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ABSTRACT

A design technique is proposed for linear regulators in which a feedback

controller of fixed structure is chosen to minimize an integral quadratic

objective function subject to the satisfaction of integral quadratic

constraint functions. Application of a nonlinear programming algorithm to

this mathematically tractable formulation results in an efficient and useful

computer-aided design tool. Particular attention is paid to computational

efficiency and various recommendations are made. Two design examples

illustrate the flexibility of the approach and highlight the special insight

afforded to the designer.
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Introduction

Research into control system optimization has followed a number of

separate paths following the interest generated by the linear quadratic

regulator (LQR) approach. Although it possesses attractive properties the LQR

method suffers from two main drawbacks:

i) the resulting controller requires access to the full set of plant

states or to a state reconstructor, and,

ii) the scalar quadratic cost function is inadequate for the

representation of a set of design objectives.

Levine and Athans (1970) pioneered the suboptimal regulator (SOR)

approach by prespecifying the feedback controller structure but retaining the

quadratic cost function adopted in the LQR design. Various features can be

incorporated within the S0R context by expanding the cost function to include

such measures as trajectory sensitivity and model-following (see Fleming

1979). Computationally this is an attractive approach but it still suffers

from the inadequacy of the scalar quadratic measure to describe all the

different facets of system performance.

Another line of attack was prompted by Schy, Adams and Johnson (1973) and

Zakian (1973) in which system constraints and specifications are represented

by a set of simultaneous algebraic inequalities. Thus the problem description

could incude such basic control design parameters as overshoot, damping,

settling time, etc. Polak and Mayne advanced this approach by posing semi-

infinite programming problems in which design objectives are realized by

minimizing a function subject to a set of inequalities where these objectives

can be expressed as infinite dimensional constraints (Mayne, Polak and

Sangiovanni-Vincentelli 1982). Such problems require special mathematical

programming algorithms to handle the infinite dimensional constraints and,

sometimes, nondifferentiable functions.



The linear quadratic constrained regulator (LQCR) method described here

strikes a compromise between these two approaches. Common to all is the

prespecification of controller structure; here an integral quadratic objective

function is minimized subject to a set of integral quadratic constraint

functions which may represent bounds on control energy, sensitivity measures,

model-following errors, etc. An efficient solution procedure, based on

readily available software, arises from this formulation and has led to an

effective computer-aided design package being constructed on a 32-bit

minicomputer.

Two design examples which illustrate some novel features of the method

are presented. Various controller configurations are studied for helicopter

regulation where it is found that the identification of active constraints

affords the designer additional insight into the problem. In a flight control

example sensitivity reduction is an objective and a trade-off curve proves

useful in selection of a suitable controller.

2. ATypical LQCR Problem

Given a linear time-variant plant

pUp = C x ,x = A x + B , _yp--p p--p p--p

where

x = n x 1 plant vector
--p

u = m x 1 control vector
--p

and

Zp r x 1 output vector,



and a fixed controller structure,

Up = Koyyp,

a typical LQCR design might seek a controller gain matrix, K0, to regulate the

output responses subject to certain control energy limitations, i.e.

T

minimize f0ypQ0Ypdt,
w.r.t.K 0

subject to
oo

u2 dt <_z£, _=l,2,..-,m,
0 P£

where z_ are constraint bounds.

In a corresponding SOR design this problem would be approximately solved

by successive minimizations of

oo

J = _ {yTQp_Yyp+u_TRpup}tit,

where the designer strives to find the appropriate choice of Qp and Rp to

satisfy the control energy constraints.

Thus what was previously solved in a number of unconstrained optimization

designs (SOR) is now accomplished in a single constrained optimization design

(LQCR). It is this "one-pass" solution procedure which makes the approach so

appealing to a designer. Although an LQCR solution requires more computing

time than an SOR solution it requires considerably less time than the sequence

of SOR solutions necessary to solve the problem. Moreover use of the linear-

quadratic formulation leads to suprisingly modest computing time overheads

when compared with an S0R solution.



3. Design Procedure

The design options available in the LQCR program are closely related to

those found to be useful in an earlier SOR program (Fleming 1979). The design

procedure summarized here is simply intended to be representative of the

underlying concept. Future users will invent new design options appropriate

to their needs.

