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NOMENCLATURE

A area

B normalized inlet height of channel

dj influence factor of a vortex sheet
F differential transformation function

G the Green's function

h length of a vortex sheet

H height of channel

HT height of step

imaginary unit of complex number, _LI
i

J number of vortex blobs

p normalized pressure, by ou2
r (x,y) position vector

r o cutoff radius
R Reynolds number

t nondimensional time

T numerical time steps

u (u,v) normalized velocity vector, by u

u streamwise component of velocity

v transverse component of velocity

W conjugate complex velocity, u - iv

x,y Cartesian space coordinate

z complex coordinate in physical plane, x + iy

a expansion ratio, H/(H-Ht)

circulation per unit length, I_dy

r circulation, I_dA

a Dirac delta function or boundary layer thickness

as thickness of numerical sheet layer

complex coordinate in transformed plane
n Gaussian random variable

viscosity

vorticity

o density F

o standard deviation, _/2 k/R

€ velocity potential

stream function

V



v gradient operator

v 2 Laplacian operator

SUBSCRIPTS:

f in free stream

i index

j vortex element

r at reattachment point

o at cutoff radius

+ at right edge of a grid

- at left edge of a grid

vector

at inlet

SUPERSCRIPTS:

' fluctuation part

average value

complex conjugate

vi



CHAPTERI

INTRODUCTION

The reattachment of a turbulent shear layer is an important process in a

large number of practical engineering configurations such as diffusers, air-

foils, and combustors. In order to predict these complicated flows, we must

understand and be able to predict the behavior of reattaching shear layers.

However, our current understanding of reattachment is very limited.

Among two-dimensional reattaching flows, the one-sided backward-facing

step flow has the simplest geometry. The separating line is straight and fixed

at the edge of the step, and there is only one separated zone. Even so, the

flow field is still very complex, as illustrated in figure I.i. A boundary

layer separates from the step edge, becoming a free shear layer. The separated

shear layer grows into a recirculating flow. The shear layer curves sharply

downwards in the reattachment zone and impinges onto the wall. Within the

reattachment zone, the shear layer is subjected to the effects of strong cur-

vature, an adverse pressure gradient, and strong interaction with the wall.

Part of the shear layer fluid is deflected upstream into the recirculating

flow to supply the entrainment. The length of the separation bubble fluctu-

ates in an apparently random manner. Just because of its simple geometry and

its typical and complex fluid mechanics, a great deal of attention has been

directed to it in past years, both numerically and experimentally.

Hsu (1950) was the first to measure mean flow and turbulence profiles in

a low-speed flow behind a large step. He noted little unsteadiness in the

position of reattachment. Another early study is that of Abbott and Kline

(1961), who measured mean velocity profiles for both single and double steps

of various heights. They used water flow with flow-visualization techniques,

and observed that the flow near reattachment was very unsteady. Kim, et al.

(1978), measured mean velocity, Reynolds stresses, and intermittency in a

sudden-expansion channel flow using hot-wire anemometers. Eaton and Johnston

(1980) measured the reattachment length velocity and turbulence profiles.

They also studied the effect of the initial boundary layer state and step

height and spanwise vortex structure. Comparison was made with the plane-

mixing layer. Their measurements provide well-documented data for the

backward-facing step flow.



Somenew views of the structure of these turbulent flows have been ex-

pressed. Laufer (1975) concluded that "these turbulent flows are not as

chaotic as has been previously assumed, and there is some order in their

motion with an observable chain of events reoccurring randomly with a statis-

tically definable mean period," "eddies have a characteristic shape, size, and

convective motion that can be determined with a relatively small standard

deviation." Roshko (1976) suggested that with every shear flow is associated

an identifiable, characteristic structure, and the development of the flow is

controlled by the interactions of these structures: large eddies are formed

in a quasi-orderly fashion, carried through the mixing layer, and grow through

coalescence and engulfment. Ganji and Sawyer (1979) concluded that "large-

scale coherent structures are observed to dominate the shear layer behind a

backward-facing step as well as other free shear layers."

A comprehensive review of the research of backward-facing step flow is

given by Eaton and Johnston (1980).

Numerical analysis of turbulent flow is traditionally based on a finite

difference treatment of appropriately averaged Navier-Stokes equations, com-

bined with some correlations of turbulent fluctuations, the so-called closure

model. Recently Taylor, et al. (1981), obtained a numerical solution using

the finite-element method and a two-equation model of turbulence. In these

methods an average behavior of the flow field is obtained in Eulerian descrip-

tion. These methods are powerful instruments in many engineering applications.

However these methods have some shortcomings. Of these, Ghoniem, et al.

