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ABSTRACT

Nisheeth Patel, Doctor of Philosophy, 1983

Major: Engineering, Department of Aerospace Engineering

Title of Dissertation: A Fully Vectorized Numerical Solution of the
Incompressible Navier-Stokes Equations

Directed by: Joe F. Thompson

Pages in Disseration: 160 Words in Abstract: 253

A vectordizable algorithm is presented for the implicit finite
difference solution of the incompressible Navier-Stokes equations
in general curvilinear coordinates. The unsteady Reynolds averaged
Navier-Stokes equations solved are in two-dimension and non-congervative
primitive variable form. A two-layer algebraic eddy viscosity turbu-
lence model is used to incorporate the effects of turbulence. Two
momentum equations and a Poisson pressure equation, which is obtained by
taking thedivergence of the momentum equations and sgatisfying the contin-
u;ty equation, are solved simultaneously at each time step., An elliptic
grid generation approach is used to generate a boundary~conforming
coordinate system about an airfoil. The éoverning equations a;e express-
ed in terms of the curvilinear coordinates aud are solved on a uniform
rectangular computational domain. A checkerboard SOR, which can effect-
ively utilize the computer architectural concept of vector processing, is
used for iterative solution of the governing equations. The method
is applied to the cases of an 187 thick NACA 663018 airfoil at zero

degree angle of attack for chord Reynolds number range of 1000-40,000.

vi




The effects of varlous boundary-conforming coordinate systems, arti-

ficial viscosities, smoothers, down-stream boundary conditions, initial
guesses and number of iterations during the acceleration phase on the
solution of the flow field are studied. Numerical results are given in
terms of surface pressure distributions and velocity vector fields at
selected times. Compuﬁed steady~-state results are compared with

experimental data. On the CDC CYBER~203 computer, the algorithm

e Saie i Y A R e e

. demonstrated a factor of about 11 improvement over a CDC-7600 scalar

version of the code.
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Chapter I

INTRODUCTION

Computational Fluid Dynamics (CFD) has made a significant contri-
bution in the recent development of aerospace vehicles. Practical
aerodynamics, which controls the design of flight vehicles, is
essentially about complex flow at high Reynolds number past arbitrary
configurations. The governing equations, which describe physical
features of such a flow, are non-linear partiél differential
equations - the Navier-Stokes equations. Simplification of these
governing equations will limit the application. In the past, experi-
mental fluild dynamics has played an important role, however, with
the breakthrough in solving non-linear partial differential equations
and high speed computation, CFD has risen to complement the role of
experimental fluid dynamics.

Perhaps the foundation of modern fluid dynamics was laid by Prandtl
when he first presented boundary layer theory im 1904, However, it was
not recognized until 1920 when Prandtl presented insight on separation.
A review of classical fluid dynamics has been presented by Goldstein
(1]. The foundation stone for CFD was probably laid by Courant,
Friedricks and Lewy [2] with the introduction of the numerical stability
condition for the solution of hyperbolic equations, known as CFL
condition. In the 1960's the finite difference methods, such as
Lax -Wendroff [3] type and MacCormack's [4] explicit methods, were
developed for solving the Euler equations in conservation law form.
Since then, with rapid increase in computer speed and computer memory,

CFD has developed sufficiently to become established as a discipline.
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Several recent surveys on CFD development and future of CFD have been
presented in references [5], [6], [7], and [8].

Although in most cases CFD does offer the potential of obtaining
complete information about complex flows without experimentation,
it has its own difficulties., The essential areas to be considered
before solving the Navier-Stokes equations are grid generation,
algorithm, turbulence model, and computer. Significant improvement
in any of these areas will enhance computational efficiency and
accuracy of the solution.

Many cases of practical interest contain an arbitrary domain.
Since the boundary is not aligned with the grid when using a cartesian
coordinate for an arbitrary region, it requires fhe use of inter~

polation formulas near the boundary. The imposition of boundary

conditions with a complicated computational region having irregular : ;

boundaries is a primary difficulty with the cartesian coordinate

system. Moreover, the Navier-Stokes equations and their boundary é.f
conditions are such that the viscous effects are confined to a very
thin region immediately adjacent to the solid boundaries. Although

the region is quite thin it produces considerable effects on the total

solution of the flow field. In addition, the stability conditions,
iterative coavergence and truncation errors of the numerical algorithm
employed may be adversely affected [9]. Since a cartesian grid has
limited applications, the recent trend has been to use a boundary-
conforming coordinate system. The boundary~conforming coordinate
systems are defined as those which possess constant coordinate lines
coincident with all boundarxies of the physical rilane, which in turn

corregpond to a rectangular grid with square cells in the transformed
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plane. The governing continuum equations are derived on the rectang-
ular grid in the transformed plane. An elliptic grid generating
system developed by Thompson, et. al., [10] is capable of generating
a boundary-conforming coordinate aystem.‘ The main attraction of this
approach 1s flexibility, automation and a moderate degree of control
by the user. The recent surveys on grid generation technlques and
applicétiong are presented by Thompson iIn references [11], [12], and
{131, |
In the past deéade, numerical algorithms used in simulation of
fluid flows have improved s;bstantially. Explicit algorithms are
simple. However, restriction on the time step imposed by stability

considerations is a main disadvantage of these schemes. Increased

interest in implicit schemes led to the development and use of efficient

algorithms such as those due to Briley and McDonald [14], Beam and
Warming [15], MacCormack's rapid solver [16], and the hybrid MacCor-
mack's scheme [17]. The mathematical reviews of these developments
are presented by Lomax In references [18) and [7].

Practiéal computations involve numerical simulation of turbulence
to provide more understanding of physical phenomena. Several basic
aléebraic, one-equation and two-equation models have been developed
and used to analyze turbulent.flows. A comprehensive review on
turbulence modelling has been presented by Marvin in reference [19].

In the past decade computer speeds and computer memories have
increased at a significant rate., The development of supercomputers,
with memory measured in million words and calculation rate in mflops
(million floating point operations per second), such as the ILLIAC-IV

(16 millior words, 25 mflops), CYBER-203 (1 million words, 20 mflops),

e s nea A 128 * R R PP
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CRAY-1 (1 million word, 30 mflops), CYBER-205 (4 million words, 80 wflops)

and CRAY~1S (4 million words, 30 mflops) have dramatically increased
the capabilities of CFD and reduced the cost of computation. For

example, the CRAY-1S can perform 100,000 calculations for less than a

penny. The CRAY-2, which 1s still in the design stage, will approximately

double the speed of the CRAY-~1S with possible further reduction in
calculation cost. The supercomputers are used in areas such as
aeronautical engineering, nuclear research, weather forecasting and
other military and civilian applications. The CYBER-200 and CRAY-1
seriea computers are vector procesgors and use pipe-line architecture
to increaée the calculation rate. Levine presented an Introduction
to supercomputers and their architecture in reference [20], and tech-
nical information can be found in reference [21]. A computational
algorithm developed with the supercomputer arch;tecture in mind can
effectively use its computational capabilities and hence reduce the
run costs significantly.

The present study will be focused in the areas of algorithm
development and the use of a supercomputer for the numerical solution
of incompressible Navier-Stokes equations. The areas of grid genera-~
tion and turbulence modelling will be addressed as essential elements
required for simulation of the floﬁ. The information about grid

generation techniques and the turbulence model used in this study

can be found in appropriate references. However they will be presented

in detail for completeness.
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1.1 Review of Previous Investigations

The unsteady and steady incompressible Navier-Stokes equations

have been successfully used by many reséarchers to simulate the flow
field of different characteristics, The basic formulations used in
most work are velocity-vorticity, streamfunction-vorticity, stream-
function-biharmonics and primitive variables. Cebeci has reviewed
the last three formulations in reference [22].

"The viscous incompressible flow past an airfoil has been subjected

to several numerical attacks in the past decade, The pioneering

S S R e ek T e 2

computations of laminar, incompressible two-dimensional flows about
an airfoil are summarized iIn [23] and [24]. Hodge {[25] used the
optimized boundary conforming coorxdinate system for the laminar flow.
In recent years, turbulent flows have been of increasing interest

to researchers. Sugavanam [26] obtained the solution for flow

past a Joukowski airfoil using velocity-vorticity formulation. Hegna
{27] used primite variables for flow past a NACA 0012 airfoil.

Bernard [28] employed the Approximate Factorization technique for

NACAF663“0018 airfoil section. Moitra [%9] simulated three dimensional
turbulent flow around an airfoil. Lately, Freeman [30] used an adaptive
grid approach for dynamic coupling of the grid and flow field solution.
Experimental investigations have been reported by Mueller in reference

[31].

1.2 Research Objectives and OQutline

The objective of this effort is to develop a vectorized computer
code for viscous turbulent, two-dimensional incompressible flow past

an airfoll using an implicit finite-differencing scheme (Backward-




Time, Central-Space). On the pipeline computers, such as the CYBER-

200 series, it is desirable to work with very long vectors for efficient
use of its vector processing capabilities. Explicit methods are sim-
ple and can be easily vectorized since the entire grid can be considered
as a long vector. However, the major disadvantage of explicit schemes
lies in thetime step restrictions imposed by stability considerations.
Implicit schewes are frequently unconditionally stable and usually
employ an iterative method such as SOR (Successive Over Relaxation).
Since application of SOR on awvector machine results in either the
inefficient use of its vector processing abilities or the necessity

to shift to slower scalar operations, the checkerboard SOR algorithm
(Chapter VII) will be used for the iterative solution of the governing
equations ona vector processor, Also the effects of the algorithm,
smoothers, grid, various forms of articifial viscosity and some boundary
conditions on the solution will be Investigated for the specific

problem under study. The comparisons will be made with the available
experimental results in Chapter VIII.

The present research effort is cgrried out in the following
frame-work. The governing equations are the two-dimensional,
incompressible Reynolds~averaged Navier-Stokes equations, written in
non-conservative form in terms of primitive variables. A Poisson
equation for the pressure is obtained by taking the divergence of the
momentum equations. The two-layer algebraic turbulence model of
Baldwin and Lomax [32] is used to calculate the eddy viscosity for
the Reynolds-averaged equations. Dirichlet boundary conditions are
imposed on the freestream boundary. On the downstream boundary, extra-

poltation boundaxry conditions on the velocity and Dirichlet boundary
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condition on the pressure are imposed. The boundary conditions imposed i
on the airfoil surface are obtained employing no-slip conditions for

the velocity and by setting the normal derivative of the pressure equal

"to zero on the boundaries. A linear gradual start is used to accelerate
the flow from rest to its final freestream velocity. An implicit

finite~differencing scheme, obtained using backward-time central-space

approximations for the governing equations in the transformed plane is
used to obtain flow field solutions. At each time step, the three govern-

ing equations are solved simultanecusly, for u, v, and p.
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CHAPTER II1

THE BOUNDARY-CONFORMING CURVILINEAR COORDINATE SYSTEM

2.1 The Boundary-Conforming Concept

A coordinat? system can have a significant influence on the
numerical solution of hosted partial differential equations. For
many cases of practical interest, the irregularities present in the
boundary geometxy will limit the use of the Cartesian coordinate
system in finite difference flow field simulation. A cartesian coor-
dinate system under such circumstances will reqﬁire interpolation near
the body boundary to implement the boundary conditjons. In the boundary
conforwing coordinate system grid lines coincide with the body boundary
thus yielding a degree of simplicity in the implementation of the bound-
ary conditions. Also, theuse of boundary conforming grids in the solu-
tion of partial differential equations in domains surrounding arbitrary
geometrical boundary shapes will give a well-ordered system of algebraic
difference equations compatible with the algorithms which can efficient-
ly use the vector-processing computers. Various possible approaches
such as conformal mapping, transfinite mapping, algebraié and elliptic
equations have been successfully employed to generate body-conforming
curvilinear coordinate systems, A comprehensive survey to these
techniques and applications have been given by Thompson in references
[11] and [13] and by Thompson, Warsi and Mastin in reference [12].

The feasible and systematic way of generating an appropriate
body-conforming coordinate system should consider constraints that
are needed for a given problem, Preferably, the grid should be generated

in an automatic manner with the elements of control within the mesh
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generation process. Also the user should have an acceptable degree of
control over grid smoothness, skewness and stretching. Hosted algo-~
rithms are usually sensitive to the gfid smoothness, skewness and
stretching and general reasons for this effect include the following:
The coefficients of the transformed partial differential equations
depend on the derivatives of the functions defining the coordinate
system thus smoothness of the grid will have considerable effects on
the accuracy of the solution. The local truncation error increases
with departure from orthogonality. Also, the use of algebraic turbulence
models demand near—orfhogonality at the boundary for consistent modelling
of turbulent flows. For a fixed number of grid points, the clustering
of grid points in the region of large gradient should reduce the error and
improve solutions. Moreover, some algorithms require a grid generating
procedure that can be dynamically couplud to the physical solution
properties to enhance accuracy and efficiency of the numerical results.
The grid generated using conformal mapping techniques have been
used by several investigators. The main advantage is that it allows
greater control by the user. The main disadvantage of this method is
the lack of flexibility and automation. An elliptic system can generatea
grid in an automatic manner with a moderate degree of control by the
user. It can be extended to three-dimensions and a .ptive grid
procedures.

2.2 Elliptic Systems

An elliptic grid generating system proposed by Thompson, Thames
and Mastin [10] and successfully used by many investigators is capable
of generating a suitable grid for the present study. The elliptic

grid generating system 1is less susceptible to grid overlapping and
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can be subjected to a variety of grid control procedures to obtain
desired grid characteristics as discussed in the previous section,
Numerical grid genmeration usually involves transformation of
the physical domain of interest into a geometrically simple compu-
tational domain, such as a single rectangular domain. The solution
of grid generation equations in the computational domain produces
the corresponding grid in the physical domain. - The physical space
defined by Cartesian coordinates x and y 1s mapped onto the compu-

tational space through the mapping functions

£ = &g(x,y) (2.1

n = n(x,y) (2.2)

by making the inner, outer, lower downstream and upper downstream
boundaries coincide with n = nmin, n =N £ = gmin and § = gmaﬁ
respectively. The extremum principle ensures occurence of extrema
only on the boundaries and hence overlapping of grid lines can be
avoided.

The topological correspondence in a C-type grid about a 2-D air-
foil may be better understood withthe help of Figure 1. The boundary

n= nmin is mapped onto the inner boundary I‘4 - - I‘,S containing the

1
branch cuts, and the airfoil & = Emin and § = Emax correspond to the
downstream section P3L and F3u respectively, £ increasing clockwise
around the airfoil. The n = constant family of lines form open curves
resembling the letter C. The n = N ax boundary is mapped on to the
outer freestream boundary PZ.

The elliptic grid generation method of Thompson et.al. [10]

permits any desired distribution of £ and n on the boundaries. The
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inherent smoothness of solutions of elliptic systems is well recognized,
and hence they are less adaptable to ﬁropagation of boundary slope
discontinuities into the field. The choice of the elliptic system is
further reinforced bylthe ability of the inhomogenous terms in Poisson's
equation to control coordinate line spacing with respect to a curve or a
point within the field. The chosen grid geneuating system has the

following for:

[0
= — P 2.3
Eex F,yy J?_ (g,n) (2.3)
= L 2.4
Mex + Ny 72 Q(g,n) (2.4)

A desired form of the control functions P and Q makes it possible to
concentrate lines in regions of the field. An interchange of dependent
and independent variables epables one to perform all computation in the
transformed field (Appendix A). The generating system in the transformed

field becomes:

ax£€~-2f$xgn + yxnn = —(ang + yan) (2.5)

ony“;g--ZByE;n + Yynn = —(ang + yynQ) ' (2.6)

The transformed equations are solved in the rectangular &n- plane and
the Dirichlet boundary conditions are specified for x and y by the
known shape of boundaries. The coefficients of equations (2.3) ~ (2.6)

are functions of the transformation and are defined by

L2 2
o= x +y | 2.7
B = Xkt Yy, (2.8)
2,2
Y= x + Vg (2.9)
11
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J = xEyn - xnyE (2.10)

where J is the Jacobian of the transformation.

A great deal of simplification in computation results if integer
values are assigned to £ and n and increments Af{ and An are chosen to
unity. This gives rise to uniform spdcing in the transformed plane,
with no loss of generality since these increments cancel from the
equation anyway.