The linear time-invariant plant description is

x = A x + B Xp(O)_p P--P pUp, = x (I)
--Po

yp = CpXp, (2)

and the controller configuration options available to the designer are:

i) Full state feedback

u = K x (3)--p s--p

ii) Output feedback

u = K (4)--p OZp

iii) Dynamic compensation

u = AcY_@ + B x , (5)--p c--c

where x is an s x 1 compensator vector which satisfies the dynamic-c

equation

_c = CcXp + DcXc'-- --cX(0) = 0. (6)

Having selected a controller configuration the designer specifies the

objective and constraint functions for the nonlinear programming problem:



minimize Jo

such that

J£ _ z£, £=1,2,...,q,

where z£ are constraint bounds and the set of cost functions, J£,

£=0,1,...,q have the basic infinite-time quadratic integral form:

oo

J£ = /0 (xTQ x +uTR u )dt, £=0,I,''""-9 P£--P --P P£-P 'q"

These cost functions may be expanded or modified according to the

circumstances of the design. For example, a quadratic penalty term x R
' C C_--C '

may be included if the dynamic compensation option is selected.

For the case where Ap and Bp (equation (I)) are functions of a scalar

time-invariant parameter, _, a differential trajectory sensitivity

vector, x = _x /_, is introduced which satisfies the equation
--s --p

x --A x + B u + A x + B 3Up/3e, x (0) = 0,-_s s--p s--p p--s p --s

derived by partially differentiating equation (I) with respect to a, where

A = 3A /8_ and B = 3B /_. If sensitivity reduction is an objective then
s p s p

the quadratic sensitivity measure, xT0 x may be included in the cost
--S S£--S'

functions.

In order to monitor how well a set of plant trajectories match a set of

"model" trajectorieseither virtual model-following(VMF) or implicitmodel-

following (IMF) terms may be implemented. A quadratic measure of the

difference between plant and model outputs, (yp-yym)TQp£(y_p-y_ym), (VMF) or state

derivatives (_ __ ]TQ (_ __ ) (IMF) replaces the usual state measure, where
' "--p--m" P£ -p --m'

the model responseis definedby
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x = Am_x,

Y-m = Cm_mX'

x = v x 1 model state vector and =
--m Y-m r x 1 model output vector.

Weighting matrices QP£' Qs£, Rp£ and Rc£ will usually be diagonal and

while it is possible to include more than one cost function option in either

the objective or constraint functions it will be more beneficial in an LQCR

design to identify these features separately. Indeed a cost function need

only focus on a single vector element thus allowing the designer to exercise

very precise control over competing functions in the minimization process.

4. Formulation of Nonlinear Programming Problem

Depending on the selected design options the plant state vector, _p, will

be augmented to incorporate a compensator state vector, _c' a trajectory

sensitivity vector, _s' and a model state vector, x to form the system state

vector, _. This leads to the following concise expressions for the system

state equation and cost functions:

System _x = A(K)x,_ _x(0) =-_0' (7)

where A(K) = A + BIKC I + B2KC 2 (8)

Objective/Constraint Functions

T_

J% = f _ Q£(K)_dt, £=0,1,...,q, (9)
0



where

Q£(K) = Q£ + cTKTR£KC,. (I0)

Matrices A,BI,B2,CI,C2,Q£ and R£ are easily derived from the input

matrices A ,Am,As, P£P Bp,Bs,Cp,Cm,Qp£,Qs ,Rc£ and R ; their composition is

described in Fleming (1979). Matrices A and Q_ are functions of the gain

matrix, K, containing the optimization parameters, and it may have one of

three constructions:

i) Full state feedback

K=K
s

ii) Output feedback

K = K0

lliOynalccompensatlon[ BJccm -- •

D
c c

Note that it is not imperative for all of the elements, kij , of K to be

variable: some may be fixed to zero or constant values to aid investigation

of gain redundancy, specific compensator structures, etc. (See Fleming

1981)• Collecting the variable elements of K into a parameter vector, k, we

have the nonlinear programming problem:

minimize

Jo (ii)
w.r.t, k

subject to the inequality constraints



J£ - z£ _ 0, £=1,2,...,q, (12)

where the cost functions are governed by the system state equation (7).

Given a particular value for K the cost

functions, J£,£ = 0,1,...q, (9), can be computed from

J£ = tr(P£X0), £=O,l,''',q, (13)

T

where X0 --x0_ 0 and P£ satisfies the Liapunov matrix equation

P% ATp £ = -Q ..+ £' _o=0,I,- ,q, (14)

provided that A is a stable matrix.

