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ABSTRACT 

Nisheeth Patel, Doctor of Philosophy, 1983 

Major: EngineEaring, Department of Aerospace Engineering 

Title ()f Diss(~rtation: A Fully Vectorized Numerj.cal Solution of the 

Incom.pressible Navier-Stokes Equations 

Direc ted by: ~roe. F. Thompson. 

Pages in D1.sserat1on: 160 Words :Ln Abstract: 255 

Abstract 

A vectorizable algorithm is presented for the implj.cit finite 

diffe,rence solution of the incompressible Navier-Stokes E~quations 

in genel~al curvi.linear coordinates. The tmsteady Reynolds averaged 

Navier-·Stokes equations solved are in t~lo-dimension and non-conservative 

primitiv'e variable form. A two-layer algebraic eddy viscosity turbu-

lence model is used to incorporate the effects of turbulence. Two 

momentulJl equations and a Poisson pressure equation, which is obtained by 

taking t.he divergence of the momentum equations and satisfying the con tin-

uity equation, .lre solved simulllaneously at each time step. An elliptic 

grid generation approach is used to gen(~rate a booodary-conforming 

coordin<lte syst;(ml about an airfoil. ThE~ governing equations are express-

ed in terms of the curvilinear coordinates aud are solved on a uniform 

rectangular computational domain. A checkerboard SOR, which can effect-

ively utilize the computer architectural. concept of vector processing, is 

used for ite.rative solution of the gove,ming equations. The method 

is applied to the cases of an 18% thick NACA 663°18 airfoil at zero 

degree angle of at tack for chord Reynolds number range of 1000-'.0,000. 
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The e:£iects of various boundary-conforming coordinate systems, arti-

ficial vlscos:ities, smoothers, down-stream boundary conditions, initial 

guesses and number of iterations duri.ng the acceleration phase on the 

solut.ion of the flow field are studied. Numerical results are given in 

termSI of surface pressure distributions and velocity vector fields at 

selec:ted tirnE!S. Computed steady-stat.e results are compared with 

(~xperjJ'lerltal data. On the CDC CYBER-.203 computer. the algorithm 

demonstrated a factor of about 11 improvement over a CDC-7600 scalar 

vers:l,Cln of the code. 
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Chapter I 

INTRODUCTION 

Computational. Fluid Dynamics (CFD) has made a significant contri-

but:ion in t.he recent development of aerospace vehicles. Practical 

aerodynamj.c:s, which controls the design of flight vehicles, is 

essentiall.y about complex flow at high Reynolds number past arbitrary 

configurat1.ons. The governing equations, which describe physical 

fea.tures of such a flow, are non-linear partial differential 

equ.ations - the Navier-Stokes equations. Simplificat:l.on of these 

governing equations ~lill limit the a.pplication. In the past. experi-

mental fluid dynamics has played an important role. however. with 

the breakthrough in solving non-linear partial differential equations 

and high speed computation, CFD has risen to complement the role of 

experimental fluid dynamics. 

Perhaps the foundation of modenl fluid dynamics \I1I1S laid by Prandtl 

wheJrl he first presented boundary 1ayel: theory in 1904. However, it was 

not recognhed until 1920 when Prandtl presented insight on separation. 

A review of classical fluid dynamics has been presented by Goldstein 

[1]. The foundation stone for CFD was probably laid by Courant, 

Fril~dricks and Lewy [2] with the introduction of the numerical stability 

condition for the solution of hyperbolic equations. knOWll as CFL 

condition. In the 1960's the finite difference methods, Buch as 

Lax -Wendroff [3] type and MacCormack's [4] explicit methods, were 

devdoped for solving the Euler equations 1n conservation law form. 

Since then,with rapid increase in computer speed and computer memory, 

CFn has developed sufficiently to become established as a discipline. 
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Several recent surveys on ern development and future of eFn have been 

presented in references [5]. [61. [7], and [8]. 

Althou~:h in most cases CFD does offer the pot(~ntial of obtaining 

cotnplet.:e information about complex flows without experimentation. 

it has its own difficulties. The essential areas to be considered 

before solving the N"avier-Stokes equations are grid generation. 

algorithm, turbulence model,and computer. Significant improvement 

in any of these areas will enhance comput.ational efficiency and 

accuracy of the solution. 

Many cases of practical interellt contain an arbitrary domain. 

Since the boundary is' not aligned ~<lith the grid when using a cartesian 

coordinate for an arbitrary region,. it requires the use of inter-

polation formulas near the boundary. The imposition of boundary 

I"" 
conditions with a complicated computational region having irregular .J 

boundaries is a primary difficulty with the cartesian coordinate ;~~!: .. ~ ~ 
!\.~--... 
\ .... -. .: 

system. Moreover. the Navier-Stokes equations and their boundary \
"., . . . 

cClllditions are such that the 'Viscous effects are confined to a very 

thin region immediately adjacent to the solid boundaries. Although 

the region is quite thin it produces considerable effects on the total 

se,lution elf the flow field. In addi.tion, the stability conditions. 

iterative convergence and truncation errors of the numerical algorithm 

employed DUly be adversely affected [9]. Since a cartesil:1n grid has 

l:Lmited applicat.ions. the recent t.rend has been to lise a boundary-

conforming coordinate system. ThE! boundary-conforming coordinate 

systems axe defined as those which POSSp.ss const:ant coordinate lines 

coincident with all boundaries of the physical '."lane, which in turn 

correspond to a rectangular gri.d with square cells :Ln the transformed 

I 2 
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plan.e. The govel:ning continuum equations are derived on the rectang-

ulal: grid in the transformed plane. An elliptic grid generating 

system developed by Thompson, et. a1.. [10] is capable of generating 

a bc)Undary-c:onforming coordinate S~'Ett(>.m. rhe main attraction of this 

appJ:oach is flexibility, automation and a moderate degree of control 

by thfl user. The recent surveys on grid generation tE!chniqucs and 

applications: are presented by Thompson in references [11], [12], and 

[13) • 

In the past decade, numerical algol'ithms used in simulation of 

fluid flo,.,s have improved substantially. Explicit algorithms are 

simple. Howeve~ restriction on the time step imposed by stability 

cons:Lderations ,is a main disadvantage of these schl!mes. Increased 

interest in implicit schemes led to the development .)nd use of efficient 

algorithms s'Uch as those due to Briley and HcDonald [14), Beam and 

Warming [15], MacCormack's rapid solver [16], and the hybrid MacCor-

mack's scheme (17). The mathematical reviews of these developments 

are presented by Lomax in references [18) and [7]. 

Practical computations involve numerical simulation of turbulence 

to provide more understanding of phYflical phenomena. Several basic 

algebraic, one··equation and two-equation models have bl~';!n developed 

and used to llUalyze turbulent ,flows. A comprehensive r.eview on 

turbul.ence Dlodelling haa, been presented by Marvin in reference [191. 

In the past decade computer speeds and computer memories have 

increased at a significant rate. The development of supercomput.ers, 

with memory measured in million words and calculation rate in mflops 

(million floating point operations per second), such a,s the ILLIAC-IV 

(16 million words, 25 mflops). CYBER-203 (1 million ~Jords. 20 mflops). 
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CRAY-l (1 million word, 30 mflops), CYBER-205 (4 million words, 80 mUops) 

and CRAY-IS (/~ million words, 30 mHol's) have dramatically increased 

the capabilities of CFD and reduced the cost of computation. For 

example, the CRAY-IS can perform 100,000 calculations for less than a 

penny" The CRAY -2, which is still in the design stage, will approximately 

double the speed of the CRAY-1S with possible further reduction in 

calcula.tion cost. The supercomputers are used in areas such as 

aeronauti.cal (mgineering. nuclear research, weather forecasting and 

other military and civilian applications. The eYBER-200 and CRAY-"l 

series computers are vector processors and use pipe-line architecture 

to increase the calculation rate. Levine presented an introduction 

to supercomputers and their architecture in reference [20], and tech-

nical information can be found in reference [21]. A computational 

algorithm developed with the supercomputer architecture in mind can 

effectively use its computational capabilities and hence reduce the 

run c.osts significantly. 

The prese.nt study will be focused in the areas of algorithm 

development a.nd the use of a supercomputer for the numerical solution 

of iI1~compress:ible Navier-Stokes equations. The areas of grid genera-

tion and turbulence. modelling will be addressed as essential elements 

requlred for simulation of the flow. The information about grid 

geneI:at:l.on tE!chniques and the turbulenc.e model used in this study 

can be found in appropriate references. However they will be presented 

in dEltail fOI: cOJllpleteness. 

4 



1.1 ~~: of Previous Investif~~~ 

The unsteady and steady incompressible Navier-Stokes equations 

have been successfully used by many researchers to simulate the flow 

field of different characteristics. The basic formulations used in 

most work are velocity-vorticity, streamfunction-vorticity, stream-

funetion-blharmonics and primitive variables. Cebeci has reviewed 

the lant three formulations in reference [22]. 

The viscous incompressi.ble flol~ past an airfoil has been subj ected 

to fleveral numerical attacks in the past decade. The pioneering 

computation.s of laminar, incompressible two-dimensional flows about 

an drfoil ,are summarized in {231 ruld [241. Hodge [25] used the 

optimized boundary conforming coordinate system for the laminar flow. 

In recent years, turbulent flows have been of increasing interest 

to r:esearch,ers. Sugavanam [26] obtained the solution for flow 

past a Jouk()wski airfoil using veloe!ty-vorticity fonnulation. Hegna 

(27] used primite variables for £10111 past a NACA 0012 airfoil. 

Bernard [28] employed the Approximate Factorization technique for 

NACA-663-0018 airfoil section. Moit:ra [?91 simulated three dimensional 

turbulent flow around an airfoil. Lately, Freeman [30) used an adaptive 

grid approa(~h for dynamic coupling of the grid and flotl1 field solution. 

Exp(~rimental investigations have been reported by Mueller in reference 

[31] • 

1.2 ReseaI:eh Objectives and OutlinE~ 

The objElctive of this effort is to develop a vectorized computer 

code for vi~lcous turbulent, two-d1.mE~nsional incompressible flow past 

an airfoil using an implicit finite-·dUf erencing scheme (Be.ckward-

5 
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Time, Cen.tral-Spa.ce). On the pipeline computers, such as the CYBER-

200 seriE~s, it is: desirable to work with very long vectors for efficient 

use of its vector processing capabilities. Explicit methods are sim-

ple and <:an be easily vectorized since the entire grid can be considered 

as a long vect01:.. However. the major disadva.ntage of explicit schemes 

li.es in the time step restrictions imposed by stability considerations. 

Implfcit schem.es are frequently unconditionally stable and usually 

employ an iterative method such as SOR (Suceessive Over Relaxation). 

Since application of SOR on a vector machine results in either the 

inefficient use of its vector processing abilities or the necessity 

to shift to slower scalar operations, the checkerboard SOR algorithm 

(Chapter VII) will be used for the iterative solution of the governing 

equations on a vector processor. Also the effects of the algoritr..m, 

smoothers, grid, various forms of articifial viscosi.ty and some boundary 

conditions on the solution will be investigated for the specific 

problem under study. The comparisons will be made with the available 

experimental res:ults in Chapter VIII. 

The present research effort is carr:i.ed out in the following 

frame-wC)rk. ThE! governing equations are the two-dimensional, 

incompressible Reynolds-averaged Navier-Stokes equations, written in 

non-coOilervativl~ form in terms of primitive variables. A Poisson 

equation for thc~ pressure is obtained by taking the divergence of the 

momentwll equatj.ons. The two-layer algebraic turbulence model of 

Baldwin and Lomax [32] is used to calculate the eddy viscosity for 

the Reynolds-averaged equations. Dirichlet boundary cond:l.tions are 

imposed on the freestream boundary. On the downstream boundarY,extra-

poltatlon bound.ary conditions on the velocity and Dirichlet boundary 

6 
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condition on ::he pressure are imposed. The boundary conditions imposed 

on the airfoil surface are obtained employing no-slip conditions for 

the velocity and by setting the normal derivative of the pressure equal 

to zero on the boundaries. A linear gradual start is used to accelerate 

the flow from rest to its final freestream velocity. An implicit 

finite-differencing scheme, obtained using backward-time central-space 

apPl·oxi.ma.tions for the governing equation.s in the transformed plane is 

lIsed to obtain flow field solutions. At each time step. the three goverl1-

ing equations a.re solved simultaneously, for u, v, and p. 
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CHAPTER II 

TIlE BOUNDARY-CONFORMING CURVILINEAR COORDINATE SYSTEM 

2.1 The Boundary-Conforming Concept 

A coordinat~ system can have a significant influence on the 

num.(~r1.cal solution of hosted partial differential equations. For 

many cases of practical interest, the irregularities present in the 

boundary geometry will limit the llse of the Cartes tan coordinate 

system in finite differe~ce flow field simulation. A cartesian coor-

dinate system under such circumstances will require i.nterpolation near 

the! body bo,undary to implement the boundary conditions. In the boundary 

confor~ing coordinate system grid lines coincide with the body boundary 

thus yieldlng a degree of simplicity in the implementation of the bound-

ary conditi.ons. Also. the use of boun.dary conforming grids in the solu-

tion of pax·tial differential equations in domains surrounding arbitrary 

gec'metrieal. boundary shapes will give a well-ordered system of algebraic 

difference equations compatible wit.h the algorithms "'hieh can efficient-

1y use the vector-processing computers. Various pos~lible approaches 

such as conformal mapping, transfinite mapping, algebraic and elliptic 

equations have been succeSSfully employed to generatE~ body-conforming 

cUI:vilineal: coordinate systems. A comprehensive survey to these 

tec:hniques and applications have been given by Thompson in references 

[11] and [13] and by Thompson, Wars! and Mastin in reference [12]. 

