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ABSTRACT

Based on theories of laminate anisotropic elasticity and interlaminar frac-

ture, the complete solution structure associated with a composite delamination

is determined. Fracture mechanics parameters characterizing the interlaminar

crack behavior are defined from asymptotic stress solutions for delaminations

with different crack-tip deformation configurations. A numerical method employ-

ing singular finite elements is developed to study delaminations in fiber com-

posites with any arbitrary combinations of lamination, material, geometric, and

crack variables. The special finite elements include the exact delamination stress

singularity in its formulation. The method is shown to be computationally accurate

and efficient, and operationally simple. To illustrate the basic nature of com-

posite delamination, solutions are shown for edge-delaminated [e/-e/-e/e] and

[(±e)/(±e)/90°/90°] s graphite-epoxy systems under uniform axial extension. Three-

dimensional crack-tip stress intensity factors, associated energy release rates,

and delamination crack-closure are determined for each individual case. The basic

mechanics and mechanisms of composite delamination are studied, and fundamental

characteristics unique to recently proposed tests for interlaminar fracture tough-

ness of fiber composite laminates are examined. Influences of lamination, geome-

tric, and crack variables on the delamination behavior are investigated.

iii





1. INTRODUCTION

In an associate paper [I], the fundamental nature of stress singularity

and asymptotic solution fields associated with a delamination between

dissimilar anisotropic fiber composites have been studied. Lekhnitskii's

complex-varlable stress potentials [2] in conjunction with an eigenfunction

expansion method have been used in the formulation and establishment of the

general solution. The eigenvalues, especially the ones which characterize the

strength of stress singularity, for delaminations with different local

traction boundary conditions near the crack tip have been determined. Of

particular interest are the asymptotic deformation and stress governing the

composite delamination fracture. Since logarithmic terms are absent in the

solutions for the delamination stress and deformation [I], the general

structure of the complete solutions consists of only a power-type

eigenfunction series of both singular and hlgher-order terms. The set of

unknown constants in the eigenfunction series solution for a delamination

problem can only be determined by solving the complete boundary-value problem

with a full consideration of overall composite geometry, lamination and

material variables, remote boundary conditions, and end loading conditions.

In a finite-dimensional fiber composite laminate with simple lamination

variables and crack geometry, for example, a symmetric angle-ply [8/-8/-0/8]

composite containing edge delaminations along the 0 and -8 ply interface, the

complete laminate elasticity solution can be determined in an explicit form by

the use of different analytical methods such as the boundary-collocation

method [3]. However, for a composite laminate having more than four plies,

the aforementioned collocation method is not applicable, and a more general

and versatile method of approach to the problem is needed. The situation

could become extremely complex for delaminations in a composite containing a



large number of plies with different fiber orientations and laminar

thicknesses. The almost unlimited number of variables in a general composite

delaminatlon problem requires the development of an advanced analytical method

which can not only deal with the local singular behavior of the delamination

but also take into account various combinations of lamination, material,

geometric, and crack variables. Numerical methods such as finite element

methods are considered to be most attractive because of their versatility in

handling mechanics problems with complex structural geometry and material

properties. In this paper, the currently developed laminate elasticity

solution is incorporated in the formulation of a set of conforming finite

elements with singular derivative fields [4]. The special crack-tlp elements

are shown later to be particularly suitable for modeling the composite

delaminatlon problem. The use of laminate elasticity solutions derived from

the associated paper [I] permits the inclusion of exact delamination stress

singularities in finite element formulation, leading to extremely accurate and

efficient numerical solutions for studying the fundamental behavior of

composite delamination with complex lamination variables and geometric

parameters.

Specific objectives of this paper are to: (i) establish complete

solution structures for different delaminatlon configurations to serve as a

basis of formulating an advanced numerical method, (2) construct special crack

elements of various kinds to model the composite delamlnation, (3) properly

define interlaminar fracture mechanics parameters, e.g., stress intensity

factors and energy release rates, for general composite laminates, (4) examine

the fundamental behavior and associated characteristics of the composite

delamination, and (5) assess influences of lamination, geometric and crack

variables on the delamination response and composite failure modes.



In the nextsectlon, the general structure of complete solutions for

delamination stress and displacement fields is given. Fracture mechanics

parameters in terms of interlamlnar crack-tip stress intensity factors and

strain energy release rates are defined for various deformation modes of

composite delamination. Special slx-node, quasi three-dimensional crack

elements for the present composite delamlnation problem are introduced in

Section 3. Formulations of the singular elements and adjacent nonsingular

elght-node isoparametric elements are briefly outlined. Solution strategy and

computational scheme for the delaminatlon problem, especially in the case that

crack-surface closure (i.e. the contact problem) occurs, are discussed.

Computational methods for evaluating stress intensity factors and energy

release rates by using the singular finite elements are given in detail. In

Section 4, solution accuracy and convergence are studied to demonstrate the

efficiency and effectiveness of the present approach. The fundamental

behavior and unique characteristics of composite delamlnatlon are examined in

Section 5. Two graphite-epoxy laminate systems, i.e., symmetric angle-ply

[6/-6/-0/0] and symmetric [(±6)/(±0)/90°/90°]s composites, with delaminatlons

emanating from laminate edges are studied. Delamlnation crack-tip deformation

and fracture mechanics parameters are determined for each case. Influences of

fiber orientation, ply thickness, and crack size on delamination failure

mechanics and mechanisms are investigated also.
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2. COMPLETESOLUTIONAND FRACTUREMECHANICSPARAMETERS

2.1 CompleteSolutionsfor Stressand Displacement

As discussed in the associated paper [I], the eigenvalues 6n can be

determined by solving the transcendental characteristic equation Eq. 20 in

[I]. Depending upon the local crack-tlp boundary conditions and the interface

continuity conditions, the 6n have the following values:

(1) delamination with open crack surfaces

n -1/2 (single root),

6n = n (triple roots),

(n -1/2) * i_ (single root), (n = 0,I,2,..._);

(li) delamlnation with closed crack surfaces in frictionless contact

=fn -I/2 (double roots),
6n In (quadruple roots), (n = 0, I,2,...=);

(iii) delamination with closed crack surfaces in frictional contact

li -I/2 (single root),

6n = B (single root),

(quadruple roots), (n = 0,I,2,...=).