Analytic expressions for the gradients of the cost functions (13) with

respect to the controller gain matrix K, are derived here using an approach

similar to that of Wilson (1970). Differentiating (13) with respect to a gain

element, kij , of matrix, K, we have

_J£ _Qz ],
_kij - 2tr(AP£, 3A-_-_ij)+ trIA _kij j (15)

where A satisfies the Liapunov matrix equation

AAT +AA + X0 = 0, (16)

and combining (8), (i0) and (15) it follows that

3J£ 2( T T T T T- BIP£ACI+B2P_AC2+R_KCIACI ) (17)3K



The gradient vector, _J£/_k, can be easily constructed from (17).

It is evident from (13) that the solution is initial condition dependent,

however when initial conditions are unknown, matrix X0 may be modified so

that either E{J%}, xaVe j_ or maXx J% are evaluated (see Fleming 1979).
--P0 --P0

It is a simple matter to extend the nonlinear programming problem, (Ii)

and (12), to include direct constraints on gain parameters. Expressed as a

general algebraic expression

f%(k) < 0, %=1,2,.-.,w (18)

these constraints may simply represent bounds on certain variable gains,

kij. Analytic gradients are obtained in a straightforward manner.

5. Solution Proaedure

5.1. Nonlinear Programming Algorithm

Following a short survey of algorithms using the ADS program package

(Vanderplaats 1983) it was established that the use of analytic gradients (17)

is preferred to that of using finite difference approximations, resulting in

improved accuracy and solution times. Four algorithms were compared:

a) Method of feasible directions (Zoutendijk 1960; Vanderplaats 1973),

b) Sequential unconstrained minimization technique (SUMT) using the

quadratic exterior penalty function method (Fiacco and McCormick 1968),

c) SUMT using the quadratic extended interior penalty function method

(Haftka and Starnes 1976), and

d) Augmented Lagrangian multiplier method (Powell 1978).
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Although (c) was the most accurate, (a) was found to be the most satisfactory

algorithm within the CAD context, yielding solution times 6-8 times faster

than (b), (c) and (d) for comparable accuracy levels. The promising iterative

quadratic programming method of Powell (1978) will be tested using a

forthcoming version of ADS.

Zoutendijk's Method of Feasible Directions initially finds a feasible

point and then proceeds by iteratively searching along feasible directions.

In the program package the BFGS variable metric method (e.g. Fletcher 1970) is

employed within the feasible directions method if no constraints are

violated. At eacb iteration gradient information is required only for the

active or violated constraints. The objective and constraint functions are

computed at each iteration and within the line search procedures for each new

estimate of K.

5.2. Liapunov Matrix Equations (LMEs)

A breakdown of CPU usage reveals that function and gradient evaluations

dominate the solution time and these evaluations, in turn, are subject to the

efficiency of the solution of the LMEs, (14) and (16). Generally recognized

as the most efficient general LME solver, the method of Bartels and Stewart

(1972) possesses additional properties which may be exploited in this

application. It is a transformation method which reduces A, (14), to its

real Schur form and then obtains a solution by solving sets of linear systems

whose individual orders do not exceed four. Therefore only one Schur

reduction of A per estimate of K is required for the solution of the

(q+2) LMEs, (14) and (16), when computing the objective and constraint

functions, (13), and their gradients, (17). The solution of the LMEs is
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further accelerated by exploiting certain structural and sparseness properties

of A,Q% and XO. The computing time for the Bartels-Stewart algorithm is

proportional to N3, where N is the order of the LME.

It should be noted that there are circumstances under which the LMEs are

more efficiently solved using the direct method of MacFarlane (1963).

Although the computing time for this method for one LME solution is

proportional to N6, subsequent solutions for different O% (14) rely only on

the application of back substitution. However the execution time superiority

of this method only prevails for certain combinations of small N and large

q (12). For large N the Bartels-Stewart algorithm is the most efficient

and is the recommended technique.

5.3. Obtaining and Maintaining a Stable Matrix

While it is permissible to start the optimization from an infeasible

point with respect to the constraints (12) and (18), the solution of (14)

demands that the initial parameter vector, k, and subsequent estimates of this

vector stabilize the system (7). An expression constraining eigenvalues of

A to have negative real parts cannot be included in the nonlinear programming

problem description since violation of this constraint invalidates the

solution of (14). A steepest descent technique similar to that of Koenigsberg

and Frederick (1970) is recommended to search for a stabilizing value of k

should one be unavailable.

