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Introduction

One of the most widely used programs for transonic unsteady aerodynamic

analysis is the LTRAN2code of Ballhaus and Goorjian. I That code is used to

solve the low frequency approximation of the transonic small disturbance (TSD)

equation. Steady state boundary conditions are used at _he airfoil, in the

wake, and on the computational boundaries.

Use of the low frequency approximation and steady state airfoil and wake

conditions limit the frequency of unsteady motion that can be analyzed with

LTRAN2. Houwink and van der Vooren2 extended the range of applicability of

LTRAN2by adding unsteady terms to the airfoil and wake boundary conditions;

the resulting code was termed LTRAN2-NLR. Hessenius and Goorjian 3 added a

time derivative term in the downstream far-field condition as well as unsteady

airfoil and wake conditions. Their code, LTRAN2-HI, has been validated in the

transonic range by a series of comparisons with experimental data.

Although adding unsteady terms to the airfoil and wake boundary conditions

extended the range of applicability of LTRAN2, use of the low frequency

approximation of the TSD equation still limits its application to relatively

low frequency motions. The programs described in references 1-3 use Murman-

Cole (M-C) type dependent spatial differencing 4 that admits nonphysical

• expansion shock waves as part of the computed solutions. Using steady far-

field conditions causes disturbances incident on the boundaries to be reflected

back into the computational domain. This necessitated placing the computa-

tional boundaries far enough from the airfoil that reflected disturbances did

not reach the airfoil during the calculations. Having to place the boundaries



far from the airfoil increasesthe cost of using the programsbecausethe flow

field has to be computedat an increasednumber of grid points.

To remove some of the limitationsdescribedabove, a new code, XTRAN2L,

has been developedat the NASA LangleyResearchCenter. It was developedby

modifyingLTRAN2-NLR. The M-C differencingwas replacedwith Engquist-Osher .

(E-O) monotonedifferencing.5-6 E-O differencingdoes not admit expansion

shocks as part of the solutionand increasescode efficiencyby allowinglarger

time steps to be used in the time-marchingsolution. The low frequency

limitationwas removedby adding the capabilityof solvingthe completeTSD

equation. The final modificationthat is discussedin the presentwork is the

implementationof nonreflectingfar-fieldboundaryconditionsthat are

consistentwith the completeequation.

Edwardset al.7 added the capabilityof includingaeroelasticeffects in

the time-marchingXTRAN2L solutions,and Seidel et al.8 made an extensive

study to determineoptimummethods for distributingcartesiangrids. The

detailsof those effortsmay be found in the cited material.

UnsteadyTransonicSmall DisturbanceEquations

The codes describedin references1-3 are used to solve the low frequency

approximationof the transonicsmall disturbance(TSD)equation

A@xt = B¢xx + ¢yy (i)

where @ is a disturbancevelocitypotentialnormalizedby cU62/3,c is

airfoil chord,6 is airfoil thicknessratio,and U is freestreamspeed. The

spatialcoordinates,x and y, and time, t, are normalizedby c, c/a1/3, and

m-l, respectively,where m is the frequencyof unsteadymotion. The w

coefficientA = 2k_%:2/a2/3where M_ is free-streamMach number,and the



reducedfrequencyk = mc/U. In references1 and 3,

B = (1 - M.2)/62/3- M_m(y + 1)@x, where the choice of the exponent

m is arbitrary. Ballhausand Goorjianmade m a functionof M_ such that the

criticalpressurecoefficient,Cp*, predictedby (1) matchedthe exact

• isentropicCp*. Hesseniusand Goorjianused m = 2 (Spreiterscaling). In

reference2, B = (1 - M_2)/62/3- M_2(y* + 1)@x, where

y* = 2 - (2 - y)M_2

Solution Algorithm

In the codes describedin references1-3, solutionsof (1) are obtained

using the alternating-direction-implicit(ADI) scheme describedin reference

9. Solutionsare advanced from the nth level in time to level n+l using the

followingtwo-stepprocedure

x-sweep:

A 6x(.i n + n (2a)AT ,j - ¢i,j) = Dxfi,j 6yy.i,j

y-sweep:

A • n+1 " n ) (2b)
mat6xl@i,j- @i,j) = ½ 6yy(@n+li,j- @i,j

where @ is an intermediatelevel potential. From referencesI and 9,

2 (_i - _ )
6x¢ = xi+1 - xi_1 ,j i-l,j

2 (@i,j+l- @i,j @i,j - @i,j-l)
6yy@ = Yj+I - Yj-1 Yj+I - Yj - Yj - Yj-1

1 - M2

1 _ @n + Bn @xifi,j = _-L 62/3 xi,j 1,j ,.i

1 - M2
• _ m @n

n = - M_(y + i) xi,jBi,j 62/3



I - M2
= M_(y2.n - + I)@n (LTRAN2-NLR)

Bi,j a_7_-- - xi,j

@i+l,j - @i,j

@xi+i/2,j = Xi+l - xi

The mixed differenceoperator,Dx, is constructedto maintain conservation

form. Murman-Cole(M-C) spatialdifferencingused in LTRAN2,LTRAN2-NLR,and

LTRAN2-HIresultsin the followingform for Dxfi,j:

2 [(l_ci) " - fi ) + (fi )]
Dxfi,j = xi+1 - xi_I (fi+1/2,3 -1/2,j ci-1 -1/2,j - fi-3/2,j

(3a)
0 Cn + C_ > 0

i+i/2,j I-i/2,j
€ i :

n + n < 0 (3b)
i Ci+i/2, j Ci_i/2, j

It has been shown that M-C differencingallows stable,entropy-violating

expansionshocks to be computedas part of the numericalsolution.6,10

Reference6 also showed that M-C differencingcan triggernumerical

instabilitiesthat cause large errors in the calculatedaerodynamicloads.

Such a case was calculatedusing LTRAN2-NLRfor flow over an MBB-A3 airfoil

oscillatingin pitch about its leadingedge at M_ = 0.8, k = 0.2. A time

step of kAt = 10 was used, and the pitchingmotionwas definedby an unsteady

angle of attack _(t) = - 0.5° + O.5°sin(kt). Figure la shows that the

steady flow field is mixed subsonic/supersonicwith a shock wave of moderate

strengthlocatedat approximately65 percentchord. Figures lb-lf show that

during the airfoiloscillationan instabilityis triggeredat the lower leading

edge that causes the calculationsto diverge. When the monotone differencing

scheme of Engquistand Osher5 is used, expansionshocksare not admittedas

part of the computedsolution,and the calculationsremain stablewhen methods

using M-C differencinghave begun to diverge.

4



Engquist-OsherDifferencing

The Engquist-Osher(E-O)scheme was first used in implicitalgorithmsby

Goorjianand Van Buskirk6who tested the method using a modifiedLTRAN2

code. Similarmodificationswere made to LTRAN2-NLRat the NASA Langley

ResearchCenter. To incorporatethe E-O method into the ADI procedurerequired

the followingdifferencingduring the x-sweep:

A 8x(@i n 1_xfi + (4)a--t ,j - @i,j) : -I/2,j 8yy@_,j

where
. . .

_fi-I/2,j = Axfi-I/2,j+ Axfi-I/2,j

2 _I(7i -f +7. 7. )= xi+1 - xi +1/2,j i-I/2,j I-I/2,j- I-3/2,j

- 1 - M2 - 1 - M2 - + -

fi-1/2,j =-2 [ 82/3 ui-I/2,j+ ( - M2-(Y*+ 1)ui-112,j)axOi,J]

I 1 -M 2 1 -M 2. . -

fi-1/2,j :2 I_2--2-/_ui-1/2,j+ (8-'_ - M2(Y* + 1)ui-I/2'j)6x@i'JJ

1 M2 n n
" " _ @i,j " @i-l,j)
ui_1/2,j = rain(.2/3,2., ' xi - x.a m_tY + I) I-1

1 M2 n n
^ " _ @i,j - ¢i-l,j)

ui'I/2'J= max(_2'/3M2_(Y*+ 1) ' xi - xi-1

+ @i,j - @i-l,j

8x_i'J = xi - xi-I
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The completeset of differenceequationsusing the monotone differencingfor

the x-sweepare presentedin AppendixA.

