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Introduction

One of the most widely used programs for transonic unsteady aerodynamic
analysis is the LTRAN2 code of Ballhaus and Goorjian.l That code is used to
solve the low frequency approximation of the transonic small disturbance (TSD)
equation, Steady state boundary conditions are used at the airfoil, in the
wake, and on the computational boundaries.

Use of the low frequency approximation and steady state airfoil and wake
conditions limit the frequency of unsteady motion that can be analyzed with
LTRAN2. Houwink and van der Vooren2 extended the range of applicability of
LTRAN2 by adding unsteady terms to the airfoil and wake boundary conditions;
the resulting code was termed LTRAN2-NLR. Hessenius and Goorjian3 added a
time derivative term in the downstream far-field condition as well as unsteady
airfoil and wake conditions. Their code, LTRAN2-HI, has been validated in the
transonic range by a series of comparisons with experimental data.

Although adding unsteady terms to the airfoil and wake boundary conditions
extended the range of applicability of LTRAN2, use of the low frequency
approximation of the TSD equation still limits its application to relatively
low frequency motions. The programs described in references 1-3 use Murman-
Cole (M-C) type dependent spatial differencing4 that admits nonpﬁysica]
expansion shock waves as part of the computed solutions. Using steady far-
field conditions causes disturbances incident on the boundaries to be reflected
back into the computational domain. This necessitated placing the computa-
tional boundaries far enough from the airfoil that reflected disturbances did

not reach the airfoil during the calculations., Having to place the boundaries
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far from the airfoil increases the cost of using the programs because the flow
field has to be computed at an increased number of grid points.

To remove some of the limitations described above, a new code, XTRAN2ZL,
has been developed at the NASA Langley Research Center. It was developed by
modifying LTRAN2-NLR. The M-C differencing was replaced with Engquist-Osher
(E-0) monotone differencing.5'5 E-0 differencing does not admit expansion
shocks as part of the solution and increases code efficiency by allowing larger
time steps to be used in the time-marching solution. The low frequency
limitation was removed by adding the capability of solving the complete TSD
equation. The final modification that is discussed in the present work is the
implementation of nonreflecting far-field boundary conditions that are
consistent with the complete equation.

Edwards et al.’ added the capability of including aeroelastic effects in
the time-marching XTRAN2L solutions, and Seidel et al.8 made an extensive
study to determine optimum methods for distributing cartesian grids. The
details of those efforts may be found in the cited material.

Unsteady Transonic Small Disturbance Equations

The codes described in references 1-3 are used to solve the low frequency
approximation of the transonic small disturbance (TSD) equation
Adxt = Boxx * dyy - (1)
where ¢ is a disturbance velocity potential normalized by cU62/3, c is
airfoil chord, 6§ is airfoil thickness ratio, and U is freestream speed. The
spatial coordinates, x and y, and time, t, are normalized by c, c/61/3, and
m'l, respectively, where w is the frequency of unsteady motion. The

coefficient A = 2kM.2/62/3 where M» is free-stream Mach number, and the



reduced frequency k = wc/U. In references 1 and 3,

= (1 - Me2)/862/3 - MMy + 1)¢x, where the choice of the exponent
m is arbitrary. Ballhaus and Goorjian made m a function of M, such that the
critical pressure coefficient, Cp*, predicted by (1) matched the exact
isentropic Cp*. Hessenius and Goorjian used m = 2 (Spreiter scaling). 1In
reference 2, B = (1 - M2)/82/3 - M2(v* + 1)¢x, where
Y5 =2 - (2 - YIMG2

Solution Algorithm

In the codes described in references 1-3, solutions of (1) are obtained
using the alternating-direction-impiicit (ADI) scheme described in reference
9. Solutions are advanced from the nth level in time to level n+l using the

following two-step procedure

X-sweep:
A (¢ oM )y =D f .+ " (2a)
at “x i3 X i,] yy'i,g
y-sweep:
A ntl 7 _ 1 n+l n
at ki, 7 %50 Tz %yl 4y (2b)
where ¢ is an intermediate level potential. From references 1 and 9,
2
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1-M
n = b - 2 * 4 n -
BY 5 R Moy 1)¢x1',j (LTRAN2-NLR)
» AL W AN
i+1/2,3 Xipg = %