Subsequently the eigenvalues of A are monitored throughout the

optimization search procedure. Although the problem is such that the routine

will tend to generate stabilizing values of k, computational traps have been

set to inhibit excursions into the unstable region. Should such a violation
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occur the line search step is repeatedly halved until a stable value of k is

reached. Use of the Bartels-Stewart method for solving LMEs permits economic

evaluation of the eigenvalues from the diagonal and principal subdiagonal

elements of the Schur form of A.

6. Application Examples

6.1 Alternative Controller Configurations

Helicopter longitudinal dynamics are described in Michael and Farrar

T

(1973) for a plant which has four states, x = [_ ,Uz,e,0]T, and two--p x

controls _ = [Ul,U2 ]T. The goal is to satisfactorily regulate _x, and Pz

(forward and vertical velocities) employing feedback from only two states,

8 and e (pitch angle and pitch rate), since the use of airspeed sensors for

and _ is undesirable. An LQR design, incorporating full statePx z

feedback, defines a satisfactory model response:

X_m = (A +B K*]x = A x ," p p s'--m m-m

where

U = K x •
--p s--p

The aim here is to attempt to match this model response without recourse to

the use of airspeed sensors and recognizing control magnitude limitations.

Thus we have the LQCR design problem in which we seek a controller having

an acceptable configuration to minimize the model-following error term

(% TQp x -xJo = f -Xm) (--p--m)dt'0
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where Qp = diag (I,I,0,0), subject to the control energy constraints

oo 2

Jl = f0Ul dt - 4.06 < 0,

oo

J2 = f0u_ dt - 6.57 < 0,

where the control energy bounds are those limiting the LQR design. Tabulated

design results for three controller configuration besides the LQR controller

are presented.

Table I. Design results for various controller configurations

Controller Gain Matrix, K J0 Active Constraints

LQR u = x 0 Jl ' J2
--p .38 1.98 -0.26 -0.06 --p

I°°I°°1411 u = 0.072 J2
--p -0.25 0.22

2 u = 8 0.35 J2
--p - 25

3 _P: .06-0.30|e 0.10
-I .37J Xcx c

Identification of the active constraint for the design of Controllers 1 and 2

indicates that relaxation of the control energy bound on u2 will lead to

improved model-following. It is clear from Figs. I and 2 that excellent

model-following is achieved by Controller I, while Controller 2, employing

pitch angle feedback only, obtains less satisfactory results.
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Implementing controller dynamics with pitch angle feedback (Controller 3)

produces model-following results comparable to those of Controller I. For

this design gain element k31 was fixed at unity in order to realize a

minimal parameter form for the compensator.

It is interesting to find that for the control configurations 1 and 2,

only control u2 is exercised to the limit (its energy term is active at the

minimum) in pursuit of the model-following objective, thus implying that

increased uI control energy degrades the model-following capability. This

is simply caused by implementation of these new control configurations and is

not due to any properties of the model since the same effect was noted for an

objective function containing plant output terms alone.

A fuller discussion of this example is contained in Fleming (1983), where

it is shown that the control energy bounds are effective in limiting maximum

control magnitudes.

6.2 Sensitivity Reduction

This example exercises two cost function options: sensitivity reduction

and implicit model-following. IMF is employed in favor of VMF since it

results in a lower-order system description and is sufficiently accurate for

this application.

We consider the flight dynamics of an aerodynamically unstable aircraft

(Grubel and Kreisselmeier 1974):

= A (a) + B (a)u,
--P p _p p
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where the components of x are incremental longitudinal velocity, flight
--p

path angle, y, pitch rate and pitch angle. The control input is the elevator

deflection. Plant matrices _ and Bp are dependent on a parameter

s (0.3<s<0.7) which is the relative position of the c.g. of the aircraft.

Plant and sensitivity matrices _, Bp, As, and Bs are evaluated for

s0 = 0.5 and may be determined from Grubel and Kreisselmeier (1974). In

their paper, the authors solved the LQR problem and observed the flight path

angle response to the initial condition x = [0 1 0 I]T (see Fig. 3). The
--Po

nominal response (s0 = 0.5) satisfies the design goal of following a step

input with essentially no overshoot in a 5 percent settling time of 2s.