To demonstratethe effect of the monotonedifferencingon numerical

stability,the case of the oscillatingMBB A-3 airfoilwas recalculated. The o

pressuredistributions,Figure 2, show that the numericalsolutionremained

stable for the durationof the calculations. Goorjianand Van Buskirkreported

that for some cases, they were able to increasekAt (andhence code efficiency)

by factorsof up to 10 and still maintain stability.

Algorithmfor the CompleteTSD Equation

The ability to treat unsteadymotionsof all frequencieswas obtainedby

adding the capabilityto solve the completeTSD equation

C@tt + A¢xt = B@xx + @yy

where (5)

k2M2

c=s-

Solutionsfor @ are advanced from time level n to time level n+l using the

followingADI method of Rizzettaand Chin11

x-sweep:

A " _ ¢n j) = Dxfi + 6 @n (6a)A-t6x(@i,j i, ,j yy i,,i

or

A 6x(€i n iTxfi + a nA-T ,j - @i,j) = ,j yy¢i,j (6b)

y-sweep:

C (@n+l _ n n-1 A ax(@ - @i ) = ½ l@i,n+1,j_ @in,j) (6c) ,a_t i,j 2€i,j + @i,j) + _ ,j 6yy

For the x-sweep,the algorithmis the same as that for the low frequency

equation. Including@tt also requiresan extra level of computer storage--
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levels n+l, n, and n-1 versus levelsn+l and n. The differenceapproximation

for the completeTSD equationare presentedin Appendix B. Since the x-sweep

is unchanged,only the differenceequationsfor the y-sweepare presented.

NonreflectingBoundaryConditions

. The steady state far-fieldboundaryconditionsused in LTRAN2cause

disturbancesincidenton the grid boundariesto be reflectedback into the

computationaldomain. Thus, the boundarieshad to be placed far away such that

reflecteddisturbancesdid not reach the airfoilduring the calculationsand

cause errors in the computedsolution. Kwak12 incorporatedthe nonreflecting

far-fieldboundaryconditionsof Engquistand Majda13 into LTRAN2which

allowed a reductionin the physicalextent of the computationalgrid and saved

between 10 and 24 percentin computertime. The boundaryconditionsof

reference13 are not compatiblewith (5). Nonreflectingfar-fieldboundary

conditionsthat are consistentwith the completeTSD equationare presentedin

this section.

AssumingB to be locallyconstant,the transformations

x

_:7_

T =-_T x + t
where

D = (4C + BA--_L)I/2

were used to transform (2) into the wave equation

@TT= @_ + @yy (7)

A nonreflecting far-field condition for (7) is 14

• _T + _r +_r = 0 (8)
where

2 62 2r = +y

7



In untransformedcoordinates,(8) becomes

I(_ A x x Y@ + @ = 0 (9)r- + D)@t +_-@x + r y 2--_

Allowing x to approach - - in (9) with y finite, the following first order

plane wave condition at the upstream boundary was obtained

IA D
2(B + 7B-)@t- @x : 0 (10)

Similarly, lettingx . + _ with y finite resultedin the downstreamcondition

1 A _,_ffg2(- g + )@t + @x = 0 (11)

As y . + -with x finite, the following conditions at the top and bottom

boundaries were obtained

D
@t _ @y : 0 (12)

where + and - representthe top and bottomboundaries,respectively. Using

@ = f(r-T), -- a solutionof (7)that representsoutgoingwaves -- to replace

2B x A
@t by - _ (7 - D)-l@x' (12) became

BD
A--@x _ @y : 0 (13)

The boundaryconditionsin (13)were used in all numericalexperiments. The

differenceequationsfor (10), (11),and (13)are presentedin AppendixC.