The feasible and systematiC way of generating an appropriate 

body-conforming coordinate system should consider constraints that 

arl~ neede.d for a glven problem. Pre~f~!rably, the grid should be generated 

in an automatic manner with the elE!ments of control within the mesh 
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generation process. Also the user should have an acceptable degree of 

control over grid smoothness, skewness and stretching. Hosted algo-

rithm,s are usually sensitive to the grid smoothness, sketmess and 

stretching and general reasons for this effect include the following; 

The coefficients of the transformed partial differential equations 

depend on the derivatives of the functions defining the coordinate 

syste.m thus smoothness of the grid will have considerable effects on 

the accuracy of the solution. The local truncation error increases 

with departure from orthogonality. Also, the use of algebraic turbulence 

models demand near-orthogonality at the boundary fer consistent modelling 

of turbulent flows. For a fixed number of grid points, the clustering 

of g%~id points in the region of large gradient should reduce the error and 

imprClve solutions. Moreover. some algorithms require a grid generating 

procE~dure that can be dynamically coupll!d to the physical solution 

propE!rties tel enhance accuracy and efficiency of the numerical results. 

The grtd generated using conformal mapping techniques have been 

used by several investigators. The mai.n advantage is that it allows 

greater control by the user. The mai.n disadvantage of this method is 

the lack of flexibility and automatiCln. An elliptic system can generate a 

grid in an automatic manner with a moderate degree of control by the 

user" It call be extended to three-dimensions arid a ,ptive grid 

procl~dures • 

2.2 _Elliptie Systems 

An el1:lptic grid generating system proposed by Thompson, Thames 

and 11astin [10] and successfully used by many investigators is capable 

of generating a suitable grid for th(~ present study. The elliptic 

grid generat:mg system is less suscept:lble to grid overlapping and 
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can be subjected to a variety of grid control procedures to obtain 

desired grid characteristics as discussed in the previous section. 

Numerical grid generation usually involves transformation of 

the physical domain of interest into a geometrically simple compu-

tational domaj.n, such as a single rectangular domain. The solution 

of grid generation equations in the computational domain produces 

the corresponding grid in the physical domain. The physical space 

define.d by Cartesian coordi.nates x and y is mapped onto the compu-

tational space through the mapping functions 

E;(x,y) 

n = n(x,y) 

(2.1) 

(2.2) 

by ma.king the. inner, outer, lower downstream and upper downstream 

boundaries coincide with n = nmin , n = nmax ' E; = E;min and E; = E;max' 

respE!ctively. The extremum principle ensures occurence of extrema 

only on the boundaries and hence overla.pping of grid lines can be 

avoided. 

The topological correspondence :l.n a C-type grid about a 2-D air-

foil may be better understood with thE! help of Figure 1. The boundary 

n ... 11m in is nmpped onto the inner boundary r 4 -. r 1 - r 5 containing the 

bran(:h cuts, ~md the airfoil E; = E; and E; = E; correspond to the 
min max 

downstream s(~ction r 3L and r 3u respec:t5.ve1y, E; increasing clockwise 

around the airfoil. The n = constant fam5.1y of lines form open curves 

resernbling the letter C. The n = I1
mmc 

boundary is mapped on to the 

outelr freestl:eam boundary r 2' 

The eHi.ptic grid ge.neration method of Thompson et .a1. [10] 

permits any desired distribution of i; and n on the boundaries. The 
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inherent smoothness of solutions of elliptic systems is well recognized, 

and hence they are less adaptable to propagation of boundary slope 

discontinuities into the field. The choi.ce of the elliptic system is 

further reinforced by the ability of the inhomogenous terms in Poisson's 

equation t.CI control coordinate line spacing "lith respect to a curve or a 

poj.nt \Vithjn the fie.ld. The chosen grid gene.:ating system has the 

following fonn: 

CI. E;, + E;, = -- p (E;" n) 
xx YY i 

nxx + n yy 
= ..:r2 Q(~, n) 

J 

(2.3) 

(2.4) 

A desired form of the control functions P and Q makes it possible to 

concentrate lines in regions of the field. An interchange of dependent 

and independent variables enables one to perform all computation in the 

transformed field (Appendix A). The generating system in the transformed 

field becomes: 

(2.5) 

(2.6) 

The transformed equations are solved in the rectangular E;,n- plane and 

the Dirichlet boundary conditions are specified for x IDld y by the 

known shape of boundaries. The coefficients of equations (2.3) - (2.6) 

axe functions of the transformation and are defined by 

CI. = x2 + y2 
n n 

(2.7) 

(2.8) 

y (2.9) 
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(2.10) 

where J is the Jacobian of the transformation. 

A great deal of simplification in computation results if integer 

v.alues are assigned to ~ and n and increments liE; and lin are chosen to 

unity. This gives rise to uniform spacing in the transformed plane, 

with 110 loss of gcncralhy since these increments cancel from the 

equation anyway. 

The generating system of equations (2.5 - 2.6) is represented by 

s(~cond-order central finite difference approximati-:>ns 1n the transformed 

plane. The quantities AE; and lin disappear by cancellation in all 

d:lfference equations. Equations (2.5) and (2.6) are solved by the point 

successive over-relaxation (SOR), [33], scheme after control functions 

P and Q have been specified. 

2.3 Control Functions 

The inhomogenous terms (p & Q) in equations (2.3) and (2.4) can 

be automatically chosen to obtain control of spacing, orthogonality 

and stretching. 

2.3.1 lbompson et.al. Approach 

Thompson's approach consists of determining a correspondance between 

n values and the radius of concentric circles distributed between two 

circles with radius r 1 and r Z' one circumscribing the airfoil and the 

other tangential to the outer boundary respectively. Applying the coor-

dinate generating equations (2.5 - 2.6) to the radii r1 and r Z' while 

noting that n '" 1 on the airfoil and n .. JL on the outer boundary. 

resul.ts in the following expression for Q: 
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\-lhere Jr(n) is 11 function of the hyperbolic tangent [34]. The effect of 

Q is tl) place a line corresponding to 11 '"' k at a distance proportional 

to the r k - r 1 from the body surface. Usually, to ensure proper 

t'(~sol.ution of the boundi,lry layer the first line away from the boundary 

is placed at an approximate distance of one percent of the Blassius flat 

plate boundary layer thickness from the body, Le. 

r(n .. 2) - r
1 

.. 0.01(-_5_) (2.12) 
IRe 

In general, for the above approach, the control functions are determined 

from specified line distribution and the control functions have direct 

control over line spacing in the field (fig. 2a). 

2.3.2 Sorenson's A£~roach: 

Sorenson [35] determines the inhomogenous terms P and Q to control 

the spacing between mesh points, along mesh lines intersection the 

bounda,ries and. the angles with which mesh lines intersect the boundaries 

(fig. 2b). P and Q are defined in terms of four new variables. In 

particular, for 1 < n < n they are max 

-c(n -n) 
P(~,n) = p(~)e-a(n-l) + r(~)e max (2.13) 

-d(11 -n) 
Q(~,n) = q(~)e-b(n-l) + s(~)e max (2.1lI) 

,~here a, b,c lmd d are positive constants and in particular a, b, c and d 

were set equal to 0.55. Note that terms p,q,r and s appearing in the 

ab'Jve equations are functions of ~ only. The four more unknowns p,q,r 

and s lntrodueed in equations (2.5) and (2.6) through equations (2.13) 
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and (2 .14) n~quire! four equations. At the inner boundary ( .. 1). the 

coefHcient of rand s in equations (2.13) and (2.14) becomes very small 

and hence th4~ wnd terms on the RHS of these equations can be dropped so 

that 

Simi.J.ary at the outer 

P(f;.l} • p(f;) 

Q(f;.l) .. q(l;) 

boundary (n == n
tntlx

) 

p(l;. l)ma) .. x: ( F,) 

Q(t;. l)max) .. set,) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

SubsUtuting equations (2.15) - 2.18) in equations (2.5 - 2.6) we 

obtain 

(2.19) 

(2.20) 

(2.21) 

(2.22 ) 

14 

I 
I 

I 



t"here 

R .. [-(axE,;E,; - 2SxE,; + yx )1 I I n nn n'" 
(2.23) 

R2 OJ C-[aYf;F,; - 2i3Yf;n -I- YYnn) lnml (2.24) 

R3 to [-(ClX~~ - 2BxF,; ... yx ) 1 
n nn nc nll4'1X 

(2.25) 

R4 "" [-(aY~t; - 213y + Yy ) 1 F,n nn n'"l1 max 
(2.26) 

Equations (2.19 - 2. 22) involve the der:l.vatives at the inner and outer 

boundaries. At this point, if we assume that information about all 

these derivatives at the boundaries is readily available, we can compute 

the control fUllctions P and Q using equations (2.13 - 2.14 ) for given 

values of r; and n in the field. 

The geometric constraints imposed by Sorenson will be used to ,\., ...... 
\'" ,. F'; " 

define values ()f some derivatives at the inner and outer boundaries. 

The fil:st requj~rement is that the spacfn.g along t; '" constant lines 

betweeIll an inne~r boundary node at n .. 1 and the corresponding next 

grid node at n .. 2 is specified h~' i.he us~r. Let this desired spacing 

in the physical plane be denoted by 6sln=1 so' that we have 

2 2 k 
68 I n=1 - [(6x) + (t.y) J~"'l (2.27) 

in the limit 6x and 6y approach zero 

(2.28) 

and transforming using the chain rule 
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for small distance ds along ~ = constant 

2 2 '1/ 
ds I .. [(x + y r dn] 1 n=l n n n-

(2.30) 

or 

(2.31) 

The second requirement is that the angle () of the intersection 

bet~.,ee,n the inner boundary and the t; = constant line is specified by 

the use~. By using the definition of the dot product 

(2. 32) 

or 

(2.33) 

Us:l.ng rela.tions given in Appendix A and equation (2.31) in (2.33) 

after some algebra we obtain 

x I .. 
n n .. l 

(2.34 ) 

y I .. 
n n",l 

(2.35 ) 

Thus, the values of derivative13 x and y at the inner boundary n n 
can be fixed by the user. Similar mcpressions can be obtained to 

fix the values of derivatives x and y at the outer boundary. 

After the values of x and y at the boundaries ar(~ specified, an 

iterative ElCllution of grid generating equations (2.5 -. 2.6) r.equire 
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computation of the forcing functions P and Q in the field, which in 

turn, requir1e information about derivative xE;' xn' xE;E;' xE;n' xnn ' 

YE;' Yn, YE;E;' YE;n and Ynn at the inner and outer boundaries. The 

desired valules of spacing and angle at the boundaries, supplied as 

an input, will fix the values of x and Y as discussed before. Also 
n n 

at the inner and outer boundaries n .. constant, and hence values of 

Xl;;' Yl;;' xC;;l;; and YC;l;; are fixed. Derivative3 xC;n and YST) can be com­

puted 0y differencing X and y ,d.th r.espect to l;; and are fixed at all 

iter'ltion levels. However computation of X and Y at the inner and 
I1n nl1 

outer boundaries will require the us(~ of one sided differencing schemes. 

Thesl~ one s:lded finite difference approximations will require informa-

tion about x and Y at more than one point off the boundaries. As the 

values of x and y in the field will c:hange with every :Lteration, the 

only derivat:lves that change with it are x and y • Thus, at each 
nn nn 

iteration level, the control functions P and Q change through x 
nn 

and " • nil Th(! control over mesh spacing and angles in l:he field, 

intr()duced by equations (2.13) and (2.1lI), decays with the increase 

in v~lll1es of (n-l) and (n -n). ThE! four control functions a,b,c and max 

d in thes.e equations determine the rate of exponential decay. It is 

interesting to note here that Sorenson,' s method is not overspecified. 

SinCE!, control functions are to be determined we can specify additional 

boundary conditions. An iterative method such as SOR can be used to 

solvE~ the l3yfltem of governing equations. 