The generating system of equations (2.5 - 2.6) is represented by
second-order central finite difference approximations in the transformed
plane., The quantities Af and An disappear by cancellation in all
difference equations. Equations (2.5) and (2.6) are solved by the point
successive over~relaxation (SOR), [33], scheme after control functions
P and Q have been specified.

2.3 Control Functions

The inhomogenous terms (P & Q) in equations (2.3) and (2.4) can
be automatically chosen to obtain control of spacing, orthogonality

and stretching.

2.3.1 Thompson et.al. Approach

Thompson's approach consistg of determining a correspondance between
n values and the radius of congentric circles distributed between two
circles with radius ry and ry, one circumscribing the airfoil and the
other tangential to the outer boundary respectively. Applying the coor-
dinate generating equations (2.5 - 2.6) to the radii r, and r,, while
noting that n = 1 on the airfoil and n = JL on the outer boundary,

results in the following expression for Q:
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Q(E’n) - [rl(n) r (n)] (2.11)

where r(n) is a function of the hyperbolic tangent [34]. The effect of
Q is to place a line corresponding to n = k at a distance proportional
to the =T from the body surface. Usually, to ensure proper
resolution of the boundary layer the first line away from the boundary
is placed at an approximate distance of one percent of the Blassius flat
plate boundary layer thickness from the body, i.e.

2 )

r(n=2) - r, = 0.01¢(
/Re

(2.12)

In general, for the above approach, the control functions are determined
from specified line distribution and the control functions have direct
control over line spacing in the field (fig. 2a).

2.3.2 Sorenson's Approach:

Sorenson [35] determines the inhomogenous terms P and Q to control
the spacing between mesh points, along mesh lines intersection the
boundaries and the angles with which mesh lines intersect the boundaries
(fig. 2b). P and Q are defined in terms of four new variables. In
particular, for 1 < n < Nnax they are

-a(n-1) —c(nmax-n)

P(g,n) = p(Ele + r(Be (2.13)

-b{n-1) nd(nmax—n)

Q(g,n) = q(B)e + s(g)e (2.14)

where a,b,¢c and d are positive constants and in particular a,b,c and d
were set eqﬁal to 0.55. Note that terms p,q,r and s appearing in the
above equations are functions of § only. The four more unknowns p,q,rt
and s introduced in equations (2.5) and (2.6) through equations (2.13)
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and (2.14) require four equations. At the inner boundary ( = 1), the
coefficient of v and s in equations (2.13) and (2.14) becomes very small

and hence the wnd terms on the RHS of these equations can be dropped so

that

P(£,1) = p(&) (2.15)
Q(g,1) = q(&) (2.16)
Similary at the outer boundary (n = nmax)
PCE, n o) = x(E) (2.17)
Q(g, n_,,) = s(8) (2.18)

Substituting equations (2.15) - 2.18) in equations (2.5 - 2.6) we
obtain

R,y - R,x
1 2
p(g) = [—1s——T] . (2.19)
. n=

“R,y, + R,x
q(g) = [51_.5___3_51 (2.20)
YJ el

(2.21)

(2.22)
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vhere
Rl = [-(axge - 28):6;n + Yxnn)]nﬂl : (2.23)
Ry = [-laypp - 28y, 4 vy ) 0y (2.264)
Ry = [--(ax€€ - ZBXEn +-Yxnn)lnunmﬂx (2.25)
R, = [~(ay€€ - ZByF’n + Yynn)]nmnmax (2.26)

Equations (2.19 - 2. 22) involve the derivatives at the inner and outer
boundaries. At this point, if we assume that information about all
these derivatives at the boundaries is readily available, we can compute
the control functions P and Q using equations (2.13 - 2,14 ) for given
values of & and n in the field.

The geometric constraints imposed by Sorenson will be used to
define values of some derivatives at the inner and outer boundaries.
The first requirement is that the spacing along £ = constant lines
between an inner boundary node at n = 1 and the corresponding next
grid node at n = 2 is specified by ihe user. Let this desired spacing

in the physical plane be denoted by Asln=l so’ that we have

2 2.5
As|n=1 [(ax)C + (Ay)']nal (2.27)
in the limit Ax and Ay approach zero
2 2.%
ds| ;= [0 + @1 (2.28)
and transforming using the chain rule
ds| . = [(x,dE + x d)? + (y,dE + y dn)?]* (2.29)
n=1 £ no g n n=1 )
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for small distance ds along £ = constant

- 2 2.5
ds| _y = [Gxp + y)¥dn] (2.30)
or
o2 L 2% :
pln=1 = % + yploay (2.31)

The second requirement is that the angle 0 of the intersection
between the inner boundary and the § = constant line is specified by

the user. By using the definition of the dot product

(vg « ¥n] _, = (ve] |vn] cos0] _, (2.32)
or
- 2 2%, 2 2.5
(8 + Egngloay = [+ 87 (ny + np) eos0] (2.33)

Using relations given in Appendix A and equation (2.31) in (2.33)

after some algebra we obtain

s _(-x,cos8 -~ y,.sind)
x| =D s . & ] (2.34)
n=1 (xg + yg) n=1
8 (-y.cos8 + x,_8in@)
yo| e ) (2.35)
n=1 (xg + yg)‘ n=1

Thus, the values of derivatives xn and Yn at the inner boundary
can be fixed by the user. Similar expressions can be obtained to
fix the values of derivatives x and y at the outer boundary.

After the values of x and y at the boundaries are specified, an

iterative solution of grid generating equations (2.5 - 2.6) require
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computation of the forcing functions P and Q in the field, which in
turn, require information about derivative xE, X xEE’ xgn, xnn’

Yer Yy ygg’ yEn and ynn at the innex and outer boundaries. The
desired values of spacing and angle at the boundaries, supplied as

an input, will fix the values of xn and ¥, a8 discussed before. Also
at the inner and outer boundaries n = constant, and hence values of

b4 %®,.,. and ygg are fixed., Derivatives x

g Yer Feg £n
puted by differencing x and y with respect to £ and are fixed at all

and yEn can be com-

iteration levels. However computation of xrm and ynn at the inner and
outer boundaries will require the use of one sided differencing schemes.
These one sided finite difference approximations will require informa~-
tion about x and y at more than one point off the boundaries. As the
values of x and y in the field will change with every iteration, the
only derivatives that change with it.are xrm and ynn. Thus, at each
iteration level, the control functions P and Q change through xrm
and ynn. The control over mesh spacing and angles in the field,
introduced by equations (2.13) and (2.14), decays with the increase
in values of (n-1) and (nmax-n). The four control functions a,b,c and
d in these equations determine the rate of exponential decay. It is
interesting to note here that Sorenson's method 1s not overspecified.
Since contrxol functions are to be determined we can specify additional
boundary conditions. An iterative method such as SOR can be used to
solve the system of governing equations.

In the present investigation grids generated using Thompson's

and Sorenson's techniques were employed.

17

78N

L SN N



2ol

i s i A e < e i S T R AR G

e

Chapter IIIX

THE EQUATIONS OF MOTION
The governing equations for a high Reynolds number incompressible
flow field are the conservation equations for momentum and mass known
as the Navier-Stokes equations. The governing equations in the present
study are the time-dependent, incompressible, two~dimensional, Reynolds-
averaged Navier-Stokes equations formulated in terms of the primitive

variables. The pressure equation solved is the Poissen equation,

derived by taking the divergence of the momentum equations. The Eulerian

nmethod is usually employed in computational fluid dynamics, This method
involves a fixed control volume that 1s specified relative to a given
coordinate system. Properties of the fluid are then specified as
functions of both space and time. The conservation equations are
approached using this methodology.

3.1 Conservation of Momentum

For a given system, Newton's Second Law states that the rate of
change of momentum is equal to the sum of the external forces acting

on it. For an arbitrary material volume V, this law can be written as:

[Jj é%‘(oui)dv + JJ (Dui)ujnjds
v S

= JJ (Zij - pdij)njds + JII pgidV (3.1)
S v

The index "1i" denotes any of the three cartesian coordinate directions

Xys Xp5 Xq, and the Einstein summation convention has been used for

13

A4

L
ety

C i e

-

-
o SEMPPCS 3 T

S -

P TN
R ey

S T

B

e et

[ S



! %““m ' Wt mana. / - "
the index "j". The dimensional variables are:
P = density
u, = velocity
8 = material surface
n, = unit vector, normal to s
Zij = ghear stress tensor
P = pressure
Gij = Kroncker delta
gy = body-force acceleration
The divergence theorem transforms Eq. (3.1) to
T (
J 3¢ (Pudv + J ax (puiuj)dv
J
v v
- 1, - 2R 4 ge)av (3.2)
ij ij Bxi i

v

Since this equation is valid for any arbitrary volume'V; when the

integrands are continuous, the equation is

(pu ) + — (pu,u,) = AN S Pgy (3.3)

3t aj 14 axj 13 7 oy

For an incompressible flow density 0 is constant, so Eq. (3.3) becomes

du,y 3
— + (u u ) o= z ) + g (3.4)
DS ax ;4 ax . i

19




and Stokes' hypothesis gives the shear stress as

Bui aui
I,, = u(z=—=+ —= ' (3.5)
i3 axj 3xi

where K is the viscosity of the fluid.
Equations (3.4) and (3.5) are normalized by defining the

following dimensionless quantities,

u; o= u /U | (3.6)
£ o= x/8 (3.7)
€= tU /2 (3.8)
I;:: p/pm (3.9)
p = p/oU%) (3.10)
;- B (3.11)
gy = 5. .

1772

The reference quantities are
U, = freestream velocity

% = characteristic length (airfoil chord
for this case)

M, = freestream viscosity

Substituting equations (3.6) - (3.11) into equation (3.4) yilelds the

normalized, time dependent, incompressible Navier-Stokes equations

~

3u . n - au u
I S . My f R R S
at ax i1 ox Re Ix ax Ix i
3 i 3 J 1
(3.12)
20
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where Re is Reynolds number given by
Re = oU 2/u (3.13)

Usually, viscosity 1s taken as constant for incompressible, non-
conducting flow. However, in this study it is retained as a variable
to facilitate the fmplementation of an algebraic model for turbulence.

3.2 Conservation of Mass

For a gilven system in whlch matter is neither created or destroyed

the law of mass conservation (continuity) can be written as

(r
m %f__’-dv + || pugngds = 0 (3.14)
v s

Applying the divergence theorem and eliminating the volume integrals

as before, Eq. (3.14) redures to

3p 4 8 =
e + ™ (puj) 0 (3.15)
J
which for incompressible fluids is
du ’
Dzodao (3.16)
*3

where D 1s the divergence of the veleocity vector. Equation (3.16)

remains unchanged by the introduction of non-dimensional variables.

3.3 The Pressure Equation

'The incompressiblity constraint eliminates the equation of state,

which relates pressure, density and temperature. Hence, the real
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difficulty in the calculation of the velocity field for incompressible
flow lies in the unknown pressure field. The pressure gradient forms a
part of the source term of the momentum Eq. (3.12). Yet there is no
obvious equation for obtaining pressure.. The pressure field is indirectly
specified via the continu;ty equation. When the correct'pressure field
is substituted into the momentum equations, the resulting velocity field
satisfies the continuity equation.

To obtain a Poilsgson equation for pressure a divergence operation

is performed on the momentum Eq. (3.12).

. 2 2 2
g T ey o,
2 atax X, 90X, 90X, 0%,
axi i i3 i°7j
Bzgi
+ 0 T (3.17)
i
Substituting Eqs. (3.5) and (3.16) into (3.17) leads to
du, du 2 du ou
2 _ _ 9D j i, .97n i i
Ll v vl T el C il w)
i 7] i ] i i
+2 -2 g2y (3.18)
9x h|
J
D ' 984
where it 1s assumed that D = 0, but 3 # 0 and that i 0, i.e.,
i

the body-force acceleration is applied uniformly to the entire field.
In deriving Eq. (3.18) D can be extracted and set equal to zero
and thus %% will be zero; however, due to computer round-off error %%

is expected to retain an appreciable value. Therefore the derivative
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%%—serves as a corrective term to adjust the pressure in an
effort to satisfythe:continuity equation, as suggested by Hirt and
Harlow [36].

3.4 Normalized Governing Equations in Two Dimensions

From this point on, all variables used will be non-dimensional,
and the circumflex (~) will be dropped from the notation. Carrying
out the indicated summations and identifying Ups Uy, Xy and Xy with
u, v, ¥ and y respectively yields the two-dimensional governing equa-
tions.

It should be noted the momentum Eq. (3.12) is written in conserva-
tive form. As shown by Roache[9], this conservative form allows the
finite-difference equations to preserve the Gauss divergence property
of the continuum equations. Also, thg Rankine-Hugonoit shock relations
were derived using the conservative form. Thus, shock jump conditions
are automatically satisfied since the conservative variables are
continuous across the shock and need no special treatment because of
discontinuitites. Since the flow under investigation in this research
contains no.such discontinuities a. further simplification can be
obtained using the non-conservative form. The non-conservative form
of Eq. (3.12) is obtained by expanding the convective derivatives

and using the continuity equation (3.16).

, .
(u )x + (uv)y = uu + vuy (3.19)

(vz)y ) v v (3.20)

Thus, In cartesian notation the governing equations in non-conservative

form and two-dimensions are
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; 1 2 ;
f u, +uu vuy -p, + e [HV-u + 2uxux + uy(uy + vx)] + g (3.21)
v, +uv_+ vv_ = -p +-J; [MVZV +2uv +u (u +v,)]+g (3.22)
t x y y Re yy Xy X 2
2 2 2 2 2 2
v = - - =
p Dt (ux + 2uyyx + vy) + e [pr u + uyV v

+ Myt + p,xy(uy + vx) + uyyvy] (3.23)

3.5 The Transformed Equations

Equations (3.21), (3.22) and (3.23) in the physical xy plane are
transformed into the £n-plane using the definitions and relations
given in Appendix A. The individvral components of the transformed
equations which are valid on a rectangular field (or a combination

of rectangular fields) in the En-plane are

[ut]x,y - [utlg’n—- (gx, +uy,) = [ut]E;,n (3.24)
[vt]x,y = [vt]E,n - (vxxt + vyvt) = [vtlg,n (3.25)
u = (ynuE - ygun)/J (3.26)
; u, = (xgun - xnug)/J (3.27)
é v, = (ynvg - ngn)/J (3.28)
% vy = (xgvn - anE)/J (3.29)
Py = (v pg = ¥ep /I (3.30)
24
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Py = Gxgpy = %, p)/J

V2u = (qu,., - 28u n +yu 4+ cun + tug)/J2

g€ 3 nn

2 2
Vv (owgg - ZBVEn + Yvnn + cvn + Tvg)/J

p, = (y u

x ng o y&“n)/J

uo= (xgun - xnug)/J

4

lgy ] = lg] - (g x, + gy v = [gg]
X,y €,n X y &yn

(el = lgp] - gy x + 8y yp) = lgy]
X,y £,1 X y E,n

2 2
Vep = -2 + + +
P (aPEE Bp&n ann cpn TPE)/J

D] =] - O +Dy) = (D]

x’y g’n E'n

2 2 2
e = [VMee = 29gypien * Yk = Oyee = 29y v,

2

. _ 2 _ 2 2
P Yty T OXeg T 2Ry ¥ YgXodw /Y

n £ nn”'x

My T G XUy - XYl - XY e
* DTteg T XgVekn T (ye * Rgy gy Iy

2
PRy e ¥ Xy Yo, - Geye + xﬁyn)yﬁn]uy}/J
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Moy = [gigg = 2gXqlgy + xphp, - (yep = XXy
2
Eynn)u - (anEE - 2:;:€xnx€n + % xnn)ux]/J (3.42)

where a, B, y and J are defined in equations (2.7) - (2.10) and ¢ and
T are given by

g = [-ya(ang + Yan) + xg(on?y€ + YQyn)]/J (3.43)

T = [yn(an + Yan) - xn(aPy + YQyn)]/J (3.44)

§ g

The discretization of the transformed versions of equations (3.21),

(3.22) and (3.23) and the numerical procedures used to obtain their
golutions are discussed in Chapter V.