When C = O, (10)-(13)reduceto the boundaryconditionsfor the low frequency

equation.12 The nonreflectingboundaryconditionsare summarizedin

Figure 3.

One test of the boundaryconditionswas in the calculationof unsteady

forces on an NACA 64A010airfoilpitchingharmonically(aboutits quarter

chord) ±0.25 degrees (o) about a 0o mean angle of attack at M, = 0.825

and k = 0.5. For the steady flow, an embeddedshock wave is locatedat

8



approximately62 percentchord. A referencesolutionwas calculatedfor four

cycles of oscillation(360 steps per cycle) on a 113 x 97 grid (in x,y) that

extended 200c in x and 709c in y. The grid was reducedto 88 x 65

• (-3.8c<x <3.5c, y <_9.3c),and the calculationswere made first using

steady-statefar-fieldboundaryconditionsand then using (10), (11), and (13)

at the boundaries. As shown in Figure 4, when the steadyconditionswere used,

disturbancesreflectedfrom the boundariescaused the calculatedlift to

deviate significantlyfrom the large grid value. When the nonreflecting

boundaryconditionswere implemented,most of the waves incidenton the

boundarieswere absorbed,and the small grid resultsshowed good agreementwith

the referencecalculation. Those resultsare also shown in Figure4. Compared

with the time requiredto generatethe large grid solution(3215 secondson a

CDC CYBER 173), using the new boundaryconditionson the small grid resulted in

a 44 percent savingsin computertime (the small grid solutionrequired1815

seconds).

A second test was to calculatethe unsteadyforce responsefor a flat

plate airfoilwith a pulse in angle of attack _. The calculationswere made

for M_ = 0.85 on an 80 x 61 grid that extended+20c in x and -+25cin y.

Using the pulse/transferfunctiontechniquedescribedin Reference8, the

frequencyresponsefunctionfor the unsteadylift curve slope c_ was

calculatedwith and without the nonreflectingboundaryconditions. In the

pulse/transferfunctiontechnique,after _ was increasedsmoothlyand rapidly

to a maximumand returnedto its initialvalue, calculationof the unsteady

forceswere continueduntil those forces returnedto their startingvalues. A

Fast FourierTransform (FFT) of the lift coefficientc_ was then dividedby
I

the _ FFT to obtain the frequencyresponsefunctionfor c_ . A flat plate

airfoilwas used to allow comparisonsof the forcescalculatedusing XTRAN2L

with those predictedusing the exact kernel functionmethod of Bland.15

9



Figure 5a shows a comparisonof the unsteady forcescalculatedusing steady

state conditionson the computationalboundarieswith the forcesobtained using

Bland'skernel functionmethod. Below k = 0.5, the finite differenceresults

have spuriousoscillationsdue to disturbancesreflectedfrom the boundaries.

When the nonreflectingboundaryconditionswere used (Figure5b), the reflected

disturbanceswere small,and good agreementwith the exact solutionwas

obtained.

Concluding Remarks

A new computerprogram,XTRAN2L, for transonicunsteadyaerodynamic

analysis has been developedat the NASA LangleyResearchCenter. It is a

modificationof the LTRAN2-NLRcode. The monotonedifferencingmethod of

Engquistand Osher was used to replacethe Murman-Coletype dependent

differencingscheme. That resultedin a code that is more robustand

more efficient,and the new differencingmethod does not admit nonphysical

expansionshocks as part of computedsolutions. The capabilityof analyzing

airfoilsundergoingmotions of all frequencieswas obtainedby adding a general

frequencyterm to the transonicsmall disturbance(TSD) equation. Solutionsof

the completeTSD equationare advanced throughtime using the alternating-

direction-implicitmethod of Rizzettaand Chin. Nonreflectingboundary

conditionsthat reduceddisturbancesreflectedfrom the computational

boundarieswere implemented. This allowed the boundariesto be moved closer to

the airfoiland thus further increasedprogramefficiency.
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APPENDIXA