(1980), indicated that the averaging process deprives the equations of essen-

tial information about the mechanism of turbulence, that the turbulence model

required for the closure relations has to be postulated and adjusted to match

the experimental data, and that these techniques introduce numerical diffusion

which tends to smooth out local perturbations, an effect which is especially
harmful at high Reynolds numbers.

All these points are overcome by the RandomVortex method developed by

Chorin (1973). This method is intended for the approximation of flows at high

Reynolds numbers. The main features, as indicated by Chorin (1980), are as

follows: (I) the nonlinear terms in the Navier-Stokes equation are taken into

account by a detailed analysis of the inviscid interactions between vortices

of small but finite cores ("vortex blobs"); (2) viscous diffusion is taken

into account by adding to the motion of the vortices a small random Gaussian
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component of appropriate variance; and (3) no-slip conditions are approximated

by a vorticity-creation algorithm.

Partial convergence proofs for the RandomVortex method are given by

Chorin, et al. (1980), and Hald (1979).

The RVMis a grid-free method. It provides a Lagrangian description of

the vorticity distribution of the flow field, which is especially useful in

investigating the large-scale turbulence structures and has already been suc-

cessfully applied to many turbulent shear layer flows in recent years, as re-

viewed by Leonard (1980) and Sod (1980).

An outline of RVMis presented in Chapter 2. The numerical computation

was based on the pioneer work of Ghoniem, Chorin, and Oppenheim (1980) in which

the vorticity field was computed for a step height of 1/2.

The objectives of this work were to model numerically the turbulent flow

in a two-dimensional channel with other step heights by the RandomVortex

method, to investigate the reattachment process and the behavior of the large-

scale eddies in the flow, and to study both the time-variable and the time-

mean properties and the effects on the state of the incoming flow, the step

height on the reattachment process, and the flow structures.



CHAPTER2

FORMULATIONANDCOMPUTATION

2.1 FORMULATION

The problem we treat is formulated on the basis of the following ideali-
zations:

(1). The flow is two-dimensional;

(2). The flowing substance is incompressible; and

(3). The inlet velocity is uniform.

The normalized governing equations are as follows:

Continuity equation v • u = 0- - (1)
Du
- R-lv2

Navier-Stokesequation -_ = u -v_P (2)

where _U_u(r)= (u,v) is the velocityvector normalizedby the inlet velocity

u_, r is the positionvector normalizedby H, t is the time normalized

by H/u , H is the referencelength- channelheight,R is the Reynolds

number of inlet flow, and p is the pressurenormalizedby pU where
p denotes the referencedensityof the media, and while
D
Dt - -_ +_u • v_

is the material derivative,v2 is the Laplacianoperator,and v is
the usual del operator.

Vorticity is given by

___.= V X U- - (3)

Taking the curl of the Navier-Stokes equation, we have the so-called vortex
transport equation:

D_

Dt- R-lv2_ (4)
while

vxv P=O

Thus the flow is describedby equations(i), (3), and (4). Equations (i)

and (3) are used to determinethe velocityfield _u(x,y),and (4) is employed

to update the vorticityfield __(x,y). In a two-dimensionaldomain,__
has one nonzero componentonly.

The boundaryconditionalong all solid boundariesis



. : o (5)
and at the inlet is

,, = (1,0) (6)

The boundary condition at the inlet of the channel is specified by a uniform

stream that is generated by a source of potential flow located at infinity to

the left side of the step. The vorticity intensity of the inlet flow is

assumed zero in all the computations presented here.

For the boundary condition on the right sioe of the channel, theoreti-

cally, the fully developed turbulent channel flow is reached at infinity.

However, in numerical calculation, only a certain finite length of the channel

is considered. For simplicity, the vorticity intensity beyond the length of

consideration is also assumed zero. The reasons which allow us to do so are:

(I). The flow beyond the reattachment point approaches normal channel

flow downstream, which is symmetric about the channel axis. Thus the effects

of the vorticity field far downstream on the flow field under consideration

almost cancel each other.

(2). The interest of this research is mostly concentrated on the re-

attaching shear flow, which starts from the separation point and extends less

than 10 step heights downstream.

Additionally, the longer the length of channel to be considered, the more

vortex elements are involved, and the more computer time is needed. Thus, in

the numerical computation, the length of the channel has been chosen about two

to three times the reattachment length.

2.2 VORTEXDYNAMICS

2.2.1 Vortex Blobs

Consider the inviscid fluid flow first. The vorticity field _ pro-

duces a field u which transports it in turn. The flow field can be ex-

pressed in term of vortices, i.e., point vortices in a two-dimensional domain

which can be described as

_j = rj6(z - zj) (7)

where rj is the circulation of the vortex at Zi, a is the Dirac delta

function, and Zj is the complex coordinate of vortex Kj.
Define the complex velocity potential as

W = _ + i _ (8)



where € is the velocity potential and € is the stream function. According

to the potential flow theory (Milne-Thomson (1976)), the conjugate complex
velocity can be solved as

dW
U = u - iv _ dZ (9)

Suppose that the entire flow field consistsof a set of point vortices

with complexpotentials WI,......W respectively,wheren
it.