The mixed difference operator, Dy, is constructed to maintain conservation
form. Murman-Cole (M-C) spatial differencing used in LTRAN2, LTRAN2-NLR, and
LTRAN2-HI results in the following form for Dxfi’j:
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It has been shown that M-C differencing allows stable, entropy-violating
expansion shocks to be computed as part of the numerical solution.6,10
Reference 6 also showed that M-C differencing can trigger numerical
jnstabilities that cause large errors in the calculated aerodynamic Toads.
Such a case was calculated using LTRAN2-NLR for flow over an MBB-A3 airfoil
oscillating in pitch about its leading edge at Ms = 0.8, k = 0.2. A time
step of kat = 10 was used, and the pitching motion was defined by an unsteady
angle of attack a(t) = - 0.50 + 0.59sin(kt). Figure la shows that the
steady flow field is mixed subsonic/supersonic with a shock wave of moderate
strength located at approximately 65 percent chord. Figures 1b-1f show that
during the airfoil oscillation an instability is triggered at the lower leading
edge that causes the calculations to diverge. When the monotone differencing
scheme of Engquist and Osher® is used, expansion shocks are not admitted as
part of the computed solution, and the calculations remain stable when methods

using M-C differencing have begun to diverge.



Engquist-Osher Differencing

The Engquist-Osher (E-0) scheme was first used in implicit algorithms by
Goorjian and Van Buskirk® who tested the method using a modified LTRAN2
code. Similar modifications were made to LTRAN2-NLR at the NASA Langley
Research Center. To incorporate the E-0 method into the ADI procedure required

the following differencing during the X-sweep :

A - n _ n
5 %5 7 4,5 0 2,5t Sy %] (4)
where
_ > . “
Dyfio172,5 = &Fic1y2,5 * Afio1y2, 3
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The complete set of difference equations using the monotone differencing for
the x-sweep are presented in Appendix A.

To demonstrate the effect of the monotone differencing on numerical
stability, the case of the oscillating MBB A-3 airfoil was recalculated. The
pressure distributions, Figure 2, show that the numerical solution remained
stable for the duration of the calculations. Goorjian and Van Buskirk reported
that for some cases, they were able to increase kAt (and hence code efficiency)
by factors of up to 10 and still maintain stability.

Algorithm for the Complete TSD Equation

The ability to treat unsteady motions of all frequencies was obtained by
adding the capability to solve the complete TSD equation

Cott + Abxt = Boxx + dyy

where (5)

o

)
o |
S

Solutions for ¢ are advanced from time level n to time level n+l using the

following ADI method of Rizzetta and Chinll

X-sweep:
n - n
At x(¢ ¢i’j) Dxfi,j + 6yy¢i,j (6a)
or
n = n
3t x(¢ R IR DL U L P (6)
y-sweep:
C n+l n n-1 A ntl D! n+l n
N (05,5 = 2055 + 05 5) Tt (o5 — ¢4 50 =7 8y l05 5 - &5 5) (6c)

For the x-sweep, the algorithm is the same as that for the low freguency

equation. Including ¢4t also requires an extra level of computer storage --



levels n+l, n, and n-1 versus levels n+l and n. The difference approximation
for the complete TSD equation are presented in Appendix B. Since the x-sweep
is unchanged, only the difference equations for the y-sweep are presented.

Nonreflecting Boundary Conditions

The steady state far-field boundary conditions used in LTRAN2 cause
disturbances incident on the grid boundaries to be reflected back into the
computational domain. Thus, the boundaries had to be placed far away such that
reflected disturbances did not reach the airfoil during the calculations and
cause errors in the computed solution. Kwakl2 incorporated the nonreflecting
far-field boundary conditions of Engquist and Majdal3 into LTRAN2 which
allowed a reduction in the physical extent of the computational grid and saved
between 10 and 24 percent in computer time. The boundary conditions of
reference 13 are not compatible with (5). Nonreflecting far-field boundary
conditions that are consistent with the complete TSD equation are presented in
this section.