In the present investigation grids generated using Thompson's 

and Sorensonus techniques were employed. 
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Chapter III 

THE EQUATIONS OF MOTION 

The governing equations for u high Reynolds number incompressible 

flow field are the conservation equations for momenl:um and mass known 

as the NclVier-Stokes equations. The governing equations in the present 

study arE! the time-dependent, inco!llpresslble, two-dimens i.onal, Reynolds-

ave'caged N.lVier-Stokes equations formulated in termu of the primitive 

vurj.uble.s. The pressure equation solved is the Poisson equati.on, 

d€~rived by taking the divergence of the momentum equations. The Eulerian 

T!lE~thod is usually employed in computational fluid dynamics. This method 

involves a fixed control volume that is specified re.lative to a given 

coordinate system. Properties of the fluid are then specified as 

functions of both space and time. The conservation equations are 

approached using this methodology. 

3.1 ~!:.rvation of Momentum 

For a given syst<.>.Dl. Newton's Second Law states that the rate of 

change of momentum is equal to the sum of the external forces acting 

on it. For an arbitrary material volume V. this law can be written as: 

v s 

(3.1) 

s v 

ThEl index "i" denotes any of the three cartesian coor.dinate directions 

xl' x2 • x 3 •. and the Einstein summat.ion conven tion has been used for 
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the index "j". The dimensional variables are: 

P '" density 

U
i 

OJ velocity 

s n material surface 

n '" unit vector, normal to s 
i 

Eij = shear stress tensor 

P pressure 

0ij = Kroncker delta 

gi = body-force acceleration 

The d.ivergenc.e theorem transforms Eq. (3.1) to 

Jff adt (Pui)dV + HI a!j (puiuj)dV 

V V 

/ 

(3.2) 

Since this equation is valid for any arbitrary volume V; when the 

integrands are continuous. the equation is 

(3.3) 

For an incom.pressible flow density P is constant, so Eq. (3.3) becomes 

(3.4) 
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and Stokes' hypothesis gives the shear stress as 

aUi aUi 
Eij - I-I(-a-+-a-> 

Xj xi 

WherE! 1-1 is the viscosity of the fluid. 

Equations (3.4) and (3.5) are normalized by defining the 

fo11C1wing dimensionless quantities. 

~ 

u/U", u. '" 
~ 

x .. 
1 x/I), 

~ 

t = tU",,1 I), 

~= 1-1/1-100 

~ 2 
p = p/(p Uo) 

gil), 
81 = --

U2 
00 

The reference quantities are 

U",," freestream velocity 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

I), • charact.eristic length (airfoil chord 
for this case) 

~oo .. freestream 'viscosity 

Substituting equations (3.6) - (3.11) into equation (3.4) yields the 

normalized. time dependelt. incompressible Navier-Stokes equations 

~ 

(lui a 
-~- ... -~-
at aXj 

(3.12) 
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where Re is Reynolds number given by 

(3.13) 

Us~~lly. viscosity is taken as constant for incompressible, non-

c~onducting flow. However, in this study it is retained as a variable 

to facilitate the implementation of an algebraic model for turbulence. 

For a given system in whIch matter is neither created or destroyed 

the law of mass conservation (continuity) can be written as 

(3.14) 

v s 

Applying the divergence theorem and eliminating the volume integrals 

as before, Eq. (3.1'.) reduces to 

(3.15) 

which for incompressible fluids is 

(3.16) 

where D is the divergence of the velocity vector. Equation (3.16) 

remains unchanged by the introduct:l.on of non-dimensional variables. 

3.:3 The Pr.essure Egua t ion. 
I, 

f 
! 

The incompressiblity constraint eliminates the equation of state, 

whi.ch relates pressure, density and temperature. Hence, the real 
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difficulty in the calculation of the VE!locity field for incompressible 

flow lies in the unknown pressure field. The pressure gradient forms a 

part of the source term of tile momentuDl Eq. (3.12). Yet there is no 

obvious equation for obtaining preSSUrEl. The pressure field is indirectly 

specif:ted via the continuity equation. When the correct pressure field 

is substituted into the momentum equations, the resulting velocity field 

satisfies the <:ontinuity equation. 

To obta:in a Poisson equation for pressure a divergence operation 

is performed OIl the momentum Eq. (3.12). 

(3.17) 

Substituting Eqs. (3.5) and (3.16) into (3.17) leads to 

(3.18) 

aD ag i 
where it is assumed that D = 0, but ~t ~ 0 and that --- = 0 i.e., 

o aX i ' 

the body-force acceleration is applied uniformly to the entire field. 

In deriving Eq. (3.18) D can be extracted and set equal to zero 

and thus ~~ will be zero; however, due to computer round-off error ~~ 

is expected to retain an appreciable value. Therefore the derivative 
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an at sE,rves as a cOl'rective term to adjust the pressure :Ln an 

effort to satisfy the, continuity equation, as suggested by Hirt and 

Harlow [36]. 

3.4 Normalized Governing Equations in ~imensions 

From this point on, all variables used will be non-dimensional, 

and the circumflex (~) t17ill be dropped from the notation. Carrying 

out thE! indicated summations and identifying lll' uz' Xl and Xz .,ith 

ll, v, ;K and y respectively yields the t,~o-dimensional governing eqlla-

tions, 

It should be noted the momentulU Eq. (3.1Z) is written in conserva-

tive form. As shown by Roache[9], th:i.s conservative form allows the 

finite-differl~nce equations to preserve the Gauss divergence property 

of the continuum equations. Also, the Rankine-Hugonoit shock relations 

\"ere derived using the conservative form. Thus, shock jump conditions 

are automatically satisfied since the conservative variables are 

continuous aCl:OSS the shock and need no special treatment because of 

discontinuitites. Since the £10\'1 UndE!r investigation in this research 

contai.ns no such discontinuities a .. further simplification can be 

obtaiOled using the non-conservative form. The non-conservative form 

of Eq. (3.12) is obtained by ~cpanding the convective derivatives 

and using the continuity equation (3.16). 

(u2) + (uv) = uu + vu 
x Y x Y 

(3.19) 

(v
2

) + (uv) = vv + uVx y X Y 
(3.20) 

Thus. :Ln cartesian notation the governing equations in non-conservative 

form and tl17o-dimensions are 

23 

. ,'. --", 
, I, ,1", ~ 

~ ,,' .. f' , 
~ 
I 

~ 
.~ 
.~, 

tt . 

l r .. 
:j , 

1 . 
t ':" ' 

I
',':' " 

: ~ ; I 

" . '. 
, , ' 

. " 

j .. 

I • 

f. 

r 
... 



~.," ........ , ....... \ •..... 

U +uu +vu =-p +J:.. pJI72u+2).Ju +Jl(U +v)]+gl (3.21) 
t x y x Re x x y y x 

v + uv .... vv = -p + J:.. [J1'iv + 2Jl v + JlX(uy + vX)] + g2 (3.22) 
t x y y Re y y 

2 2 2 2 2 2 
'iJ P = -D - (u + 2u v + v ) + - [Jl 'J u +).J 17 v 

t X Y X Y Re x y 

+ Jl u + ~ (u + v ) + ).Jyyvy l xx x xy y x 
(3.23) 

Equations (3.21). (3.22) and (3.23) in the physical xy plane are 

transformed into the ~n-plane using the definitions and relations 

given in Appendix A. The individual components of the transformed 

equations which are valid on a rectangular field (or a combination 

of rectangular fields) in the ~n-plane are 

(3.24) 

(3.25) 

(3.26) 

u = (x~u - x u~)/J Y ., n n ., (3.27) 

Vx = (y v~ - y~v )/J n., ., .n 
(3.28) 

v = (x~v - x v~)/J Y ., n n., (3.29) 

(3.30) 
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= [g ] 
1 F.,n 

[D
t

] = [D
t

] 

x,y r.,n 

2 + lUr.)/J 

- (D x
t 

+ D y ) = [D
t

] 
x y t F.,n 
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(3.31) 

(3.32) 

(3.33) 

(3.34) 

'3.35) 

(3.36) 

(3.37) 

(3.38) 

(3.39) 1--

I -

(3.40) 
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~yy a [Xn~~~ - 2A~Xn~~n + X'~nn - (Xny~, - 2x~xny~n 

+ X~ynn)~Y - (X~X~r, - 2x~xnx~n + X~Xnn)~x)/J2 (3.42) 

where a, fl, y and J are defined in equations (2.7) - (2.10) and a and 

't are giv4m by 

(3.43) 

t - [y (aPx r + yQx ) - x (aPYr + yQy )]/J 
n ~ n n? n 

(3.44) 

The discretization of the trmlsformed versions of equations (3.21), 

(3.22) and (3.23) and the numerical procedures used to obtain their 

sCllutions are discussed in Chapter V. 

3.6 Turbulence Hodel 

SinCE! the flow fields of intElrest are turbulent, the soluti'Jn of 

the NaviE!r-Stokes equations must take into account the effects of the 

rlmdom fluctuations of the dependent variables inhel:ent to turbulent 

flows. The turbulent nature characteristics of these flot17s can be 

aC.counted for in the numerical sol.tuion by a variety of eddy viscosity 

models ranging from locally depend.ent algebraic modElls to the more 

co'mplex hlgher order closure models. A paper by Mal."Vin [19] provides 

a comprehensive survey of turbulence models generally employed in 

computation of external aerodynamIcs flows of practical interests. To 

da.te no single turbulence model has emerged that can be applied to the 

vB.riety of flows encountered in computational aerodynamics. Also, the 

use of hig.her closure models will not necessarily gi.ve more accurate 

solution. Therefore 't, was decided to use the locally dependent eddy 

viscosity model. The turbulence model used in this research is an 
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extension of the Cebeci-algebraic vil3coisty model [37) as modified 

and :L'cported by Baldwin-Lomax [32j. In this model distribution of 

vorticity is used to determine length scale which eliminates the 

somel"hat uncertain process of finding the outer edge of the shear 

layer. The non-dimensional molecular coefficient of viscosity ~ in 

the lruuinar Nuvier-Stokes equation is replaced by 

lJ '" 1 + E: (3,1.5) 

whcrn E: is eddy viscosity. The boundary layer region on a body 

consists of two layers, the inner layer and outer layer. The inner 

layer of thi:s model accounts primarily for the laminar sublayer 

adajl~ent to ,the wall, with the outer layer accounting for the remainder 

of the boundary layer region. In car.tesian coordinates the expression 

for t:ile modHied inner model based on Prandtl' s mixing length theory 

can be writt,:m as 

( ) .. <S:R.
2 Iwl 

E: inner (3.46) 

wher,e III is defined as vorticity 

I w I = I dU '. }v I 
~ dY dX 

(3.47) 

The mixing 14~ngth in this model is obtained from Van Driest's sub layer 

model, and i:g given as -y/p-t-
ww 

R, :: 0.4y[1 _ e-2b f1.w (3.48) 

wher4~ y is the normal. distance from the wall. 

The outer region eddy viscoditymoc!el consists of a modified 

closure-type model defined by the equation 
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(e) t = O.0268p F1F2(y) 
ou er 

whe:re F
2

(y) is the K1ebanoff intermittency factor given by 

-1 
F

2
(y) .. p. + :>.5 (_l:2Y) 6] 

and 

Ymax 

F ., Y F 
1 max max 

-y~ 
w IV 

F(y) '" y! ~ I [1 - e 
2611 

w 

(3.49) 

(3.50) 

(3.51) 

(3.52) 

The qua.ntity F is the maximum value of F(y) that occurs in a 
max 

profile and y is the value of y at which it occurs. 
max 

The eddy viscosity in the wake region is given by the equation 

(3.49) with Fl and F(y) defined as 

(3.53) 

F(Y) = ylwl (3.54) 

where;! 

I 2 2 
(u + v )min (3.55) 

For somE~ cases under investigation. the boundary layer transition 

points were set by assum:tng that transi.tion ocCurs at the minimum pressure 

points and fcor the other cases. the transition points were maximum air-

foil thickness points on the airfoil surface. The above prescribed two.,. 

layex' eddy-vi.scosity model was successfully used by Baldlvin and Lomax [32] 

and other investigators to predict: separated flows. 
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Chapter IV 

BOUNDARY AND INITIAL CONDITIONS 

Boundary and initial condition.q must be defined in order to solve 

the governing partial differenUal. equations of a given flow field. 

Since important features such as boundary layer arises from boundary 

conditions, these conditions must bE! carefully defined. The conserva-

tj.on equations for incompressible flow about nn airfoil when formulated 

in terms of primitive variables re.quire initial velocity and pressure 

dlstributi.ons·and either Neumann or Dirichlet boundary conditions for 

the veloci.ty and pressure on the boundaries. 

4.1 .!!!.!!:2::?1 Conditions 

Since the governing equations contain time dependent terms, 

initial conditions must be specified for the solution to proceed. 