Once the values of _n are determined, the relationship among Ck'S can be found

and the complete solutions for displacement and stress can be established in

explicit forms. For example, for a delamination with homogeneous local

boundary conditions in a composite laminate subjected to planar loading, the

complete solutions for stress and displacement components have the following

expressions:
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3

n:0 k=l

3

+ _ {[c (2) (3)] Re(AikZk) + [c, b (4)] Im(AikZk)}2nbkn +e3nbkn qn kn
k=l

6 6

+ {C5nRe[ _ b(5) A n-I/2+iY] b(5) I/2+iY]
k=l kn ik_ + C6nlm[k=ll kn Aik_- }) + °oi

(i = 1,2,4,5,6), (I)

3 r_ (I). .n+ 1/2 _ ,._ (1) _ _- n+ I/z
uj = _ (Cln _ {Re LDkn i(j+3)k_ k ] + ImLD(k+3)n_(j+3)k_ k ]}/(n+i/2)n=0 k=l

3

+ _ {[c b(2)+c b(3)]Re[F(j+3)kZk+i/(n+l)] + c b (4) n+l2n kn 3n kn 4n kn Im[r(j+3)kZk
/(n+l) ]}

k=l

6

+ {C5nRe[k=ly" b(5)knr(j+3)kZkn+i/2+iY/(n+i/z+iY)]

6

+ C6nlm[k=l_ b(5)knr(j+3)kZkn+i/2+iY/(n+ I/2+iY)]}) + Uoj (J = 1,2,3), (2)

where b(_)
kn are known eigenvectors corresponding to the unknowns Can for each

given 6n, and Ooi and Uoj are known quantities from particular solutions for

(=)
each individual case. We note that the bkn are found to be the same for

all 6's because of the involvement of the term ein_(_ = _ and -_) in the
n

D(6n) matrix. The constants Aik and rik are defined as



2 1 -qk' Pkqk ' -Pk;Alk = Pk' A2k = ' A4k= A5k = A6k=

rlk= I, F2k = nk' F3k = Pk' r4k= Pk' r5k= qk' F6k = tk, (3)

where Pk, nk, Pk, qk, tk are related to ply stiffness matrix and can be found

in [2,3]. The expressions for stresses and displacements for delaminatlon

with closed crack surfaces, i.e., nonvanishing local traction boundary

conditions, can be easily determined to have forms similar to Eqs. 1 and 2 but

with slight modifications owing to different numbers of algebraic multiplicity

of the eigenvalues involved.

2.2 Delamlnatlon Stress Intensity Factors and Energy Release Rates

The stress and displacement fields for a delamlnatlon are shown in the

preceding section to possess general form of Eqs. 1 and 2 with unknown

constants Can to be determined. A proper analytical or numerical method with

the aid of global laminate boundary conditions and remote loading conditions

is required to determine the detailed solution for the complete boundary-value

problem. Since the interlaminar fracture is controlled by local stress and

deformation, the asymptotic solution is of primary importance and interest in

understanding the near-field behavior and fracture phenomenon. The asymptotic

solution is recognized to be singular in nature and governed by the

delaminatlon stress singularities, which have been obtained in detailed in

[I]. As pointed out in the associated paper [I], the singular elgenvalues

depend upon the local delamination configuration; thus, distinct structures of

asymptotic solutions are obtained for different crack-tip deformations. "

In general, the asymptotic solution for a delamlnatlon stress field can .

be written in the following form:
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£ _3 rf(j) _j= f(J)°i Zk + rkJl
J=l k=l" ik i(k+3)

(i= 1,2,3,...,6), (4)

• where Zk and Zk have their origin located at the delamination tip.

The f(J ) and f(J )
ik i(k+3) are functions of lamina material constants, lamination

variables, and loadingconditions. The integer£ is the total number of

eigenvalues _j which satisfy the constraint condition,

-1 < Re[6jl < 0 (5)

For the convenience of further developments, Eq. 4 may be rewritten as

£

°i = Z s_J)(r,@; _j), (6)
j=l

where s_j) is the jth component(correspondingto the eigenvalue_j) of the

asymptoticstress oi in the polar coordinatesystem.

In view of the asymptoticsolutionstructuresgiven in Eq. 4 and those

given in [I,5,6],it is possible to define,in the contextof interlaminar

fracturemechanics,the delaminatlonstress intensityfactorsand strain

energy releaserates in a manner consistentwith those for a homogeneouscrack

and for the refinedmodel of an interfacecrack betweendissimilarisotropic

media [7,8]. For example,in the case of a closeddelaminatlonwith crack

surfacesin frlctlonlesscontact,the stress intensityfactorscan be

introducedby consideringthe crack-tipinterlaminarstresses02, o6 and 04

(i.e., Oy, Txy, Tyz, or o_, Tr@, Tz_) along the ply interface_ = 0 as
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KI = llm__i_-_ro2(r,0) (7a)r+0

KII = lim+ _ c6(r,0 ) (Tb)
r+0

Ki11 = lim+ _ o4(r,0 ) (7c)
r+0

where r = 0- and 0+ denote the positions infinitesmally behind and ahead of

the crack tip, respectively, because the normal traction o2 is finite ahead of

a closed crack tip where shear tractions o6 and o4 are singular.

The strain energy release rate, G, and its components Gi (i = 1,2,3) may

be evaluated by using Irwin's virtual crack extension concept [9] as

G = G1 + G2 + G3

&_

1 _ (m+l)= llm 2-_ f {o2(r,0)[u m)(&_-r,_) (&=-r,-_)]
&_.0 0 - u2

+ o6(r,0)[u(m)(_-r,_ ) - (m+l)(__r,__) ]1 Ul

+ o4<r,0)[u_ m)(&_-r,_) - u_m+l)(&_-r,-_)l}dr, (8)

where &_ is the length of virtual crack extension. The interlamlnar stresses,

02 , 06, and 04, in Eq. 8 can be obtained from the asymptotic stress field such

as Eq. 4. The corresponding displacements are also those of the asymptotic

field equations discussed in the previous section. In terms of the

delamlnatlon stress intensity solutions Ki, the G and Gi for a closed crack

can be shown to have a simple expression as

G = G2 + G3 = _ (A2KII + A3KIII ) (9)

In Eq. 9, G1 is identically zero because of the displacement continuity across

the closed delamlnatlon surfaces,

u2(m)(r'_) - u(m+l)(r'-_)2 = 0 -c < r < O, (lOa)



and A2 and A3 are evaluated from [5] with

(m) (m+l) = A2V216a_ri (lOb)u2 - u2

(m) (m+l) = A3_2 [6__r I (lOc)u3 - u3

as r . 0+.

For a delamlnatlon with extremely small crack closure, the simplified

model by taking the limiting case of a partially closed crack discussed in

[5,6] is used. The stress intensity solutions KII and Ki11 are the same as

those given in Eqs. 7(b) and 7(c), but the KI is defined at r + 0+ as

= lim+ 2_r o2(r,0). (II)
r+0

And the correspondingstrain energy releaserates G and Gi, then, have the

form,

w

G = G1 + G2 + G3 = _ (AIK l + A2KII + A3KIII). (12)

In the case that a fully opened delamination is assumed and the

elgenfunctlon expansion series is used for the asymptotic solution, the

delamination stress intensity factors are introduced as [3]

3 -_j= lira+ =[ 2_ r s J)(r,O;_j),
KI (13a)

r+0 j I

3- KII = lira+ Y 2_ r )(r,O;_j),
(13b)

r+0 j=l

3 --_.

= lim+ Y 2€_ r J s_J)(r,0;6j),Kill (13c)
r+0 J=I



I0

We note that in this case exact integration in Eq. 8 can be carried out and

the strain energy release rate, G, can be determined easily. However,

individual components Gi can not be separated explicitly in the integration

because of the complex mathematical structure of the asymptotic solutions.