Assuming B to be locally constant, the transformations

vy
"
.
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Bp Xt
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ol ro

where

D

2
(4Cc + g_)l/Z

were used to transform (2) into the wave equation
¢TT - ¢££ + ¢yy (7)
A nonreflecting far-field condition for (7) isl4

br ot %f =0

(8)
where

2
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In untransformed coordinates, (8) becomes

y $
+‘ny tor T 0 (9)

Allowing x to approach - « in (9) with y finite, the following first order

1 A x X
(-5 ¥+ D)oy + 19y

plane wave condition at the upstream boundary was obtained
1,A . D _
70 704 - o = O (10)

Similarly, letting x » + = with y finite resulted in the downstream condition
1, A, D
AL (11)

As y + + = with x finite, the following conditions at the top and bottom

boundaries were obtained

D -
7o 0, =0 (12)
where + and - represent the top and bottom boundaries, respectively. Using

¢ = f(r-t), -- a solution of (7) that represents outgoing waves -- to replace

2B A, -1
o by - (% --ﬁ) by (12) became

¢

>|Uc°

44,20 (13)

x =y

The boundary conditions in (13) were used in all numerical experiments. The
difference equations for (10), (11), and (13) are presented in Appendix C.
When C = 0, (10)-(13) reduce to the boundary conditions for the low frequency
equation.12 The nonreflecting boundary conditions are summarized in
Figure 3.

One test of the boundary conditions was in the calculation of unsteady
forces on an NACA 64A010 airfoil pitching harmonically (about its quarter
chord) +0.25 degrees (©) about a 0° mean angle of attack at M. = 0.825

and k = 0.5. For the steady flow, an embedded shock wave is located at



approximately 62 percent chord. A reference solution was calculated for four
cycles of oscillation (360 steps per cycle) on a 113 x 97 grid (in x,y) that
extended 200c in x and 709¢ in y. The grid was reduced to 88 x 65

(-3.8c < x < 3.5¢c, y < 9.3c), and the calculations were made first using
steady-state far-field boundary conditions and then using (10), (11), and (13)
at the boundaries. As shown in Figure 4, when the steady conditions were used,
disturbances reflected from the boundaries caused the calculated 1ift to
deviate significantly from the-1arge grid value. When the nonreflecting
boundary conditions were implemented, most of the waves incident on the
boundaries were absorbed, and the small grid results showed good agreement with
the reference calculation. Those results are also shown in Figure 4. Compared
with the time required to generate the large arid solution (3215 seconds on a
CDC CYBER 173), using the new boundary conditions on the small grid resulted in
a 44 percent savings in computer time (the small grid solution required 1815
seconds).

A second test was to calculate the unsteady force response for a flat
plate airfoil with a pulse in angle of attack «. The calculations were made
for M, = 0.85 on an 80 x 61 grid that extended *+20c in x and *25c in Y.

Using the pulse/transfer function technique described in Reference 8, the
frequency response function for the unsteady 1ift curve slope Cy, Was
calculated with and without the nonreflecting boundary conditions. In the
pulse/transfer function technique, after a was increased smoothly and rapidly
to a maximum and returned to its initial value, calculation of the unsteady
forces were continued until those forces returned to their starting values. A
Fast Fourier Transform (FFT) of the 1ift coefficient c; was then divided by
the a FFT to obtain the frequency response function for Coo+ A flat plate
airfoil was used to allow comparisons of the forces calculated usinag XTRAN2L

with those predicted using the exact kernel function method of Bland.15
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Figure 5a shows a comparison of the unsteady forces calculated using steady
state conditions on the computational boundaries with the forces obtained using
Bland's kernel function method. Below k = 0.5, the finite difference results
have spurious oscillations due to disturbances reflected from the boundaries.
When the nonrefiecting boundary conditions were used (Figure 5b), the reflected
disturbances were small, and good agreement with the exact solution was
obtained.

Concluding Remarks

A new computer program, XTRAN2L, for transonic unsteady aerodynamic
analysis has been developed at the NASA Langley Research Center. It is a
modification of the LTRAN2-NLR code. The monotone differencing method of
Engquist and Osher was used to replace the Murman-Cole type dependent
differencing scheme. That resulted in a code that is more robust and
more efficient, and the new differencing method does not admit nonphysical
expansion shocks as part of computed solutions. The capability of analyzing
airfoils undergoing motions of all frequencies was obtained by adding a general
frequency term to the transonic small disturbance (TSD) equation. Solutions of
the complete TSD equation are advanced through time using the alternating-
direction-implicit method of Rizzetta and Chin. Nonreflecting boundary
conditions that reduced disturbances reflected from the computational
boundaries were implemented. This allowed the boundaries to be moved closer to

the airfoil and thus further increased program efficiency.