Initial values of velocities and pressure must be imposed over the 

fieln. The values of non-dimensional velociUes and pressure were 

set to zero at a time t = O. Once an initial case for the flowfield 

had numerically converged to a valid solution, each succeeding tune 

step was initialized by using velocity and pressure distribution of 

the preceding time steps. 

4 •. 2 Free-stream and Downstream Boundary Conditions 

Computationally, the free-stream boundaries are generally placed 

at a reasonable distance from a body such that uniform flow conditions 

remain und:Lsturbed by the presence of the body. Velocities and pressure 

arl~ completely specified at the free·-stream bounda.ry (Section r 2' 

in Fig. 1) .. 

The flow is accelerated from zero to a desired final velocity 
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using the body force terms gl and g2 in equations (3.21) and (3.22). 

The '"alues of the velocities on the free-stream boundary during the 

acceleration phase were determined in the following manner 

t 

uoo J gldt o < t < 1 (4.1) 

0 

v :: 
J\2dt 

00 
o < t < 1 (4.2) 

0 

p .. 0 
00 

(4.3) 

whern gl = cos tP and g2 = sin tP, where tP is the angle of attack. 

For (~'ach time step of the acceleration phase, the velocities on the 

free··stream boundary are found using eqs. (4.1) - (4.2) and are held 

fixed for computation of solution for that time step. After the 

acceleration phase the free-stream velocities are 

uoo -= cos tP (4.4) 

The body force tenns gl and g2 were set equal to zero after the 

acceleration phase. 

The boundary (r 3) is placed a great distance dO\.mstream. For 

this case, no velocity gradient exist at the downstream boundary. 

The pressure at the downstream boundary was set equal to the free-

stream pressure. These boundary conditions can be \.;ritten as 

U
x 

... 0 (4.6) 

P 0= 0 (4.8) 
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Also the effects ()f different forms of downstream boundary conditions 

invE!stigatecl will. be presented in Chapter VII. 

4.3 Body-S~face Boundary-Condition!~ 

The airfoil surface is considerl~d to be a no-slip and impermeable 

boundary. The no-slip and no-transp:lrlltion conditions at the airfoil 

surface can be ,.;ritten as 

u .. 0 (4.9) 

and v to 0 (4.10) 

The pre8sure on the airfoil surface is unknown, but can be approxi-

mated using the normal pressure derivative in the following way. The 

momelltum equations (3.21) and (3.22) are utilized to evaluate the 

no~~l derivative of the pressure. Due to no-slip no transpiration 

boundary condition at the surface, the transient and convective terms 

in the momentum equatio.ls drop out and we obtain 

2.£ = n • 'Vp an = n • 1 2 
(~ + Re 'V ~) 

where n is a unit normal and g is the body force vector. 

(4.11) 

Initial attempts to use the above pressure boundary condition 

led to computational divergence. The simplified version obtained by 

neglr.!cting the viscous terms was used in the present study. 

n • 'Vp = n • g (4.12) 

The presence of the body force vector influences the pressure boundary 

condition du:ring the acceleration phase; however after the acceleration 

phas,e~ il:l ove:r equation (4.12) reduces to the familiar form 

n • 'Vp '" 0 (4.13) 
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For the present case, the airfoil surface is represented by 

n - constant line. The direction normal n can be given by Vn. 

Thus, equation (4.12) becomes 

'Vn • 'Vp '" 'Vn • g (4.14) 

or 

(I;n +t;;n)p,.+(n2 +n
2
)p =ng +ng 

x x y y s x Y n x 1 Y 2 
(4.15) 

Using Appendix A we obtain 

(4.16) 

TIle surface pressure can be evaluated using a one-sided finite-

difference approximation for P. For the problem under consideration 
n 

the boundary conditions at the airfoil. surfaces are probably the most 

crucial. 

4.4 Re-entrant Boundary Conditions 

The re-entrant sections, f4 and f5 in figure 1 are not boundaries 

in the physical plane but represent points within the flow field. The 

branch cut is made between the trailing edge of the airfoil and the 

downstream boundary to eliminate discontinuity in the inner boundary in 

the l:ransformed plane. The values of flow variables cannot be fixed 

at these boundaries but they should evolve as a part of the field 

solution. This insures the continuity in flow variables and their 

gradients across the cut. 

4 •. 5 Trailin!~e Boundary Conditions 

In the transformed plane body surface is a continuous line; 

however. ill the physical plane the trailing edge is a sharp point. The 

surface-normal vector V'n is discontinuous at the trailing edge. This 
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geometric discontinuity leads to unequal trailing edge pressure 

found using equation (4.16). The basic assumption that there be 

no unbalanced forces at the trailing edge would be violated. To avoid 

this problem. the trailing edge pre:3sure was found by taking the average 

of the t:raUing edge pressure on the upper and lower airfoil surfaces 

(points (NHE ,1) and (NWS ,I) in Fig. 1). However it led to jump in the 

pressure at the trailing edge which 18 physically unrealisti.c phenome,la. 

To obtain smooth pressure distribution at the trailing edge, the follow-

ing extrapolates were found useful in the present study 

.P(NSW,l) = ~(P(NWS + 1, 1) + P(NWE - I, 1» 

:P(NWE,l) = ~(P(NWS + I, 1) + P(NWE - I, 1» 
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Chapter. V 

SOLUTION ALGORITHM 

5.1 ~~al Procedure 

The governing equations are thc~ tvJO dimensional, time dependent 

Navj,er-Stokc~s equations in the non-conservative form. The Poisson 

equation for the pressure is obtained by taking the divergence of the 

mOm(mtllIu equations and utilizing tIlt! continulty equation, The two 

mOIU("ntwu equations and the PoisBon pressure equatJ.on form a set of 

thr(,e governing equations for three flow field unkno\<.'I1s u, vand p. 

These governing equations are solved in the transformed plane 

for each fiE!ld node using a fully inlplicit finite-differencing algo-

rithm. Thi.s implicit algorithm is obtained by mea~s of backward­

timE! and cen.tral-space differencing of derivatives in the transformed 

plane. The governing finite-difference equations in an implicit 

for~m are fully vectorized and solved simultaneously at each time step 

using a checkerboard matrix iterative technique (Chapter VI). 

5.2 Finite-difference Approximations to Governjng Equations 

As discussed before in Section 3.5 the task of obtaining the 

transformed governj.ng equations 1.8 straight forward and requires 

substitutions of the transform<!d expression for the derivatives (3.24 -

3.44) in the governing equations (3.21 - 3.23). The presentation of 

fully transformed governing equations has been avoided here for simpli-

city; however, this section will detail the specifc transformations that 

are pertinent to the final form of computational equations. 

All spatial derivatives in the transformed .equations are approxi-

mated by sec()nd-order-accurate centrlll·-difference I. "pressions as follows: 
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a£ I .. fi+l,j .• fi_1,j 
a~ i,j 2il~ 

I .. fH1,j -

i,j 

2f i • j + fi_l,j 

il~2 

(5.1) 

(5.2) 

S:imilar finite-difference expressions are used to approximate n 

deriv8Litve. The second-order accurate expression for the cross-

derivative is 

(5.3) 

The gI'id spacing A~ and An is chosen to be unity because of the construc-

tion of the mapping from the physical plane to the transformed plane. 

As presented in section 4.2, the flow is accelerated from rest 

to the final desired free stream velocity. Hence, the temporal 

derivatives are represented by the first-order-accurate two-point 

backward-difference scheme at the first time step and by second-order 

accurate three-point backward-difference at all subsequent time steps. 

The expression for two-point backward difference is 

if I (n) 

at i,j 

f(n) 
i,j 

and for the three-point backward difference is 

af I(n) 
at i,j 

3£(n) 4f(n-l) + f(n-2) 
--=i~!:..Lj_-,--:hL i. j 

2t:.t 

where the superscr,ipt (n) indi.cates the time level. 
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To obtain the computational form of the governing difference 

equations for an iterative scheme, we must combine the diagonal terms 

(those with subscript i,j) of spatial derivatives with an appropriate 

temporal dE~rivative term. As the c:entral-difference approximations have 

beE!n used for the spatial derivatives, the terms with subscri.pt i,j 

will appear only due to tranformation of: V2 ( ) in equations (3.21 -

3.23) . 2 For completeness, we transform V u in the u momentum. From 

equation (3.32) or Appendix A we have 

ThEl finite-·difference approximation of derivatives u -t' and u .1111 f... nn 
involve thE~ diagonal terms and approximation of all other derivatives 

111 involvE! off-diagonal terms. SE~paration of diagonal and off 

diagonal te~rms gives 

222 
V u = (V u)O + (V u)OO (5.6) 

whE~re 

2 2 
(V u)O = - 2" (a + y)u i j 

J ' 
(5.7) 

(5.8) 

Note that in the remainder of this section terms such as u , v , etc. will 
x y 

appear but are to be implicitly assu.med to have been evaluated according 

to equations (3.24 - 3.44) or relat:lons in Appendix A. Substituting 

equation (5.6) in the u momentum equation (3.21) and combining the 

diagonal term with the temperal term at time level n, we obtain the 
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computational form of the differelce equation. 

where 

and 

(..A. + ~ (a + y) )Il
i
(ll,j) =, B + (RRS) 1 (5.9) 

lit iRe 

+ 2 11 u + 11 (u + v ) J + gl x x y y x 

A = 1 

(n-l) 
u 

B =-LL 
lit 

(5.10) 

(5.11) 

(5.12) 

for two-point backward differencing, or 

A=l 
2 

(n-1) (n-2) 
B = 4ui ,j _. u.b..l-

21lt.' (5.14) 

for three-point backward differencing. The computatJona1 difference 

equation for the v momentum, derived in similar fashion is 

where 

and 

or 

A 211 (n) 
[lit + -2- (a + y)]v i j = C + (RRS) 2 

(n-l) 

J Re ' 

+ 211 v + 11 (u + v )] + g2 
y Y x Y x 

(5.15) 

(5.16) 

v 
C = ~ for two-point backward differencing (5.17) 

for three-point back ... mrd differencing 
(5.18) 
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The ,computational' form of the Poisson pressure equation can be 

obtained :Ln a similar manner from equation (3.23). The term D
t 

r(~presentn the time derivative of the divergence of the velocity 

VE!ctor. It is assumed that the conservation of rnatls is satisfied 

n 
at: the mOSt: recent time level (Le •• D .. 0); however values of the 

divergence: at previous time levels have been r.etained as a corrective 

term. Thus 
D(n-l) 
-'~ for two-point backward differencing (5.19) 

_4D(n-l) + D(n-2) 
Dt = -- 211t for three-point backward dIfferencing 

(5.20) 

and the computational pressure equation takes the follOWing form 

2(a + :t)E 2 2 
2u v = ('iJ P)OD + Dt: + U x + i y X 

+v 
2 2 [p 1,7

2u + 2 -- IJ 1/ v 
y Re x y 

+ IJ u + IJ (u + v ) + lJyyV
y J xx x xy y x 

(5.21) 

whel~e Dt can be approximated using either equation (5.19) or equation 

(5.20). The first approximation is first order accurate while the 

second approximation is second order accurate. Several computer runs 

wert: made with the two apprOXimations for comparison. No significant 

difference were found between results obtained using the first order 

and second clrder accurate approximations. Also. for particular test 

runs., none of these two approximations was specifically responsible 

for decay or divergence of solution. The above tests were not entirely 

conclusive. 
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The goal is to find the steady state solution regardless of 

accuracy of the transient solution. Since the time derivative terms 

will hopefully disappear in the steady state and higher order approxi-

mations usually require more operations per mesh point, we used fir.st-

order t~.;ro-point approximation for Dt in the pressure equation (5.21). 

5.3 !init!~-difference Approximations to Boundary Conditions 

1.'he downstre8,m boundary condition equations (4.6 - 4.7) are 

transformed according to the relati,ons in Appendix A. Equation (4.6) 

fo]: the lO~ler downstream boundary (~=lr takes the following form 

u = 
E; 

YE; 
(--)u 
Yn n 

Us:ing one sided three point forward differencing for uE; 

1 [4 2(YS)u 1 
Ul,j ="3 U 2,j - U 3 ,j - Yn n 

(5.22) 

(5.23) 

(5.24) 

Similarly XC' the upper-downstream boundary condition (~ = IL) using 

thx'ee point baclct-mrd differencing for Us we obtain 

U 1 [4 + 2(YE;)u 'I' 
IL,j ="3 UIL_l,j - UrL_2,j Yn n' (5.25) 

In thc~ above equations, derivative u is evaluated using central­
I) 

difference approximations. Replacing velocity u by velocity v in 

equations (5.24) and (5.25) we can obtain expressions for equation 

(4.7). 