DIFFERENCEEQUATIONFORTHE ENGQUIST-OSHERMETHOD

The difference equation that results when Engquist-Osher (E-O) monotone

differencing is used in the x-sweep of the solution procedure is presented in

this Appendix. Whenthe E-O method is used, the finite difference

approximation of (4) becomes

A " " n n
(@i,j - @i-l,j - @i,j + @i-l,j ) :

II_M2 n n

2 a2/3 _min(_' @i+l,Jxi+l--xi@i'J) +

1 1"M2 n @n " "• - i,j)]@i+____ll,j - @i,j
•-_[a2---_- M2(y* + 1)min(-u,@i+1,3_xi+1xl xi+1 - _i

I_M 2 n na2_min(_- ' @i,j - #Pi-l,j.) _x_ - xi-1

n n

1 1-M 2 M2(y, + 1)min(_, @i,j " @i-l,j)]@_i j - @i-l,jL xi xi_1 - xil

I I - M2 _pn n

+ "2a2___ax(-_, 1,j - @i-l,j)+xi - xi_I

1 1 - M2 n n (Fi,j- @i-l,j
[62-_- M2(y* + 1)max(_, @i,j - @i-l,j)] x. - xixi - xi-1 ] -1

1 1_N2 n n

2 62/-3-max(T' *i-l,j - @i-2,j) _xi_ 1 - xi_ 2

• 1 l_r _ n n ]._i "
-1,j " @i-2,j

2 [ 62/3 M_2('Y*+ 1)max(u',_Pi-l,j- @i-2,j) xi _ xixi-1 - xi-2 -1 -2

11



n n
<jl. . - <p. • 1

1 ,J 1 ,J - )
Yj - Yj-1

(AI)

where
...

u =

In the quadradiagonal form

A.<jl. 2 . + B.<jl. 1 . + C.<jl .. + D.<jl. 1 . = E.1 1-,J 1 1-,J 1 1,J 1 l+,J 1 (A2)

12

2 n n
1 1 - Mex> 2 ~. 1 . - <jl. 2 . 1A. = - "2 l 2/3 - Mex>(Y* + l)max(u, l-,J 1- ,J)j

1 x. 1 - x. 2 x. 1 - x. 2<5 1- 1- 1- 1-

2 n n
1 1 - Mex> 2 <jl ..

- CPi-l,j)j 1Bi l)min(u, 1, J= - "2 l 2/3 - Mex>(Y* + x. - x. 1 xi - x. 1<5 1 1- 1-

2 n n
1 1 - Mex> 2 cP • • - cp. 1 . 1

+"2 l 2/3 - Mex>(Y* + l)max(u, 1 ,J 1- ,J ) jx. - x. 1 x. - x. 1<5 1 1- 1 1-

2 n n
1 1 - Mex> 2 <1>. 1 . - cp. 2 . 1 Al)max(u, l-,J 1- ,J)j

+ "2 l 2/3 - Mex>(Y* + x. 1 - x. 2 x. 1 - x. 2 - ~t
<5 1- 1- 1- 1-

2 n n

C;
1 1 - Mex> 2 * ._ <l>i+1,j - <jl;,j)j 1= 2 l 2/3 - Mex>(Y + 1)m1n(u, x. 1 - x; x;+l- x;<5 1+

2 n n
1 1 - Mex> 2 <jl .. - <jl;-l,j)j 1

+ "2 l 2/3 - Mex>(Y* + l)min(u, 1,J
X. - x. 1 x; - x. 1<5 1 1- 1-

2 n n
,

1 1 - Mex> 2 <1> •• - ep; -l,j)j 1 Al)max (u, 1, J- 2 l<5 2/ 3 - Mex>(Y* + x· - x. 1 x. - x. 1 + ~t
1 1- 1 1-