APPENDIX A

DIFFERENCE EQUATION FOR THE ENGQUIST-OSHER METHOD

The difference equation that results when Engquist-Osher (E-0) monotone
differencing is used in the x-sweep of the solution procedure is presented in
this Appendix. When the E-O0 method is used, the finite difference

approximation of (4) becomes

A n n _
2t (04,5 %1, 7 44,5 Y %o,y T

2 n n
L P ORI
Vi ——?7§—m1n(u, — ) +
8 i+l i
1 L- Mo _ a1,y m 4 J;i+1 = j
> - M_(v* + 1)min(u, 2 2 ) 2 2
2 b §2r3 isl "X Xis1 = %
-]_._ 1 - M°2° _in(U 4).?9:] B ¢?-1’j)
T2 5273 f XL - X. -
i i-1
2 n n - -
1 -M é. . = ¢, b, L - b, .
1 © 2 o= 1, i-1,] i, i-1,]
5 1 - M_(y* + 1)min(u, o) |2 2
2" g2l i Xa % T K
2 n n
+%1_2;#max(ﬂ’ q)] sj B ¢1’13J) +
8 T %a
] [1 - 03,5 - 911, ;i i ;1 1,j
> - M_(v* + 1)max(u, —2 2 |2 2
2 6273 Xi = %51 X; - Xi_1
2 n n
1-M o - e
1 o — "i-1,] 1-2,]
-5 ax (u, 2 20 -
2 §2/3 Xi-1 7 %i-2
2 n n N -
L N — %1, " b2, %i-1,5 T Yie2,
7 L= - MOt + Umax(U, == S
8 i-1 7 %2 i-1 7 %2
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n n n n

Xie1 ~ %521, %541 " %, 49,3 7 %L1
Vi Vi Yigq =¥ TUYs -y ) (A1)
j+1 j-1 j+l J Jj j-1
where
_ 1 - M
u 27372
§°/MS (v* + 1)
In the quadradiagonal form
Ai®ia,5 * Bi%io1,5 * Ci%i,5 t Di%ia,y T (A2)
2 n n
1-M b. .= b .
1 o 2 — Ti=1,] 1-2,] 1
A. = - = | - M_(v* + 1)max(u, =1
AL T I
2 n n
1 -M Y 5 1.3 1
B, = - =% | - M5(v* + 1)min(u, LEY 1- ’J)J
EAPA i T X X T X
2 n n
1-M by 1 = .
1 o 2 — 9,3 i-1,3 1
+ 5 |7 - Mol + Dmax(, 22 )]
2 n n
1-M bs . = b .
1 o 2 — Ti-1,] i-2,] 1 A
+5 | - M_(y* + 1)max(u, | - 4T
Z b52l3 -1~ -2 Xjol ~ X2 AT
2 n n
1-M b - .
1 ® LS T i,] 1
C. = 51| - M (y* + )min(u )]
i 2 6273 Xiel = %4 Xie1 = %y
2 n n
1-M b o= O .
1 © 2 s = "1, i-1,] 1
+ 5| - M_o(y* + 1)min(u, —2 )]
2 52r3 S TSR B |
2 n n
1-M b . = O .
1 L) 2 - %i,] i-1,] 1 A
- 5 L= - ME(v* + D)max(W, —=2 )] + e
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n
1-M oy -8
1 o 2 o= i+l,] i,] 1
D = - 5 |—=7— - M_(y* + 1)min(y, > ) |
i 2 62/3 Xie1 = % X141 = %4
2 n n n n
1-M ¢ R YA . . - b, .
R 1,j i,] s 1,J i-1,3
E, = [min(u, — 2 _ min(u, )
URNPYYIE Xjs1 = % Xj - %1
n n n n
I Y R
+ max (u, 1;3 - x1'1’3) - max(u, l l’J_ < ! 2’J)J
i i-1 i-1 i-2
n n n n
PN R s Malos = P 5 A P RO ¥ “’i,j-l)
0 - — -- . - \ - - -
At 1,J i-1,] .Yj+1 ‘yj-l .YJ-+1 YJ .Yj ‘yj-l

The difference equation for the y-sweep is unchanged.
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APPENDIX B
DIFFERENCE EQUATIONS FOR THE COMPLETE TRANSONIC SMALL DISTURBANCE EQUATION