Wj = 273 Ln (Z - Zj) (10)

Thus the velocity field is given by

dW d_Wj
dZ - dZ (11)

according to the superposition principle.

This is the classical point vortex method. Now consider the structure of

a point vortex. From equations (9) and (10), one obtains

U - dWj irj
dZ 2x(Z - Zj) (12)

The modulus of the induced velocity approaches zero at a far distance.

However as Z approaches Zj, the center of the vortex, the modulus of the
induced velocity approaches infinity which is physically unrealistic due to

viscosity of the fluid. Mathematically the center of the vortex is a singular

point. To remove this singularity Chorin (1973) introduced the cutoff radius

r o, i.e., radius of the core of vortex within which the modulus of induced

velocity _Ut keeps constant

irj t Z - Zjj

J 2_(Z - Zj) Max (iZ - Zji, ro) (13)

The vortex elementwith such a treatmentis called a vortex blob.

2.2.2 Conformal Transformation

The above mentioned discrete vortex method applied originally only to an

infinite domain without boundary. To satisfy exactly the normal boundary con-

dition at the wall, given by equation (5), the method of images was used. The

Schwartz-Christoffel transformation was used to map the flow field from the

physical Z plane onto the upper half _ plane, shown in figure 2.1. The

solid wall of the channel was transformed to the horizontal axis in the
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plane correspondingly. The theorem of Schwartz-Christoffel (Milne-Thomson

(1976)) is

a--1 _--1 _--1dZ
dc- K(C - a)_ (_ - b)X (_ - c) _ ...... (14)

For a backward-facing step channel we have
I I

dZ _ K-I b
de (_ _ a)_ (_ _ b)_ H _ -- H_ _ - a (15)

where II is the channel height, and a and b are the coordinates in the

plane corresponding to points D and E ir figure 2.1, respectively.
If particularly, we choose a I, b 2= = , _ = l/B, where B is the inlet
height of channel, we have thus

dZ 1 ¢ - 1
dc - 2 (16)

Furthermore we can solve Z on the wall from ¢ by the method of integra-
tion with a parameter:

2

Z =-1 [Ln l + t I Ln-a +__] where t = a -_ (17)] - t _ _ ' 1 -

But there is no explicit expression for _ from Z, except in case of

B = 112, i.e., _ = 2, as done by Ghoniem, et al. (1980). Thus here we use the

Runge-Kutta method to find ¢(Z) from the reciprocal relation of equation
(16):

2

dZ - _ ¢ - I (18)

Since we check the no-slip condition (section 2.2.4) at a set of points, h

apart from each other, regularly arranged along the wall in the physical Z

plane, we must find the coordinates of the set of points in the ¢ plane,

corresponding to the regularly arranged wall points in the Z plane. Weknow

from the conformal transformation theory that the wall of the channel is

transformed to the horizontal axis in the € plane. To use the numerical

mapping technique we must have a couple of reference points (Co, Zo) as
the starting point in numerical integration. The coordinates of wall points

in the Z plane are predetermined, but unfortunately we do not have an

explicit expression for ¢(Z) except when HT = 1/2. Thus here we first

pick a point on the horizontal axis in the ¢ plane by experience, then use

the trial-and-error method to find the reference point in the c plane which

is sufficiently close to the point corresponding to the first of the regularly



arranged wall points in the Z plane for the numerical mapping technique in

order to get accurate results. Since the Schwartz-Christoffel transformation

in the current case is strongly nonlinear, especially as { approaches zero2
or one, where d_/dZ approaches zero or infinity respectively, such a

trial-and-error method sometimes might be time-consuming. Fortunately the

wall points mapping, as well as the spatial grid points mapping, in the

Eulerian description has to be done only once for each geometry. To obtain

accurate numerical transformations, double precision is used, and transformed

data are checked by remapping back to the Z plane using the explicit expres-

sion _ + t + Z. Also the numerical results for the transformation of

wall points are checked with the analytic results in a particular case of step

height 1/2, which was done by Ghoniem, et al. (1980). The numerical mapping
error in the position vector is found to be less than 1 x 10-6 .

As shown in figure 2.1, the channel was transformed to the upper half

plane. The boundary was transformed to the horizontal axis in the

plane, and the uniform inlet flow in the physical Z plane becomes a half

source flow in the ¢ plane at the origin. To satisfy the normal boundary

condition as specified by equation (5), we introduce the image system of the

original source and vortex terms. The corresponding complex velocity field

U({) in the _ plane produced by the source and vortices and their images
about the horizontal axis is given by

dWs(c) dW(c, cj) dW(¢, _j)
U(€) = _+ _ de Z dc (19)

where Ws(c) is the complex velocity potential of the source, W(c, cj)

is the complex velocity potential of a vortex with the center at _j, and

cj is the complex conjugate of _j. To find the velocity distribution in the

physical Z plane, the inverse transformation is simply employed.