3.6 Turbulence Model

Since the flow fields of interest are turbulent, the solution of
the Navier-Stokes equations must take into account the effects of the
random fluctuations of the dependent variables inherent to turbulent
flows. The turbulent nature characteristics of these flows can be
accounted for in the numerical soltuion by a variety of eddy viscosity
mcdels ranging from locally dependent algebraic models to the more
complex higher oxrder closure models. A paper by Marvin [19] provides
a comprehensive survey of turbulence models generally employed in
computation of external aerodynamics flows of practical interests. To
date no single turbulence model has emerged that can be applied to the
variety of flows encountered in computational aerodynamics. Also, the
use of higher closure models will not necessarily give more accurate
solution. Therefore 't was decided to use the locally dependent: eddy

viscosity model. The turbulence model used in this research is an
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extensjon of the Cebeci-algebraic viscoisty model [37] as modified
and reported by Baldwin-Lomax [32]. In this model distribution of
vorticity is used to determine length scale which eliminates the
somewhat uncertain process of finding the outer edge of the shear
layer. The non-dimensional molecular coefficient of viscosity M in

the laminar Navier-Stokes equation is replaced by

n=1l+e (3.45)

where ¢ 1s eddy viscosity. The boundary layer region ou a body
consists of two layers, the inner layer and outer layer. The inner
layer of this model accounts primarily for the laminar sublayer
adajcent to the wall, with the outer layer accounting for the remainder
of the boundary layer region. In cartesian coordinates the expression
for the modified inner model based on Prandtl's mixing length theory

can be written as

2
(e)inner = 8 lfl (3.46)
where w is defined as vorticity
Ju ov
ol = 1 52 - 3% (3.47

The mixing length in this model is obtained from Van Driest's sublayer

model, and 1s given as

L2 0.4y[1 - e 2ouy (3.48)
where y is the normal distance from the wall.
The outer region eddy viscositymodel consists of a modified

closure-tyﬁe model defined by the equation
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l (&) yrop = 0-02680 FiF,(y) (3.49)

where Fz(y) is the Klebanoff intermittency factor given by
1

Fy(y) = [L+5.5 (230)%) (3.50) ;
Ymax

and |
i
Fp = ymameax (3.51) !

_y)/p T

W W o
Zéuw
F(y) =yl o|[l -e | (3.52)

The quantity F __ is the maximum value of F(y) that occurs in a

R S et S fot

profile and Y max is the value of y at which it occurs.

The eddy viscosity in the wake region is given by the equation

(3.49) with F and F(y) defined as ; ]
F, - 0.2y w? JE (3.53) Ef;i;
F(y) = ylujl (3.54) ~
where .
Ugif o ( u? + VZ)max - ( u? + vz)min (3.55)

For some cases under investigation, the boundary layer tramsition

points were get by assuming that tramsition oceéurs at the minimum pressure 0
points and for the other cases, the transition points were maximum air-
foil thickness points on the airfoil surface. The above prescribed two=-
layer eddy-viscosity model was successfully used by Baldwin and Lomax [32]

and other investigators to predict separated flows.
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Chapter 1V

BOUNDARY AND INITIAL CONDITIONS

Boundary and initial conditions must be defined in order to solve
the governing partial differential equations of a given flow field.
Since important features such as boundary layer arises from boundary
conditions, these conditions must be carefully defined. The conserva-
tion equations for incompressible flow about an airfoil when formulated
in terms of primitive variables require initial velocity and pressure
distributions and either Neumann or Dirichlet boundary conditions for
the velocity and pressure on the boundaries.

4.1 Initial Conditions

Since the governing equations contain time dependent terms,
initial conditions must be specified for the solution to proceed.
Initial values of velocities and pressure must be imposed over the
field. The values of non-dimensional velocities and pressure were
set to zero at a time t = O, Once an initial case for the flowfield
had numerically converged to a valid solution, each succeeding time
step was 1nitialized by using velocity and pressure distribution of
the preceding time steps.

4.2 Free-stream and Downstream Boundary Conditions

Computationally, the free-stream boundaries are generally placed

at a reasonable distance from a body such that uniform flow conditions

remain undisturbed by the presence of the body. Velocities and pressure

are completely specified at the free-stream boundary (Section Ty
in Fig. 1).

The flow 1s accelerated from zero to a desired final velocity
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using the body force termsg; and g, in equations (3,21) and (3.22).
The values of the velocities on the free-stream boundary during the

acceleration phase were determined in the following manner

t
u, = J gldt 0 <t < 1 (4.1)
t
v, = J gzdt 0 <t < 1 (4.2)
0
P =0 (4.3)

where gy = cos Y and 8y = sin ¢, where ¢ is the angle of attack.

For each time step of the acceleration phage, the velocities on the
free-stream boundary are found using eqs. (4.1) - (4.2) and are held

fixed for computation of solution for that time step. After the

acceleration phase the free-stream velocities are

u, = cos ¢ (4.4)

v, = sin ¢

The body force terms 5 and g, were set equal to zero after the

acceleration phase.

The boundary (I'y) is placed a great distance downstream. For

this case, no velocity gradient exist at the downstream boundary.
The pressure at the downstream boundary was set equal to the free-

stream pressure. These boundary conditions can be written as

< ' (4.6)

v, =0 (4.7)

p =0 (4.8)
30
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Also the effects of different forms of downstream boundary conditions
investigated will be presented in Chapter VII.

4.3 Body-Surface Boundary-Conditions

The airfoil surface is considered to be a no-slip and impermeablie

boundary. The no-slip and no-transpiration conditions at the airfoil

surface can be written as

u=0 (4.9)

and v=0 (4.10)

The pressure on the airfoil surface is unknown, but can be approxi-

mated using the normal pressure derivative in the following way. The

momentum equations (3.21) and (3.22) are utilized to evaluate the
normal derivative of the pressure. Due to no-slip no transpiration
boundary condition at the surface, the transient and convective terms
in the momentum equatioas drop out aﬁd we obtain

-§B= . = . i 2
AL A (4.11)

where n is a unit normal and g is the body force vector.

-~

Initial attempts to use the above pressure boundary condition
led to computational divergence. The simplified version obtained by

neglecting the viscous terms was used in the present study.
n*V%=n-g (4.12)
The presence of the body force vector influences the pressure boundary

condition during the acceleration phase; however after the acceleration

phase 1is over equation (4.12) reduces to the familiar form

neVp =20 (4.13)
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For the present case, the airfoil surface is represented by
n = constant line. The direction normal n can be given by Vn.

Thus, equation (4.12) becomes
Vne+* V% =9n-+g (4.14)
or
(g +En )P, + (n2 4 0P = ng +ng (4.15)
XX Ty oy E S A T o T '
Using Appendix A we obtain

1
Pn ='7{8P€ + J(-ygg1 + xggz)} (4.16)

The surface pressure can be evaluated using a one-sided finite-
difference approximation for Pn. For the problem under consideration
the boundary conditions at the airfoil surfaces are probably the most
crucial.

4.4 Re-entrant. Boundary Conditions

The re-entrant sections, I', and FS in figure 1 are not boundaries
in the physical plane but represent points within the flow field. The
branch cut is made between the trailing edge of the airfoil and the
downstream boundary to eliminate discontinuity in the inner boundary in
the transformed plane. The values of flow variables cannot be fixed
at these boundaries but they should evolve as a part of the field
solution. This insures the continuity in flow variables and their
gradients across the cut.

4.5 Trailing-edge Boundary Conditions

In the transformed plane body surface is a continuous line;
however, in the physical plane the trailing edge 1s a sharp point. The

surface-normal vector Vn is discontinuous at the trailing edge. This
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geometric discontinuity leads to_unequal trailing edge pressure

found using equation (4.16). The basic assumption that there be

no unbalanced forces at the trailing edge would be violated. To avoid
this problem, the trailing edge pressure was found by taking the average
of the trailing edge pressure on the upper and lower airfoil surfaces
(points (NWE,1l) and (NWS,1) in Fig. 1). However it led to jump in the

pressure at the trailing edge which is physically unrealistic phenomena.

To cbtain smooth pressure distribution at the trailing edge, the follow~

ing extrapolates were found useful in the present study

P(NSW,1) = %(P(NWS + 1, 1) + PQWE ~ 1, 1)) (4.17)
P(NWE,1) = %(P(NWS + 1, 1) + P(NWE - 1, 1)) (4.18)
33
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Chapter V

SOLUTION ALGORITHM

S.1 Numerical Procedure

The governing equations are the two dimensional, time dependent
Navier-Stokes equations in the non-conservative form. The Poisson
equation for the pressure is obtained by taking the divergence of the
momentum equations and utilizing the continudty equation. The two
momen tusm equétions and the Poisson pressure equatlon form a set of
three governing equations for three flow field unknowns u, vand p.

These governing equations are solved in the transformed plane
for each field node using a fully implicit finite-differencing algo-
rithm. This implicit algorithm is obtained by means of backward-
time and central-space differencing pf derivatives in the transformed
plane, The governing finite-difference equations in an implicit
form are fully vectorized and solved simultaneously at each time step
using a checkerboard matrix iterative technique (Chapter VI).

5.2 Finite-difference Approximations to Governing Equations

As discussed before in Section 3.5 the task of obtaining the
transformed govefning equations is straight forward and requires
substitutions of the transformed expression for the derivatives (3.24 -
3.44) in the governing equations (3.21 - 3.23). The pregentation of
fully transformed governing equations has been avoided here for simpli-
city; however, this section will detail the specifc transformations that
are pertinent to the final form of computational equations.

All gpatial derivatives in the transformed equations are approxi-

mated by gsecond-order-accurate central-difference (xpressions as follows:
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e | Jfeay Tyt (5.2)
ag? Ae? |

i,]

Similar finite-difference expressions are used to approximate n
derivaitve. The second-order accurate expression for the cross-

derivative is

of _ fiwger T f g cfig g Py

3E9n 4AEAN (5.3)

The grid spacing Af and An is chosen to be unity because of the construc-
tion of the mapping from the physical plane to the transformed plane.

As presented in section 4.2, the flow is accelerated from rest
to the final desired free stream velocity. Hence, the temporal
derivatives are represented by the first-order-accurate two-point
backward-difference scheme at the first time step and by second-order
accurate three-point backward-difference at all subsequent time steps.
The expression for two~point backward difference is
@ ™ _ -1

f
B RN (5.4)

of
at

i,3

and for the three~point backward difference is

@ 3™ el g loe2)

i,] i,] i,]
24t (5.5)

af

ot

1,3
where the superscript (n) indicates the time level.
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To obtain the computational form of the governing difference
equations for an iterative scheme, we must combine the diagonal terms
(those with subscript i,j) of spatial derivatives with an appropriate
temporal derivative term. As the central-difference approximations have
been used for the spatial derivatives, the terms with subscript i,]
will appear only due to tranformation of V2( ) in equations (3.21 -
3.23). Tor completeness, we transform V2u in the u momentum. From
equation (3.32) or Appendix A we have

2

1 .
Viu= = (ou,_,. - 28u, + + + tu,
u ( 8 ya o+ ou Tu,)

2 £n

>

The finite-~difference approximation of derivatives u[;g and u__ will

involve the diagonal terms and approximation of all other derivatives

11l involve off-diagonal terms. Separation of diagonal and off

diagonal terms gives

2 2 2
. V.u = (V u)D + (Vv u)OD (5.6)
where

2 2
(v u)D = - 3'2- (o + Y)ui,j (5.7)

2 1 |
(VWop 2 loCuyy g uien, 9 ¥ Y00y g ¥ 0y 50

—-ZBuEn + Uun + Tugl (5.8)

Note that in the remainder of this section terms such as u_, v_, ete. will
appear but are to be implicitly assumed to have been evaluated according
to equations (3.24 - 3.44) or relations in Appendix ‘A. Substituting
equation (5.6) in the u momentum equation (3.21) and combining the

diagonal term with the temperal term at time level n, we obtain the
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computational form of the difference equation.

[f% + 3” (o + Y)]ugn; = B + (MiS), (5.9)
J Re L
where
(RHS), = ~uu_ ~ vu_ - p +'l; [M(Vzu)
1 X y X  Re oD
+ ZUxux + Uy(uy + vx)] + 8] (5.10) |
i
A=1 (5.11) !
(n-1) '?
o dad
B --—K; _ (5.12) :
for two-point backward differencing, or M
3 :
A= 5 p
(n-1) (n-2) ¢
4u ~u
- —1,] i,]
B TAE (5.14)

for three-point backward differencing. The computational difference

equation for the v momentum, derived in similar fashion is

2u (n)

A
=+ ==~ (a + v)]v = C + (RHS) (5.15)
At " 2o i,3 2
where
(RHS), = -uv_ ~ vv_ = p +~l- [u(Vzv)
2 Tx y y  Re oD
+ 2uyvy + ux(uy + vx)] + 8, (5.16)
and v(n—l) I":'
C= —2—;—1— for two-point backward differencing - (5.17) g
P
b
or :
4v§n;l) ~ v§n32)
€ = * TAC 2 for three-point backward differencing

(5.18)
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The computational form of the Poisson pressure equation can be
obtained in a similar manner from equation (3.23). The term Dt
represents the time derivative of the divergence of the velocity
vector. It is assumed that the conservation of mass is satisfied

at the most recent time level (i.e., D

= 0); however values of the
divergence at previous time levels have been retained as a corrective

term. Thus

D(n-~l)
Dt = =TT for two-point backward differencing (5.19)
4Dy p-2)
Dt = AL for three-point backward differencing

(5.20)

and the computational pressure equation takes the following form

2(a + Y)p - 2 2
Jz (v p)oD + Dt + uy + 2u Ve

2 2 2 2
+ vy " Re [uxV u + uyV v

+ Mol + “xy (uy + vx) + uyyvy] (5.21)

where D, can be approximated using either equation (5.19) or equation
(5.20). The first approximation is first order accurate while the
second approximation is second order accurate. Several computer runs
were made with the two approximations for comparison. No significant
difference were found between results obtained using the first order
and second order accurate approximations. Also, for particular test

runs, none of these two approximations was specifically responsible

for decay or divergence of solution. The above tests were not entirely

conclusive.
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The goal is to find the steady state solution regardless of
accuracy of the transient solution. Since the time derivative terms
will hopefully disappear in the steady state and higher order approxi-
mations usually require more operations per mesh point, we used first-
order two-point approximation for D, in the pressure equation (5.21).

5.3 Finite-difference Approximations to Boundary Conditions

The downstream boundary condition equations (4.6 - 4.7) are
transformed according to the relations in Appendix A. Equation (4.6)

for the lower downstream boundary (£=1) takes the following form

u = % {ynug - y&“n} = 0 (5.22)
& (5.23)
u, = (—3u .
'3 Yp P

Using one sided three point forward differencing for_ug

o = e - - 285 ] (5.24)
loj 3 z’j 393 Yn n

Similarly fc the upper-downstream boundary condition ({ = IL) using
three point backward differencing for u6 we obtain

Ya ]
+ 2()u 1- = (5.25)
Yy R

1
Urp,y =3 o1y T Vi,
In the above equations, derivative un is evaluated using central-
difference approximations. Replacing velocity u by velocity v in
equations (5.24) and (5.25) we can obtain expressions for equation
“4.7).

Pressure values on the airfoil surface are determined using the

Neumann boundary condition (4.16). Using a three point forward-

difference approximation for Py the expression for airfoil pressure is
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2
Pi'1 =3 {4Pi’2 - 91’3 -7 [P+ J(gpx,p = alyg)]} (5.26)

5.4 The Re-entrant Boundary

The procedure for the evaluation of flow field variables (u, v
and p) on the cut extending from the outflow section (fig. 1) deserves
special attention. The two re-entrant sections FA and FS resulting
from the cut are one and the same line in the physical plane. Thus
corresponding peints on the two re-entrant sections have the same X,y
 coordinates in the physical plane but different & values. The momentum
and pressure equations on the re-entrant section can be solved assuming
continuous derivatives across the cut, However, in this study, flow
variables on the re-entrant section were found by averaging the
corresponding values above and below the branch cut. As the grid
spacing required at the branch cut to resolve the flow is very small
in a C-type grid, the averaging gives almost the same values of the flow
variables as those found solving the governing equations at the re-
entrant section. An expression obtained using notations of fig. 1 for
two nodes in the computational plane that correspond to the first node

off the trailing edge in the physical plane is

£ £ f (5.27)

™ w ]
ws-1,1 ™ Ewwmer,1 = iz, 2 fwse, 2!