Other methods such as the hybrid singular finite element analysis [i0,II] are

needed to determine the values of individual Gi.
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3. COMPUTATIONOF FIELD SOLUTIONSAND FRACTUREMECHANICSPARAMETERS

We have thus far obtained the complete solutions for stress and

displacement and the fracture mechanics parameters from the asymptotic

• solutions for each individual case. The unknown constants Can as well as Ki

and Gi are to be determined by solving the complete boundary-value problem,

involving remote loading conditions and global geometric and lamination

parameters. Now consider a flnite-width composite laminate containing

delamlnatlons under mechanical loading as shown in Fig. i in [I]. As

mentioned in Section I, several numerical methods could be used to determine

the complete solution for the delamlnatlon problem in a finite dimensional

laminate. Owing to the singular nature of the interlaminar crack, the complex

structural geometry, and numerous lamination parameters involved, the special

numerical method employing recently introduced conforming singular finite

elements is an attractive approach to the current problem. In this approach,

the exact delamlnation stress singularities can be included in the formulation

of the special elements. Thus, the unknown constants associated with the

asymptotic solution and the fracture mechanics parameters governing the

delamlnatlon behavior can be evaluated conveniently with a high degree of

accuracy and a fast rate of solution convergence.

3.1 SingularCrack-Tip Elements and Surrounding NonslngularElements

In this study, we generalize the formulation and concepts of the

conforming singular elements originally introduced for homogeneous Isotroplc

elasticity problems [4] to the present quasi three-dlmenslonal, anlsotroplc

composite delamlnatlon problem. Formulation of the singular elements is based

on selection of shape functions and their derivatives containing the exact

elgenvalues which meet the constraint condition Eq. 5 of stress singularity
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derived from the aforementioned eigenfunction analysis for the composite

delamination. Detailed discussion of the nature of the singular elements has

been given in [4]. Only relationships relevant to the current development are

given here.

Consider a six-node triangular element with three degrees of freedom per

node and stress singularity at node I as shown in Fig. l(a). The element has

general rectilinear anisotropic material properties with elastic compliance

Sij. By a proper transformation, any point in the element defined in global

Cartesian coordinates (x,y,z) can be referred to both local polar coordinates

(r,_,z) and triangular coordinates (p,_,z) with the origin located at node

I. Within the element, the displacement components u are related to the nodal

displacements q by the interpolation (or shape) function _s as

u = U(x,y) + u with U = N q, (14a,b)
~ _O ~ ~S ~

where u are known quantities resulted from applied loading, and
~O

T u3 } T {Uol Uo3} (15a)u = { Ul, u2, , u = ,_ ~0 u02 '

q = {q , q , q , q , q , q , ..... , q , q , q , (15b)

= *j)' (lSc)

in which the superscript T denotes transpose of the associated column vector, and

the number in the superscript parentheses in Eq. 15(b) refers to the

associated nodal number of q. Explicit expressions of the shape

function _s' involving proper eigenvalues 6j determined for each individual

delamlnation problem from [I] and local coordinates, are given in Appendix

I. Equation 14(b) can be written in a more explicit form as follows:

_.+1

U = {P J M(_) + L(p,_)} q, (16)
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where L(p,_)~ is the nonslngular polynomial part of Ns(P,_;6j), independent of

the number and location of nodes along the 2-3 edge of the element. Using the

minimum potential energy theorem and following the same procedure as the

conventional dlsplacement-based finite element formulation, we can construct

the element stiffness matrix _s for the crack-tip element as

k = ff BT C B dA, (17)
~s A ~s ~ ~s

s

where C is the material stiffness matrix, and B has the form
~S

B = _(p6j+IM + L) (18)

In Eq. 18, the _ is a matrix differential operator. We remark that the shape

function of the singular element is chosen such that the element conforms with

a nonsingular quadratic element matched through the common element boundary

(i.e., along edge 2-3), and with singular elements of the same formulation

through boundaries 1-2 and 1-3.

The surrounding nonsingular elements used in this study are quasi three-

dimensional, eight-node isoparametric elements [Fig. l(b)] with 24 degrees of

freedom (three D.O.F.'s per node). Formulation of the element stiffness

matrix for the nonslngular element has been given in detail in [12,13]. The

element stiffness matrix _r for the adjacent element can be shown as

k = ff BT C B dA, (19)
_r A ~r ~ ~r

where r

(20)

The shape function _r for an elght-node, quasi three-dlmenslonal isoparametric

element has standard quadratic expressions which can be found in [12,13].
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3.2 Solution Procedure and Iteration Scheme for Crack Closure

In the finite element dlscretization of the delaminated composite, the

singular elements are placed in a ring form with the delaminatlon tlp as the

common node (Fig. 2). The element stiffness matrices _s and _r are true

stiffness matrices relating unknown nodal displacements to nodal force

vectors. The standard procedure of the matrlx-displacement method [14] can be

used to assemble the global stiffness matrix K and loading vector Q leading to

the relationship,

_~Kq = Q~+ Qo'. (21)

where _o denotes the additional nodal force resulted from the applied strain

_o' and the assemblage may be expressed symbolically by

ns nr

K = _ k(i) + _ k(j)

I=I ~s j=l ~r ' (22a)

ns nr

~

" i=l j=l

in which ns and nr are the total numbers of singular and nonslngular elements,

respectively.

In actual numerical computation of a delaminatlon problem, a finite

length of crack closure is assumed first. The problem now becomes an elastic

contact problem because a part of the local boundary conditions is not known

and needs to be determined from the solution. Specifically, the following

continuity conditions are required along the closed portion of the

delamlnatton, -c < r < O:
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[o2(r,=)] ffi0, (23a)

[u2(r,_)] = 0, (23b)

where the bracket [ ] denotes the jump of the associated quantity across the

closed crack surfaces, e.g., u_m+l)(r,-g)_ - u_m)(r,_) = 0. Thus, we solve

Eq. 21 in terms of unknown pressures along the closed crack surface and use

Eq. 23(a) to determine the contact stress on this surface. To enforce the

conditions Eqs. 23(a) and 23(b), the solution technique proposed by

Francavilla and Zienklewicz [15] for an elastic contact problem is employed.

The numerical procedure involves an iteration scheme to determine crack

closure length and contact stress along the delamination surface. If the

solution is admissible, the contact stress so obtained must be in compression

and the displacement field should have no overlapping or interpenetration

outside the contact region. In the case that crack closure length is found to

be extremely small, say, less than the order of 10-5 ^ 10-6 times crack

length, the delamination is then assumed to be open, and the simplified model

discussed in [1,5] and in the preceding sections in this paper is used. For

the case of a delamination with finite-length crack closure, the detailed

iterative algorithm for evaluating crack closure and contact stress is given

in Appendix 2.