1 1 - M2 M2(y* @i+l,jn_ nDi = - -_12--/-_7_-_- + 1)min(u', ¢i,j)j
1

Xi+l - xi Xi+l - xio "

• 1 - M2 n n n n

Ei : 262--_ Lmin(-_, @i+l,j - ¢i,j _ min(-u, @i,j - @i-l,j)Xi+l - xi xi - xi-I

n n n n

+ max(V, @i,j " @i-l,j) _ max(V, @i-l,j - @i-2,j)j
xi - xi-I xi-I - xi-2

n n n n

A (@_ n Xi+l - Xi-l(@i,j+l- @i,j @i,j - @i+ _ ,J _ (Fi_l,j)+ ...... ,j-I).
Yj+I Yj-1 Yj+I - Yj Yj - Yj-I

The difference equation for the y-sweep is unchanged.

13



APPENDIXB

DIFFERENCEEOUATIONSFORTHECOMPLETETRANSONICSMALLDISTURBANCEEQUATION

The difference equations for the complete transonic small disturbance

(TSD) equation are discussed in this Appendix. Since the numerical procedure

for the x-sweep is the same for the low frequency and the complete TSD o

equations, only the difference equation for the y-sweep (6c) is presented

here. That equation is

C @n+l _ 2@n, + n-1 2A _$n+l _n+l n n( i,j j @i,j ) + At(xi+ I- Xi_l)--i,j - _i-l,j " @i,j + @i-l,j ) =

@n+l _ _n+l Cn+l an+l n n n n
I ( i,j+l -i,j _ -i,j " H,j-I _ @i,j+l " @i,j + @i,j- @i,j-!) (BI)

Yj+I - Yj-I Yj+I - Yj Yj - Yj-1 Yj+I - Yj Yj- Yj-1

In tridiagonal form

n+l C @n+l+B+.+,.+,j+ ,+.+,..++.,=D+
I

Aj = (Yj+I - Yj-I)(Yj - Yj-I )

I ( 1 + I ) + 2A C
Bj = Yj+I - Yj-1 Yj+I - Yj Yj - Yj-1 At(Xi+l - Xi-1) +-At 2

I

Cj = - (Yi+l - Yj-I)(Yj+I - Yj)

n n n n

Dj = - I (_i,j+l - Oi,j _ _i,j - _i,j-l)
Yj+l - Yj-1 Yj+l - Yj Yj - Yj-1

2A r_n+l n n C 2_ n-1+ At(xi+ I - Xi_l)'_i-l,j - @i,j + _Pi-l,j ) + at--_ ( 'J - @i'j)

The tridiagonal coefficients are the same as for the low frequency equation

C C (2¢V, n-1with the exception of the _ term added to Bj and the _ j - ¢i,j)

term added to Dj.

14



APPENDIXC

DIFFERENCEEQUATIONSFORTHE NONREFLECTINGBOUNDARYCONDITIONS

The difference equations for the nonreflecting boundary conditions are

presented in this Appendix. The upstream and downstream boundary conditions

are implemented during the x-sweep of the ADI procedure. They are applied

midway between the extreme and adjacent grid columns at a time level halfway

between level n and the intermediate level at which @is defined (n+I/2). At

the upstream boundary, i = 1, the plane wave condition is

(_ _n+1/2 _ bi (_ ,n+I/2_tJi+I/2,j +I/2,j _xJi+I/2,j = 0 (C1)

where

2Bi+1/2,j
bi +1/2, j =

A + IA2 + 4Bi+1/2,jCI1/2

1 - M2 n n

Bi+I/2,j - _T_ - M2_(Y*+ 1)_Pi+l'J- @i,jxi+1 - xi

Using centered space and time differences and the relationships

= @i,j + @i±l,j (C2)_i±i/2,j 2

@n+I/2 @ + @n- 2 (c3)

the differenceequationfor (C1) becomes

n n ~

@i+l,j + _Pi,j- @i+1,j - @i,j bi+I/2'J (@ - @i + n n
2at " "2(Xi+l-Xi)i+l,j ,j @i+l,j-¢i',j) :(C4)0