Pressure values on the airfoil surface are determined using the 

Neumann boundary condition (4.16). Using a three point forward-

difference approximation for p the expression for airfoil pressure is 
I) 
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(5.26) 

5.4 The Re-entrant Boundary: 

The procedure for the evaluation of flow field variables (u, v 

and p) ,on the cut extending from the outflow section (fig. 1) deserves 

special attention. The two re-entrant: sections f4 and r5 resulting 

from th,e cut are one and the same l.ino in the physical plane. Thus 

corresponding points on the two re-entrnnt secti.ons have the same x,y 

c.oell-dinatcs in the physical plane but dlfferent E; values. The momentum 

and pressure equations on the r(~-entrant section can be solved assuming 

continuous derivatives across the cut. However, in this study, flow 

variablE!s on the re-entrant section we.re found by averaging the 

corresponding values above and below the branch cut. As the grid 

spacing required at the branch cut to resolve the flow is very small 

in a C-t.ype grid, the averaging gi.ves almost: the same values of the flow 

variables as those found solving the gove.rning equations at the re-

entrant section. An expression obtained using notations of fig. I for 

two nodes in the computational plane that correspond to the first node 

off the trailing edge in the physical plane is 

(5.27) 

Similar :relations were used to find the values of the velocities and 

pressure at nodes on the branch eut. This approach simplifies compu-

tation of flow variables 'at the reo-entrant section without sacrificing 

accuracy and hJpefully enhances th~ computational efficiency due to 

less involved operations. 
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5.5 ~tifici~l Viscosity 

Central-differencing schemes frequently display oscillations on a 

coarse grid. The present implicit scheLle exhibits oscillatory behavior 

at high Reynolds number due to inaccuracies :Introduced by finite-

differencing. Unless these extreme oscillations are damped out the 

numeri.cal solution becomes useless. In most cases under investigation, 

the solution s,tarted diverging about time t "" 1.0 without :I.nclusion of 

arti.ficial vis.cosity. The use of artifi.cial diffusion was found nec:essllry 

to obtain stl:~a.dy state solution. The pressure oscillatlons were 

responsible fClr fluctuations and discontinuities in the velocity field. 

One possible source of the pressure os.ci.llations was ttl(! divergence of 

the vE!locity vector which is a part of the source term of Poisson pressure 

equation (3.23) and may have retained significant magnitude. The basic 

assumption to obtain the Poisson pressure equation was l:he preservation 

of tlw continuity at the most recent time level. Thus, significant 

deviation from the satisfaction of thE! <:ontinuity equation can contami-

nate t.he preslilure field. IncorporaticlU of artificial viscosity based on 

the d:l.vergenc,~ of velocity at the current time level can damp extreme 

oscillations. The modified non-dimens:lonal viscosity. coefficient in 

the momentum '~quations (3.21 - 3.22) is given by 

J.l a l+t:+1l a 
(5.28) 

where e is eddy viscosity term discussed in section 2.6 and \J is a 

artificial viscosity. One possible form of the artifici.al viscosity is 

(5.29) 

Note that this form of artificial viscosity has units of eddy 
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viscosity lind it has the advantage of being analytically zero. The 

tel:m a can limit the e~fectR of artificial viscosity and \"i11 be a 

constant or a variable derived froDl the flow characteristic. This 

pal:ticulal: form of artificial viscosity has a desired property of 

being propClrtional to I'V • V I and only becoming effeCl:ive in regions 

where the divergence of velocity is significant. The flu:l.d dynamics 

phenomena investigated with various form of artificial viscosity will 

be discussed in Chapter VII. 

Strictly speaking, the computation of viscous d(~rivatives for the 

momentuUl equations (3.21 - 3.22) and the pressure equation (3.23) should 

USt! the modified viscosity coefficl.ent (eq. 5.28). However this approach 

lecld to divergence of the solution and hence the visc:ous derivatives 

fOl: the governing equations were computed using the viscosity coefficent 

given by equation (3.45). The arttficial viscosity iJa was incorporated 

in the visc:osity coefficient J.I Ot the momentum equations at every time 

At eaI:ly time stages, the soluti.on may contain enough noise to 

excite osc:l.llations. Nonlinear interaction will ampl.ify these 

oscillations which in turn may dest.roy the solution. In such cases. 

we wish to filter out the unwanted oscillations from the solution. In 

mOSit test runs, wavy divergence of velocity field was obtained in the 

direction of F; ... constant lines. If somehow, a smooth divergence of 

velocity fleld can be obtained, it can reduce the pressure oscillations. 

Twol types o,f smoothers, one using the adjacent nodes in ~ '" constallt 

direction and the other using the four neighboring nodes were tnvestiga-

ted.. The latter ga"/e better overall smoothing of divergence of velocity 
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field. The expression for the smoother is 

(5.30) 

On the other hand, pressure exhibited excessive oscillatory be-

havior in the direction of n .. constant lines. Smoothing of the pressure 

j.tself, using equation (5.30), lead to incorr.ect pressure solution, but 

~,moothlng of the source term of the Poisson pressllre equation (3.23) can 

smooth out the pressure field oscillati.ons. DenoU,ng the source term by 

S, wHh I;he assumption that all tElrms 011 the right hand side of equation 

(,3.23) are lumped into S, we can smooth out the source term by using 

S instead of f iu equation (5.30). The results obtained using diver-

gence of velocity and source term srnoothers were almost the same. As 

CIJmputer clperations for the source term smoother are more involved and 

smoothing operation is usually required at every iteration it was not 

investigated fur.ther in the light of computational efficiency. 

The divergence of velocity smoother, applied al: every time-step, 

W~IS employed to reduce. the need of artificial viscosity. 
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Chapter VI 

VECTOR PROCESSORS AND CHECKERBOARD SOR 

In the last decade, significant progress has been made in the area 

of algorithms that are used for solving the governing flow field equa-

tions. Computer codes employed in many engineering applications still 

use large amounts of computer resources. The basic requirement is that 

t.he .algorithm be efficient. In practical. terms this means obtaining the 

solution \Jit.h desired accuracy using the least amount of comput,'!r resources. 

Any :I.mprovem.mt in the numerical scheme used can certainly enhance the 

effic.iency. Some improved algorithms have been mentioned in Chapter 1 

with appropriate references. Furthermore, in many cases the computers 

available play an important role :in the development of efficient algorithms. 

HencE~ the computer achitecture such ciS serial, vector or parallel certainly 

dict,lte the basic requirement of algorithms. Frequently, the structure 
I. ," .:~.! .. ~<: \ 

.,\ ... "' ... .. 
~ .... .. 

and size of computer memory and data mangement system can play a crucial 

role in the jmplementation of efficient algorithms. 

6.1 Vector Processors 

The advent of high performance sixth generation computers ,such as 

the C:YBER-200 and CRAY-l series, provides an important breakthrough for 

computationally demanding engineering problems. These supercomputers 

incorporate vector processing capabilities to provide the computational 

power required by large scale numerical simulation [21]. 

Vector processors are generally divided into two main classes of 

architecture: memory to memory (~ru) and register-to-register (RR). 

Normally MM architecture vector processors operate at its highest level 

of performance \"hen algorithms being processed have the follOWing 

•••••••••• - .. ~ .. '--~ ..... #-.... -.. .... --.-.-." .. ~-~ ..... - ..... - • .-. 
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characteristics. Operand and result vectors are stored contiguously 

in memory 1. e.. successive elements of the vec tor must be stored' in 

adjacent Dlemory locations. The length of the vector is long. The 

example of MM architecture is the CYBER-200 series machines. RR 

ac,hitecture usually involves some type of cache between main memory 

and functi.onal units. The fundamental idea of cache organization is 

that by keeping most frequently accessed instructi.ons and data in the 

fast cache me.'llory. the cache is only a small fraction of the size of 

main memory. If the active portions of the program and data are placed 

in a fast cache memory. the average memory access time can be reduced 

considerably, thus reducing the total execution time of the program. 

The cache :Ls the fastest component j,ll the memory hierarchy and approaches 

th(~ speed of CPU components. Thes(~ types of vector processors usually 

achieve thEdr highest level of perf.ormance when processing algorithms 

thelt satisfy the following requirements. Parallel execution of the 

functional. units is maximized. The. example of RR arc:hitecture is the 

CRAY-l seri.es machines. 

The above-described two types of vector processors are called 

pipeline processors. Pipeline is a technique of decomposing a sequen-

tial process into subprocesses with each subprocess being executed in a 

spe(~ial dedicated segment that operates concurrently with all other 

segments. A pipeline can be visualized as a collection of processing 

segments through which binary information flows. Each segment performs 

partial proeessing dictated by the \~ay the task is partitioned. The 

result obta:Lned from the computation :tn each segment :ls transferred to 

the next segment in the pipeline. The final result is obtained after 

the data ha.ve passed through all segments. The name "pipeline" implies 
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a flow of information analogous to an indvstrial assembly line. It 

is characteristic of pipelines that several computations can be in 

p'cogress in distinct segments at the same time. 

The CRAY-l series are RRtype pipeline machines which operate most 

efficiently on vectors which are of length 64 or a multiple of 64. 

The reason is that the vector reg:lsters hold 64 words which are sent 

te) the pipeline. Thus in the CRAY-I series m~,chinel3 the vector t'egisters 

are limit€!d to 64 elements and hence extremely long vector lengths will 

ne,t necessarily enhance the comput.at.ional eff iciency. The CRAY-l 

m€!mory section normally consists of 16 banks of memory. The memory 

sl,ze can be as large as about 1 million words. Each word contains 44 

data bits and 8 check bits. The control of data flow between the parallel 

fUllctional units and hierarchically organized memories is of significant 

importance for algorithm efficiency. 

The CYBER-200 series are MM type pipeline machines which operate 

mol:e effici.ently as the vector length increases. Each vector instruction 

involves a startup time, the time required to produce first resul~. 

Since startup time becomes relatively less important as the vector 

length increases .• the vector operations become more efficien·t. Thus it 

is desirable to work with moderate to long vector13 on the CYBER-200 

sel'ies machines. The CYBER-203 has about 1 million words of primary 

memory with virtual memory architecture. Memory on this machine is 

called as pages, which are of small and large aize. The small page is 

made up of 521 words of 64 data bits and the large pages are of 65,536 

words. A user call have access to about seven large pages in primary 

memc)ry at a time. The movement of data from secondary memory into 

primary m~nory.involves moving of pages. This movemenl of pages in 
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in and out of primary memory is called page fault and involves startup 

time and transmissio \ time. It is desirable to make most efficient use 

of data when it is in primary memory to avoid situations when the machine 

time spent on data management makes up a considerable part of the total 

time. 

Thus performance on a vector processor can vary widely as a function 

of algor.ithm, implementation and data management. 

6.2 Checkerboard SOR 

As the computers discussed in the above section attain their highest 

level of performance when processing vectors, it is clearly desirable to 

:,earch for methods that can take advantage of the vector operation 
" 

., 
~ c,apabilities without suffering s:lgnificant loss in convergence rate 

compared to widely accepted.methods for serial computers. 

GenElrally the choice of an appropriate algorithm is dictated by 
; ~ '- . 

lIIhether the flow is subsonic, transonic or supersonic. Although it is . -
, " 

the steady state solution that is generally sought one often uses 

the time dependent equations to reach steady state. An explicit 

BLlgorithm which can be easily vec.torized may have much slower convergence 

rate. With explicit methods enti.re two or tnree-dimensional grids can 

be consid.ered as one long vector. On some machines this will lead to a 

high level of optimization. The solution of the three dimensional com-

pressible Navier-Stokes equations obtained using vector processors have 

been published by several investigators. Smith et.al. [38] and Shang 

et. al. [39) solved these equations usine an explicit scheme on the CDC 

STAR-100 and CRAY-l computers respectively. For the 3-D problems solved 
-<._- ..•.. _" 

using an' explicit scheme, the vector lengths were restricted to the 

number of grid points in each 2-D plane due to efficient use of computer 
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architecture in Shang's investigation and due to eff:Lcient data manage-

ment for DlE!mory in Smith's study. Spradley et. al. [40] solved these 

3-D equaUcms using general interpolants methods (GIM) on the CDC STAR-

lOCI. He chose weight functions such that to produce explicit finite-

difference type analog and used the vector lengths E!qual to the total 

number of grid points ion a 3-D flow field. 

Although long vectors available at each time step for explicit 

schemes may increase effi.ciency of some vector processors, the large 

number of time steps required to reach the steady state may adversely 

affect the overall performance of t:he algorithm. Furthermore, in many 

cases, one is only interested in obtaining the steady state solution 

as fast as possible without regard to the accuracy of the transient 

solution. The time step restriction imposed by stability consideration 

is Ii major disadvantage of explicit' schemes. Hence there is increased ' .. : ..... , 

interest in implicit schemes in recent years. Also, for implicit 

schemes, one frequently uses the time dependent equations, and fairly 

accurate steady state solution is reached with larger time steps. 

Although implicit methods are usually linearly uncl.lnditionally stable, 

howl~ver the:re exists time step restriction based on accuracy require- \ ' 

ments. AlslJ operations for an iterative relaxation procedures are 

mor,e involved. The development of an efficient relaxation method is an 

impc)rtant element for implicit algorithms. 