Similar relations were used to find the values of the velocitiés and
pressure at nodeg on the branch cut., This approach simplifies compu=
tation of flow variables at the re-entrant section without sacrificing
accuracy and hopefully enhances the computational efflciency due to

less involved operations.

40

Py Y

8 it TR i e

[d

ATt

px 52

Q@u S e



5.5 Artificial Viscosity

Central~differencing schemes frequently display oscillations on a
coarse grid. The present implicit scheme exhibits oscillatory behavior
at high Reynolds number due to inaccuracies introduced by finite-
differencing. Unless these extreme oscillations are damped out the
numerical solution becomes useless. In most cases under investigation,
the solution started diverging about time t = 1.0 without inclusion of
artifjcial viscosity. The use of artificial diffusion was found necessary
to obtain steady state solution. The pressure osc;llations were
responsible for fluctuations and discontinuities in the velocity field.
One possible source of the pressure oscillations was the divergence of
the velocity vector which 1s a part of the source term of Poisson pressure
equation (3.23) aud may have retained significant magnitude. The basic
assumption to obtain the Poisson pressure equation was the preservation
of the continuity at the most recent time level. Thus, significant
deviation from the satisfaction of the continuity equaticn can contami-
nate the pressure field. Incorporation of artificial viscosity based on
the divergence of velocity at the current time level can damp extreme
oscillations. The modified non-dimensional viscosity.coefficient in

the momentum equations (3.21 - 3.22) s given by
= ldet (5.28)

where ¢ is eddy viscosity term discussed in section 2.6 and Ha is

artificial viscosity. One possible form of the artificial viscosity is
u, = QReJ|V - V| (5.29)

Note that this form of artificial viscosity has units of eddy
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viscosity and it has the advantage of being analytically zero., The
term Q can limit ﬁhe effects of artificial viscosity and will be a
congtant or a variable derived from the flow characteristic, This
particular form of artificilal viscosity has a desired property of
being proportional to |V * V| and only becoming effective in regions

where the divergence of velocity is significant. The fluild dynamics

phenomena investigated with various form of artificial viscoslty will

be discussed in Chapter VII.

Strictly speaking, the computation of viscous derivatives for the
momentum equations (3.21 - 3.22) and the pressure equation (3.23) should
use the modified viséosity coefficient (eq. 5.28). However this approach
lead to divergence of the solution and hence the viscous derivatives
for the governing equations were computed using the viscosity coefficent
given by equation (3.45). The artificlal viscosity K, was incorporated
in the viscosity coefficient u of the momentum equations at every time
step.

5.6 Smoothers

At early time stages, the solution maycontain enough noise to
excite oscillations, Nonlinear interaction will amplify these
oscillations which in turn may destroy the solution., In such cases,
we wish to filter out the unwanted oscillations from the sclution. In
most test runs, wavy divergence of velocity field was obtained in the
direction of £ = constant lines. If somehow, a smooth divergence of
velocity field can be obtained, it can reduce the pressure oscillations.
Twe types of smoothers, one using the adjacent nodes in § = constant
direction and the other using the four nelghboring nodes were investiga-

ted. The latter gave better overall smoothing of divergence of velocity
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field. The expression for the smoother is

1

1
£, "2l 3t 3 g r Eig gt i P E 0] GL30)

On the other hand, pressure exhibited excessive oscillatory be~
havior in the direction of n = constant lines, Smoothing of the pressure
itself, using equation (5.30), lead to incorrect pressure solution, but
smoothing of the source term of the Poisson pressure equation (3.23) can
smooth out the pressure field oscillations, Denoting the source term by
S, withthe assumption that all terms cn the right hand side of equation
(3.23) are lumped into S, we can smooth out the source term by using
S instead of £ iu equation (5.30). The results obtained using diver-
gence of velocity and source term smoothers were almost the same. As
computer operations for the source term smoother are more involved and
smoothing operation is usually required at every iteration it was not
investigated further in the light of computational efficiency.

The divergence of velocity smoother, applied at every time-step,

was employed to reduce. the need of artificial viscosity.
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Chapter VI

VECTOR PROCESSORS AND CHECKERBOARD SOR
In the last decade, significant progress has been made in the area
of algorithms that are used for solving the gbverning flow field equa~-
tions. Computer codes employed in many engineering applications still

use large amounts of computer resources. The basic requirement is that

the algorithm be efficlent. In practical terms this means obtaining the

solution with desired accuracy using the least amount of computer resources.

e o i £ i

Any improvement in the numerical scheme used can certainly enhance the
efficiency. Some improved algorithms have been mentioned in Chapter 1

with appropriate references. Furthermore, in many cases the computers

available play an important role in the development of efficient algorithms.

Hence the computer achitecture such as serial, vector or parallel certainly

dictate the basic requirement of algorithms, Frequently, the structure
and size of computer memory and data mangement s&stem can play a crucial
role in the implementation of efficient algorithms.

6.1 Vector Processors

The advent of high performance sixth generation computers such as
the CYBER-200 and CRAY-1 series, provides an important breakthrough for
computationally demanding engineering problems. These supercomputers

incorporate vector processing capabilities to provide the computational

B BN
Lo . e

BT

power required by large scale numerical simulation [21].

5.2

Vector processors are generally divided into two main classes of

L
Bt
. e

e LT

architecture: memory to memory (MM) and register-to-register (RR).

Normally MM architecture vector processors operate at its highest level

of performance when algorithms being processed have the following 2
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characteristics. Operand and result vectors are stored contiguously
in memory i.e., successive elements of the vector must be stored in
adjacent memory locations. The length of the vector is long. The
example of MM architecture is the CYBER~-200 series machines. RR
achitecture usually involves some type of cache between main memory

and functional units. The fundamental idea of cache organization is
that by keeping most frequently accessed instructions and data in the
fast cache memory, the cache is only a small fraction of the size of
main memory. If the active portions of the program and data are placed
in a fast cache memory, the average memory access time can be reduced

congiderably, thus reducing the total execution time of the program.

The cache is the fastest component in the memory hierarchy and approaches

the speed of CPU components. These types of vector processors usually
achieve their highest level of performance when processing algorithms
that satisfy the following requirements, Parallel execution of the
functional units is maximized. The example of RR architecture is the
CRAY-1 series machines.

The above-described two types of vector processors are called
pipeline processors. Pipeline is a technique of decomposing a sequen-
tial process into subprocesses with each subprocess being executed in a
special dedicated segment that operates concurrently with all other
segments. A pipeline can be visualized as a collection of processing
segments through which binary information flows. Each segment performs
partial processing dictated by the way the task is partitioned. The
result obtailned from the computation in each segment is transferred to
the next segment in the pipeline. The finél result is obtained after

the data have passed through all segments. The name "pipeline'” implies
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a flow of information analogous to an industrial assembly line. It
is characteristic of pipelines that several computations can be in
progress in distinct segments at the same time.

The CRAY-1l series are RRtype pipeline machines which operate most
efficiently on vectors which are of length 64 or a multiple of 64,

The reason is that the vector registers hold 64 words which are sent

to the pipeline. Thus in the CRAY-l series machines the vector vegisters

are limited to 64 elements and hence extremely long vector lengths will
not necessarily enhance the computational efficiency. The CRAY~1
memory section normally consists of 16 banks of memory. The memory

size can be as large as about 1 million words. Each word contains 44

data bits and 8check bits. The control of data flow between the parallel

functional units and hierarchically organized memories 1s of significant
importance for algorithm efficiency.

The CYBER-200 seriles are MM type pipeline machines which operate

more efficiently as the vector length increases. Each vector instruction

involves a startup time, the time required to produce first result,
Since startup time becomes relatively less important'as the vector
length increases,the vector operations become more efficient. Thus it
is desirable to work with moderate to longvectors on the CYBER-200
series machines. The CYBER-203 has about 1 million words of primary
menory with virtual memory architecture. Memory on this machine is
called as pages, which are of small and large size. The small page is
made up of 521 words of 64 data bits and the large pages are of 65,536
words. A user can have access to about seven large pages in primary
memoxry at a time. The movement of data from secondary memory into

primary memory.involves moving of pages. This movement of pages in
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“in and out of primary memory is called page fault and involves startup

time and transmissio . time. It is desirable to make most efficient use
of data when it is in primary memory to avoid situations when the machine
time spent on data management makes up a considerable part of the total
time.

Thus performance on a vector processor can vary widely as a function
of algorithm, implementation and data managemenf.

6.2 Checkerboard SOR

As the computers discussed in the above section attain their highest
level of performance when processing vectors, it is clearly desirablelto
search for methods that can take‘advantage of the vector operation
capabilities without suffering significant loss in convergence rate
compared to widely accepted methods for serial computers.

Generally the choice of an appropriate algorithm is dictated by
whether the flow is subsonic, transonic or supersonic. Although it is
the steady state solution that is generally sought one often uses
the time dependent equations to reach steady state. An explicit
algorithm which can be easily yectorized may have much slower convergence
rate. With explicit methods entire two or tnree-dimensional grids can
be considered as one long vector., On some machinesg this will lead to a
high level of optimization. The solution of the three dimensional com-
pressible Navier-Stokes equations obtained using vector processors have
been published by several investigators. Smith et.al. [38] and Shang
et. al. [39] solved these equations using an explicit scheme on the CDC
STAR-100 and CRAY-1 computers respectively, For the 3-D problems solved
using an explicit scheme, the vector lengths were restricted to the

number of grid points in each 2-D plane due to efficient use of computer
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architecture in Shang's investigation and due to efficient data manage-
ment for memory ih Smith's study. Spradley et. al, [40] solved these
3-D equations using general interpolants methods (GIM) on the CDC STAR-
100. He chose weight functions such that to produce explicit finite-
difference type analog and used the vector lengths equal to the total
number of grid points in a 3-D flow field.

Although long vectors available at eachvtime step for explicit
schemes may increase efficiency of some vector processors, the large
number of time steps required to reach the steady state may adversely
affect the overall performance of the algorithm. Furthermore, in many
cases, one is‘only interested in obtaining the steady state solution
as fast as possible without regard to the accuracy of the transient
solution. The time step restriction imposed by stability consideration
is a major disadvantage of explicit’ schemes. Hence there is increased
interest in implicit schemes in recent years. Also, for implicit
schemes, one frequently uses the time depeudént equations, and fairly
accurate steady state solution 1s reached with larger time steps.
Although implicit methods are usually linearly uncunditionally stable,
however there exists time step restriction based on accuracy require-
ments. Also operations for an iterative relaxation procedures are
more involved. Tﬁe development of an efficient relaxation method is an
important element for implicit algorithms.

The most widely used classical relaxationmethods are generally not
suitable for vector computers. The point accelerated successive relaxa-
tion (SOR) method [33], which is perbaps most frequently used, is reli-

able and very competitive for many problems. The convexrgence rate of point
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SOR depends partly upon using updated values at adjacent points while
solving for a given point.

Point SOR schemes can be efficiently implemented on a scalar
machine. However, for vector prucessors, vectors must be stored and must
be available for concurrent computer functions required for desired
arithmetic operations. This requirement is very restrictive and the
classical point SOR method is not suitable for vector processing in its
original form. There are some possible ways of system ordering for
solution of PDE using a rectangular grid on a vector machine. Suffi-
clently large vectors can be identified within the field or subfield
by (a) associating vectors with alternate rows or columns (ZEBRA) or
(b) associating vectors with alternate field points (red -~ black).
Option (b) is a simple way of making point SOR suitable for vector
processing. This modified SOR is usually referred to as checkerboard
SOR or hopscotch method in case of parabolic problems.

Early work related to the hopscotch method was presented by Gordon
[41} in 1965, many years before vector processors became available.

His work was motivated by the favorﬁble stability properties of the
method. Gordon[4l] described tﬁe original technique as "A non-symmetric
difference equation' obtained using explici; and implicit finite dif-.
ference schemes at alternate mesh points and showed that combined scheme
was unconditionally stable. Scala et. al. [42] applied this technique
to solve the Navier-Stokes equations about a circular cylinder using

a cylindrical coordinate system on a serial computer. Gourlay, et. al.,
(43, 44] presented the oridginal technique in a more general form and

showed tnat the checkerboard method can be regarded as an Alternating
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Direction Implicit (ADI) method with the coefficient matrix split

in .a special way. The fundamontal idea of an ADI scheme is of
splitting the problem into a series of simpler problems. Normally,

each simpler problem corresponds to each space dimension and in many space
dimension problems complexity increases considerably. The major advan-
tage of the checkerboard algorithm is that it can be always decomposed
into two simpler problems (two stage process) irrespective of the number
of space dimensions.

For illustrative purpose, it is convenient to consider a simple
model problem. Some detail for solving the Poisson equation using
checkerboard-SOR will be presented. Let us consider the Poisson equation

2 32

§-§-+ = S(x,y) (6.1)
9x oy

Hn

N

with simple Dirichlet boundary condition on the boundary and with the
field subdivided in square cells to length h as shown in fig. 3.
Using central finite~-difference approximations at a mesh point (xi, yi)

equation (6.1) can be written as

4f - £

: 2 .
PIRE FIYPE -hs, . (6.2)

fi,j+1 - fi,j—l i,j

Instead: of considering natural ordering of mesh point, i.e. sweeping
rowwlse,let us visualize the field mesh points as forming a red-black
chess board. This red-black ordering can be defined as follows: Cell
field mesh point (i,j) red if (i+j) is odd and point (i,j) black if
(i+3j) is even. Hence the red unknowns will be the set of all fi,j for
which (i+j) is odd and similarly for the black unknowns when (i+j) is

even. Applying the classical SOR to the red and black unknowns it can
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be shown that each classical SOR iteration can be split into two stages.

The first or red stage ‘consists of improving the red unknowns according

to
(n+l,r) _ k,_;2.(a,r) {n,b) (n,b) (n,b) (n,b)
4,3 AN PRI AR I I B I R fi,j-l)
(n,r)
+ (1 - K)fi,j (6.3)

and during the f&llowing second or black stage the black unknowns are

improved according to

(a+1,b) _ k, ,2.(n,b) (n+l,r) (n+l,x) (n+l,r) (n+l,r)

fi,j = 4(-h S; Y ¢ fi+l,5 + fi-l,j + fi,j-f'l + fi,j—l )
—oy gt 6.4

+ (1 K)fi,j (6.4)

In equations (6.3) and (6.4) « is a relaxation parameter used
to accelerate convergence, supersc¢ripts n,r and b denote iteration
level, red and black nodes respectively. During the red stage all red
iterates are updated with the help of the adjacent black iterates and
conversely in this particular case, Each state is inherently parallel
in that all iterates of the same color can be updated simultaneously
without changing those of the other color. Each term on the RHS of equa-
tions (6.3) and (6.4) can be represented as a vector, assuming scalar
terms such as h, 1s a vector of desired length with each element of the
vector having the same value. Let us assume Kk to be constant for the
present case. Thus equations (6.3) and (6.4) can take advantage of
vector processing capabilities of a supercomputer. Each iteration is
made up of two stages and the red and black states succeed one another,
however the black stage must not start until the preceding red stage has

completed and conversely.
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For the Dirichlet boundary conditions, 1f any term on the RHS
in equation (6.3) and (6.4) belongs to the boundary, then the correspond-
ing term is understood to have the prescribed boundary value. 1In case
of the Newmann boundary condition, redefinition of the boundary data
can be easily incorporated after each stage or two stages depending upon ?
the number of grid points on the boundary, type of vector processor or
tradeoff between the scalar and vector operatijons,

It is worth noting that two-step Jacobi, which can use vector
length equal to total number of nodes in the field, is also an attractive
method for vector processor in which vector length is an important factor
in the calculation rate and vector processor performance is at least
twice its scalar performance. In many applications, the Jacobi method
with acceleration parameter K = 1 may not be able to compete with the

checkerboard SOR method. Frequently, cyclic change of red and black

stages may give better convergence rate for the hopscotch method.

There also exists a family of hopscotch methods such as line or
zebra-like [44] and block methods [45, 46]. Some properties of hopscotch
methods have been presented by Gourlay et. al. [47]. Greenberg [48]

employed the approximate factorization scheme of Beam and Warming [15]

i AT Coaeesaee s T

LA g

in hopscotch form and other hopscotch methods to investigate fluid

dynamics problems on a serial computer. South et. al. [49] used Checker-

‘board SOR, Zebra SOR and Checkerboard Leapfrog method for transonic §~
flow calculations on the CDC-STAR-100 and CRAY-1l vector computers. EE'P
6.3 Implementation on the CYBER-~203 Q&f? 3

As the checkerboard SOR is the heart of an implicit method used in

b

the present study, it was decided first to implement the model problem

SEIEDXE e,

on the CYBER-203 and then to employ the same basic features

R
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of the implementation for solving the Navier-Stokes equations. One
possible way of approaching the model problem using the CYBER-200
FORTRAN language will be discussed in this section.