The difference equations for the complete transonic small disturbance
(TSD) equation are discussed in this Appendix. Since the numerical procedure
for the x-sweep is the same for the low frequency and the complete TSD
equations, only the difference equation for the y-sweep (6¢c) is presented

here. That equation is

C n+l n n-1 2A n+l n+l n n
. s o= 20 . o+ . ) + . . = . N PURPE A .) =
Atl (#5,5 - 25,5 * 43) BE(K - %) 3 -1 Tt t ti,y)
n+l n+l n+l n+l n n n n
LS I 1 Wl VS SO TN Tl P S WL IR T Ul T RN *1,5-1) 1)

Vil "Y1 Yyt Y Yi " Yja Vi1 = Y5 Yit¥ja

In tridiagonal form

n+l n+l n+l

Ai®i,5-1 % By®i,5 * G 5a1 = D5 (82)
A, = 1

J (‘yJ+1 "yj_l)(.yj '.Yj_?

1 1 1 2A c

B, = ( + ) + +

Voo Yier T Y5 Y5e Yy Yy Y By - Xy ) A2

C, = - 1

J (.Yj+1 - 'yj—l)(‘yj+l - .Y?'y

n n n n
0 .1 AT SRS R Y *1.3-1y
J ‘yj+1_'yj-l ‘yj+1—‘yj ‘yj-‘yj-l
2A n+1 n n C n n-1
BT,y - %y isLg T f,g i)t (265 - 40

The tridiagonal coefficients are the same as for the low frequency equation

. . C n-1
with the exception of the term added to B and the (2¢ - 0. )
At 2 2 1,3 7 1,3

term added to Dj.



APPENDIX C

DIFFERENCE EQUATIONS FOR THE NONREFLECTING BOUNDARY CONDITIONS

The difference equations for the nonreflecting boundary conditions are
presented in this Appendix. The upstream and downstream boundary conditions
are implemented during the X-sweep of the ADI procedure. They are applied

midway between the extreme and adjacent grid columns at a time level halfway

between level n and the intermediate level at which ¢ is defined (n+1/2). At

the upstream boundary, i = 1, the plane wave condition is

n+1/2 n+l/2
(¢t)i+1/2,j - b1+1/2,j(¢x)i+1/z,j =0 (C1)
where
b i} 28341/2,
i+1/2,j ~ 2 1/2
At A"+ 484,50
2 n n
B = o - MZ(Y* + 1\¢i+1,J " %,
Using centered space and time differences and the relationships
L S
= _1,] 121,
%i21/2,5 2 (€2)
- N n
¢n+1/2 _ ¢ +2¢ (c3)

the difference equation for (C1) becomes

~ ~

n n

Mg L T %, T N, Py O S A
2at 2(X1~+1-Xi) 1+13\] 1,] 1+1,J 153 (C4)
In quadradiagonal form
Ai®ia, g% Bidi_p 5+ Cioy 5+ Didis1,; = By (cs)
A, =0
i
Bi =0
At
C: =1+ b, .
i 1+1/2,j Xisl - X;
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D, =1 -b; , —
i i+1/2,] xl.+1 - X

_.n n At n n
By = %5a1,5 * %,5 * Piv1ya,j Ko - % s, T %,5)

At the downstream boundary, i = IMAX (the maximum streamwise grid

lTocation), the nonreflecting condition is

n+1/2 * N+ 12
(¢¢)5.172,5 * Pi-1/2,5 (041725 = O (C6)
where
ot . Bicye,;
i-1/2,j 2 1/2
A+ AT + 4Bi-1/2,jc
2 n n
1-M . s o= by .
- w 2 i,J i-1,]
Bil172,5 = 7z - Malr v D)= ——
) i i-1
In difference form, the downstream condition becomes
N - n n *
APRIMRAE W Halha 1 Ml 5 U5 L S V2 X SO PR B B
2ht 2(x; - Xj_1) 1,J i-1,] i,] i-1,]

The quadradiagonal coefficients are

Ai =0
* At
B, =1 - b, . —————
i i-1/2,3 Xi = X1
* At
C. =1+ b, . —————
i i-1/2,3 X5 - Xi21
D. =0
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* At n n
i, * %1,y - D (¢

1-1/2,§ X5 - x;_1 %3~ %ie1,5)