The mOGt widely used classical relaxation methods are generally not 

suitable fo~ vector computers. The point accelerated successive relaxa-

tioTJ. (SOR) method (33), which is perhaps most frequently used, is reli-

abl~! and very competitive for many problems. The conveJ:gence rate of point 
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SOR depends partly upon using updated values at adjacent points while 

solving for a given po·int. 

Point SOR schemes can be effieiently implemented on a scalar 

machine. However. for vector prucessors, vectors must be stored and must 

be available for concurrent computer functions required for desired 

ari.thmetic operations. This requirement is very restrictive and the 

classical point SOR method is not suHable for vector processing in its 

original form. There are some possible ways of system orderi.ng for 

solution of PDE using a rectangular' grid on a vector machine. Suffi-

ciently large vectors can be identifi.ed within the field or subfield 

by (a) associating vectors with alternate rows or columns (ZEBRA) or 

(b) associating vectors with alternate field points (red - black). 

Option (b) is a simple way of making point SOR suitable for vector 

processing. This modified SOR is usually referred to as checkerboard 

SOR or hopscotch method in case of parabolic problems. 

Early work related to the hopscotch method was presented by Gordon 

[41] in 1965, many years before vector p,rocessors became available. 

His work was motivated by the favorable stability properties of the 

method. Gordon[41] described the original technique as "A non-symmetric 

difference l~quation" obtained using explicit and implicit finite dif-, 

ference schEmles at alternate mesh points and showed that combined scheme 

was unconditionally stable. Scala E~t. a1. (42) applied this technique 

to solve th(! Navier-Stokes equations about a circular cylinder using 

a cylindrical coordinate system on a serial computer. Gourlay, et. a1., 

[43, 44] presented the od,ginal teclmi.que in a more general form and 

showed tnat the checkerboard method can be regarded as an Alternating 
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Direct"ion Implicit (ADI) method with t:he coefficient matrix split 

in "C(" special way. The fundam"ntal idea of an ADI scheme is of 

splitting the problem into a series of simpler problems. Normally, 

each simpler problem corresponds to each space dimension and in many space 

dimension problems complexity increases considerably. The major advan-

tage of the eheckerboard algorithm iH that it can be always decomposed 

into t\.o slmpler problems (two stage process) irrespective of the number 

of space dimensions. 

For illustrative purpose, it is convenient to consider a simple 

model problem. Some detail for solving the Poisson equation using 

checkerboard-SOR will be presented. Let us consider the Poisson equation 

(6.1) 

with simple Dirichlet boundary condition on the boundary and with the 

field subdivided in square cells to length h as shown in fig. 3. 

Using central finite-difference approximations at a mesh point (Xi' Yi ) 

equation (6.1) can be written as 

(6.2) 

Instead" of considering natural ordering of mesh point., i.e. sweeping 

romdse, let us visualize the field mesh points as forming a red-black 

chess board. This red-black ordering can be defined as follows: Cell 

field mesh point (i,j) red if (i+j) is odd and point (i,j) black if 

(i+j) is even. Hence the red unknowns will be the set of all fi,j for 

which (i+j) is odd and similarly for the black unknowns when (i+j) is 

eVE;:n.. Applying the classical SOR to the red and black unknowns it can 
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be shoWTl that each classical SOR iteration can be split into two stages. 

The first or red stage-consists or improving the red unknowns according 

to 

+ (1 )f
(n.r) 

K i . .J 
(6.3) 

and during the following second or black stage the black unkno.ms are 

improved according to 

f(n+l,b) .. E(_h2S(n,b) + f(n+1,r) + f(n+l,r) + f(n+l,r) + /n+l,r» 
i.j 4 i,j Hl,j i-l,j i,j+l i,j-l 

+ (1 _K}f(n,b) 
i,j 

(6.4 ) 

In equations (6.3) and (6.4) K is a relaxation parameter used 

tC) accelerate convergence, superscripts n,r and b denote iteration 

IE~vel. red and black nodes respectively. During the red stage all red 

iterates are updated with the help of the adjacent black iterates and 

conversely in this particular caSEl. Each state is :lnherently parallel 

in that all iterates of the same color can be updated simultaneously 

wi,thout changing those of the other color. Each term on the RHS of equa-

tions (6.3) and (6.4) can be represented as a vector, assuming scalar 

terms such as h, is a vector of desired length with each element of the 

vel~tor having the same value. Let us assume K to be constant for the 

prE~sent case. Thus equations (6.3) and (6.4) can take advantage of 

vector proc.essing capabilities of a. supercomputer. Each iteration is 

made up of ttoJO stages and the red and black states succeed one another, 

however the black stage must not start until the preceding red stage has 

completed and conversely. 
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For the Dirichlet boundary condHions, if any term on the RHS 

in equation (6.3) and (6.4) belongs t.o the boundary, then the correspond-

ing t.erm is understood to have the prescribed boundary value. In case 

of the Newmann boundary condition, redefinition of the boundary data 

can be easily incorporated after each stage or two stages depending upon 

the number of grid points on the boundary, type of vector processor or 

tradeoff between the scalar and vector operations. 

It is worth noting that two-step Jacobi, which can use vector 

length equal to total number of nodes in the field, is also an attractive 

method for vector processor in which vector length is an important factor 

in the calculation rate and vector processor performance is at least 

twice its scalar performance. In many applications, the Jacobi method 

with acceleration parameter K = 1 may not be able to compete with the 

checkerboard SOR method. Frequently, cyclic change of red and black 

stages may gil1e better convergence rate for the hopscotch method. 

There also exists a family of hopscotch met~ods such as line or 

zebra··like [44] and block methods [45, 46]. Some properties of hopscotch 

methods have been presented by Gourlay et. al. [47]. Greenberg [48] 

employed the ,:lpproximate factorization scheme of Beam and Warming [15] 

1.0 hopscotch form and other hopscotch methods to investigate fluid 

dynam:l.cs problems on a serial computer. South et. al. [49] used Checker-

board SOR, Zebra SOR and Checkerboard Leapfrog method for transonic 

flow ealculat:lons on the CDC-STAR-100 and CRAY-I vector computers. 

6.3 2ml21emen1:ation on the CYBER-203 

As the checkerboard SOR is the heart of an implicit method used in 

the present study, it was decided first to implement the model problem 

on the CYBER-~W3 and then to employ the salile basic features 
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of the implementation for sol'ling the Navier-Stokes equations. One 

possible way of approaching the model problem using the CYBER-200 

FORTRAN language will· be discussed in this section. 

A close examination of the test problem indica1;es that the first 

task is to determine vectors of the red and black field variables from 

the arrays containing all field and boundar~ nodes of the same variables. 

Once the vectors of desired color are obtained, the arithmatic operations 

on these vectors are rather simple and can be performed using explicit 

vector instructions. An emphasis is made on the use of predefined 

vector functions and rich instruction set of the CYEER-200 FORTRAN 

compiler. The. bit addressable memory, which allo~"s the use of bit veCl:ors 

is one of the important c..haracterisitics of this machine. 

The total number of elements in any array equals to the product 

of its dimension sizes. All elements of the array are stored contiguously 

in a memory. To find the location of an array element for a given array 

T(A,B) of a particular Dlstance of subscript T(a,L/ the formula 

a + A * (b-l) can be used. Thus an array can be thought of as a vector, 

and wherever required we will use word vector t(, represent an array in 

the remainder of this section. Each element of a bit vector requires 

storage of one bit in contrast to 64 bits required for each element of a 

single precision value vector (real or integer) on this machine. An 

element of a bit vector can take a lTaL..e of either 1 or 0 representing 

logical operator truth and false respectively. All logical operations 

such as AND, NOT, etc. can be performed on the bit vectors. The logical 

operations are performed on either corresponding elements of t.10 bit 

vector operands or a scalar operand paired with successive elements of 
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.J a vector operand. This important feature allows us to generate a bit 

vector of desired structure or pattern which in turn can be used as a 

control vector in some very efficient built in functions. Also there 

are somle functions which help to form an initial bit vector of some " 

desired 0-1 pattern. 

Some useful functions, which use bit vectors as control vectors will 

be brie.flydescribed, since they are an important part of th.:! pre:;ent 

irnplementntion. Detans of the builtin functi0l1f; for the CYBER-200 

FORTRAN compiler can be found in reference [50]. Bit vectors can be 

used as a control vector to select: elements from a value vector. The 

CHPRS function deletes selected elements from a real or integer vector 

as dicta,ted by a bit control vector. The HERG function merges the 

elements in two value vectors intoa result vector under control of a bit 

vector. The function CTRL changes the values of aelected elements in a 

result vector using the values in an argument vector under the control 

of a bit control veccor. 

For illustration, let us consider the model problem. As we would 

like to solve equation (6.3) in vector form, we must have vectors of 

,nil terms on the RHS of equation(6.3). At the beginning of the first 

or red stage array f(5,5) of all nodes (including field and boundary) 

:!.s available. The task is now t() C)btain vectors of all terms involving 

JE and S on the RHS of the equation. The procedure involves selecting 

and assembling all f(n, r) at the red field nodes from vector f of the 
.i.,j 

field and 

l' (n, b) 
'i+l,j 

boundary 

f
(n,b) 
i,j-l' 

nodes. Similarly we must form vectors for 

f(n,b) f(n,b) 
i,j+l' i,j-l 

which are located at the black nodes. 

l.et us as:sume that all control bH vectors of desired pattern are stored 
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in the meUllory and are available to facilitate the use of previously des-

cribed functions. As mentioned before, these bit vectors can be easily 

fo:rmed using some buit-in functions and logical operation such as 

AND, NOT, OR, etc. 

As shown in fig. 4. execution of function CMPRS will give liS the 

(n,r) 
ve.~tor for fi,j terms. Calling the CHPRS function with an appropriate 

control bit vector will Rive the vector for f(n,b) (fig 5) 
U Hl,j' . 

Similarly \Je can obtain vectors for the remainlng f terms using appro-

priate bit vectors. T bt ·' 1:-0" th c(n,r) o 0 a~n a vector .. e source term "i' , we 
,J 

can use the same bit vector as in fig. 4 , however the argument value 

ve(:tor will be S(5,5) instead of f(5,5). This completes the formation 

of all required vectors for solving equation (6.3) The equation involves 

sC~Llar terms~, (1 - K) and h2 • These scalar terms are assumed to be 

implicitly eJcpanded to the necessary vector length. with each element 

having the same scalar value. The arithmetic operations involved are 

stl'aight-forward and equation (6.3) can be solved for f(n+l,r) on the 
i,j 

vector processor using explicit vector notations. 

Before: we go to the second or black stage (eq. 6.4) we must update 

(n+l r) 
array f(5,5) using vector fi,j' • One possible way to replace the 

old values of variable f at the red field nodes with the updated values, 

is to use the CTRL function. For the CTRL function, vector lengths of 

result, control bit and argument vector should be the same. The result 

vector in this case will be vector f and has the same vector length as 

of the control bit vector. However, the argument vector is about one 

half the length of vector f. Using the MERG function and a dummy 

value vector we can generate a vector of required length, having values 

of f{n+l,r) in the desired elements and the rest of the elements having 'i,j 
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the valuesl of the dummy vector. The values of the elements of a dummy 

vEicCor arei insignificant and can be chosen arbitrarily. As shown in fig. 

6, MERG merges dummy vecto~ DM, having arbitrary value for all elements 

(n+l r) 
and vectox' fi,j' into a result vector RS, with the help of a control 

vector. 'rhe merge stops when the result vector RS l8 full. Now having 

obtained vector RS of appropriate length and elements, the execution of 

the CTRL fUnction with f as a result vect.or and RS as un ar.gument vector 

und(!r the control of a given bit vector will update the values of f 

at the red fieJ.d nodes (fig. 7). This completes the implf'..mentation of , 

the first or red stage (eq. 6.3) on the CYBER-203 computer using the bit 

control vector approach. 

The implementation of the second or black stage (eq. 6.4) can be 

incorporated in the same framework using an updated array f and 

appropriate control bit vectors. Each iteration is made up CJf the two 

stnges and the above iterative procedure for vector processing can be 

continued until desired accuracy is obtained. 

It is obvious that vector alg()rithms require more storage than 

sc.a1ar algorithms. However, due tel large memory (1 mnl ion, 64 bit words) 

and sharing same storage locations the increased storage requirement can 

be handled properly in many applications. Instead of using tIte bit control 

vector approach, the above can be implemented using integer 

index vectors which are incorporated in functions such as GATHR (gather 

and SCATR (scatter). In these functions, instead of a bi.t vector, an 

integer vector with appropriate in<ieJ' values is used as a control vector. 

Th(~ integer inde~: vector approach t-laf; not investigated in the present 

study. It. is also interesting to note tha~ in many applications the 

bit: control vectors of desired structure need to be generated oIlce only 
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and can be used many times in a computer code. Since each element of 

a bit vector corresponds to one bit only, the storage requirement for 

bit vectors are far less than conventional value vectors. 