2.2.3 RandomWalk Simulation

The unsteady vorticity distribution is governed by equation (4), the vor-

ticity transport equation. The operator can be split into two parts:
at

= -_u • v _ (2O)Convectivepart at c --

a_ = R-I v2-_ (21)Diffusivepart _ d
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According to the convection operator, the vortex blobs move at the local ve-

locity. For the diffusion part, it is well known mathematically that the

solution of the one-dimensional diffusion equation with a Dirac delta function

as the initial condition is the Green's function

I

R 2 Rx2 (22)G(x,t) - 4_t exp 4t

This is also the probability density function of a Gaussian random variable

with zero mean and a standard deviation o = (2t/R) I/2. Thus Chorin (1973)

introduced a scheme of adding a random walk each time step to simulate the

diffusion effect. Two-dimensional diffusion was treated independently. Thus

the new locations of each vortex element after a time step are given approxi-

mately by

Zj(t + At) = Zj(t) + U(Zj) At + nj (23)

where Zj(t) is the old locationof the vortex element, U = u + iv is the

local velocity in complexform, and nj = nX + l'ny is the two-
dimensionalrandom walk in that time interval.

2.2.4 Vortex Creation

To satisfythe no-slipboundary condition,the velocitiesare calculated

at a set of regularlyarrangedpoints h apart from each other along the wall

as mentionedabove. Wherever the tangentialvelocity is not zero, a vortex

with a circulationof Uwh is created and incorporatedinto the computation
of the next time step.

2.2.5 Vortex Sheets

In the boundary layer region the vortex blobs do not provide a good

description, since one cannot use very tiny vortex blobs to fill up the bound-

ary layer to achieve good precision. Otherwise it would be very time-

consuming.

From the boundary layer assumption

a2u a2u
<< _ (24)

ax2 ay2

a.___vv<<a.__.uu (25)ax ay

9



Chorin (1973) proposed the use of vortex sheets, which are elongated in the

tangent direction, to represent the vorticity very near the wall, where a good

evaluation of the vorticity is given by the simple expression

€ = - _u/ay (26)

The tangential component of velocity u can then be found by integration of

equation (26), and the normal component of velocity v can be found with the

use of continuity equation (1). Ghoniem, et al. (1980), gives a detailed
numerical treatment.

The motion of the vortex sheets is simulated similarly by the convective

and diffusive (random walk) effects, but with nj = 0 + Iny" in accordance
with the boundary layer diffusion approximation.

2.3 ALGORITHM

The computations are performed as follows:

First, the value of h, the sheet length specifying the spatial resolu-

tion, is chosen properly. The value of the time interval a is then fixed in

accordance with the stability condition (Chorin (1980)):

_t _ h/Max (_) (27)

For a given Reynolds number, this specifies the standard deviation o. The

thickness of the wall layer, within which vorticity is represented by sheets,

is then taken as a multiple of o.

At time zero only the incoming potential flow associated with the source

in the _ plane exists. Vortices are created by the no-slip condition at

numerically specified points along the wall. The displacement of the vortex

sheet accounts for the combined effects of convection and diffusion. Whenever

a vortex sheet moves outside the sheet layer, it becomes a vortex blob and
vice versa.

Once the position and the strength of both the vortex sheets and blobs

are established, the flow field at a given time step is fully determined. The

vortex blobs appear only as a consequence of the displacement of vortex sheets

outside the wall layer.

The blobs' ability to induce strong motion normal to the wall is an

essential computational feature which allows the scheme to simulate hydro-

dynamic instability and represent a two-dimensional version of turbulent flow.

10



The immediate product of the calculation is a Lagrangian description of

the flow, specifically a list of the current positions of all the vortex ele-

ments. An Eulerian description of the velocity for prescribed points of

observation can be calculated from the Lagrangian data. Statistical properties

of the Eulerian data are then evaluated (as will be described in detail in

Chapter 3) to allow comparison with laboratory measurements.

2.4 VELOCITYAND TURBULENCEPROFILES

The definition of turbulent flow given by J. Hinze is that "turbulent

fluid motion is an irregular condition of flow in which the various quantities

show a random variation with time and space coordinates, se that statistically

distant average values can be discerned." The momentary value of the velocity

is written as

u = u + u' (28)

where the overscore denotes the average value, and u' is the fluctuation of

the velocity component. The intensity of the turbulence fluctuations is

defined as the root-mean-square value u '2. The relative intensity is then

defined by the ratio u---_-'/u. Also, the so-called apparent or Reynolds stress

is defined as - p u--r_T, and the relative Reynolds stress as - p u'v'/_ 2.