3.3 Computation of Delamlnation Stress Intensity Factors and Energy Release
Rates

As mentioned in the preceding sections, the stress intensity factors and

energy release rates for a delamlnation are evaluated from the asymptotic

solution of interlamlnar stresses o2, o6 and o4 (or Oy, rxy and Tyz) and the

displacements ui along the plane of the crack. For a finite dimensional

composite laminate containing delamlnations, the asymptotic stress and

displacement can be conveniently determined by the aforementioned singular
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finite element method. Along the delamination plane _ = _o' the near-fleld

stress and displacement fields are approximated by using Eq. 16 and its

derivatives as

o = p R(Go;_) q, (24a)

5+I

u. = p M(~Go) q~+ _o ' (24b)

where R(Go;6) is a matrix of derivatives of the shape function M and ply

elastic constants, and the p and Go are related to the global coordinates by a

simple transformation given in Appendix I.

For a partially closed delamination or a delamination with a very small

size of crack-tlp closure for which the simplified model with inverse square-

root singularity is used, the stress intensity factors and strain energy

release rates can be evaluated easily from the singular finite element

results. Taking o and u along the delaminatlon crack plane

G° = 0 (i.e., _o = 0) , we can write the asymptotic interlamlnar stresses and

displacements along the interface in simple expressions as

oi = _ r- I/2 (i=2, k=l; i=6, k=2, and
i=4, k=3), (25a)

½
uj = Bk r + Uoj (j=l, k=2; j=2, k=l, and

j=3, k=3), (25b)

where A k and Bk are obtained from the corresponding components of R(__;_) and M(_o) in

Eqs. 24(a) and 24(b) by setting _o = 0, and 6 = -I/2 . Thus, the delamination

stress intensity factors Ki can be easily determined by

Ki = /-_A i (i=l,ll,lll), (26)

The energy release rates can be determined in a manner similar to that for Ki

through Eq. 8 as
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G = G1 + G2 + G3

llm I _a 3 i/2 i/2
= _a+0 2-_ f { _"(Ak r- )[Bk(_a-r ) ]}dr

0 k=l

• llm I _z 3 (_a_r¢/2= &=+0 _/_ f I AkBk r-- dr. (27a)
0 k=l

The term Uoj in Eq. 25(b) is not included, because it does not result in any

contributions to Gi and G after integration. Integration of the singular

integral Eq. 27(a) can be carried out explicitly without difficulty. Then the

strain energy release rates have the form

3

G = [ Gi = _(AIB 1 + A2B 2 + A3B3). (27b)
i=l

We remark here that each term in Eq. 27(b) corresponds to the individual Gi

components and that for a delamination wlth finite crack closure, the first

term in Eq. 27(b) is identically zero, i.e., G1 = 0, because of the continuity

of displacement across the crack surface.
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4. SOLUTIONACCURACYAND CONVERGENCE

To demonstrate the accuracy and efficiency of the present method of

approach, a symmetric angle-ply [45°/-45°/-45°/45 °] graphite-epoxy laminate

containing edge delaminatlons along the 45=/-45 ° ply interace is considered.

For simplicity and without loss of generality, the composite is assumed to be

subjected to uniform axial strain Ez = _o along the z-axis and have a geometry

of b/h = 8 and hI = h2 = h = 0.25 inch and delaminatlons of length a = 0.25

inch emanating from the edges. Elastic ply properties of unidirectional high-
J_

modulus graphlte-epoxy identical to those of Eq. 28 in [I] are used. Owing to

the geometric and lamination symmetry, only a quarter of the cross sectional

area needs to be considered. In finite element discretization of the

continuum, twelve special crack-tip elements of identical size and shape (Fig.

2) are used to model the near-field response of the composite delamlnatlon.

The crack-tip elements are embedded in the mesh of elght-node, quasi three-

dimensional isoparametric elements. Local and overall mesh arrangements for

the finite element analysis of the composite delamlnatlon are shown in Fig.

3. To study the accuracy and convergence of field solutions, the mesh near

the crack tip is continuously refined by halving the lengths of equal sides of

the singular elements (e.g., the sides OE and OF in Fig. 3).

Using the computational method and the solution scheme discussed in the

preceding sections, numerical results are obtained for the convergence

study. Significantly global crack closure with c/a = 0.34 is found for the

delamlnatlon in the [45°/-45°/-45°/45 °] graphite-epoxy under the uniform axial

extension, resulting in a negative KI and identically vanishing GI. [The

detailed nature of delamination closure and related problems will be discussed

in the next section.] In Tables i and 2, delamination stress intensity

factors and energy release rates associated with the finlte-element mesh
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refinement are shown for systemmatlc reduction in crack-tlp element size

(Ah/h) and increase in the total number of elements. It can be seen clearly

that stable and converged solutions for all K_ and Gi are obtainable, as the

crack-tip element size becomes smaller than 0.1h and the associated total

number of elements exceeds I00. As anticipated, the delamlnation stress

intensity factors (Table I) are sensitive to the size of the crack-tlp

elements owing to the localized nature of the singular domain. However, the

strain energy release rates are relatively insensitive to the element size and

mesh refinement (Table 2) because the Gi are related to the global structural

response of the delaminated composite. Furthermore, the crack-closure length

is also found to be insensitive to the mesh refinement in this case.

To assess the accuracy of the current solutions for the composite

delamlnatlon with global crack closure is not trivial because no analytical

and numerical solutions are available in the literature for comparison. The

only analytical study, which may be used as a reference, deals with the

delamlnation problem by assuming the crack surface being fully open and

employing an elgenfunctlon expansion method with the aid of a boundary

collocation technique [3]. In Fig. 4, stress intensity solutions determined

by the present singular finite element method including the crack-closure

consideration are presented as a function of delamlnation length in the [45°/

-45°/-45°/45 °] graphlte-epoxy. The dominant stress intensity factor Ki11

determined for the partially closed composite delamlnatlon by the present

approach is about 6 _ 7% higher than the value for an open crack from the

boundary collocation results. However, solutions for KI obtained by using the

two distinct models differ from each other both in sign and in magnitude. In

the current singular finite element analysis of the delamlnatlon problem, KI

is found always to be negative owing to the aforementioned crack closure,
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whereas KI determined for an assumed open crack is positive. Values of KII

and G2 determined by the two approached are both negligibly small. The strain

energy release rates obtained for the delamination are given in Fig. 5. For

the partially closed delamination determined by the present approach, GI is

identically zero, whereas the value of Gl/(106c_) from the assumed open crack

model is of the order of 10-6--a value much smaller than that of G3, the

dominant component of energy release rates. Despite the different nature at

the crack tip in these two approaches, the values of G3 differ only slightly

from each other.

We remark that though mathematically rigorous, the solution obtained

using the eigenfunction expansion method with the assumption of open crack

surfaces is physically inadmissible because severe interpenetration of

dissimilar materials is found in the oscillatory displacement solution near

the crack tip. Thus, the present singular finite element approach with a

partially closed crack consideration provides physically meaningful solutions

with a high degree of efficiency and accuracy for general composite

delamination problems.