6.4 The N~,vier-Stokes Equations and Checkerboard SOR 

The governing equations for incompressible flow about an airfoil 

arE~ the Navler-Stokes equations. In the present study, equations (3.21) 

and (3.22) for the velocities and equation (3.23) for the pressure are 

solved silUultaneously at each time step using the checkerboard SOR 

method. These transformed equations are somewhat complicated compan1d 

to the model problem and its implemEmtation on the vector processor 

is more involved. 

The transformed or computatiolml plane is rectangular regardless of 

thc~ shape of the physical plane. The field nodes in the 2-D transformed 

plane are lcepresented in a checkerb(>ard pattern so that each red grid 

polnt has four black neighbors and vice versa. Three unknowns, two 

velocities and the pressure are associated with eac!1 node. All terms on 

the RIlS of equations (3.21). (3.22) and (3.23) are represented usir.3 

appropriate finite-difference approximations as discussed in Chapter V. 

Thus all terms on the rulS of these difference equations can be represented 

in vector form as discussed for the cest problem in the previous section. 

'The storage of each term, including geometric coeffiCients, require~ 

two vectors, each of about one-half the size of the entire field. 

Ex.plicit vector instructions are employed to perform the aritllllletic 

operations involved in the equacions. 
<, ' 
I' : ~ t 
:- .. . " 

The transformed equations contain cross derivatives. The cross 

dE~rivative,s are evaluated using the central difference approxi,mat:i,ol1s. 

VJhen solvi-ng the equations for a red field node. evaluation of cross 
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der:tvativ.as involve red nodes in eontradiction to the updated black 

':"iodes involved in evaluation of f:Lrst and second derivatives. Although 

the cross derivatives are lagging by one stage per iteration in the 

pKesent formulation, it did not shm" certain adverse effects on the 

con'lI'ergen<!e rate during numerical experimentation. Gourlay et. al. 

[51] has discussed handling of cross derivatives in some hopscotch 

methods. 

It is desirable to use the checkerboard SOR with relaxation parameter 

varying from iteration to iteration instead of a constant relaxation par-

m::!ter to accelerate cou\,ergence. The major unresolved problem concerning 

the check.~rboard SOR is that of determination of sequence of optimum 

pa.rameters which will produce the smallest: number of iterations for a 

specified degree of convergence. For solution of the velocity equations 

using the classical SOR, the computation of sequence of acceleration 

parameter proposed by Thompson [52] and described in Appendix B pro-

duced nealy optimal iterative procedure in previous investigations 

[29, 30]. In many cases the values of computed acceleration parameters 

for the checkerboard SOR and theoretical optimal acceleration parameters 

for the classical SOR are comparable and ha·:e about the same range 

[53]. The typical values of acceleration .. parameters are less than one 

for the velocities and the pressure is not accelerated. The additional 

op.arations involved in computation of acceleration parameters is justified 

by producing faster convergence to the checkerboard SOR. 

The s'~quence used for solving the three governing equations si.:llul-

tall.eously may show some, if not impressive, improvement of the convergence 
, . 

rate. Out of several possible sequences. the sequence of solving 
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thE~ velocity for the red no'des than the pressure for the black nodes 

agsLin the veloc:Lty for the black nodes and the pressure for the red 

nodes is found to have favorable convergence characterisitcs. 

The details of all interesting features of the computer code and 

other studies will not be presented, partly due to the lack of space 

and partly because the outcome of some numerical experiments seems to 

be :Lnconclusive. Ho\.ever, the present di,scussion shows that for the 

solut.ion of large scientific problems on a vector computer, a conslstent 

alg()J:ithm will al\..Iays out perform an inconsistent algoritlun implemented 

without considering the architecture of the computer. 
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Chapter VII 

COMPUTATIONAL RESULTS 

7.1 Coordinate Systems 

Two different approaches discussed in Chapter II were used to 

generate "e" type coordinate systems for the NACA 663-018 airofil, which 

is 8ymmetr:l.e and has maximum thickness ratio of 18%. The grid contains 

IL points on the ~ axis and JL points on the" axis, in particular, the 

value:s of II. and JL were set to 113 and 51 respectively for all coordi-

nate systems. The major concern was to obtain accurate numerical re80-

lution of the flow field about the airfoil. Since grid characteristics 

such as mesh spacing, smoothness and skewness can greatly affect the 

effe:ctiveness of the hosted algorithm, it was decided to examine some 

effects of thu grid characteristics on the flow field solution. 

It is desirable to have much finer grid spacing in the regions of 

boundary layers containing relatively high velocity gradient because a 

relatively coarse grid can lead to significant truncation errors in the 

solution of the Navier-Stokes equations. The RHS of the Poisson pressure 

equation contains velocity gradient terms and hence errors in dominant 

velocity gradient ::erms can result in erroneous values of the pressure 

near the body surface. The waIl pressure boundary cond:ltion equation uses 

one Elided difference approximati.on so errors in the prElssure field near 

the wall can lead to errors in the implementation of the boundary condi-

tions,. The a.lgebr.aic eddy viscosity turbulence model used in this study 

involves velocity gradient term and accurate computation of velocity 

gx'adients is important for consistent tur!mlent modeling. 
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Whenever a grid in the physical. plane is not smooth the transforma-

tion coefff.cients such as l; , n , E; and n can induce considerable x x y y 

numerical Elrror in the solution cal!sed by the nonuniform grid spacing. 

In some cases the grid skewness' can also lead to numerical oscillations 

and inaccUl:acies. A detailed discussion about the effects of these grid 

characteriHtics on the solution can be found in references [11,34]. 

Three coordinate systems were used in the present effort. The first 

coordinate system CORDl (fig. 8) was generated using Sor.enson's [35] 

approach and \vas rather crude. Th1s coordinate systE'.m \.as used for 

development, testing and debugging of the computer code in the early 

stages. Coordinate systems CORD2 (fig. 9) and COFD3 (fig. 10) were 

generated using Thompson's [10] approach and Sorenson's [35] approach 

respectively. The grid point distribution on the inner boundary \vas 

th~l same for these two coordinate systems. Also these t\vO coordinate 

systems were extensively used for m.-:my numer~.cal experiments and solu-

ticms to be presented in the remainder of this section. 

As central-difference approximations used in this study are suc-

ceptib1e to numerical osd;1.1ations at higher Reynolds number, it was 

also decided to investiage effects of grid characterist.ics at lower 

Reynolds number to isolate oscillations caused by central-differences. 

Twc) coordinate systems CO~2 and CORD3, having the Hame grid point 

distribution on the inner boundary were tested for Reynolds number 1000. 

The solut:Lon is the trailing edge region had a dominant effect on the 

total f1o~l field solution. Since the grid lines of CORD2 (fig. 9) are 

skewed in the trailing edge region, coordinate systems CORD3 (fig. 10) 

was generated with nearly orthogonal lines in the trailing edge region. 
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Bettl~r overall results were expected using coordinate system CORD3, 

however it turned out the other way. Numerical results obtained using 

coordinate system CORD2 were much better than those obtained using 

CORD3. It was thought that other grid parameters such as coordinate 

stretching funttions and the rate of change of grid spacing would have 

sign:lficant effect on the solution [34, 54], An exponential stretching 

function was used in Sorensen's approach while in Thompson's approach co-

ordinate control function was derived using the hyperbolic tangent as the 

point distribution function. As mentioned in reference [34], the hyper-

bolie tangent is better than exponential and gives optimal truncation 

error. It s.hould be noted here that the control function in Sorensen's 

approach controlled only spacing of the first line off the boundary 

and angle of inclination of ~ = constant lines with the boundary while 

the l:ontrol function in Thompson's approach was able to control grid 

line distribution (fig. 2). The above case is not entirely conclusive, 

however it does show the importance of a proper coordinate system 

for the Navier-Stokes ':Iolution. For a given problem finding of an 

optimum coordinate system by trial and error method is expensive, so 

we d!!cided to limit our experimentation vlith coordinate systems. 

Some important parameters of two coordinate systems CORD2 and 

CORDJ. which were used extensively in this study, are described below. 

For hoth grids the leading edge of the airfoil was located at (0,0) 

and the trailing edge was at (1,0). The y coordinates of the uppermost 

point: at I •• 113 was +5.09 (5 chord lengths) the lowermost point at 

I = :I. was at. -5.09. The x coordinate of the forward most point was 
. . 

-4.09 andof the backt-18rdmost point was 11.0 (11 chord lengths). The 

value of index i at the leading edge was 57. The lower-surface trailing 
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edge and upper-surface trailing edge points were located at i .. 21 and 

i = 93 respectively. The value of index i at the maximum airfoil thick-

m~ss point on the lower and upper surface were 34 and 80 respec tively, and 

the value of the x coordinate was 0.467. The tel."J1l 6s denotes grid spac-

. ing betweEm the first line off thE~ boundary and boundary along F; .. con-

stant lines. The values of 6s at the inner boundary for coordinate 

system CORD2 were 0.000046, 0.000055, 0.000010 and 0.000026 at I '" I, 

21, 34 and 57 re.spectively. The minimum values of fJ.s at the inner 

boundary \,'as 0.000001. The values of 69 at the. outer boundary were 

0.28, 0.35, 0.32 and 0.42 at I .. I, 21, 34, and 57 respectively. For 

the coordinate system CORD3 the values of 6s at the inner boundary were 

se.t to 0.00001 and at the. outer boundary were set to half the chord length 

(Le. 0.5). The angles of inclination with which F; .. constant It..es 

intersect the inner and outer boundaries were approximately 90°. For 

the two coordinate system the grid point distribution at the leading 

and trailing edge in the boundary layer region is shown in Table 1. 

Also note tl~t coordinate system CORD2 has a uniform spacing around the 

ai:rfoil wh.i1e CORD3 has closer spa(:ing at high curvature reg1.ons e.g. 

le;~ding edge. 

7.2 Computational Procedure 

In th:Ls section a computational procedure for solving the govern-

ing equations and some details of the comptuer code are described •. 

An appropri.ate coordinate system for a given problem was generated using 

separate grid generation computer code on a scalar machine. 

The va.lues of x and y coordinates for a final grid were lnput to 

the CYBER-200 FORTRAN compiler code. Bit control vectors of desired 

pattern wer.e generated and stored. Since all geometric coefficients can 
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can be efficiently (!omputed using bit vector approach, all tranformation 

c.oeffld.e.l1ts were computed using blt vector approach, all trahsformation 

coefficiE~nts were computed by the computer code in the vector mode 

instead of using values of coefficients supplied by other scalar codes. 

Second-order accurate central-difference formulas were used to compute 

transformation coefficients in the field. On the airfoil surface upper 

down-stream boundary and lower down-stream boundary the transformation 

derviatves were computed using second order accurate one-sided forward 

or bacbvard differences. All geometric coefficients Here separated for 

the red and black nodes and stored. For restarting the flow from pre-

v:lous1y obtained solutions, all required flow fi~ld variables and impor-

tant parameters were read in. Before starting off a loop for time steps, 

all required bit control vectors for solution of the governing e'iuations 

were generated and stored once and for all. 

All calculations were perfonned with the time step t = 0.01. The 

fl:ee-stream boundarycondition on theouter boundary was applied at every 

time step. The gradua start consisted of 100 time steps during which 

the free-stream velocities and the body force terms were given by 

Veo = t * 82 

g1 = cos IjJ 

g2 = sin I/J 

after the gradual start 

u .. cos 
co 

Veo = sin 

gl = 0 

g2 .. 0 

for 0 < t < 1.0 

for t > 1.0 
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At every time step, two vp.locities and the pr'essun~ equations were 

solved slmultaneous1y using checkerboard SOR. The sequence of solving 

t.he veloc.itieB for the red nodes, the press:ure for the black nodes, the 

velocity for the black nodes and the pressure for the red nodes was· used 

for each checkerboard iteration. The convergence criteria for each time 

step was established by the following procedure. l~e solution was either 

initially started or restarted from the previous time step. For the 

first time step first order two point backward-·difference approximatio,1s 

were used for the time derivatives. The iteration continued until dif-

ference between the magnitude of each flow variable (u, v and p) at two 

successive iterations were less than 0.0001. In most cases, maximum 

number of checkerboard Lterations were limited to 50. At every iteration 

acceleration parameters for the velocities were computed using equations 

given in Appendix B. The computat;ion of the accelerated parameters is 

m()re involved and requires considerable arithmetic operations. A flag 

was set when the solution converged within 10% of the established con-

vergence criteria. When this flag was set, the computation of acc1era-

tion parameter was bypassed and iteration continued with the previously 

computed acceleration parameters to enhance the computat'ional efficiency. 