In quadradiagonalform

Ai@i_2,j+ Bi@i_l,j + Ci¢i,j + Di_i+l,j = Ei (C5)

A. =0
1

Bi = 0

At

Ci = I + bi+i/2, J Xi+l _ xi

15



At

Di = 1 - bi+1/2,j Xi+l _ xi

Ei = @n n At n ni+l,j + @i,j + bi+I/2,jxi+1 - xi(_Pi+1,j- @i,J)

At the downstreamboundary,i = IMAX (the maximumstreamwisegrid °

location),the nonreflectingconditionis

(_ \n+I/2 * f_ \n + i/2 = 0 (C6)
_t_i_l/2,j+ bi_l/2,j_xJi_i/2,j

where

* 2Bi-I/2,j

bi'l/2'J - -A + JA2 + 4Bi_I/2,jcJl/2

1 - M2 @n _ n

Bi_i/2,j = a--2-/-3----M2(y* + 1) 1,Jxi_ @i-l,Jxi_l

In differenceform, the downstreamconditionbecomes

_ @n n * . .

bi-I/2'J )'(¢i,j- @i-l,j + ¢n n = 0@i,j + @i-l,j 1,j " @i-l,j +_2(xi_xi-1
2At 1,j - @i-l,j) (C7)

The quadradiagonalcoefficientsare

A. =0
1

* At

Bi = 1 - bi_1/2, j xi _ Xi_l

* At

Ci = 1 + bi_1/2, j xi _ Xi_l

D. =0
1

16



* At n

n n bi _i(€_ _ )- €i -1,jEi = ¢i,j + ¢i-l,j -I12,jxi - xi ,j

At the lower boundary,j : 1, the boundaryconditionthat is imposedis

\n+I/2 c. ,n+1/2
('y'i-1/2,j+1/2- ai-1/2,j+1/2'_xJi-1/2,j+1/2= 0 (C8)

where

(BD)i-I/2,j+1/2
ai-I/2,j+I/2- A

1 - M2

+ I).(€_ n n nBi.I/2,j+I/2= - M2_(Y*'2 ,j - ¢i-l,j+ ¢i,j+l " ¢i-l,j+I)

In tridiagonalform

A _n+l Bj¢_TI + cjcR+Ij_i,j-1+ i,j+l = Dj (C9)

the coefficientsat the lower boundaryare

A. =0
J

ai-i/2j +1/2 + I

J xi " xi-1 Yj+I - Yj

ai-1/2,j+I/2 i
Cj= xi - xi-1 Yj+l " Yj

n+1 n n An+1 n n
i-l,j+l+ €i-i,j+I+ ¢i,j+l - _i-l,j- @i-l,j-@i,j

Dj= Yj+I - Yj

n _ _n+l . @n+l n n
ai'1/2'j+1/2(€_,j+1+ ¢i,j _i-l,j+l i-l,j - ¢i-l,j+1- ¢i-l,j)- -Ri-

17



At the top boundary,j = JMAX,

• ,n+1/2 f. ,n+1/2
(my)i-1/2,j-1/2+ ai-1/2,j-1/2'ex_i-1/2,j-1/2= 0 (C10)

is used, where "

(BD)i-I/2,j-I/2
ai-1/2,j-1/2= A

1 - M2 M2(Y* + 1)(@_ n n n
Bi-I/2,j-I/2= _ " 2 ,j - @i-l,j + @i,j-1 - @i-l,j-1)