These velocity and turbulence profiles are calculated over some time interval

of quasi-steady turbulent flow in Eulerian description in which the numerical

transformation is used for the Eulerian grid mapping.

In the presentation of results all velocities are normalized by the speed

of the uniform inlet flow.

11



CHAPTER3

RESULTSAND DISCUSSION

The computations were performed at Re = 104 for step heights of i/3,

1/4, and 1/5 (i.e., at expansion ratios 3/2, 4/3, and 5/4, respectively) and

at Re = 105 for step height 1/3 to model the process recorded photographi-

cally by Ganji and Sawyer (1979) and to investigate the effects of step height

and the Reynolds number. Computation for step height 1/5 was performed on a

CDC7600 computer and the others were carried out on a VAXcomputer.

Sequential pictures of flow development in the Lagrangian description

were plotted for each flow condition showing the vortex distribution and the
large-scale structures.

The length of reattachment was traced for each flow condition to show the
development and fluctuation of the recirculation zone.

The velocity distribution in the Eulerian mesh is calculated at each time

step in certain time intervals for averaging. Also, the streamwise velocity

component is calculated at six typical locations taken from the recirculation

zone, reattachment zone, and the channel turbulent flow rebuilding region at

every 10 time steps from the very beginning. This is plotted in figure 3.29
(a to c), and the result is time-dependent.

The local variation with time of the velocity distribution in the Eulerian

description may attribute to the following separately recognizable phenomena:

(I). The uniform flow is imposed at the inlet and requires some time to

adjust the flow to the fully developed turbulent flow. Numerically, this pro-
cess is very time-consuming.

(2). To model turbulent flow, the computation employs discrete elements

of vorticity which cause relatively large fluctuations of velocity at an

observing point whenever they pass close by that point. The displacement of

each vortex element during each time step is partially random (the diffusion

part of displacement). The discretization and the random components of dis-
placement contribute some artificial unsteadiness.

3.1 UPSTREAMCONDITIONS

The state of the entry flow can have a substantial effect on the behavior

of the shear layer. The condition of the boundary layer at separation can

12



affect the shear layer's virtual origin, initial breakdown, growth rate, re-

attachment point, and turbulence development (Bradshaw (1966) and Eaton and

Johnston (1980)). The major scaling parameters assessing the state of the

boundary layer are the momentumthickness and the boundary layer thickness,

which in turn are controlled by the Reynolds number of the entry flow and the

inlet length. In this work, uniform inlet flow was assumed for convenience,

and the normalized inlet length, 1.0, was chosen in most cases to establish

the boundary layer with a certain thickness at the separation point, as well

as to save computer time.

3.2 MEANVELOCITYPROFILES

The region downstream from the step can be divided into three zones:

(i). A recirculation zone,

(2). A reattachment zone, and

(3). A developing boundary layer zone.

The recirculation zone is characterized by strong negative velocities below

the step and ends with the reattachment point where the flow almost ceases to

circulate, and positive streamwise velocity profiles fill out the entire sec-

tion of the channel thereafter. A boundary layer starts to grow after re-

attachment and the fluid flow turns into a developing flow in a channel.

The velocity distributions along channels of step heights I/3, 1/4, and

i/5 at Re = 104 and step height i/3 at Re = 105 are shown in figures

3.1, 3.2, 3.3, and 3.4, respectively. Values of streamwise velocity of numer-

ical and experimental data (Kim, et al. (1978)) are plotted for the case of

step height 1/3 and Re = 104. The results seem to be in good agreement

near the step where the numerical solution has almost reached a stationary

state, while the disagreement is more pronounced downstream where the flow is

still under development. The change in the calculated velocity profiles with

time is shown in figure 3.28 in which the top figure is calculated after 158

time steps, while the bottom figure is calculated after 291 time steps. A

typical maximumvalue of reverse velocity calculated in the recirculation zone

is about 0.4 to 0.5 Uf, while the experimental value reported by them is

about 0.25 Uf where Uf is the free stream velocity which corresponds to
the mass average velocity in the downstream channel in the numerical calcula-
tion.
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Beyond the reattachment point, the flow field approaches the turbulent

flow in a channel with parallel walls. The transverse component of velocity

fluctuates around zero, while the streamwise velocity profiles develop slowly

into a symmetric distribution around the center line of the channel. Accord-

ing to Bradshaw and Wang (1972), it will take about 50 step heights downstream

for the flow to relax to the normal internal turbulent flow.

The upper edge of the recirculation zone is fairly straight until X/Xr
= 0.6 where Xr is the reattachment length; it then drops down toward the
bottom wall.