E; = ¢

At the lower boundary, j = 1, the boundary condition that is imposed is

n+1/2 n+l1/2 )
(0)i172,54172 = 2ic1/2,541/20%) 1 172, 54172 = © (c8)
where
. _ (BD)i 172, 541/2
i-1/2,j+1/2 A
B =1-M£-M25———1Y*+1(¢" A R
1-1/2,§+1/2 ~ 7273 T e T2 Wi 7 b5 Y % 5en T 41541
In tridiagonal form
n+l n+l n+l
A3®1,5-17 By%4,5 * C4%4,50 = 0 (€9)
the coefficients at the lower boundary are
A, =0
i
a. .
B - i-1/2j,41/2 1
booX X0 Vi1 = Y
.o Ji-1/2,5+1/2 1
L S Yij+1 = Y
n+l n n n+l n n
p. - i-Ldnt o5t % ga t fiiny Gyt %y
a. .
1-1/2,3+1/2,.n n n+l n+1 n n
EETIEE R R L I AW PSR I IR AR TR IO R AP
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At the top boundary, j = JMAX,

n+1/2 n+1/2 _
(0y)io1y2,5-172 * i-1/2,5-1/209)1172,5-172 = O (C10)
is used, where

. _ (B0 1/2,4-1/2

i-1/2,5-1/2 A

1 -2

B - > _ 2+ 1)n " + 4" 4N
i-1/2,3-1/2 273 e TS T IS TS LS IR 15 Bl S PR S )

8

The tridiagonal coefficients are

AL - 3i-1/2,3-1/2 1
I % =% Yi ~ Y31
B o d-1/2,5-1/2 1
I X % Yi = Y541
C. =0
j
n+l n n n+l n n
U 5 U B 1 W %i,5 7 %i-1,5-1 " %i-1,5-1 ~ %i,3-1
J .Yj -'yj-l
a. .
i-1/2,j-1/2,,n n n+l n+l n n
X - %y Pha-l T, T L5 g T %, T b

At the point (i,j) = (2,1)

n+1/2

n+l/2 _
(021,541 = 25,50 (83,50

=0 (C11)

where ¢y and ¢y were approximated with backward differences, and in the

definition of aj j+1
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-t 2 s FALO B L B S|

B. . = -
1,341 5273 X541 T %01

The difference equation for (C11) is

n+1 n+l n n n+l n+l n n
i T AL T M ga s i T i T e - g
Yie1 = Y3 1,3+ Xj = %o (C12)
Using the upstream boundary condition
n+1/2 n+l/2
(0 )i 172,541 = Pio1/2, 541870 1/2,j+1 = 0

the relationship

eI R -1/2,§41% 1 Pii1zg, 500t (4" 1
i-1,j+41 7 %,j41 X7 - Xqq TXi - % i-1,5+41 ~ %,j41

i i

was substituted in (C12). The tridiagonal coefficients at (i,j) = (2,1) then

became
A; = 0
1

B. = -
SN N P 1 U PN 15 V7 S T G D V12,50t
boYiat Yy Xt X0 SIS | i %0
0 = - daBtl g (g Dislzgn® B 12,50 o
J X5 - Xi_1 X; = Xi_1 Xy = X -1 i-1,j+1

n n

0,547 %5
i Y

At (1,3) = (2,JMAX),

(yy

i,5-1 % 3 ,5-108 )5 520 = 0 (C13)
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where ¢x and ¢y were approximated with backward and forward differences,

respectively, and in aj,j-1

2 n n
_1-M Beyq s 3 = s 1 =
B, . ., = © 2 i+l,j-1 i-1,j-1
1’3-1 273~ Moo(Y* +1) > _ >
5 ¥j41 ~ %501
Combining (C13) and the upstream condition

n+l/2

(04)i 172,5-1 * e

bi_1/2,5-1 (x)ic172,5-1

The tridiagonal coefficients became

) 1 3 5-1 bi_1/2,5-18%. 11 bi_1/2,5-18%
Ay = - y= M varn el RIS U v R P
J Yj = Y351 i i-1 i j-1 i i-1
1
B, & —— —m
J .Yj - yj-l
c; = 0
A P4 1= S PRI 2 V0. Gl PR B V7 8.5 S B
X X0 Xj - X1 Xj = X i-Lded
n n
%, 7 4,54
Yj - ‘yj-l
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Figure 3. Nonreflecting far-field boundary conditions.
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Figure 5a. Force response with reflecting far-field boundary
conditions for a flat plate airfoil, M_ = 0.85.
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conditions for a flat plate airfoil, M_ = 0.85.
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