occurred on the suction surface near the trailing edge, which	 caused the

viscous marching solution to fail.	 This boundary layer separation

prevented the execution of viscous-inviscid iterative solutions;

consequently,	 the numerical results presented for the Briggs cascade are

strictly inviscid resuts. 	 The inviscid procedure did however perform quite

well in these calculations.

We first consider two subsonic test cases with upstream Mach numbers

of	 (.42)	 and	 (.61).

Values
)

of the surface pressure coefficient 	
^I'K=-00MPLL

from the numerical solution and experiment are compared for the 	 M ix_	 .42

case,	 in Figure 19;	 the agreement apears to be	 Also,	 the pressure^go^o^d.

Lrise predicted by the numerical solution, 	 -----=-- = 1.055, agrees well
_PI x ---n

with the experimental value of 1.055.	 For the M IX= -.00 = .61 case,	 a

comparison of surface pressure values in Figure 20 shows fairly good

agreement between the numerical solution and experiment. 	 Also,	 the

calculated value for the pressure rise in the cascade of 1.148 agrees

fairly well with the experimental val.ue of 1.135.

While the agreement between these two pressure rise values is

acceptable,	 it	 is	 not as good as	 in the MIx=_ OO = .42 case, and the

comparison deteriorates somewhat further in the transonic case that follows.

In that transonic test case,	 for which additional results will be presented

shortly,	 the apparent over.prediction of the pressure rise is still more
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severe. It is reasonable to ascribe some of the disparity between the

numerical and experimental results to the absence within these numerical

solution of any provision for viscous effects. This reasoning is supported

both by the fact that the numerical procedure overpredicts the pressure

rise, and by Lhe observation that this overprediction tends to worsen with

the increase in Mach number. However, our experience with interactive

solutions carried out in preliminary test cases indicated that it was

unreasonable to attribute All of the overprediction to viscous effects.

For this reason, it was resolved to investigate the possibility that the

effective angle of attack in the experiment in Reference [26] was slightly

Less than the stated value. It was also judged a possibliity that

the pressure rises recorded in [26) were more reliable data than the flow

angle. Our approach then to the investigation of this possiblity was to

recalculate the second test case with the 45 0 flow angle requirement

removed and a smaller value of the pressure rise enforced. This

recalculation resulted in a Mach number of (.61), but a pressure rise of

1.138 which was closer to the experimental value. The numerical solution

gave a value for the upstream flow angle of 42.8 0 (i.e. a 14.3 0 angle

of attack). The surface pressure coefficient plotted in Figure 21 appears

to be in slightly better agreement with the experimental data than the

previous numerical Solution in figure 20.

As the final test case wth the Briggs cascade, we have considered a

transonic flow situation at an upstream Mach number of (.76), and a flow

angle of 450.

The numerically generated surface pressure coefficient is compared

with the experimental data in Figure 22. A value for the cascade pressure
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rise of 1.265 was calculated, the measured value being 1.218. Aside from

the shock oscillations in Figure 22, it is clear that the agreement between

the numerical and experimental results is not particularly good. The

discussion of he shock oscillations is postponed until later. The general

lack of agreement in Figure 22 together with the disparity in pressure rise

values however, suggested that recalculation of this test case based on a

matched pressure increase rather than a matched flow angle, was in order.

Since it was unclear as to what portion of the disparity in the pressure

increase should be attributed to viscous effects, we have performed two

such recalculations at different pressu

these cases a flow with Mix = -00 r .76,

resulted in a flow angle of 42.5 0 (i.e.

second a flow with M!x ^ -to= .76, and a

a flow ,angle of 39.2 0 (i.e. an angle of

re rise values In the first of

and a pressure rise of 1.248,

a 140 angle of attack). In the

pressure rise of 1.217, resulted in

attack of 10.70 . The numerical

results are cmpared with the experimental data in Figures 23 and 24.

Of the comparisons in Figures 22-24, perhaps the best agreement is in

Figure 23, although the agreement in none of these solutions is especially

good and the appearance of disagreement is further increased by the

spurious shock related wiggles that are present in these plots. In closing

the discussion of the present test case, it is noted that the numerically

generated pressure coefficient distributions in Figures 22-24 demonstrate

that a relatively small change in the angle of attack can cause a large

change in results. Since differences in the effective angle of attack of

this magnitude might well fall within the bounds of experimental error, the

comparisons using matched pressure rises are to be preferred.
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Discussion

The numerical results presented here demonstrate the applicability of

this numerical calculation procedure to the analysis of flow in cascades.