The mean velocity profiles of the boundary layer at three typical loca-

tions on the bottom wall selected from the recirculation region, the reattach-

ment region, and the boundary layer rebuilding region after reattaching are

shown in figures 3.5 to 3.10 for the case of step heights 1/3 and 1/4. Figure

3.11 shows the corresponding experimental profiles in the case of step height

1/3. In general, both results show the same trend of variation.

An important parameter in turbulent flow over a backward facing step is

the reattachment length. The reattachment point R is defined as a point

where the dividing stream line returns to the wall. A sketch for a reattach-

ing shear layer behind a step with a definition of the reattachment length is
shown in figure 3.12.

The reattachment length is controlled to a large extent by the step height
which affects the growth of the shear layer into the recirculation zone.

The lower edge of the shear layer is difficult to locate due to the very

gradual decrease in the slope, while the reattachment length can be easily

estimated from the streamwise velocity distribution. Values of the estimated

reattachment length from the mean velocity distribution in the neighborhood of

the bottom wall are 2.2 and 1.8 for Re = 104 and steF heights 1/3 and 1/4

respectively, and 1.9 for Re : 105 and step height 1/3. The values of re-

attachment length normalized by step height are 6.7, 7.2, and 5.8, respec-

tively. From the transient velocity distribution at each numerical time step

we can also assess the development of the recirculation zone shown in figures

3.13 to 3.16. The reattachment length increases monotonically in the first

stage, then wanders upward and fluctuates around some average value when the

flow approaches the quasi-stationary state due to the splitting and coales-

cence mechanism of large-scale eddies. The value of the reattachment length

estimated from the mean velocity distribution coincides with the asymptotic

value of that deduced from the transient velocity distribution. The computed
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normalized reattachment length at Re = 104 is in good agreement with the

experiment value X/X = 7 + 1 from Kim, et al. (1978). The numerical data at

step height i/3 with different Reynolds numbers (table 3.1) are consistent

with the results of Eaton and Johnston (1980), who concluded that the value of

reattachment length is maximumat a medium Reynolds number, then decreases to

approach an asymptotic value with increasing Reynolds numbers.

3.3 MEANTURBULENCEPROFILES

The turbulence intensity and Reynolds stress profiles are shown in

figures 3.17 to 3.19 for step heights 1/3 and 1/4, respectively. The region

of the relatively high turbulence level is around the dividing stream line

between the separation point and the reattachment point. Approaching the re-

attachment zone, the turbulence level decreases slightly. Beyond the reattach-

ment point, the turbulence profiles begin to take on the characteristics of

the normal turbulent channel flow where the turbulence level is almost uniform

in the turbulent core flow region. These general trends are also observed in

the experimental results such as Kim, et al. (1978), Eaton and Johnston (1980),

and Etheridge and Kemp (1978).

The positions of maximumturbulence intensity are shown in figures 3.20

and 3.21 for step height I/3 with Reynolds numbers 104 and 105 respec-

tively, and compared with Eaton and Johnston (1980). The qualitative trends

agree. The vertical locations of maximumturbulence intensity initially (from

separation point) coincide with the step level (Y/HT = 1). It then dips

slightly toward the recirculation zone and rises back toward the center line

after reattachment.

The turbulence intensity in streamwise direction reaches a maximumin the

vicinity of the wall. However on the wall it goes back to zero. It should be

mentioned here that the wall boundary layer is very thin and the details of

the turbulence profile inside it are not shown on the graph.

3.4 LARGE-SCALETURBULENCESTRUCTURE

The presence of large-scale structures in the plane-mixing shear layer

and in the reattaching shear layer has been experimentally established by Brown

and Roshko (1974), Eaton and Johnston (1980), and Ganji and Sawyer (1979) and

is shown in numerical results by Ashurst (1979) and Ghoniem, et al. (1980).
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The large-scalestructuresform early in the shear layer from a Kelvin-

Helmholtzinstability(Sherman(1976)). The structuresare basicallytwo-

dimensionaland grow by pairingand entrainmentas they move downstream. Eaton

and Johnston (1980)showed that the large eddy length scale was significantly

longer in the spanwise directionthan in the cross-streamwisedirectionand

that pairingwas an importantgrowthmechanismof the shear layer. They also

indicatedevidencethat the large-scalestructureis occurringeven in the

high Reynolds number case. High speed schlierenphotographsin Ganji and

Sawyer (1979) show that large-scalestructuresare prominentthroughoutthe
flow field.

The sequenceof picturesof the flow filed in terms of the distribution

of vorticitytaken from computer-generatedmovies for step heights1/5, 1/4,

i/3 and Re = 104, and step height I/3 and Re = 105 is shown in figures

3.22 to 3.25 respectively,where the dot denotes the center of each discrete

vortex to which a short segment is attachedand stands for the velocityvector
for that vortex.