21

5. THE FUNDAMENTALBEHAVIORAND CHAEACTEEISTECSOF COMPOSITEDELAMINATION

In the preceding sections, we have introduced the complete solution

structure and defined the governing fracture mechanics parameters for the

delamlnatlon problem. Special finite elements with singular derivatives have

been formulated to model the near-field response of a delaminatlon in a finite

dimensional composite laminate. Solution convergence and accuracy have been

affirmed in terms of computational parameters (e.g., the size of crack-tip

elements, the degree of finite element dlscretlzatlon, etc.). Having

established these basic mechanics theories and the numerical method, we now

proceed to study the fundamental behavior and characteristics of delaminatlon

in fiber composites with general lamination and geometric variables.

Two fiber composite material systems are examined in this section: (I)

symmetric angle-ply [_8]s graphlte-epoxy laminates with edge delamlnations

between e and -e plies, and (2) symmetric [(_e)/(_8)/90°/90°]s graphite-epoxy

with edge delaminatlons between -e and 90° plies. The symmetric angle-ply

composite laminate system is selected because several unique delamlnatlon

characteristics are observed, which can be used to illustrate most clearly the

basic Interlaminar fracture mechanics and failure modes. More importantly,

some of the most fundamental nature of delamlnation fracture determined from

the presently introduced physically admissible model and mathematically

rigorous solutions are not observable in the previously obtained solutions

which contain the inadmissible oscillatory stress and deformation [3,5]. The

[(_e)/(_8)/90°/-9-_]s graphite-epoxy system is studied also because this

lamination system, especially the one with [(.30°)/(.30°)/90°/_]s fiber

orientations, is currently being considered for use in the evaluation of

interlaminar fracture toughness of composite materials under static and cyclic

loading [16,17]. The ply elastic properties of high-modulus unidirectional
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graphite-epoxy given in Eq. 28 of Ref. [i] are used in all computations. In

the [8/-8/-0/8] composites, the following lamination and geometric parameters

are employed: hI = h2 = h = 0.25 inch and b/h = 8, whereas in the

[(_8)/(_8)/90°/90°] s composite laminates, actual dimensions of unidirectional

graphlte-epoxy used in laboratory experiments [16,17] are taken, i.e.,

hI = h2 = ... = hll = 0.0054 inch and b = 0.75 inch. Moreover, in all cases

studied in this paper the composite laminates are considered to be subjected

to uniform axial extension €z = _o along the z direction.

Since the interlaminar crack-tip deformation and fracture mechanisms are

governed by the asymptotic field solutions, we shall examine the fundamental

behavior and associated characteristics of composite delamlnatlon in terms of

interlamlnar fracture mechanics parameters, i.e., crack-tlp str4ss

intensities, strain energy release rates, and crack-surface closure.

5.1 Influence of Fiber Orlentat_on

The behavior of a delaminat[on in the relatively simple angle-ply [_8]s

laminates is significantly influenced by the fiber orientation 0. Results

obtained by using the iteratlve solution scheme in Section 3.2 reveal that the

delamlnatlon always possesses a finlte-length crack-tlp closure. Assuming

that the crack surface is in frictionless contact, we find that the closure

length is global in general. For example, in the [_8]s graphite-epoxy with

edge delaminations of length a = 0.25 inch, significant crack closure is found

in each case studied (Table 3). The contact-zone size, c/a, varies from

approximately two-tenths to more than one-thlrd of total delaminatlon length

for 8 ranging between 15° to 60°. The crack-tip closure results in a negative

openlng-mode stress intensity factor KI < 0 and an identically vanishing

energy release rate G1 = 0, as shown in Tables 4 and 5. Thus, the

delamlnatlon behavior in the [8/-8/-8/8] composites is apparently governed by
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interlamlnar shear stresses and deformations. In Tables 4 and 5, the out-of-

plane tearing-mode (mode III) stress intensity factor Ki11 and associated

energy release rate G3 are clearly the dominant ones controlling the

delamlnation fracture. (The values of Ki11 and G3 are several orders of

magnitude higher than those of KII and G2.) Also, the composite with e = 15°

possesses the highest Ki11 and G3 among all e's studied. These results

suggest that in symmetric angle-ply composites, delamination initiation and

growth are more intimately associated with local interlaminar shear than

transverse normal stress.

We reiterate that the solutions obtained here by the use of the present

interlamlnar crack-closure model and the rigorous mathematical (combined theo-

retical and numerical) approach are physically admissible and meaningful, as

contrary to the previously obtained inadmissible, oscillatory solutions from

an elgenfunction expansion approach with the assumption of a fully open crack.

In the more complex graphite-epoxy laminates with [(_e)/(_8)/90°/90°]s

ply orientations, delaminatlons are always observed to occur between the -e

and 90° plies [16,17]. Starting with the partially closed crack model and

using the iterative solution scheme, we find that the closure length of a

delamination is less than 10-6 inch. Thus, for this extremely small crack

closure the simplified model with an inverse square-root stress singularity

discussed in Section 4.3 of [i] and in [5,6] is employed. In Figs. 6 and 7,

variations of stress intensities Ki and energy release rates Gi with fiber

orientation 0 are shown for a delamination of length a = 0.5b. The crack tip

is apparently governed by the opening- and inplane shearing-mode stresses; the

KI and KII are one order of magnitude higher than Ki11 for all e's studied.

The value of G3 is vanishingly small in general, and G1 and G2 are three

orders of magnitude higher than G3 because of the extremely small value of
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A3. Note that values of GI, G2 and G3 depend not only on Ki but also on Ai as

indicated in Eqs. 12 and 27(b). [Unfortunately, an explicit relationship

among Ai, ply elastic constants, lamination parameters, geometric, and loading

variables needs to be determined numerically because of the complex algebra

involved.] We remark that the maximum KI and GI appear at e = 32.5 ° and the

maximum KII and G2 occur at e = 35° in the [(_8)1(_8)/90°/90°] s graphlte-epoxy

system. The selection of [(_30°)/(_30°)/90°/90°] s lamination in the recently

proposed interlaminar fracture toughness tests [16,17] using edge-delaminatlon

composite specimens is therefore a proper choice.

5.2 Influence of Ply Thickness

The ply thickness is an important geometric variable in studying the

delamlnatlon behavior of composites. Changing the laminar thickness in a

laminate alters the lateral constraint of adjacent plies in the thickness

direction and, thus, directly affects the interlamlnar crack behavior. For

illustration, fracture mechanics solutions for the [45°/-45°/-45°/45 °]

graphlte-epoxy composites with several ply thicknesses are presented in this

section. For simplicity and without introducing further complications, the

laminate width 2b and thickness 2W as well as the delaminatlon length a are

kept constant as before, while variation of ply thicknesses hI and h2 (with h1

+ h2 = W = 0.5 inch) is considered.

As shown in Figs. 8-10, altering the ply thickness hl/W has appreciable

effects on the fundamental behavior of the delamlnation. For instance, when a

thick outer 45° ply is used, say, hl/W > 0.8, the entire delamlnation surface

is in contact with the other (Fig. I0), leading to a negative KI with G1 =

0. Delaminatlon fracture in this situation is governed by the tearlng-mode

stress intensity factor Ki11 and the associated energy release rate G3 (Figs.