However the trajectories for off-nominal parameter values are

unsatisfactory: a sluggish response for s = 0.3 and 73 percent overshoot

for s = 0.7.

The aim of the LQCR design is to find a controller of similar magnitude

which gives a comparable flight path angle response for s = 0.5 and is less

sensitive to parameter variations. We therefore seek the full state feedback

controller, u = KXp, which minimizes the sensitivity measure--p

J0 = f xTQ x dt (19)
o--S S--S

subject to the constraints on model-following errors,

oo

Jl = f (x-x )Q (x-x )dt- zI < 0 (20)
0 -p --m p --p-m

and control energy,
oo

J2 = f R u2dt - z2 < O, (21)
oPP
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where Qs = diag (0,I,0,0), Qp = l,Rp = i00, z2 = 7.77 and the model state

vector is derived from the LQR response for _ = 0.5. The bound z2

corresponds to the LQR control energy measure and the model-following error

bound, Zl, is open to experimentation by the designer. It was found that the

control energy constraint was ineffective in limiting the magnitude of

Up(O) which played an important role in sensitivity reduction. To maintain a

consistent comparison with the LQR design the following two algebraic

constraints of the form (18) were added:

k12 + k14 - u _ 0 (22)
PO

-(k12+k14 ) - Up0 < O, (23)
where

u (0) = K x
P

--P0

= [kllkl2kl3kl4 ]

= k12 + k14,

and for the LQR design, u (0) = u = 0.60.
P PO

LQCR designs were carried out for a range of values of zI to examine

the expected trade-off between sensitivity reduction and model-following (see

Fig. 4). This trade-off curve suggests that Controller A is a candidate for

"best" design and the corresponding flight path angle response is illustrated

in Fig. 5(a). Here trajectory dispersion of y is reduced with overshoot for

= 0.7 less than 35% while the nominal response has no overshoot and a 5

percent settling time of 3.0s. Controller B improves on model-following
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capability at the expense of sensitivity reduction (see Fig. 5(b)). In both

designs the active constraints are equations (20) and (22).

At this level of model-following error (Zl=l) we investigate the effect

of abandoning the control constraints altogether, i.e. dropping constraints

(21)-(23), to find the amount of sensitivity reduction possible under these

relaxed conditions. The resulting flight path angle y, response due to

Controller C is illustrated in Fig. 5(c), where we observe, in particular,

that overshoot for the _ = 0.7 case is reduced to 44%; the actual

sensitivity measure (19), Jo' is 3.40. Since the additional control effort,

oo

f lOOu2dt = 8.09,
0 P

u (0) = 0.76,
P

is relatively minor the implication is that relaxing control constraints pays

substantial dividends for this sensitivity-accented problem.

6.3. Computing Details

These examples were worked on a VAX 11/95 minicomputer which operated a

conversational-mode CAD package employing the algorithms recommended in

Section 5. Both examples required augmented system descriptions (7) of order

8 (order 9 for the dynamic compensation case in 6.1) and the number of

minimizing variables ranged from 2 to 5. Computing times for individual

designs varied according to solution accuracy demands and initial controller

gain estimates but took typically 20-100 seconds of CPU time. Tests carried

out on corresponding SOR designs indicated that LQCR designs required 4-8



18

times more computing time. It must be remembered, however, that the SOR

design process is essentially iterative requiring a large number of designs

before approaching the results of a single LQCR design.

7. Concluding Remarks

Nonlinear programming has been applied to regulator design in a variant

of the LQR design procedure. The approach has significant advantages allowing

different controller configurations to be tested and invoking sensitivity and

model-following terms together with the more usual state and control terms in

the design functions. It achieves design goals in a more direct and

convenient manner than its SOR design counterparts. Used as a one-pass

solution procedure (Section 6.1) or in the generation of trade-off curves

(Section 6.2) each design yields a variety of information from inspection of

objective and constraint values at the solution.

Its format is flexible, based on a linear-quadratic formulation, and may

be easily modified for different user's requirements, e.g. inclusion of

disturbance measures, new sensitivity approaches. The integral quadratic

measures which represent the objective and constraint functions may be readily

interpreted as RMS values in designs which include a noise term in the system

description.
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Figure 5. Flight path angle, y, responses for a) Controller A,

b) Controller B, c) Controller C.
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