A close examination of the test problem indicates that the first
task is to determine vectors of thered and black field variables from
the arrays containing all field and boundary nodes of the same variables.
Once the vectors of desired color are obtained, the arithmatic operations
on these vectors are rather simple and can be performed using explicit
vector instructions. An emphasis is made on the use of predefined
vector functions and rich instruction set of the CYBER-200 FORTRAN
compiler. The bit addressable memory, which allows theuse of bit veciors
is one of the important characterisitics of this machine.

The total number of elements in anyvarray equals to the product
of its dimension sizes. All elements of the array are stored contiguously

in a memory. To find the location of an array element for a given array

L e e e e

T(A,B) of a particular iustance of subscript T(a,.,, the formula

a+ A * (b-l) can be used. Thus an array can be thought of as a vector,

e

and wherever required we will use word vector tu represent an array in

the remainder of this section. Each element of a bit vector requires

o i o i i, A B

NN

storage of one bit in contrast to 64 bits required for each element of a

single precision value vector (real or integer) on this machine. An

element of a bit vector cantake a value of either 1 or 0 representing

L —————— e i,

logical operator truth and false respectively. All logical operations

such as AND, NOT, etc. can be performed on the bit vectors. The logical
operations are performed on either corresponding elements of two bit

vector operands or a scalar operand paired with successive elements of e
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a vector operand. This important feature allows us to generate a bit
vector of desired structure or pattern which in turn can be used as a
control vector in some very efficient built in functions. Also there

are some functions which help to form an initial bit vector of some .

desired 0-1 pattern.

Some useful functions, which use bit vectors as control vectors will

be brieflydescribed, since they are an important part of the present

. implementation, Details of the builtin functions for the CYBER-200

FORTRAN compiler can be found in reference [50). Bit vectors can be
used as a control vector to select elements from a value vector. The
CMPRS function deletes selected elements from a real or integer vector
as dictated by a bit control vector. The MERG function merges the
elements in two value vectors into a result vector under control of a bit
vector. The function CTRL changes the values of selected elements in a
result vector using the values in an argument vector under the control
of a bit control veccor,

For illustration, let us consider the model problem. As we would
like to solve equation (6.3) in vector form, we must have vectors of
all terms on the RHS of equation(6.3). At the beginning of the first
or red stage array £(5,5) of all nodes (including field and boundary)
is available. The task is now to obtain vectors of all terms involving

£ and 5 on the RHS cf the equation. The procedure involves selecting

and assembling all fgnjr) at the red field nodes from vector f of the
R

field and boundary nodes. Similarly we must form vectors for

¢ (n,b) (n,b) _(n,b) (n,b)

441,j fi,jal’ fi,j+1’ fi,j—l , which are located at the black nodes.
Let us asgsume that all control bit vectors of desired pattern are stored
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in the memory and are available to facilitate the use of previously des-
cribed functions. As mentioned before, these bit vectors can be easily
formed using some buit-in functions and logical operation such as

AND, NOT, OR, etc.

As shown in fig. 4 , execution of function CMPRS will give us the

(n,r)
i,]3

control bit vector will give the vector for f{

terms, Calling the CMPRS function with an appropriate

(n,b)
itl,3

Similarly we can obtain vectors for the remaining { terms using appro-

vector for f

(fig. 5).

priate bit vectors. To obtain a vector for the source term Sintr) , we

¥

can ugse the same bit vector as in fig. & , however the argument value
vector will be S(5,5) instead of £(5,5). This completes the formation
of all required vectors for solving equation (6.3) The equation involves
scalar terms %3 (1 - k) and hz. These scalar terms are assumed to be
implicitly expanded to the necessary vector length, with each element

having the same scalar value. The arithmetic operations involved are

(n+l,r)

on the
i,]

straight-forward and equation (6.3) can be solved for £
vector processor using explicit vector notations.

Before we go to the second or black stage (eq. 6.4) we must update

(n+1,r)
i,]

old values of variable f at the red field nodes with the updated values,

array £(5,5) using vector f . One possible way to replace the

is to use the CIRL function. For the CTRL function, vector lengths of
result, control bit and argument vector shogld be the same. The result
vector in this case will be vector f and has the same vector length as
of the control bit vector. However, the argument vector is about one
half the length of vector f. Using the MERG function and a dummy

value vector we can generate a vector of required length, having values

£ (n+l ’ r)

of 1,1 in the desired elements and the rest of the elements having
’
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the values of the dummy vector. The values of the elements of a dummy
vector are insignificant and can be chosen arbitrarily. As shown in fig.
6, MERG werges dummy vector DM, having arbitrary value for all elements
and vector fi?jl’r) into a result vector RS, with the help of a control
vector. The merge stops when the result vector RS is full. Now having
obtained vector RS of appropriate length and elements, the execution of
the CTRL function with f as a result vector and RS as an argument vector
under the control of a given bit vector will update the values of £

at the red field nodes (fig. 7). This c?mpletes the implementation of
the first or red stage (eq. 6.3) on the CYBER-203 computer using the bit
control vector approach.

The implementation of the second or black stage (eq. 6.4) can be
incorporated in the same framework using an updated array f and
appropriate control bit vectors. Each iteration is made up of the two
stages and the above iterative procedure for vector processing can be
continued until desired accuracy is obtained.

It is obvious that vector algorithms require more storage than
scalar algorithms. However, due to large memory (1 million, 64 bit words)
and sharing same storage locations the increased storage requirement can
be handled properly in many applications. Instead of using the bit control
vector approach, the above can be Iimplemented using integer
index vectors which are incorporated in functions such as GATHR (gather
and SCATR (scatter). In these functions, instead of a bit vector, an
integer vector with appropriate index values is used as a control vector.
The integer inde.. vector approach was not investigated in the present

study. It is also interesting to note that in many applicaticns the

bit control vectors of desired structure need to be generated once only
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and can be used many times in a computer code. Since each element of
a bit vector corresponds to one bit only, the storage requirement for
bit vectors are far less than conventional value vectors.

6.4 The Navier-Stokes Equations and Checkerboard SOR

The governing equations for incompressible flow about an airfoil
are the Navier-Stokes equations. In the present study, equations (3.21)
and (3.22) for the velocities and equation (3.23) for the pressure are
solved simultaneously at each time steﬁ using the checkerboard SOR
method. These transformed equations are somewhat complicated compared
to themodel problem and its implementation on the vector processor
is more involved.

The transformed or computational plane is rectangular regardless of
the shape of the physical plane. The field nodes in the 2-D transformed
plane are represented in acheckerboard pattern so that each red grid
point has four black neighbors and vice versa. Three unknowns, two
velocities and the pressure are associated with each node. All terms on
the RHS of equations (3.21), (3.22) and (3.23) are represented using
appropriate finite-difference approximations as discussed in Chapter V,
Thus all terms on the RHS of these difference equations can be represented

in vector form as discussed for the test problem in the previous section.

"The storage of each term, including geometric coefficients, requires

two vectors, each of about one-~half the size of the entire field,
Explicit vector instructions are employed to perform the arithmetic
operations involved in the equatioms.

The transformed equations contain cross derivatives. The cross
derivatives are evaluated using the central difference approximations.
When solving the equations for a red field node, evaluation of cross
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derivatives involve red nodes in contradiction to the updated black
nodes involved in evaluation of first and second derivatives. Although
the cross derivatives are lagging by one stage per iteration in the
present formulation, it did not show certain adverse effects on the
convergence rate during numerical experimentation. Gourlay et. al.

{51] has discussed handling of cross derivatives in some hopscotch
methods.

It is desirable to use the checkerboard SOR with relaxation parameter
varying from iteration to iteration instead of aconstant relaxation par-
meter to accelerate convergence. The major unresolved problem concerning
the checkerboard SOR is that of determination of sequence of optimum
parameters which will produce the smallest number of iterations for a
specified degree of convergence. For solution of the velocity equations
using the classical SOR, the cowputation of sequence of acceleration
parameter proposed by Thompson [52] and described in Appendix B pro-
duced nealy optimal iterative procedure in previous investigations
[29, 30). 1In many cases the values of computed acceleration parameters
for the checkerboard SOR and theoretical optimal acceleration parameters
for the classical SOR are comparable and have about the same range
[53]. The typical values of acceleration_parameters are less than one
for the velocities and the pressure is not accelerated, The additional
operations involved in computation of acceleration parameters is justified
by producing faster convergence to the checkerboard SOR.

The sequence used for solving the three governing equations simul-
taneously may show some, if not impressive, improvement of the convergence

rate. Out of several possible sequences, the sequence of solving
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the velocity for the red nodes than the pressure for the black nodes

again the velocity for the black nodes and the pressure for the red

nodes is found to have favorable convergence characterisitcs.

The details of all interesting'features of the computer code and
other studies will not be presented, partly due to the lack of space
and partly because the outcome of some numerical experiments seems to
be inconclusive. However, the present discussion shows that for the
solution of large scientific problems on a vector computer, a consistent
algorithm will always out perform an inconsistent algorithm implemented

without considering the architecture of the computer.
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Chapter VII

COMPUTATIONAL RESULTS

7.1 Coordinate Systems i

Two different approaches discussed in Chapter II were used to
generate "C" type coordinate systems for the NACA 663—018 airofil, which
is symmetric and has maximum thickness ratio of 18%. The grid contains
IL points on the § axis and JL points on the n axis, in particular, the
values of IL and JL were set to 113 and 51 respectively for all coordi-
nate systems. The major concern was to obtain accurate numerical reso-
lution of the flow field about the airfoil. Since grid characteristics i
such as mesh spécing, smoothness and skewness can greatly affect the
effectiveness of the hosted algorithm, it was decided to examine some .

effects of the grid characteristics on the flow field solution.

It is desirable to have much finer grid spacing in the regions of
boundary layers containing relatively high velocity gradient because a
relatively coarse grid can lead to significant truncation errors in the

solution of the Navier-Stokes equations. The RHS of the Poisson pressure

IO B T RERRC DA

equation contains velocity gradient terms and hence errors in dominant
velocity gradient terms can result in erroneous values of the pressure .
near the body surface. The wall pressure boundary condition equation uses L

e

one gided difference approximation so errors in the pressure field near Pt

the wall can lead to errors in the implementation of the boundary condi-

tions. The algebraic eddy viécosity turbulence model used in this study

e L

involves velocity gradient term and accurate computation of velocity A

gradients 1s important for consistent turbulent modeling. o




Whenever a grid in the physical plane is not smooth the transforma-
tion coefficients sqch as Ex’ Ny s &y and "y can induce considerable
numerical error in the solution caused by the nonuniform grid spacing.
In some cases the grid skewness can also lead to numerical oscillations

and inaccuracies. A detailed discussion about the effects of these grid

‘characteristics on the solution can be found in references [11,34].

Three coordinate systems were used in the present effort. The first
coordinate system CORDL (fig. 8) was generated using §orenson's [35]
approach and was rather crude. This coordinate system was used for
development, testing and debugging of the computer code in the early
stages, Coordinaée systems CORD2 (fig. 9) and CORD3 (fig. 10) were
generated using Thompson's [10] approach and Sorenson's [35] approach
respectively. The grid point distribution on the inner boundary was
the same for these two coordinate systems. Also these two coordinate
systems were extensively used for many numerical experiments and solu-
tions to be presented in the remainder of this section.

As central-difference approximations used in this study are suc-
ceptible to numerical oscillations at higher Reynolds number, it was
also decided to investiage effects of grid characteristics at lower
Reynolds number to isolate oscillations caused by central-differences.
Two coordinate systems CORD2 and CORD3, having the same grid point
distribution on the inner boundary were tested for Reynolds number 1000.
The solution 1is the trailing edge region had a dominant effect on the
total flow field solution. Since the grid lines of CORD2 (fig. 9) are
skewed in the trailing edge region, coordinate systems CORD3 (fig. 10)
was generated with nearly orthogonal lines in the trailing edge region.
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Better overall results were expected using coordinate system CORD3,
however it turned out theother way. Numerical results obtained using
coordinate system CORDZ were much better than those obtained using
CORD3. It was thought that other grid parameters such as coordinate
stretching funétions and the rate of change of grid spacing would have

significant effect on the solution [34, 54]. An exponential stretching

function was used in Sorensen's approach while in Thompson's approach co-

ordinate control functlon was derived using the hyperbolic tangent as the
point distribution function. As mentioned in reference [34], the hyper-
bolic tangent is better than exponential and gives optimal truncation
error, It should be noted here that the control function in Sorensen's
approach controlled only spacing of the first line off the boundary

and angle of inclination of § = constant lines with the boundary while
the control function in Thompson's approach was able to control grid
line distribution (fig. 2). The above case is not entirely conclusive,
however it does show the importance of a proper coordinate éystem

for the Navier-Stokes solution., For a given problem finding of an
optimum coordinate system by trial and error method is expensive, so

we decided.to limit our experimentation with coordinate systems.

Some important parameters of two coordinate systems CORDZ and
CORD3, which were used extensively in this study, are described below.
For both grids the leading edge of the airfoil was located at (0,0)
and the trailing edge was at (1,0). The y coordinates of the uppermost
point at I = 113 was +5.09 (5 chord lengths) the lowermost point at
I = 1 was at -5.09. The x coordinate of the forward most point was

~4.09 andof the backwardmost point was 11.0 (11 chord lengths). The

value of index i at the leading edge was 57, The lower~surface trailing
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edge and upper-surface trailing edge points were located at i = 21 and
i = 93 respectively. The value of index i at the maximum airfoil thick-
ness point on the lower and upper surface were 34 and 80 respectively, and

the value of the x coordinate was 0.467. The term As denotes grid spac-

.ing between the first line off the boundary and boundary along £ = con-

stant lines, The values of 4As at the inner boundary for coordinate
system CORD2 were 0.000046, 0.000055, 0.000010 and 0.000026 at I = 1,
21, 34 and 57 respectively. The minimum values of As at the inner
bdundary was 0.000001. The values of As at the.outer boundary were
0.28, 0.35, 0.32 and 0.42 at I = 1, 21, 34, and 57 respectively. TFor
the coordinate system CORD3 the values of As at the inner boundary were
set to 0.00001 and at the outer boundary were set to half the chord length
(i.e. 0.5). The angles of inclination with which £ = constant li..es
intersect the inner and outer boundaries were approximately 90°, For
the two coordinate system the grid point distribution at the leading
and trailing edge in the boundary layer region is shown in Table 1.
Also note that coordinate system CORDZ has a uniform spacing around the
airfoil while CORD3 has closer spacing at high curvature regjons e.g.
leading edge.

7.2 Computational Procedure

In this section a computational procedure for solving the govern-
ing equations and some details of the comptuer code are described. .
An appropriate coordinate system for a given problem was generated using
separate gridgenerationcombuter code on a scalar machine.