8 and 9). When equal ply thickness, i.e., hI = h2, is used, the in-plane
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shearlng-mode stress intensity KII and the energy release rate G2 are about

zero, and Ki11 has the maximum stress intensification. However, as the outer

45° ply becomes thin, e.g., h I < 0.2W, the surfaces of delamlnation are opened

up, i.e., c/a = 0, as shown in Fig. I0. In this situation, contributions of

KI and KII to the local failure become increasingly appreciable; KII and Ki11

are of the same order of magnitude but G2 and G1 are still relatively small as

compared to G3. In the limiting case of hl/W . 0, the in-plane shear could

become dominant to govern the delamlnation.

5.3 Influence of Interlamlnar Crack Length

For the symmetric composite laminates with either [_8]s or

[(_8)/(_8)/90°/90°] s fiber orientations, the Interlamlnar crack-tlp behavior

is affected by the size of delaminatlon. As discussed in Section 5.1, the

delamlnation in the [8/-8/-8/8] graphlte-epoxy system has a global crack

closure. Figure II reveals general characteristics of the crack closure in

the delaminated [45°/-45°/-45°/45 °] graphite-epoxy. Under a uniform axial

strain go, the crack closure increases monotonically with crack length until

the delaminatlon becomes about two-ply thicknesses. As the delamlnation

extends further, the closure length approaches an asymptotic value of c/h =

0,375, indicating that crack growth is governed by the interlaminar shear Tyz

and the tearing-mode stress intensity factor Ki11 , as shown in Fig. 4. The

values of rxy , KII and G2 are orders of magnitude smaller than those of Tyz,

Ki11 and G3 (Figs. 4 and 5). Note again that crack closure occurs for all

a/h's in the [45°/-45°/-45°/45 °] graphlte-epoxy, leading to an identically

zero GI and negative opening-mode stress intensity factor KI < 0. In the case

of a very small delaminatlon emanating from a free edge under rising load, the

interlamlnar crack is inherently unstable and extends rapidly to about one or

two-ply thicknesses (i.e., the plateaus in Figs. 4 and 5) before stable growth
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would occur. This phenomenon has been indeed observed in laboratory

experiments of edge-delamination tests of [(_30°]/_(30°)/90°/90°] s T300-5208

graphite-epoxy composite laminates [16].

In the [(_30°)/(_30°)/90°/90°] s graphite-epoxy containing delamlnations

between -30 ° and 90° plies, the delamination is found to be open all along the

crack surface for any given a/h, as discussed in Section 5.1. The solutions

for Ki and Gi as a function of delamination length a/b are given in Figs. 12

and 13. Also shown in Fig. 13 are the results reported in [16] by using a

conventional nonsingular finite element method in conjunction with a virtual

crack-closure scheme for calculating the strain energy rates [18]. The

difference is very appreciable to warrant the necessity of using the advanced

analytical and numerical technique for solving the delamination problem

accurately. We observe that local delamination growth in the

[(_30°)/(,30°)/90°/90°] s graphite-epoxy is governed by an inherently three-

dimensional mixed-mode fracture process because the simultaneous presence of

significantly high values of KI, KII and Ki11 shown in Fig. 12. Owing to the

vanishlngly small A3, the value of G3 is found to be negligible in comparison

with GI and G2 (Fig. 13). We remark that in the limiting case of a very small

delamination crack (i.e., a/h + 0), interactions occur between the

delamlnatlon crack tip and the laminate edge, leading to a slightly higher

value of Ki11 as shown in Fig. 12.

A salient feature shown in Figs. 4, 5 and 12, 13 is that the stress

intensity factors Ki and energy release rates Gi become independent of the

crack length a/h or a/b as the delaminatlon extends beyond a few ply

thicknesses. This unique feature has been observed and used in the

experimental study of interlaminar fracture toughness of composite laminates
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[16,17]. Provided that the Ki and GI are accurately determined by appropriate

methods such as the present one, the stress intensity factors and energy

release rates associated with observed edge delamination initiation and growth

may be useful for characterizing delamination fracture and interlamlnar crack

resistance of composite laminates.
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6. SUMMARY_LND CONCLUSIONS

General expressions of stress and deformation fields in a fiber composite

laminate with delaminations have been obtained from presently developed

anisotroplc laminate elasticity theory and basic concepts of interlaminar

fracture mechanics. Fracture mechanics parameters such as stress intensity

factors and energy release rates for delaminations with different crack-tlp

deformation configurations are defined in a manner consistent with those for a

homogeneous crack and for the refined model of an interface crack between

dissimilar isotropic solids [7,8]. In finite-dimenslonal composite laminates

with complex lamination and geometric variables, an advanced numerical method

employing special singular crack-tip finite elements is developed for modeling

the delamination. Exact delaminatlon stress singularities obtained from the

laminate elasticity solution are included in the crack-tip element

formulation. Solution convergence and accuracy have been studied to ensure

the validity of the results and to demonstrate the efficiency and

effectiveness of the method. To illustrate the fundamental nature of

composite delaminatlon, numerical results are shown for the [8/-8/-8/8] and

[(_6)/(±8)/90°/90°]s graphite-epoxy laminate systems containing edge

delamlnations under uniform axial extension. Fracture mechanics parameters

and failure modes associated with the composite delamlnatlon are determined

for each case. The basic mechanics and mechanisms of delamination are studied

for the composites with different lamination and geometric variables and crack

parameters. Based on the results obtained, the following conclusions may be

reached:
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(I) To study the fundamental mechanics of delamination in a composite

laminate having a large number of plies with different fiber orientations,

advanced numerical methods such as the present one are essential to take into

account the crack-tip singularity and the large number of lamination,

material, and geometric variables involved.

(2) In the crack-tlp element formulation, the inclusion of delamlnation

stress singularities determined from the laminate elasticity solution by using

an elgenfunction expansion method leads to very accurate solutions with a

rapid rate of convergence. This is particularly advantageous for studying

delamlnation problems in composite laminates with complex lamination,

geometric, and material variables.

(3) Since the singular elgenvalues and their algebraic multiplicity are

different for different crack tip deformation configurations, the crack

element formulation and solution strategy for each delamination problem need

to be treated on an individual basis. Stress intensity solutions and energy

release rates in each case should be evaluated in accordance with the

appropriate delamlnation models given in Section 2.

(4) The state of stress and deformation in the vicinity of a delaminatlon

crack tip are three dimensional in general. The asymptotic solutions can not

be determined accurately by using classical lamination theory nor by any

approximate methods without including interlaminar stresses and the correct

stress singularities associated with the delamlnation. The current laminate

elasticity solution and associated numerical method provide accurate

information on the singular nature of the crack tip and complete field

solutions for the delamination problem.
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(5) The singular delamlnation stress field may be characterized by the

presently introduced interlamlnar fracture mechanics parameters. Crack-tlp

stress intensity factors Ki and energy release rates Gi can be determined only

by solving the complete boundary-value problem. In contrast to the singular

elgenvalues which depend only on local boundary conditions and material

properties of adjacent plies, the Ki and Gi are functions of all lamination

and geometric parameters, remote loading conditions, and crack variables.