The tridiagonalcoefficientsare

ai-1/2,j-1/2 1
Aj=

xi - xi-1 Yj " Yj-I

a. 1
B. = i-I/2,j-1/2 +
J xi - xi-1 Yj - Yj-1

C. =0
J

@n+1 n n _ @n+l n n
i-l,j + @i-l,j + @i,j i-l,j-1- @i-l,j-1- @i,j-1

Dj=-
Yj - Yj-1

ai-1/2,j-1/2( n n _n+l _n+l n n
" xi - xi_ I @i,j-i + @i,j - _'i-l,j-I - "i-l,j " @i-l,j-I - @i-l,j )

At the point (i,j) = (2,1)

+1/2 . ,n+1/2
(_y)_,j+l- ai,j+l (_xJi,j+l: 0 (Cll)

where @x and @y were approximatedwith backwarddifferences,and in the
f

definitionof ai,j+l

18



1 - M2 n

Bi,j+l:_ - M_(y*+I)_i+I'--_j+1-_i-l,j+lxi+I - xi-1

The differenceequationfor (C11) is

¢n+1 _ ¢n+1 n n .n+1 _n+1 n n
i,j+l i,j + @i,j+l " ¢i,j gi,j+l - _i-l,j+l+ ¢i,j+l - ¢i-l,j+l

Yj+I - Yj " ai,j+l xi - xi-1 (C12)

Using the upstreamboundarycondition

)n+1/2 _n+1/2
(¢t i-I/2,j+I" bi-I/2,j+1(¢x'i-I/2,j+1= 0

the relationship

bi-1/2,j+lAt n _ ¢n+1 .
an+l n bi-I/2'j+lAt)-l(1- xi - xi )(¢i-l,j+1 i,j+l__i-l,j+l = ¢i,j+1 + (1 + xi _ xi_1 -i

was substitutedin (C12). The tridiagonalcoefficientsat (i,j) = (2,1)then

became

Aj = 0

1
B.
J Yj+l - Yj

bi_1/2,j+1At b.
C - 1 ai'j+1 _I + (I + )-I(I - 1-1/2'j+1At.)_
J Yj+I - Yj xi - xi-1 xi - xi-1 xi - xi-1

bi-I/2,j+1At bi-1/2,j+IAt)_@nI
ai'j+l 11 + (1 + ..... )'I(1 xi ,j+lD- xi-xi-1 xi- i_I - -
n n
el,j+1 - @i,j

Yj+I - Yj

At (i,j)= (2,JMAX),

(@y)n+ll2 _n+I12i,j-I + ai,j-l(Ox'i,j-I= 0 (C13)
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where @x and ¢y were approximatedwith backwardand forwarddifferences,

respectively,and in ai.j_1

1-_ n n

Bi,j_1 = _- M2(y, + l)@i+l.j-I- @i-l.j-Ixi+1 - xi_1 °

Combining(C13) and the upstreamcondition
o

(_ _n+1/2
_tli_l/2,j_l+ bi_l/2,j_1 (@x)n+1/2i-1/2,j-1

The tridiagonalcoefficientsbecame

ai bi_l/2.j_lat)_l bi-1/2.j-1At_ I + ,j-1 [I + (I + (i - .)]
Aj Yj -Yj-1 xi - xi-1 xi - xi-1 xi - xi-1

1
Bj-

Yj - Yj-1

cj: o

t n
ai'j-1 [i + (1 bi-1/2-2'J-'-iat)-l(1bi-i/2'j-ia)]¢i-I

Dj - xi _ xi-i + xi - xi_1 - - x--i- xi_1 .j-1

n n

@i.j - @i.j-im

Yj - Yj-1
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22 M= = 0.8,k = 0.2,Murman-Coledifferencing.
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Figure 3. Nonreflecting far-field boundary conditions.
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Figure5a. Forceresponsewith reflectingfar-fieldboundary
conditionsfor a flatplateairfoil,Moo= 0.85.

26



12

Finite Difference
dl

Kernel Function

8

Real

Imaginary
0

4 I I I I
0 0.5 1.0 1.5 2.0

k

Figure5b. Forceresponsewith nonreflectingfar-fieldboundary
conditionsfora flatplateairfoil,M = 0.85.
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