The values of x and y coordinates for a final grid were input to
the CYBER-200 FORTRAN compiler code. Bit control vectors of desired

pattern were generated and stored., Since all‘geometric coefficlents can
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can be efficiently computed using bit vector approach, all tranformation
coefficlents were computed using bit vector approach, all transformation
coefficients were computed by the computer code in the vector mode
instead of using values of coefficients supplied by other scalar codes.
Second-order accurate central-difference formulas were used to compute
transformation coefficients in the field. On the airfoil surface upper
down~stream boundary and lower down-stream boundary the transformation
derviatves were computed using second order accurate one-sided forward
or backward differences. All geometric coefficients were separated for
the red and black nodes and stored. For restarting the flow from pre-
viously obtained solutions, all required flow fi:ld variables and impor-
tant parameters were read in. Before starting off a loop for time steps,
all required bit control vectors for solution of the governing e-uations
were generated and stored once and for all.

| All calculations were performed with the time step t = 0.0l. The
free~stream boundarycondition on theouter boundary was applied at every
time step. The gradua start consisted of 100 time steps during which

the free-stream velocities and the body force terms were given by

u =t* 81 for 0 <t < 1.0 , 7.1)
v,=t*g, (7.2)
gy = cos ¢ . (7.3)
g, = sin ¢ (7.4)
after the gradual start
u_ = cos (7.5)
for t > 1.0
v, = sin (7.6)
. g =0 ‘ (7.7
g, = 0 (7.8)
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At every time step, two velocities and the pressure eduations were
solved simultaneously using checkerboard SOR. The sequence of solving
the velocities for the red nodes, the pressure for the black nodes, the
velocity for the black nodes and the pressure for the red nodes was- used
for each checkerboard iteration. The convergence criteria for each time
step was established by the following procedure. ‘the solution was either
initially started or restarted from the previous time step. For the
first time step first ordexr two point backward-difference approximatioas
were used for the time derivatives. The iteration continued until dif-
ference between the magnitude of each flow variable (u, v and p) at two
successlve iterations were less than 0.0001. In most cases, maximum
number of checkerboard iterations were limited to 50. At every iteration
acceleration parameters for the velocities were computed using equations
glven in Appendix B. The computation of the accelerated parameters is
more involved and requires considerable arithmetic operations. A flag
was set when the solution converged within 107 of the established con-
vergence criteria. When this flag was set, the computation of acclera-
tion parameter was bypassed an&iteration continued with the previously
computed acceleration parameters to enhance the computational efficiency.

The Neumann pressure boundary conditions, the re-entrant condition
and the dowvnstream boundary co;dition was applied after every cheéker-
board iteration. The trailing-edge pressure was extrapolated after
applying the pressure boundary condition. This completes the solution
procedure involved at every iteration.

Once the solution converged within a given error norm or maximum
number of iterations allowed were reached, the divergence of the velocity

was computed .at every time step. As soon as the divergence of the
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velocity was computed, it was smoothed out in most cases. Then the re-
quired turbulence was switched on to compute eddy viscosity. Then the
desired artificial viscosity was computed at every time step to incorpor-
ate daming. A condition was established that artificial viscosity can-
not be turned on unless turbulence was turned on.\ The above cycle was

continued for the desired number of time steps.

7.3 Some Numerical Experiments

This section will present some numerical experiments carried out
during the course of this study. It should be noted that all techniques
described in this section were not tested thoroughly and some of them
did not improve the solution or efficiency significantly. However many
of the approaches attmpted, seem encouraging and may work well for other
applications. The primary attention was focused upon the development of
the efficient computer code and the computation of a reasonably accurate
flow field solution using minimum computer resources.

It is true, that the use of an appropriate algorithm is generally
much more crucial than coding techniques. However, an optimized code
with proper algorithm can increase efficiency considerable., In this
study once the algoritmh was settled upon, considerable time was spent on
optimizing the code. There are very few loops in the code and they are
generally unavoidable such as time step loop and iteration loop. Effort
was concentrated to develop a céde in the light of fundamental properties
of the vector processor which allowed theuse of explicit vector imstruc-
tions. All routines in the code were analyzed using a timing package
which prints out a histogram of CPU usage. The main effort was diverted
to some possible restructuring of routines and comparing its efficiency
based on CPU timing. Initially all routines in the code could be compiled
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with the highest level of optimization (B)) on the CYBER~200 FORTRAN com-
pilexr. To incorporate various approaches to be tested, as discussed in
the following paragraphs, a few routines were forced to one lower level
of optimization (BE). No attempts were made toward optimizing the memory
and data mangaement procedures. Vectors of about 2720 length were employ-
ed in the present study. Since the performance of the CYBER-Z03 in-
creases with increase in vector length an application involving a very
large coordinate system can result in relatively greater speed-up. Opti-
mization may involve some work; however, for large scale problems usually
it does pay off. |
Central differences used to approximate the spatial derivatives are
easily succeptible to oscillations at higher Reynolds number. Computed
solutions displayed large amplitude oscillations in the flow variables
and destroyed the accuracy. The eddy viscosity model increases the
molecular viscosity and thus lowers the Reynolds number of the flow. The
switching on of the turbulence model appeared to damp some oscillations
but it did not show any significant degree of control over large ampli-
tude oscillations. All attempts to obtain the steady state solution for
flows at Reynolds number 10,000, which were started from ¥est, were
unsuccesful beyond time t = 1.0, even with inclusion of the turbulence
model. One-sided differencing schemes may eliminate these nonlinear
oscillations and may be vectorized from some simple regions. Hodge [25]
used upwind differences for the first derivative terms, except the pres-
sure gradient and velocity divergence terms, seemingly to avoid oscilla-.
tions caused by central-difference. For "C" and "0" type coordinate sys-
tems, incorporation of the upwind-differences requrie checking the sign

of contravariant velocity (£ _u 4 £ v) to incorporate sppropriate indexing.
y % y p g
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This condition may not allow efficient vectorization of one-sided differ-
encing schemes for this study om the CYBER -203.

One possible way to damp out the oscillations is by the use of an
artificial viscosity. The adverse pressure gradient in the trailing edge
regions had the dominant effect on the solution and it was assumed to
trigger the nonlinear oscillations. The amplitude of these oscillations
were small initially and remained localized near the trailing edpe regions
for some time, but in absence of damping its amplitude started increasing.
The oscillations propagated toward the leading edge with passage of time.
The flow was rather stable till time t = 0.5, so in most cases it was de-
cided to turn on dampling at time t = 0.51, well before the oscillations
started contaminating the solution. Several numerical experiments will be
described before going into details of various forms of artifical viscosity.

The time derivative of the divergence ofvelocityDt, appearing in
equation (5.21) can be evaluated using either two point or three point
backward difference approximations after the first time step. Several
computer runs weremade using both options. Error norms obtained using
both cases for about the first one hundred time steps were almost the same
indicating none was specifically responsible for divergence of the solu-
tion. The spatial derivative terms of equation (5.21) were evaluated using
second order accurate difference approxiamtions. Thus the use of two-point
first order accurate approximation for the time derivaitve may reduce
the overall accuracy of ;he equation. Since no emphasis was placed on the
transient solution, and it was assumed that the time derivative term dis-

appears in the steadt state, first order accurate approximation was used

“for the time derivative term of eq. (5.21) in most computer runs. Although

it did not show any noticable increase in computational efficiency, it is
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interesting to note here that the two point backward approximations involve

less computer operation and storage than the three point approximations.
Since the implicit system of equations were solved at each time

step by an iterative method, the previous time step solution was used

as an initial guess for the next time step in all cases. For some cases

a poor choice of initial guess may delay or destroy the convergence

of the methed. In an attempt to reduce the iterations by providing a

good guess of the solution at the next time level an initial guess which

was close to the desired solution was tried. The initial guess for the
velocities on the field and the re-entrant boundary was found using the

following relations during the acceleration phase.

n a-1
ui,j ut ui,j + At cos ¥ (7.9)
v o= vn"l + At sin (7.10)
i,3 i,

Instead of improving the convergence, the solution started diverg-
ing. As the "C" type grid employed is coarse in the outer region and
fiﬁe near the body and in the wake, the initial guess for the second
attempt were found using the above relations only on the re-entrant
section during the acceleration phase. Again no imp»rovément
was found and in both cases the solution started diverging approximately
at time t = 0.5. For this study, it is not clear what should he the
criteria to choose the initial guess in an.effective manner and how
it will accelerate the convergence.

It was thought that the downstream boundary conditions may help

control fhe oscillations or allow the passage of oscillations, which origi-

nated in the trailing edge reglon. Instead of the downstream boundary

conditions presented in section 4.2, the following downstream boundary
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conditions were attempted.

u=u, (7.11)
vEv, (7.12)
P =D, (7.13)

The implementation of the free-~stream boundary conditions, section
4.2,6n the downstream boundary did not improve the solution during the
acceleration phase. In another attempt, the velocity boundary condi-
tions were the same as the free-stream boundary condition on the down-
strean bouﬂdary, however the following pressure boundary.condtion was

used.

Peg = 0 (7.14)

Again, this boundary condition did not show any positive effect
on the solution., Thus flow 1s perhaps much more sensitive to the outer
and body surface boundary conditions with the downstream boundary con-~
dition having no significant influence on the solution.

One possible way to enhance the stability of a numerical solution
is to filter out unwanted oscillations using filters or smoothers.
The use of smoothers will not eliminate the source of high amplitude
oscillations but will control them by spreading them over some region.
Since in some cases wavy solutions with high amplitude of flow quantites
such as divergence of velocity, pressure can lead to unrealistic solution,
the use of smoothers can help control oscillations. The divergence of
velocity showed a wavy field in the direction of &§ = constant lines.
Two types of divergence of velocity smoothers were attempted, one using
the neighboring nodes in £ = constant lines direction and the other

using  four neighboring nodes in both directions, Smoothing obtained
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using four neighboring nodes was much better. It reduced the need of the

artificial viscosity by some margin., The pressure field was wavy in
the direction - of n = constant lines. An attempt to smooth the pressure

led to an incorrect solution. Next the source terms of the pressuvre

equation (3.23) were smoothed oul. The solutionsobtained using this

approach were encouraging. Since the pressure equation was solved using

an iterative method, for consistent smoothing the smoother should be
applied at every iteration in contrast to the divergence smoother which

was applied at every time step, The source term smoother may be compu-

tationally inefficient due to computer operations and additional storage

required. For some similar runs, results obtained using the source

term smoothers were about the same as those obtained using the divergence

smoother. Considering the above tests, the source term smoother was not a

practical way of smoothing the pressure oscillation in the present study,

and hence the divergence smoother was employed for most computations.

For turbulent flows, the values of eddy viscosity, computed using the two-

layer algebraic model, varied considerably in the boundary layer and
wake region. Some forms of artificial viscosities, to be presented
later, were based on the eddy viscosity. Most of them used unsmoothed
values of the eddy viscosity, however, a few of them employed smoothed
values of the eddy viscosity. Artificial viscosities, which employed
smoothed values of the eddy viscosity did not show any increase of
effectiveness over the artificial viscosities based on unsmoothed eddy
viscosity. .

Perhaps the most effective way of éliminating the flow field

oscillations caused by central-differencing at higher Reynolds number
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is to use an aritificial viscosity. 1In this study it was assumed that the
flow was turbulent when an artificial viscosity was switched on and hence
the molecular viscosity ¥4 = 1 + ¢ in the momentum equations was replaced
by ¥ = 1+ ¢ + B . Term ua,deno-tes artificial viscésity and it increases
the value of molecular viscosity. An artificial viscosity having uniform
or constant value over the whole flow field will increase artificial
diffusion everywﬁere in the field and is obviously not the solution of
the problem. However, an artificial viscosity which is a function of some
flow quantities having appreciable values in the region of extreme
oscillations and negligible values everywhere else can effectively diffuse
oscillations without changing characterisitcs of the original flow field
considerably. Various forms of attempted artificial viscosities are
listed below

QReJ |V - V| V= diu + jv
Q= 0.0001 - 2 =1.0

9ReJ |w| w=v, -u

QReJ [v(vz)[ Q=1.0
QReJ [V ¢ V| Q=c

2
fReJ |V + V| Q=V

QReJ Viw Vve-eviQ=1.0

~-

&

22

2
mred [v - v a= (EFe &
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ORIGIMAL PACE I3 ‘
OF POOR QUALITY '

ares [ V-9 2= {(%"-52—)2 + <—"5V;]2—)2}'4

QReJ |V - v 2= (f - 1.0)

QReJIY*Yl Qa(}e[:ul ¢$=1,0~¢=10.0

QReJ IY'YI Q= (28-1.0)|w|,¢=1.0-¢=7.0

QReJ IY . YI Q= ¢ Iiul § = 1.0 ~ ¢ = 10.0

QReJAt | V2D Q= 1.0

QReJ |y . Yl Q= ¢ ¢ ¢ = 10.0 ~ ¢ = 1000.0

QReJ ly . Yl @ =min(¢ €, L.0) ¢ = 1.0 - ¢ = 10.0
Artificial viscosity was applied at every time sgtep and results

obtained using some of the above described forms of artificial viscosities

will be presented in the next section.
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7.4 Numerical Results

The following general procedure was established for numerical compu-
tatlion and it was common to many of the flow solutions attempted. A NACA
663018 airfoil section at zero angle of attack was considered for all
computations, Coordinate systems with 113 (IL) grid points in § direc-
tion and 51 (JL) points in n direction were used, Gradual start was made
up of 100 time steps with a time step size of 0.01. The previous time
step solution was used as an initial guess for the next time step solu-
tion. The acceleration parameters were computed using the local veloci-
ties. The convergence criteria for the velocity and pressure were 10~4
and the maximum number of iterations at each time step were limited to
50. First order time differencing was used at the first time step and
second order time-differencing scheme was used for all subsequent time‘
steps. The flow was laminar till time t = 0,5. For turbulent flow,
computation of eddy viscosity was turned on at time t = 0.51 and trans-
ition was assumed to occur at minimum pressure on the upper and lower
airfoil surfaces. For solutions with an artificial viscosity, the arti-
ficial viscosity was turned on at time t = 0.51 and it was computed at
every time step. Also, whenever artificial viscosity was switched on,
turbulence was assumed to be turned on at the same time. Except for some
initial cases, the trailing edge pressure was extrapolgted and the diver-
gence of velocity smoother was used for the flow simulation, Some excep-
tions to the above-described procedure will be mentioned at appropriate
places in the following paragraphs.

The first type of coordinate system CORDL considered in this study

was generated using Sorenson's approach [35] and is shown in fig. 8.
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The laminar flow past the airfoil was considered at Reynolds number

of 10,000, The pressure distributions at time t = 0.5 and t =

0.7 are shown in fig. 11 and fig. 12 respectively. These pressure
distributions indicate that the flow was well behaved until time t =
0.7. The solution was restarted from time t = 0,5 with the turbulence
model switched on and transition occuring at the minimum pressure.

The turbulent flow solution at time t = 0.7 was egsentially the same

as the laminar flow solution at the same time. At time t = 0,8 the
presgsure started oscillating at the trailing edge (fig. 13). With the
passage of time, the solution diverged ;t time t = 0.85, To damp out
the trailing edge oscillations in the turbulent flow, the transition was
forced to occur at the maximum airfoil thickness points on both surfaces
instead of minimum pressure points which were almost at the trailing

edge. As shown in fig. 14 the amplitude of the pressure oscillations
was reduced somewhat at t = 0.8, however the solution diverged at

time t = 0.89. Again turbulent flow was restarted from time t = 0.5
with artificial viscosity added. The artificial viscosity was computed
using QReJlY . YI, with @ = 1.0. Previously observed oszillation
disappeared at time t = 0.8 [fig. 15] due to artificial diffusion. As
expected, the pressure coefficient was going down with increase in time.
Figure 16 shows the pressure distribution at time t = 1.0. With further
increase in time, the solution diverged at t = 1.22. In pressure
distributions for all stable solutions described so far, there was abrupt
pressure rise at the trailing edge. To remedy this problem, the pressure
at the trailing edge was extrapolated using eqs. (4.17-4.18). Fig. 17 shows
the pressure distribuiton with the extrapolation for turbulent flow at

t = 0.7. Another form of artificial viscosity, QReJ|V « V|, where
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Q= ¢ was attempted with transition occuring at maximum.airfoil thick~-
ness points. The solution started oscillating at t = 1.0 (fig. 18).
Once again an artificial viscosity , QReJ[Y . VI with @ = 1.0, was
attempted; However this time the artificial viscosity was computed at
every iteration instead of every time step. Pressure distributions at
time t = 1.0 and t = 2.0 are shown in fig. 19 and fig. 20 and the
solution diverged at t = 2.28. Next an artificial viscosity
QR@J/FEF~BTTMYT'With = 1.0 was considered. Fig., 21 and fig 22

show the pressure distribution at £t = 1.7 and t = 2.0. At time t = 1.6
the solution already started oscillating in the trailing edge region.
Since coordinate system CORD1l was rather crude, computatioas using
CORD1 were stopped.