Figure 3.22 shows a typicaldevelopmentof the vorticityfield from the

beginning. The flow is impulsivelystartedby applyingthe uniformvelocity

at the inlet sectionof the channel. Vorticesare created along the solid

walls to satisfy the no-slipconditionand are introducedinto the flow as

vortex sheets. Wheneverthe vortex diffusesoutside the sheet layer,it

becomes a vortex blob and is plotted. All the vorticesare introducedalong

the wall and stay there until they diffuse into the field.

A separatedshear layer is formed by separationof the boundary layer on

the step and grows while travelingdownstream. The vortices concentrated

beyond the separationpoint constructgraduallythe large-scalestructures.

They grow while convectingdownstream,elongate,and split, as shown from

T = 4.00 to T = 6.00, for example,then break down into eddies with a rela-

tively small scale around the reattachmentzone. A boundarylayer starts to

form after reattachmentand the fluid flow turns into a developingflow in a
channel.

What happensto the large structuresin the approachingshear layer at

reattachmentis not yet clear. Bradshawand Wang (1972)suggestedthat the

large structuresare torn roughlyin two somewherenear the reattachmentzone.

Chandrsuda (1975)suggestedanotherpossibilitythat the large structuresmove

alternatelydownstreamand upstream. Kim, et al. (1978),believe that the

splittingof a large structureis not the only phenomenonwhich takes place at
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reattachment. Eaton and Johnston (1980) observed through a crude flow-

visualization experiment that large structures passed through the reattachment

zone and never swept upstream. In this study, the sequential pictures of the

numerical flow field plots show that no large structure is swept upstream.

The results seem to support the postulate of a splitting mechanism for large

structures around the reattachment zone.

Figure 3.26 shows the comparison of flow development at step height I/3

with different Reynolds numbers. It is found that the large-scale structures

in high Reynolds number cases are confined in a relatively short distance from

the separation point. This results in a relatively short reattachment length

as plotted in figures 3.13 and 3.16, which is consistent with the experimental

results of Eaton and Johnston (1980).

By comparing the flow pictures of different step heights at the same

Reynolds number it is found that the scales of large structures are controlled

by the step height, which corresponds to the variation of reattachment length

with step height.

Figure 3.27 and table 3.2 compare the flow development with different

inlet lengths, hence with different boundary layer thicknesses at the separa-

tion point. The large-scale structure appears earlier from the well-developed

boundary layer at separation point in the longer inlet length case.

3.5 SUGGESTIONSFOR FUTURE WORK

As said above, the RandomVortex is indeed a very useful method for in-

vestigating the large-scale structure of turbulent flows. The results obtained

here are really very encouraging, but there are some evidences showing that

the flow did not reach the quasi-steady state. The reattachment length seems

to continue to increase. Figure 3.28 shows the average velocity profiles of

step height 1/3 and Re = 104 in different time intervals: it is seen that

the flow field is still developing. Also from figure 3.29 (a to c), it is

seen that the standard deviation at points closer to the bottom wall is larger

than that at points along the step level. The standard deviation decreases

downstream and the value of the streamwise velocity still oscillates widely.

Consequently, further computation is probably advisable.

On the other hand, further computation is time-consuming. Since the

velocity field induced by each vortex blob reaches everywhere in the flow
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field, we must account for all the vortices to obtain the velocity distribu-

tions. Thus the total computer time needed to find the vorticity and velocity

distributions at time step is approximately in proportion to N2, where N

is the number of vortex blobs at that time step. In the VAX computer the CPU

time for a single time step is about 20 minutes at 2000 vortex blobs and 45

minutes at 3000 vortex blobs. A typical magnitude of vortex blobs at time

step 200 is 2000, and 3000 at time step 350. It seems that a more powerful

computer is needed.

For calculating the averaging profiles in the Eulerian description, the

averaging time period is picked from one quasi-cycle as seen from the movie

picture series plotted by the computer. It is found roughly that a quasi-

cycle consists of about 50 to 80 time steps from the movies as well as from

figures of u(t). Better averaging profiles might be expected if more than

one quasi-cycle were covered. This would also suggest the use of a computer

with faster computing speed as well as more data storage.
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CHAPTER4

CONCLUSIONS

The main objectives of this work, as stated in the Introduction, were to

model numerically the turbulent flow in a two-dimensional channel with variable

step height by the RandomVortex method and to investigate both time-variable

and time-average behaviors of the flow.

Conclusions from these numerical results and a comparison with available

experimental results are:

(I). RVMis capable of modeling the essential features of the reattaching

turbulent internal flow as observed by Schlieren visualization.

(2). The numerical results support the existence of the large-scale

structure in the reattaching turbulent internal flow and provide a clarifica-

tion of the essential process of the formation, growth, splitting, and propa-

gation of the large-scale structures.