The calculations for which results have been presented required from one to

three hours	 (C.P.U.	 time) on a CDC Cyber 170/760, where most of the expense

was associated with the inviscid solution. 	 Although these run times are

large,	 they were not viewed as prohibitive, 	 particularly since faster

computing machines are available.	 While the method in its present form has

been successfully applied to a number of cascade flows, 	 our experience with

the method indicates that its range of application could be greatly

extended with some modifications. 	 It is our perception that the two most

important limitations on the method at present are the shock resolution

problems	 in the inviscid solution,	 and the failure of the viscous marching

solution (and consequently the viscous-inviscid iteration) in situations

with significant separation.

The presence of shock induced oscillations in the transonic test cases

constitutes the most serious shock related difficulty encountered with the

method.	 These oscillations are prominently displayed in Figure 22, 	 for

example.	 Some standard remedies, which have been applied to this problem

in isolated airfoil calculations, proved incapable of relieving the problem

for the cascade flows considered here. 	 For example, the attempt to

suppress	 these oscillations by increasing the damping coefficients was

frustrated by an apparent stability bound for this calculation of 	 Ee-	 •

Also, an attempt to remove the oscillations by the introduction of

"conservative spatial switching", 	 described in Reference 	 [4],	 and by

transitioning the switching operator as described in [4], 	 failed when the
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calculation became unstable in the presence of supersonic ,flow. The

failure was somewhat surprising in view of the success experienced with

this approach in previous studies [4,8]. In our attempt to resolve the

problem in thif,- manner, we have dropped the damping terms in supersonic

regions and have in general tried to conform as closely as possible to the

prescriptions of [4,8], with the sole exception that we employed a lower

order upwind differencing.

Both the failure of the attempt to incorporate "conservative spatial

switching" wi.hin the method, and the apparent stability bound of C e <

seemed to indicated that flow in cascades was in some way amore severe

test of the inviscid solution algorithm than flow past an isolated airfoil.

It is possible that these failures occured because of some incompatibility

Qf the larger damping and the switched differencing with boundary

procedures used in the inviscid solution. Also, stability analyses of this

algorithm (for example [161) suggest that more restrictive stability bounds

result from the application of periodic boundary conditions, but these

analyses do not predict bounds as restrictive as our numerical experience

with the present method would indicate. Finally, the possiblity always

exists that an error in the coding remained undetected, although it is

unlikely that this was the source of the problem. Regardless of the

reasons For the .Failure of these attempts at smoothing the shock

oscillations, it is clear that this difficulty must be cvercome for the

method to be applied with confidence to shocked flows.

at

The second important limitation on the method was the failure of the

viscous calculation in situations with significant separation. Unlike the

difficulty in removing the shock oscillations, this problem was not
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unanticipated. The present finite-difference viscous marching solution was

chosen for its simplicity, accuracy, and reliability in the treatment of

attached boundary layers and wakes. However, it was not expected that this

marching solution would accomodate flows that were severely separated.

While the viscous marching solution currently employed performed well in a

variety of cascade flow situations, the disappointing failure in the Briggs

cascade indicated the desirablity of some improvement with regard to

separation. As this would likely require the use of an inverse boundary

layer procedure, which would then be coupled with the present direct

inviscid solution, a viscous-inviscid iterative scheme of the type referred

to as "semi-inverse" (see for example [271) would seem to be required.

in conclusion, it is our opinion that the interactive calculation

procedure developed i+,t this study constitutes a useful tool for the

analysis of cascade flows which are unshocked and only mildly separated;

and with some modification, the generality of the procedure could be

increased with regard to these features. The procedure is quite general in

terms of cascade geometry and can accomodate a wide range of blade shapes,

blade stagger angles, and blade spacings. While a Navier-Stokes approach

to the inclusion of viscous effects within the numerical calculation would

undoubtedly be required in certain severe flow situations (e.g. massive

}	 boundary layer separation with vortex shedding), the viscous-inviscid

i	 interactive approach provides an alternative in the analysis of less severe

u
flow situations, such as a cascade operating at or near design conditions.

In a time marching solution of the Navier-Stakes equations, it is unlikely

that the computational effort expended per grid point would greatly exceed

the value for a time marching solution of the Euler equations. However, it

i
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is an advantage of the interactive approach, that this inviscid time

marching solution is carried out on a grid that is sparse in comparison

with the grid requirements of a Navier-Stokes solution.
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