(6) Owing to the local nature of interlamlnar fracture, the mechanics and

mechanisms of delamlnation growth are governed by the crack-tip stress

intensity factors. In angle-ply [8/-8/-0/8] graphlte-epoxy, crack-tlp closure

occurs and, thus, KI < 0; delamination growth may be, therefore, more

intimately related to interlamlnar shear stresses and interface shear strength

than the transverse normal stress. In the cases of [(_8)/(_8)/90°/90°] s

graphite-epoxy, crack surfaces are open and delamination growth is controlled

by all of the three-dlmenslonal, mixed-mode stress intensity factors, KI, KII ,

and Ki11 .

(7) While the Ki govern local deformation and delaminatlon fracture, the

Gi are related to the global structural response and less sensitive to the

local deformation and fracture. For example, the total G and G3 differ only

slightly between the cases of a delamlnatlon with a closed and an open crack

tip in the [8/-8/-8/8] graphite-epoxy composite. Thus, _ may provide a more

sensitive measure and, thus, better fracture parameters than Gi for evaluating

the composite delamlnatlon growth.

(8) Influences of lamination variables such as fiber orientation and ply

thickness on the delamlnation behavior are significant. Changing fiber

orientation generally alters failure modes appreciably. For instance, in

[(_8)/(_0)/90°/90°] s graphlte-ePOxY, the openlng-mode (KI) dominated
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delamination fracture changes into a shearing-mode (KII) controlled failure,

as the 8 becomes greater than 40@. Also, increasing ply thickness hl/W in

[0/-8/-0/8] graphlte-epoxy affects the failure mode from a shearing-domlnated,

open delamlnation fracture to a closed one.

(9) Stress intensity solutions and energy release rates appear to be

independent of crack length during the growth of an edge delaminatlon, as long

as the crack exceeds a length of few ply thicknesses [3,19]. This unique

feature in composite edge-delamination is being used for evaluating of

interlaminar fracture toughness of fiber composite laminates [16,17], provided

that the Ki and Gi can be calculated accurately by using advanced analytical

methods such as the present one.
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TABLE i

i
Delamination Stress Intensity Factors Ki Associated with

Finite-Element Mesh Refinement in [45°/-45°/-45°/45 °] Graphite-Epoxy

No. of Element Size *

Elements (Ah/h) KI KII Ki11

72 0.25 -0.6458E-I 0.3424E-2 -0.7114E 0

84 0.125 -0.6219E-I 0.2463E-2 -0.6967E 0

96 0.0625 -0.6141E-I 0.1796E-2 -0.6894E 0

108 0.03125 -0.6152E-I 0.1401E-2 -0.6855E 0

IKi are normalized by 106g (psi- i/_n).
o

Closed crack tip with c/a = 0.34.
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TABLE 2

Delamination Energy Release Rates Gi t Associated with

Finite-Element Mesh Refinement in [45°/-45°/-45°/45 °] Graphite-Epoxy

No. of Element Size *

Elements (Ah/h) GI G2 G3

72 0.25 O. 0.6855E-6 0.1533E 0

84 0.125 0. 0.5528E-6 0.1519E 0

96 0.0625 0. 0.4619E-6 0.1512E 0

108 0.03125 0. 0.3943E-6 0.1508E 0

±Gi are normalized by 106s 2 (ib-in/in2).
o

Closed crack tip with c/a = 0.34
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TABLE 3

Influence of Fiber Orientation on Crack-Tip Closure Length.

for a Delamination in [8/-8/-8/8] Graphite-Epoxy Composite t

8 c/a

0 ° 0.0

15° 0.2292

30o 0.2834

45 ° 0.3402

60 ° 0.3603

thl _-z_= 0.25 in., b = 2 in.;
a = .25 in.

at strain g = lO-6
o
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TABLE 4

•
Effectsof Fiber Orientationson Stress IntensitySolutions

for Delamination in [8/-8/-8/8] Graphite-Epoxy Composite %

8 KI KII Ki11

0° O. O. O.

15° -0.3782E-I 0.3866E-2 -0.2379E 1

30° -0.I072E 0 0.8744E-2 -0.1943E i

45 ° -0.6152E 0 0.1401E-2 -0.6855E 0

60° -0.8599E-2 0.2034E-3 -0.9270E-I

%hI = h2 = 0.25 in., b = 2.0 in.; a = 0.25 in.

Ki are scaled by 106E [psi- i/i'_n].o
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TABLE 5

Effects of Fiber Orientation on Strain Energy Release Rates t
for a Delamination in [0/-e/-e/0] Graphite-Epoxy Composite

tt
e GI G2 G3

0 ° O. 0.0 0.0

15° O. 0.6059E-5 0.2111E i

30° 0. 0.2748E-4 0.I074E i

45 ° 0. 0.3943E-6 0.1508E 0

60 ° O. 0.1425E-7 0.3597E-2

thI = h2 = 0.25 in., b = 2 in.; a = 0.25 in.

G.I are scaled by (I06_)[ib-in/in2].

ttG 1 is identically zero due to crack-tip closure.
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9. LIST OF FIGURE CAPTIONS

Fig. 1 (a) Slx-Node Quasi Three-Dimenslonal Crack-Tip Element wlth Singular
Derivatives; (b) Eight-Node Quasi Three-Dlmenslonal (nonslngular)

Isoparametrlc Element.

Flg. 2 Arrangement of Special Crack-Tlp Elements for the Composite
Delamlnatlon Problem.

Fig. 3 Overall and Local Crack-Tip Flnite-Element Mesh Arrangements for

Modeling Delaminatlon in [45°/-45°/-45°/45 °] Graphite-Epoxy

Composite.

Fig. 4 Comparison of Stress Intensity Solutions Obtained by Two Different

Models/Approaches for Delaminatlon in [45°/-45°/-45°/45 °] Graphite-

Epoxy Subjected to Uniform Axial Strain c = €z o

(hI = h 2 = h = 0.25 in., b/h = 8 in., a = 0.25 in.).

Flg. 5 Comparison of Energy Release Rates Determined by Two Different
Models/Approaches for Delamlnatlon in [45°/-45°/-450/45 °] Graphite-

Epoxy Subjected to Uniform Axial Strain = €

(h I = h2 = h = 0.25 in., b/h = 8, a = 0._ in._.

Fig. 6 Variation of Stress Intensity Factors Ki with Fiber Orientation e for
Delaminatlon in [(_e)/(_e)/90°/90°]s Graphite-Epoxy under Uniform

Axial Strain €z = co (h I = h2 = ... = hll = 0.0054 in.,
b = 0.75 in., a = 0.5b).