A second coordinate system CORD2 (fig. 9) wau generated using
Thompson's approach [10] with contxol functions involving hyperbolic tan-
gent to control n-line spacing in the boundary layer region. The Reynolds
number considered was 10,000. The pressure distributions and leading -
edge and trailing-edge velocity vectors at time t = 0.5 and t = 0.7 for
the laminar flow are shown in fig. 23 and fig. 24. The turbulent flow
was restarted fromtimet = 0,5 with transition occuring at minimum
pressure. Fig, 25 and fig. 26 shcw the pressure distribution and
- velocity vectors at time t = 0.7 and t = 1.0, The laminar and turhu-
lent solution at time t = 0.7 were almost the same. An abrupt increase
in the magnitude of velocity vectors at time t = 1,0 in the trailing
edge region .indicates the presence of nonlinear oscillations in the
solution. The turbulent flow solution diverged at t = 1.07, The
turbulent flow with transistion forced at the maximum airfoil thick-

ness was considered next and the solution at time t = 1,0 is shown
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in fig. 27. No significant improvement in the solution was found.
An artificial viscosity, QReJ|V VI with @ = ¢ and transition occuring
at maximum airfoil thickness was attempted. Comparing previous solutions

with this solution at time t = 1.0 (fig. 28), no sufficient diffusion

is the trailing edge region could be obtained. Perhaps, this was due
to very small values of eddy viscosity which diluted the artificial
viscosity. The solution diverged at time t = 1.32. An artificial
viscosity QReJ|V ¢+ V| with @ = 1.0 was considered. The turbulent flow
solutions, using this artificial viscosity, at time t = 1.0 and t = 2.0

are shown in fig. 29 and fig., 30, The solution diverged at time

t = 2,18, These solutions indicated nonlinear oscillations in the
trailing edge region, which could not be eliminated using the above
described forms of artificial viscosity. It was thought that these

oscillations were caused by skewed grid lines in the trailing edge

region (fig. 9) which ultimately destroyed the solution.

A third coordinate system CORD3 (fig. 10) was generated with

nearly orthogonal lines in the trailing edge region using Sorensen's

B

approach., Laminar flow solutions for Reynolds number 10,000 at time
t = 0.5 and t = 0.7 are shown in fig. 31 and fig. 32. The flow was
well behaved as. expected. Turbulent flow solution with transition

occuring at minimum pressure was attempted and fig. 33 shows the

L ETPRTICE R AR T

solution at t = 0.9, Velocity vectors at the trailing edge reversed

their direction with unusually large magnitude. This phenomena also

TR L S P S

indicates the presence of oscillations in the solution. The solution

P
Fap i

diverged at time t = 1,02, In an attempt to damp out these oscillations,

LY

transition was enforced at maximum airfoil thickness points. Fig. 34

2t

--. shows the pressure distribution and velocity vector plots at time

PR
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t = 0.9. Note the magnitude of velocity vectors at the trailing edge
has reduced somewhat but not sufficiently. At this stage, the divergence

of velocity smoother and two-point backward differencing scheme for

%%termof‘thepressure equation were incorporated. The sclution was
.started from rest and the pressure distribution and velocity vectors

at time t = 1.0 are shown in fig. 35. The RHS smoéther, as discussed

in Section 5.6 was also considered. The solution at time t = 1.0 is shown
in filg. 36. No significant differences in the solutions obtained using
these two smoothers were found. Smoothing of the pressure gave in-
valid solutions. The smoothers were able to filter out some oscillatiéns
at the trailing edge. TFor all results presented hereafter, the diver-
gence of velocity smoother was turned on and two-point backward dif-
ferencing scheme for %% term were employed all the time. Attention

was now focused on the artificilal viscosity. Fig. 37 shows the solution
obtained at t = 1.0 using an artificial viscosity QReJ|V - Y] with

Q= {(%5592 + C%%;)Z}%. Artificial viscosity with the same I, but of
form QReJ/FFT—T?_T—YT was considered next. Solution (Fig. 38) obtained
using the latter form was somewhat better. Solutions obtained at t =
1.0 using artificial viscosity QReJ|V - YI with @ = efw| and 2 = 1.0

are shown in fig. 39 and fig. 40 respectively. An artificial viscosity
based on Laplacizn of the pressure i.e. QReJAt|V2P[ with Q‘= 1.0 was
attempted and the solution at t = 1.0 is shown in fig. 41. Artificial
viscosity QReJ|V + V| with Q = {e¢€ - 1.0]|w| and ¢ = 4.0 gave some
interesting results [fig. 42]. The values of ¢ greater than 7.0 led

to divergence of the solution for this particular case, The time

history of solution obtained using artificial viscosity QReJ|V - V|
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with @ = ¢|w| and ¢ = 1.0 is shown in figs. 43 - 46. ‘The solution was
almost steady at time t = 4,0 (fig. 46). This Reynolds number 10,000
numerical solution was compared with Reynolds number 40,000 experimental
solution [31l] for qualitative purpose only., The discrepancies between
the computational experiment results was thought due to unreasonably
thick boundary layer and/or due to grid characteristics such as stretch-
ing function., An attempt was made to restart flow from time t = 4.0
without inclusion of the arcificial viscosity, to obtain correct
boundary layer. However, the solution diverged at time t = 4.28,
Several values of ¢, ranging from 0.05 to 0.9 were experimented with but
the results were not encouraging. Several computer runs with artificial
viscosity given by QReJ]V . Yl and 2 =¢e for values of ¢ from 10 to

1000 were made but without certain improvement. At this point, it was
decided to lower the Reynolds number to isolate oscillations caused by
higher Reynolds number and to investigate the effects of the coordinate
systems on the solution,

Cooxdinate system CORD3 was used for a Reynolds number 1000. The
pressure distribtuion and velocity vectors plots for the laminar flow
at time ¢ = 1.0 and t = 1.5 are shown in fig. 47 and fig. 48. With
increase in time the solution diverged at tiﬁe 2.02 and the pressure
distribution at time t = 2.0 is shown in fig. 49. Perhaps insufficient
grid resolution in the boundary layer was responsible for the divergence
of the solution.

Next, coordinate system CORD2 was considered for the laminar flow
at a Reynold number of 1000. Time history of the flow at time t = 1.2,
2.0, 3.0 and 4.0 is shown in figs. 50 - 53. The flow characteristics
were not changing with further increase in time and the number of
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iterations came down to 8., Hence the flow was considered steady at
time t = 4.0. For qualitative comparison, the numerical solution is
compared with the experimental solution at a Reynolds number 40,000.

The discrepancies in the pressure distribution from the leading edge

to the maximum airfoil thickness can be identified. It is interesting
to note here that coordinate system CORD2 allowed to obtain the steady
state solution while CORD3 did not. A coordinate control function which
was found using the hyperbolic tangent as the point distribution func-
tion was used for coordinate system CORD2. It was noted in reference
{34] that a hyperbolic tangent function gave optlimum truncation error.
With the same co&rdinate system, i.e., CORD2 an attempt was made to
obtain Reynolds number 10,000 solution by restarting the laminar flow
from Reynolds number 1J00 solution at t = 4.0, The pressure distribution
and velocity vectors for Reynolds number 10,000 at t = 5,0 is shown in
fig. 54.

It was thought that the accuracy of the solution during the
acceleration phasce had significant effect on the total flow field
solution. Hence coordinate system CORD2 was considered for Reynolds
number 1000 laminar flow solution with increased number of iterations
21 initial stages. The error norm used was the same as before (10-4),
however, :the maximum number of iterations for initial time steps were
increased to satisfy the above convergence criteria exactly. The
number of iterations started increasing from 10 at the first time step
te 75 at time t = 1.0, abéut 100 at time t = 1.5, about 90 at t = 2.0
and about: 60 at t = 2.5. Some test runs were made with increased

number of iterations and maximum number of _iterations fixed at 50 beyond
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time t = 3.0. No noticible difference betwéen the solutions using 50
and increased iterations was found. Hence the maximum number of iter-
ations beyond time t = 3.0 were again fixed to 50, The time history

of the solution starting with time t = 1,0 till time t = 10.0 is shown
In figs. 55 - 64 at an interval of 100 time steps. Note the difference
in the pressure distribution at t = 1.0 between this case (fig. 55)

and a case with fixed iteration (fig. 50). This difference in the
pressure distribution becomes moxe obvious at time t = 2.0, 3.0 and
4.0. TFor the present approach the solution had not achieved steady
state at t = 4.0, with number of iteration about 40. Note that starting
at time t = 3.0 velocity vectors at the leading edge region start
changing its angle of inclination gradually and becoming parallel to
the airfoil surfaces. Also the magnitude of velocity vectors in the
trailing edge region keep increasing with passage of time. No notice-
able difference in the pressure distribution was found between the
solution at time t = 9,0 and t = 10.0 and hence computatioﬁs for
Reynolds number 1000 were stopped at t = 10.0. The pressure distribution
dn the leading edge region (fig. 64) has improved considerably compared
to the previous steady state solution (fig. 53). Also, the experimental
results at Reynolds number 40,000 matched qualitatively better than
previous approaches. The pressure distribution in the leading edge
region was thé major cause of discrepancies. A closer look at coor-
dinate system CORD2 (fig. 9) shows that there is a sudden change in
grid points spacing after approximately 9 points from the leading

edge on both, upper and lower surfaces. Note that these points were

placed by curvature of this surface.
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Perhaps the redistribution of points in this region may help us to
obtain correct pressure solution.
Finally, Reynolds number was increased to 40,000 and the flow was
restarted from the Reynolds number 1000 laminar solution at t = 10.0.
. The maximum number of iterations were limited to 50. The laminar flow
solution diverged at t = 10.16 indicating the presence of large ampli-
tude oscillatlons at higher Reynolds number. An attempt was made to

damp out o¢gcillations with the turbulence turned on at t = 10,01 and

transition occuring at minimum pressure points. Again, the solution
diverged at t = 10.17, Next the turbulent flow golution using artifi-
cial viscosity QReJ|V + V| with Q@ = ¢|w| and ¢ = 1.0 was considered.

The use of the artificial viscosity allowed a steady solution to be

ohtained. Some minor oscillations in the trailing edge region were
observed at about time t = 16.0. Hence the value of ¢ was increased

to 10.0 after time t = 16.5. The surface pressure distribution and

the leading and trailing edge velocityvector plots at time t = 20.0

are shown in fig. 65. The separation was found to occur at about 60%
chord position on the upper surface and at about 64.1% chord position
on the lower surxface. The computed surface pressure distribution is
compared with the experimental data. The uge of artificial viscosity
increased the thickness of the boundary layer. The surface grid point
distribution was though to be responsible for the discrepancies betweeﬁ
the computed and experimental surface pressure distribution in the lead-
ing edge cegion. The distribution of the divergence of the velocity and
the total viscosity (1 + ¢ + ua), for the first 20 n = constant lines, at
the leading and trailing edge is shown in Table 1. The maximum of the

divergence of the velocity field occured at the gecond node point off

v
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the wall at the leading edge and the value of the total viscosity at
the same node was 1.11. Since the value of the eddy viscosity € was
zero at the leading edge, the value of artificial viscosity was 0.1l at
that point., With increase in the value of J, the magnitude of the
divergence started decreasing, however values of the aritifical viscos-
ity was increasing till J = 10 and chen it started decreasing. At the
tralling edge the values of the divergence of the velocity were less
compared to the values at the leading edge. However, the values of

the artificlal viscoisty at the trailing edge were larger than at the
leading edge. The values were increasing with increase in J till J =
15 and then it started decreasing. The increasc in the values of the
artificial viscosity at the trailing edge was probably due to increase
in the magnitude of vorticity and increase in the cell size.

The computatilons were performed on the CDC, CYBER-203 computer at

NASA Langley Research Center, Hampton, Virginia. For about 50 iterations

per time step, average CPU time for these computations was observed to
be 3.3 seconds/time step. This compares to 37.4 seconds/time step [30]
for a similar serial code on the CDC 7600. A factor of 11,36 was |
obgerved improvement in speed. A coordinate system with 5763 (113 x

51) grid points was used in the present stu&y, giving average computa~
tional rate of 1.145 x 10’5 seconds/iteration/grid point. Further in-

crease in speed through data management optimization and additional code

seems possible.
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Chapter VIIL

CONCLUSIONS

The prime motivation of this study was to develop a vectorizable
algorithm for the implicit finite-difference solution of the incompres-
sible Navier-Stokes equations in general curvlinear coordinates. The
results indicate that it is economically feasible to obtain flow field
goluiton past complex geometries. Much of the present effort was divert-
ed to the numerical solution of the incowpressible two-dimensional
Reynolds averaged Navier-Stokes equations in nonconservative primitive
variable formulation on the vector computer, especially to the development
of a relaxation technique amenable to vector processing. The checkboard
SOR relaxation technqiue and boundary-conforming coordinate system make
the method efficient and versatile for a wide variety of configurations
which could be addressed using a.vector computer. The computer code was
fully vectorized in the sense that all vectorizable loops were vectorized
using explicit vector instructions and arithmetic operations were per-
formed in a vector mode. The present computations on the CYBER-203
indicated a speed gain of about 11 over CDC-7600. The acceleration para-
meters, based on iocal velocities, were computed using the c]éasical
point SOR analysis and need to be studied in detail to make them optimal
for the checkerboard SOR. The present implicit scheme is linearly un-
conditionally atable excluding the pressure termﬁ. This scheme with
central-difference approximations for the spatial derivatives, exhibited
oscillatory behavior at the higher Reynolds numbexr. Out of several
smoothers attempted, the divergence of velocity smoother proved to be an

effective way of filtering oscillations during the early stages of the
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solution. However, with passage of the time and increase amélitude of
oscillations, the effectiveness of the smoother was lost and the accuracy
of the solution was destroyed. Perhpas the use of an artificial viscosity
was the most effective way of eliminating the flow field oscillations at
higher Reynolds numbex for the present method. For solution at higher
Reynolds number, restarting the flow from the steady state solution at
lower Reynolds number was not particularly effective in controling the
nonlinear oscillations. Thus initial conditions had little effect on the
stability of the flow field solution. On the other hand, the accuracy

of the solution during the accleration phase had significant influence

on the steady solution. The down-stream boundary conditions showed little
influence on the total flow field solution. Also it is not clear what
type of initial guess for the checkerboard SOR can accelerate the conver-
gence and reduce the number of iterations required for a given error norm.
Computed results indicate that it is possible to obtain considerable speed-
up using the present method. The effects of several coordinate systems
on the numerical solution Qere studied. The importance of a proper coor-
dinate line distribution to évoid grid induced errors and sensitiveness
of the algorithm to the coordinate system were observed. In particular,
the rate of change of line spacing in the boundary layer region was found
to be more important than the grid line skewness at the boundary. Also,
the grid point distribution on the body surface showed considerable in-
fluence on the solution. Tﬂe turbulence model used in this study shows
little control over nonlinear oscillations. Hence some compromise in the
flow field solution was made by using an artificial viscosity. The use
of an.artificial viscosity usually made the boundary layer thicker than

what it should be, however it did stabilize the flow solution. The effects
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of several forms of artificial viscosities on the solution were studied
and compared for several test runs, Although steady state solutions
were not attempted using each of them, the information about their
relative merit can help to choose an appropriate form for particular
application. Some ranges of a parameter, which was used to control
the effect of varijous forms of airfoil viscosities, were obtained from
numerical experiments. The use of various smoothers was found to reduce
the need of an artificial viscosity by little margin.

Ih the course of the present study the coordinate systems played
a crucial role. The need for an optimized coordinate system for the
Navier-Stokes sclutions became apparent. Inability to compute flow
field sclutionon one coordinate system and the discrepancies between the
computed results and experimental data on the other coordinate system
was perhaps due to the deficlencies of the coordinate systems. An
adaptive coordinate system, which adapts to flow field variables
gradients in a numerical solution may effectively solve this problem.
The dynamic coupling of the coordinate governing equations with the
flow field governing equations to resolve developing gradients is
perhaps the most promising approach to improve the overall outcome of
the present computational procedure. An adaptive érid may eliminate
the extreme oscillations encountered using a fixed grid and enhance
the performance of the algorithm because fewer iterations Qill be
required due to improved convergence. Since computer operations become
more efficient with increase in'vector length on the CYBER-20U3 an
application involving large number of grid points can increase the
relati§e speed gain. The CYBER-203. is a one-pipe machin: while the

CYBER-205 is two-pipe machine. Thus significant speed up in computa-
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\
tional rate ¢an be obtained by running the computer code on the CYBER-~

205. The primitive variable formulation used for the governing equa-
tions can be easily extended to three-dimensional problems. For large
three-dimensional problems, the increased number of grid points saturate
or nearly saturate the available memory. Hence some grid points must

be held in secondary storage and they must be transmitted to and from
the central memory. As overall executlon time is a function of this

memory transfer, the memory and data managment become much more important

0o 5”0 0 o e e ¢

for three~dimensional pfoblems. The computer time required for large
scilentific problem is generally so large that any increase in efficiency
can~represent substantial savings. In recent years, success in the
development of high technology, such as very large scale integrated
(VLSI) systems has revolutionized computer architecture. It seems
possible to build a special purpose computer tailored for a special
application. The software logic of a relaxzation method; such as
checkerboard SOR, can be implemented in hardware using VLSI elements.
As point relaxation techniques are at the core of many systems of
. partial differential equations occuring in fluid dynamics, heat trans-

fer, plasma dynamics, electrical network, semiconductor device model-

ling and structural analysis, the hardware implementation cost can
be justified. Success in the development of a special purpose computer

in the future will significantly reduce real time processing and cost

of computing. The future of high-speed scientific computing, with

increased emphasis on vector processing, seems to be quite promising.
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APPENDIX A

VARIOUS RELATIONS AND DEFINITIONS IN THE TRANSFORMED PLANE

This appendix contalns the relations and definitions necessary to
transform the equations of motion and boundary conditions from the physical
to the computational plane. All transformations are presented in fully
non-conservative form. The two following definitions are applicable
throughout this appendix:

f(x,y,t) £ a scalar function with continuous first and second
derivatives.