(3). The numerical calculated reattachment lengths are in good agreement

with the experimental results.

(4). The numerical calculated velocity profiles are qualitatively con-

sistent with the experimental data.
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TABLE 3.1. -MEAN VELOCITYDISTRIBUTION
ALONGBOTTOMWALLFORHT = 1/3

[Calculated reattachment length:
Xr(Re = 105) = 1.93; Xr(Re = 104)
= 2.22.]

Horizontal Velocity on edge of sheet layer,
distance, U(_)

X
Re = 105 Re = 104

0.1 -0.143 -0.076
.3 - .701 - .061
.5 -1.154 - .286
.7 -1.209 - .354
.9 -1.193 - .352

1.1 -1.019 - .323
1.3 - .759 - .282
1.5 - .304 - .391
1.7 - .134 - .279
1.9 - .033 - .262
2.1 .174 - .021
2.3 .152 .015
2.5 .148 .026
2.7 .314 .081
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TABLE 3.2. - COMPARISONOF VORTEXNUMBERWITH DIFFERENTINLET
LENGTHFOR HT = 113

Time No. of vortex No. of vortex No. of vortex No. of vortex No. of vortex
step blobs in sheet on sheet on sheet on sheet on

channel, horizontal horizontal vertical wall, horizontal
NV top wall, bottom inlet NSC bottom wall

NSA wall, in channel,
NSB NSD

Inlet length of channel, X(in), 1.0

i0 43 135 28 1 104
20 102 182 36 3 155
30 192 243 45 3 208
40 301 311 37 4 240
50 437 388 33 5 295
60 554 431 46 6 328
70 647 497 29 4 367
80 757 612 38 10 432
90 920 635 33 7 468

I00 1013 708 33 6 510

Inlet length of channel, X(in), 3.0

10 55 174 77 5 83
20 165 276 116 9 125
30 272 367 140 9 183
40 431 449 172 1 224
50 620 526 204 3 276
60 867 667 232 8 290
70 1117 743 266 6 343
80 1351 896 262 7 387
90 1533 954 267 4 471

100 1677 1054 273 5 507
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Figure 3.1(a).- Mean velocityprofile along channelwith HT = 1/3.

(1)-(2) Numericaldata of time steps 158 to 200 at Re = 104.

(3) Experimentaldata from J. Kim.
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Figure 3.1(b). - Mean velocity profile along channel with HT + 113 between

time steps 291 to 348 at Re = 104.
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Figure 3.2. - Mean velocity along channel with HT = 1/4, Re = 104, and time
steps 141 to 198.
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Figure 3.3. - Mean velocity profile along channel with HT = 1/5, Re = 104,
and time steps 140 to 172.
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Figure 3.4. - Mean velocityprofilealong channelwith HT = 1/3, Re = 105,
and time steps 205 to 265.
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Figure3.5.- Meanvelocityprofileon stepsidebetweentimesteps158 to 200
with HT = 1/3 and Re = 104.
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Figure 3.6, - Mean velocity profiles on step side between time steps 158 to 200

with HT = 1/3 and Re = 104,
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Figure 3.7. - Meanvelocity profile on step side between time steps 158 to 200

with HT= 113 and Re= 104.
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Figure 3.8. - Mean velocity profile on step side between time steps 141 to 198

with HT = 1/4, Re = 104, and X/HT = 3.56.

34



LO

u')

tw_

O.._-

O.C I i
-O.5 0.0 O.5 1.0

ulu
Figure 3.9. - Mean velocity profile on step side between time steps 141 to 198

with HT = 1/4, Re = 104, and X/HT = 7.11.
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Figure 3.17(a). -Mean turbulence profile along channel with HT = 1/3.

(1)-(3) Numerical data of time steps 158 to 200 at Re = 104.

(4) Experimental data from J. Kim.
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Figure 3.22. - Flow developmentalong channel at HT = 1/5 and Re = 104.
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Figure 3.22(c). - Continued.
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Figure 3.22(d).- Continued.
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Figure 3.22(e).- Concluded.
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T= 19.80

Figure 3.23. - Flow development along channel at HT = 114 and Re = 104.
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Figure 3.24. - Flow developmentalong channelat HT = I13 and Re = 104.
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Figure 3.25. - Flow development along channel at HT = 1/3 and Re = 105.
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Figure 3.26. - Comparison of flow development at HT = 1/3 with different

Reynolds numbers.

57



w

Figure 3.27. - Comparison of flow development with different inlet lengths for

HT = 1/3, Re = 104, Xin(left ) = 1.0, and Xin(right) = 3.0.
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t= 150 ~ 200 [mean U]
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//L)./!.7,
t: 291 _ 348 [mean U]

Figure 3.28. - Comparisonof mean velocityprofileat HT = 1/3 and Re = 104

with differentaveragingtime period.
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