Flg. 7 Variation of Strain Energy Release Rates Gi with Fiber Orientations 0
for Delamination in [(_0)/(_0)/90°/90°]s Graphite-Epoxy under Uniform

Axial Strain €z = go (hl = h2 = "'" = hll = 0.0054 in., b = 0.75 in.,
a = 0.5b).

Fig. 8 Influence of Ply Thickness hl/W on Stress Intensity Factors for
Delamlnatlon in [45°/-45°/-45°/45 °] Graphlte-Epoxy Subjected to

Uniform Axial Strain €z = co (hI + h2 = W = 0.5 in., 2b/W = 8,
a = 0.25 in.).

Fig. 9 Influence of Ply Thickness hl/W on Energy Release Rates Gi for
Delamination in [45°/-450/-45°/45 °] Graphlte-Epoxy Subjected to

Uniform Axial Strain, €z = co (hI + h2 = W = 0.5 in., 2b/W = 8,
a = 0.25 in.).

Fig. I0 Crack-Tlp Closure Length as a Function of Ply Thickness hl/W for
Delamlnation in [45°/-45°/-45°/45 °] Graphite-Epoxy Subjected to

Uniform Axial Strain €z = co (hI + h2 = W = 0.5 in., 2b/W = 8,
a = 0.25 in.).

Fig. ii Crack-Tip Closure Length c/h as a Function of Delamlnation Slze a/h
in [45°/-45°/-45°/45 °] Graphlte-Epoxy Subjected to Uniform Axial

Strain €z = co (hI = h2 = h = 0.25 in., b/h = 8, a = 0.25 in.).
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Fig. 12 Change of Stress Intensity Solutions Ki with Delamlnatlon Length a/b

in [(,30@)/(_30@)/90@/90°] s Graphlte-Epoxy Subjected to Uniform Axial

Strain €z = Eo (hI = h2 = ... = hll = 0.0054 in., b = 0.75 in.).

. Fig. 13 Change of Strain Energy Release Rates Gi with Delamlnation Length a/b

in [(_30@)/('300)/900/9--0-_]s Graphlte-Epoxy Subjected to Uniform Axial

Strain €z = _o (hl = h2 = "'" = hll = 0.0054 in., b = 0.75 in.).
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Fig. I (a) Six-Node Quasi Three-Dlmenslonal Crack-Tlp Element wlth
Singular Derivatives; (b) Eight-Node Quasi Three-Dlmenslonal

(nonsingular) Isoparametric Element.
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Composite.
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in [45°/-45°/-45°/45 °] Graphite-Epoxy Subjected to Uniform Axial Strain €z = co (hI = h2 =
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Fig. 5 Comparison of Energy Release Rates Determined by Two Different Models for Delamination in
[45°/-45°/-45°/45 °] Graphite-Epoxy Subjected to Uniform Axial Strain _z = _o (hi = h2 = h =

0.25 in., b/h = 8, a = 0.25 in.).
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Fig. 8 Influence of Ply Thickness hl/W on Stress Intensity Factors for
Delamlnatlon in [450/-450/-45°/45 °] Graphlte-Epoxy Subjected to

Uniform Axial Strain €z = co (hI + h2 = W = 0.5 in., 2b/W = 8, c =
0.25 in.).
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Fig. 9 Influence of Ply Thickness hl/W on Energy Release Rates GI for
Delamlnatlon in [45°/-45°/-45°/450] Graphlte-Epoxy Subjected to

Uniform Axial Strain, _z = Eo (hl + h2 = W = 0.5 in., 2b/W = 8, a =
0.25 in.).
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Fig. I0 Crack-Tip Closure Length as a Function of Ply Thickness hl/W for
Delamlnatlon in [45°/-45°/-45°/45 °] Graphlte-Epoxy Subjected to

Uniform Axial Strain _z = _o (hl + h2 = W = 0.5 in., 2b/W = 8, a=
0.25 in.).
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in.).
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APPENDIX I

Shape Functions Ns(P ,_ ;_) for the Singular Delmalnation Crack-Tip Element

Corresponding to a singular elgenvalue 6, the shape functions _s in local

,. triangular polar coordinates (p,_) for the six-node conforming crack-tlp

element in the delamination problem are shown [4] to have the following

expressions:

Nil = 1 + [(2-2-_)p-p_+l]/(2-_-l), (AI-I)

= 2-6p(I-_)/(2-_-I) - p_+I[2_(I-_)+(I-_)/(2-_-I)], (AI-2)
Ni(3+i)

Ni(6+i) = 2-_p_/(2-_-I) - p_+I[2_(I-_)+_/(2-_-I)], (AI-3)

Ni(9+i) = - [2p(l-_)+2p6+l(l-_)]/(2-_-l), (AI-4)

= 4p6+i_(I-_), (AI-5)
Ni(12+i)

Ni(i5+i ) = - 2[p_-p6+l_]/(2-6-1), (i = 1,2,3), (AI-6)

where the singular elgenvalues 6's are determined in accordance with the local

crack-surface boundary conditions discussed in Section 2.1, and the p and

are related to the global coordinates by

(x2-xl) tan _ -(y2-Yl )

= (y3-Y2) -(x3-x2) tan _' (AI-7)

p = r/f(_), (AI-8)

in which

f(_) = {(x2-xl)2+(y2-Yl)2+2_[(x2-xl)(X3-X2)+(y2-Yl)(y3-Y2) ]

+_2[(x3-x2)2+(y3-Y2)2]}I/2. (AI-9)



56

APPENDIX 2

Iteration Scheme for Partially Closed Dela_Inatlon

For a delamination with crack surfaces in flnlte-length contact, the

following iteration scheme is used for determining contact stress and crack

closure length:

(1) Assume an initial contact length Cl, and solve Eq. 21 with the side

conditions Eqs. 23(a) and 23(b) for contact stress and displacement.

(ii) Check the solution against preset criterion qf. If the compressive

stress F1 = o2(-ci,_) gives a ql [ql _ [(FI-Fo)/Fo[, and FO is a

properly selected sealing factor, for example, Fo is set as 106 _o

(psi), in the present calculation.] such that nI < qf and if the

displacement field is admissible (i.e., no overlapping or

interpenetration beyond the contact region), we set the crack closure

length c = cI and terminate the iteration.

(lii) If the two constraint conditions are not met, a new contact length c2 >

cI is assumed and the procedure of (i) and (il) is repeated for F2 and

u2•

(iv) If Fi < 0 (i = 1,2) and [n2[ > lql[ > qf, the next assumed length c3

should be c3 < c I, and repeat (ill) and (iv).

(v) If either Fi < 0 and [qll > lq2[ > qf or FIF 2 < 0 and [qi[ > _f, the

next assumed contact length is set as

c3 = c2 + F2(c2-Cl)/(FI-F2). (A2-1)

The iteration from (i)-(ili) continues until sufficient accuracy is

reached.
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(vi) As the constraint conditions are satisfied and the difference between

assumed contact lengths is ICn+l-Cnl < co, the iteration is terminated

with c = I/2ICn+l+Cnl.
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