F(x,y) = 1 F (x,y) +} Fz(x,y) £ a vector function with con-
- tindious first derivatives. {1 and j are Cartesian
unit vectors. N

Definitions of the Transformation

I = xgyn - xgyn (A.1)
o=+ y (4.2)
b= xgky Yy -
y = x§ - yé (A.4)
Dx = OXpy = stgn + yxnn (A.5)
Dy = axag - stﬁn + Yxnn (A.6)
o= (yEDx - XEDY)/J A.7)
T = (x Dy - yan)/J (A.8)
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ORIGIMAL PAGL 1S
OF POOR QUALITY

Transformation of Scalar Derivatives

£ = QE/) = (£, - v £/

fy = (3f/3y)x't = (ngn - xﬂfE)/J

- 2 2 - 2 2
£ (3°£/9x )y’ (y nEee ~ Zygynfgn + ygfnn)/J
+ (yzy -2y.yy, + y y )(x f -x£)/3°

n" &g £ n"&En £'n £ n

2 3
+ - _ c
S neg T BeVn¥en * Yk, Ok -y E/d

2 2 2
w a P t = - - f
fyy (27€/3y ) x, (xnfgg 2x£xnf€n + xefon

2 2 i 3
e - B T Xy ) fe = X £0/T
+ (xzx - 2%X,.%x X, + x x )( -y f )/J3

"€ g n*en Yebn = Ynfe

2
¢ flaxay)t [(xgyn + xnya)fg n b4

f
xy £ et an

]/J + {x y X

Ynfee gg = gy TRy Ix

3
xﬁyﬁxnn](ynfi - yﬁfn)/J +'[xnyny€£
. _ 3
- Gy FXgye b Xy T - X £0/3

£, = (af/at:)x’y - (ft)é,n - (fxxt + fyyt)

Transformation of Vector Derivatives

Laplacian:

2 2
VE = (of - 2BF, +YE )/J

- L0 (£ + Gy (£)1/3%

(A.9)

(A.10)

SEUEIUNUIRENVICHASS P

(A.11)

(A.12)

(A.13)

(A.14)

(A.15) i
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or

2. - ' 2
VEE - (afag ZBfen + ann + ofn + ng)/J

Gradient:

vt = [(ynf', - yefn)i. + (x‘,:fn - xnfg)j]/J

Divergence:

Y *F o= [yn(Fl)E - yE(Fl)n + xg(FZ)n - xn(Fz)E]/J

Unit Normal and Tanpgent Vectors

. Normal to n-line:

?(n) = Yn/[an = (—yEi + xgj)//7

Normal to &-line:

2 T - G- a1

Tangent to n-line:

) 2My g a (x.1 + ij)//;

Tanget to f-line:

t(E) = B(E) x k= ~ (xni + ynj)/a

~

Directional Derivatives

ag/onM o (M, VE = (yfn - Bfg)/s/7
ag/oe(™ o () | Vf = fE//7

ag/m (8 o () | oo (of - B2)/3/a
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(A.18)

(4.19)

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)

(A.25)
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APPENDIX B

The Navier-Stokes equations in non-conservative primitive variables
formulation can be represented by the following general partial differen-

tial equation, neglecting the cross derivative terms
get Apf FBiE, + B)f 4 CE+ D=0 (B.1) |

: I

!

where £ denotes velocity u or v. For (IL-1) * (JL~1) simultaneous equations,

the spectral radius Cj of Jacobi iteration 1s given by [52].

& 7 - { l“‘i Ll °°3(1L T i
|c - 2(A; + Ay | |

i

/———-—-———-—-. 1

+ |4A§ - Bél °°5(ji23?} (B.2) {

i

+

The optimal acceleration parameter k¥ for SOR iterations can be obtained

using the following relations

|
2 2 2 2 2
K = ; if 4A1 > By and 4A A, > B, (8.3) ‘ .E
1+ 1-~¢ X
J .
and :
K = T otherwise (B.4)
1+ 1+ c;

In this study, when conditions for equation (B.3) were satisfied, instead
of computing acceleration parameter using equation (B.3) which gives

k > 1.0, the acceleration parameters were set equal to 1. In other

words, the momentum equations were solved using acceleration parameter

less than or equal to 1.0.

R i S TVCLRORVE S
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The coefficients in equation (B.1) are defined as follows.

A = =%
ReJ
A, = __EL
2 2
ReJ
Tl=~lj-g—2—+2(xv--yu)
ReJ n n
Ut
T, = —5 - 2(x,v -~ y_u)
2 ReJ?' ¢ ¢ .
j i
For x momentum equation .

= L
B, = T, + T (2uxyn - uyxn)
B=’1‘-l-—-—1—(-2uy + uox.)
2 2 ' RelJ X' g vy £

For y momentum equation

DR s i TNy

- 1
B, = ‘1‘l + o] (—Zuyxn + uxyn)

~ 1
By =T, + o3 (2uyxE - uxyg)

T =1 for first-order time differencing

T = -23- for second-order time differencing
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Ccordinate System

Coordinate System

Coordinate System CORDZ Re = 40,000

CORD3 CORD2 Solution at t = 20.0
I =233 -~ 1= 57 I =93 1= 57 I =93 I =57
Arc length |Arc length| Arc length [Arc length {ABS(V - V) |1 +¢e+ Hy ABS(V « V) |1 +e+ Hy

J S S S S B ) ST

1y 0.0 0.0 0.0 0.0 0.0 0.0 0.0 .0.0
2 { 0.0000116 [0.0000116 | 0.000055% |0.0000026 1.13 3.75 43.22 1.07
3 | 0.0000269 {0.0000269 | 0.0001273 {0,0000061 1.54 5.78 50.96 1.11
4 | 0.0000470 |0.0000470 | 0.000220 0.000C105 1.53 7.07 50.41 " 1.14
5 | 0.0000736 [0.0000734 | 0.000341 0.0000163 1.15 6.79 50.25 1.18
6 | 0.000108 0.0000108 | 0.000498 0.0000239 1.44 10.18 49.37 1.23
7 | 0.000154 0.000153 0.000702 0.0000336 0.9%6 8.76 48.82 1.29
8 | 0.000215 0.000213 0.000965 0.000046 1.25 13.75 47.48 1.37
9 | 0.0006295 0.0600292 0.001309 0.000062 0.87 12.04 46.38 1.46
10 | 0.00040 0.00039%5 0.001756 0.000083 1.03 17.15 44 .46 1,57
11 | 0.000538 0.000530 0.002337 0.000111 0.80 16.35 42,73 1.70
12 | 0.0007211 |0.000706 0.003094 0.000147 0.78 19.17 40.15 1.84
i3 | 0.000%62 0.000935 0.004079 0.000193 0.70 20.44 37.72 2.01
14 | 0.001279 0.00123 0.005363 0.000253 0.54 18.50 34.46 2.19
15} 0.001697 0.001621 0.997039 0.000331 0.58 22.48 31.37 2.38
16 ; 0.00225 0.002121 0.00922 0.000433 0.33 14.86 27.53 2.56
17 { 0.00297 0.00276 0.01206 0.000565 0.43 20.52 23.90 2.73
18 | 0.003% 0.00359 0.01574 0.000737 0.10 5.33 19.67 2.81
19 | 0.00521 0.00464 0.02049 0.000%62 0.23 13.22 15.74 2.84
20 | 0.00689 6.00599 0.02659 0.00125 0.11 7.55 11.39 2.67

Table 1. Coordinate Line Distribution and Divergence of Velocity and

Artificial Viscosity Field at Leading and Trailing Edge.
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(d) Very Close View of Trailing Edge
Fig. 10 Coordinate System CORD3
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Fig. 11 Surface Pressure Distribution
Laminar Flow, t = 0,5, Re = 10,000
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Fig. 13 Surface Pressure Distribution
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Fig. 14 Surxface Pressure Distribution

Turbulent flow, t = 0.8, Re = 10,000
Transition at Maximum Airfoil Thickness
Points.
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Turbulent flow, t = 0.8, Re = 10,000
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Turbulent flow, t = 0.7, Re = 10,000
Extrapolated trailing edge pressure.
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Fig. 18 Surface Pressure Distribution

Turbulent flow, t = 0.7, Re = 10,000
Extrapolated tralling edge pressure
Wy = QReJ|V » V[, Q= ¢
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Fig. 19 Surface Pressure Distribution
Laminar Flow, t = 1.0, Re = 10,000
Wy = QReJ|V ¢ V[, 2 = 1.0
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Fig. 20 Surface Pressure Distribution
Laminar Flow, t = 2,0, Re = 10,000
M, = QReJ|V ¢ V|, @ = 1.0

My applied every iteration

112

M
A
-
:
i
. 3
o
P |
SR
4z
B
!
i
: B
‘ {
[}
[
‘}
N
g
o
}
-1‘ ’
]
&,
g,
*
3
&
§ e
-



-
SN . . . e O T O b A e

W e TR
OF BOOR QUL

¥ '\'\l‘

u:;f.umm.lezmuudaumw{.}a
) :

Fig. 21 Surface Pressure Distribution
Turbulent flow, t = 1.6 Re = 10,000
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Fig. 22 Surface Pressure Distribution
Turbulent flow, t = 2.0, Re = 10,000

Mg = QReJY[wl [V V], 2=1.0
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Fig. 23 (a) Surface Pressure Distribution 5'1'
(b) Leading & Trailing Edge Velocity Vector Fields b

Laminar Flow, t = 0.5, Re = 10,000
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(a, Surface Pressure Distribution
(b) Leading & Trailing-edge Velocity Vector Fields
lLaminar Flow, t = 0.7, Re = 10,000
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Fig. 23 . (a) Surface Pressure Distribution
(b) Leading & Trailing-edge Velocity Vector Fields
Turbulent Plow, t = 0.7, Re = 10,000
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(a)

(b)

Fig. 26
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(a) Surface Pressure Distribution
(b) Leading & Trailing-edge Velocity Vector Fields
Turbulent Flow, t = 1.0, Re = 10,000
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Fig. 27 (a) Surface Pressure Distribution =

(b) Leading & Trailing-edge Velocity Vector Fields L
Turbulent Flow, t = 1,0, Re = 10,000

Transition at Maximum Airfoil Thickness Points
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Fig. 28 (a) Surface Pressure Distribution
(b) Leading & Trailing-edge Velocity Vector Fields
Turbulent Flow, t = 1.0, Re = 10,000
Transition at Maximum Airfoil Thickness Points
W, = QReJ[V - V[, 2= ¢
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Fig. 29 (a) Surface Pressure Distribution dt
(b) Leading & Trailing-edge Velocity Vector Fields ..
Turbulent Flow, t = 1.0, Re = 10,000 g

M, = QReJ|V < V|, 2 = 1.0 ;
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Fig. 30 (a) Surface Pressure Distribution .
(b) Leading & Trailing-edge Velocity Vector Fields
Turbulent Flow, t = 2,0, Re = 10,000 ¢,

u, = QReJ|V + V|, @ = 1.0 ;
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Fig. 31 (a) Surface Pressure Distributin
(b) Leading & Trailing-edge Velocity Vector Fields
Laminar Flow, t = 0,5, Re = 10,000
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Fig. 32 (a) Surface Pressure Distribution
(b) Leading & Trailing-edge Velocity Vector Fields
Laminar flow, t = 0.7, Re = 10,000
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Fig. 33 (a) Surface Pressure Distribution
(b) Leading & Trailing Edge Velocity Vector Fields
Turbulent flow, t = 0.9, Re = 10,000
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(a)

(b)

Fig. 34 (a) Surface Pressure Distribution
(b) Leading & Tralling-edge Velocity Vector Fields
Turbulent flow, t = 0.9, Re = 10,000
Transition at Maximum Airfoil Thickness Points.
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Fig. 35

(a)
(b)

OR(GrelAL PACE 19
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Surface Pressure Distribution

Leading & Trailing-edge Velocity Vector Fields
Turbulent Flow, t = 1.0, Re = 10,000
Divergence of Velocity Smoothers,

%% 1st Order Accurate
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Fig. 36 (a) Surface Pressure Distribution c
| (b) Leading & Tralling-edge Velocity Vector Fields LA
Turbulent Flow, t = 1.0, Re = 10,000 o
RHS Smoother :




ORIGINAL PACE ES‘{
OF POOR QUALITY

(a)
(b)

F 73 :
,/ﬁyﬂf§’~§fi§:§ﬁc;§;i:
'J"g 7’—'/“:; Do e et ST\

e I e i

- sgem—
-
PRSP~
USRI
JUNSSS-
-
PP
U
¢

Fig, 37 . (a) Surface Pressure Distribution
(b) Leading & Trailing-edge Velocity Vector Fields
Turbulent Flow, t = 1.0, Re = 10,000 L
Mg = ReJ[V - V[, @ = {(3VZ/35)2 + (av2/an)?}*
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Fig. 38 (a) Surface Pressure Distribution l:" )
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Fig. 39 (a) Surface Pressure Distribution
(b) Leading & Trailing-edge Velocity Vector Fields
Turbulent Flow, t = 1,0, Re = 10,000
u, = QReJIY - v, 2= ¢lu
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Fig. 40. (a) Surface Pressure Distribution D S
(b) Leading & Trailing-edge Velocity Yector Fields %
Turbulent Flow, t = 1.0, Re = 10,000 i
W, = ReJ|V - V|, 2 = 1.0 i
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(a)

(b)

Fig. 41 (a) Surface Pressure Distribution
(b) Leading & Trailing-edge Velocity Vector Fields
Turbulent Flow, t = 1.0, Re = 10,000
W, = QReJAt|{VZP| , @ = 1.0
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Fig. 42 (a) Surface Pressure Distribution
(b) Leading & Trailing-edge Veloecity Vector Fields
Turbulent flow, t = 1.0, Re = 10,000
Transition at Maximum Airfoil Thickness Points
n, = OReJ|V - v, 2= (§ - 1.01|w|, ¢ = 4.0
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Fig. 43 (a) Surface Pressure Distribution
(b) Leading & Trailing-edge Velocity Vector Fields
Turbulent Flow, t = 1,0, Re = 10,000
Wy = QReJ[V « V|, Q=¢fw]|, ¢ = 1.0
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Fig. 47 (a) Surface Pressure Distributién
. (b) Leading & Trailing-edge Velocity Vector Fields
Laminar flow, t = 1.0, Re = 1000
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Fig. 48 (a)
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Surface Pressure Distribution
Leading & Trailing-edge Vector Velocity Plots
Laminar Frow, t = 1.5, Re = 1000
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Fig. 49 Surface Pressure Distribution
Laminar Flow, t = 2.0, Re = 1000
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OF POOR QUALITY

(b)

(b) Leading & Trailing-edge Velocity Vector Fields
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Fig. 51 (a) Surface Pressure Distribution

(b) Leading & Trailing-edge Velocity Vector Fields
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(a) Surface Pressure Distribution .
(b) Leading & Trailing-edge Velocity Vector Fields
Laminar Flow, t = 4.0, Re = 1000
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Fig. 63 (a) Surface Pressure Distribution )
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