The Neumann pressure boundary conditions, the re-entrant condition 

and the dO'imstream boundary condition was applied after every checker-

board iteration. The trailing-edge pressure was extrapolated after 

applying the pressure boundary condition. This completes the solution 

p:rocedure involved at every iteration. 

Once the solution converged \Olithin a given error norm or maximum 

number of iterations allowed were reached, the divergence of the velocity 

was computed ,at every time step. As .soon as the divergence of the 

65 

, 

I 

':: :~.~ 
'! '.\-: .".~. 

"', .. : 

t- ..., 
~. . 

1 
'\ ' 
11 . 
~. 

fl· 
I '" " 

f

';' ' . 
. ,' . 
,-

, , 

" 

,'-, 
~. ~ . 

, . 
! 



velocity was computed, it was smoothed out in most cases. Then the re-

quired turbulence was switched on to compute eddy viscosity. Then the 

desired artificial viscosity was computed at every time step to incorpor-

a~te daming. A condition was established that artificial viscosity can-

not be turned on unless turbulence was turned on. The above cycle was 

continued for the desired number of time steps. 

7.3 Some Numerical Experi.rnents 

This section will present some. numerical experiments carried out 

du:cing the COUl:"se of this study. It should be noted that all techniqueH 

described in this section were not tested thoroughly and some of them 

did not improve the solution or efficiency significantly. However many 

of the approaches attmpted, seem encouraging and may work well for other 

applications. The primary attention was focused upon the development of 

the efficient computer code and the computation of a reasonably accurate 

flow field solution using minimum computer resources. 

It is true, that the use of an appropriate algorithm is generally 

much more crucial than coding techniques. However, an optimized code 

with prop4~r algorithm can increase efficiency considerable. In this 

study one4:! the algoritmh was settled upon, considerable time was spent on 

optimizing the code. There are vc~ry few loops in tjle code and they are 

gcmerally unavoidab::'e ~I.lch as time step loop and iteration loop. Effort 

wus concentrated to develop a cod,~ :In the light of fundamental properties 

of the VC(!to': processor which allowed the use of explicit vector instruc-

t:lOIlS. All routines in the code .1ere analyzed using a tim:lng package 

which pri.nts out a histogram of CPU usage. The ma~l effort was diverted 

tel some pClssible restructuring of routines and comparing its efficiency 

based on CPU timing. Initially all routines in the code could be compiled 
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with the highest level of optimization (B» on the CYBER-200 FORTRAN com-

piler. To incorporate various approaches to be tested, as discussed in 

the following paragraphs, a few routines were forced to one lower level 

of optimization (BE). No attempts were made toward optimizing the memory 

and data mangaement procedures. Vectors of about 2720 length were employ-

ed in the present study. Since the performance of the CYBER-~03 in-

(!reases ,\lith increase in vector length an application involving a very 

large coordinate system can result in rela.tively greater speed-up. Opti-

mization may involve some work; however, for large scale problems usually 

:Lt does payoff. 

Central differences used to approximate the spatial derivatives are 

easily succeptib1e to oscillations at higher Reynolds number. Computed 

solutions displayed large amplitude oscillations in tile flow variables 

and destroyed the accuracy. The eddy viscosity model increases the 

molecular viscosity and thus lowers the Reynolds number of the flow. The 

switching on of the turbulence model appeared to damp some oscillations 

but it did not show any significant degree of control over large ampli-

tude oscillations. All attempts to obtain the steady state solution for 

flows at Reynolds number 10,000, which were started from hest, were 

unsuccesful beyond time t = 1.0, even with inclusion of the turbulence 

model. One-sided differencing schemes may eliminate these nonlinear 

, 
r' oscillations and may be vectorized from Some simple regions. Hodge [25] 

used upwind differences for the f:l.rst derivative terms, except the pres-

sure gra.dient and ve~ocity divergence.terms, seemingly to avoid oscilla-; .. 

tions caused by central-difference.. For "e" and "0" type coordinate sys-

tems, j.n,corporation of the upwind-differences requr ie checking the sign 

of contI'avariant velocity (I; u + t; v) to incorporate appropriate indexing. x y 
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This cond:ltion may not allow efficient vectorization of one-sided differ-

encing schemes for this study on the CYBER -203. 

One possible way to damp out the oscillations is by the usc of an 

artificial viscosity. The adverse pressure gradient in the trailing edge 

regions had the dominant effect on the solution and it was assumed to 

tl:igger the nonlinear oscillations. The amplitude of these oscillations 

wen~ small initially and remained localized near the traiHng edge regions 

for some time, but in abseu('e nf damping its amplitude startC'd increas1.ng. 

The oscillations propagated toward the leading edge with passage of time. 

The flow was rather stable till time t = 0.5, so in most cases it was de-

cided to turn on damplng at time t = 0.51, well before the oscillations 

statted contaminating the solution. Several Ilumerical experiments will be 

described. before going into detai.ls of various forms of artifical viscosity. 

The time derivative of the divergence of velocity D t' appearing in 

e~quation (5.21) can be evaluated using either two point or three point 

backward difference approximations after the first time step. Several 

c:omputer runs were made using both options. Error norms obtained using 

hoth cases for about the first one hundred time steps were almost the same 

indicating none was specifically responsible for divergence of the solu-

1:.1on. Thc~ spatial derivative terms of equation (5.21) were evaluated using 

I~econd ()lcder accurate difference approxiamtions. Thus the use of two-point 

first order accurate approx:unatil)n for the t:tllle derivaitve may reduce 

the overall accuracy of the equation. Since 110 emphasis was placed 011 the 

transient solution, and it was assumed that the time derivative term dis-

appears in the steadt state, first order a(:curate appro)timatioll was u$ed 

for the time derivative term of eq. (5.21) in most computer runs. Although 

:Lt did not show any no tic-able increase in computational efficiency. it is 
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jnterestjng to note here that the two point backward approximations involve 

less computer operation and storage than the three point approximations. 

Since the implicit system of equations were solved at eDch time 

~Itep by an iterative method, the previous time step solution was used 

a,s an ini.tial guess for the next time step in all cases. For some cases 

a. poor choice of initial guess may delay or destroy the convergence 

of the method. In an attempt to reduce the iterations by providina a 

good guess of the solution at the next time level an initial guess whlch 

was cloRe to the desired solution was tried. The initial guess for the 

velocities on the field and the re-entrant boundary vIas found using the 

following relations during the acceleration phase. 

n n-1 
Ui,j U Ui,j + ~t cos ~ (7.9) 

n n-1 
Vi,j .. Vi,j + llt sin 1jI (7.10) 

Instead of improving the convergence, the solution started diverg-

ing. As the "c" type grid emploYE!d is coarse in the outer region and 

;.7Jlne near the body and in the wake, the initial guess for the second 

attempt WE~re found using the abOVE! relations only on the re-entrant 

sE!ction during the acceleration phase.. Again no improvement 

was found and in both cases the solution started diverging approximately 

at time t .. 0.5. For this study, it is not clear what should be the 

criteria to choose the initial guess in an effective manner and how 

it will accelerate the convergence. 

It was thought that the down.~tream boundary conditions may help 

control the oscillations or allo", the passage of OSCillations, \.;hich origi-

nated in the tre,iling edge region. Instead of the downstream bowldary 

conditions presented in sec tion (,.2. the fo1lo\\1ing downstream boundary 
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conditions were attempted. 
u .. u"" 

, 
p .. Po> 

(7.11) 

(7.12) 

(7.13) 

The jmp1ementation of the free-stream boundary conditions, section 

4.2, un thE~ downstream boundary did not improve the solution during the 

acceleration phase. In another attempt, the velocity boundary condi-

tions were the s;).!Ue as the free-stream boundary condition on the do\>lll-

stream boundary, however the following pressure boundary condtion \Vos 

used. 

PI;I; = 0 (7.14) 

Again, this boundary condition did not show any positivp. effect 

on the solution. Thus flow is perhaps much more sensitive to the outer 

alld body surface boundary conditions with the downstream boundary con-

d:i.tion having no significant influence on the solution. 

One possible way to enhance the stability of a numerical solution 

i.s to filter out unwanted oscillations using filters or smoothers. 

The use of smoothers will not eliminate the source of high amplitude 

oscillations but will control them by spreading them over some region. 

Since in some CIlGes wavy solutions with high amplitude of flow quantites 

sllch as divergence of velocity, pressure can lead to unrea1ist ie solution, 

the use of smoothers can help control oscillations. The divergence of 

velocity showed a ,~avy field in the direction of I; .. constant lines. 

Two types of divergence of velocity smoothers were attempted, one using 

the neighboriItg nodes in E; .. constant lines direction and the other 

using· four neighboring nodes in both directions. Smoothing obtained 
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using four neighboring nodes was much better. It reduced the need of the 

artificial viscosity by some margin. The pressure field was t-lavy in 

the direction of n .. constant lines. An attempt to smooth the pressure 

led to au incorrect solution. Next the source tenns of the pressure 

I;!quatioll (3.23) ,.,ere smootl:ed OU;,. The solutions obtained using this 

approach were encouraging. Sinct~ the pressure equat ion was solved using 

"Ill iterative method, for conslsttmt: smoothing the smoother should be 

applied at every iteration in contrast to the divergence smoother \.,hich 

was applied at every time step. The source term smoother may be compu-

tationa11y inefficient due to computer operations and additional storage 

required. For some similar runs, results obtained using the source 

term smoothers were about the same as those obtained using the divergence 

smoother. Considering the above tests, the source term smoother was not a 

practical way of smoothing the pressure oscillation in the present study, 

and hence the divergence smoother was ~nployed for most computations. 

For turbulent flows, the values of (~ddy viscosity, computed using the two-

l(lyer alg(~braic model, varied considerably in the boundary layer and 

Welke regi()n. Some forms of artif:l.cial viscosities, to be presented 

l<lter, were based on the eddy viscosity. Host of them used unsmoothed 

vBllues of the eddy viscosity, however, a few of them employed smoothed 

va.lues of the eddy viscosity. Artificial viscosities, which employed 

smoothed values of the eddy viscosity did not show any increase 0f 

effectiveness over the artificial viscosities based on unsmoothed eddy 

viscosity •. 

Pex:haps the mosL effective way of eliminating the flow field 

os,:illatiol1s caused by central-differencing at higher Reynolds number 
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is to us.e an aritificial viscosi.ty. In this study it was assumed that the . 
flow was turbulent when an artificial viscosity was switched on and hence 

the molecular viscosity ~ = 1 + € in the momentum equations was replaced 

by )J .. 1 + € + )Ja. Term lJ
a
denotes artificial viscosity and it increases 

the value of molecular viscosity. An artiflcial viscosity having uniform 

or constant value over the whole flow field will increase artificial 

diffusion everywhere in the field and is obviously not the solution of 

the problem. Huwever, an artH icial viscosity which is a funct ion of some 

flow quantities having appreciable values in the region of extreme 

oscillations and negU.gible values everywhere else can effectively diffuse 

oscillations without changj.ng characterisitcs of the original flow field 

c:onsiderably. Various forms of attempted artifi.cial viscosities are 

listed below 

QReJ IV • vi V .. iu + jv 

Q .. 0.0001 - Q = 1.0 

OReJ Iwl W'" v - u x y 

o .. 0.01 - Q = 1.0 

o = 1.0 

QReJ IV • vi Q .. € 

OReJ I V • Vi 

OReJ {Iwl III . vi n '" 1.0 

OReJ IV vi Q .. 
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rlRl:!J Ilo)j 1\7 . 

QRleJ 1\7 · vi 

QReJ IV' • vi 

QReJ 1\7 · vi 

QRI~J 1\7 vi 

QRE!J Llt I \7
2p I 

QReJ 1\7 · vi 

QReJ 1\7 · vi 

vT 

ORI~AL PP.GE ($ 
OF POOR QUALITY 

~ • 1.0 - ~ = 10.0 

<pe: 
(e - 1.o)lwl. <p" 1.0 - <p .. 7.0 

Q = \b I wi <j\ '" 1. 0 - <p = 10.0 

Q ::: l.0 

Q = ~) E: ~ co 10.0 - <p = 1000.0 

Q = min(<p c. 1.0) ~ ~ 1.0 - <p = 10.0 

Artificial viscosity was app1ie,d at every time step and results 

obta.ined using some of the above des'cribed forms of artificial viscosities 

will be presented in the next section. 
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7.4 Numerical Results 

The following general procedure was established for numerical compu-

tation and it was common to many of the flow solutions attempted. A NACA 

663018 a:i.rfoil section at zero angle of attack was considered for all 

I~omputat:lons. Coordinate systems tdth llJ (IL) grid points in ~ direc-

tion and 51 (JL) points in n direction were used. Gradual start was made 

tip of 100 time steps wHh a time step size of 0.01. The prevlous time 

s:t(!P solu.tlon was used as an initial guess for the next time step solu-

tion. 

ties. 

The acceleration parameters were computed using the local veloci­

-4 
The convergence criteria for the velocity and pressure were 10 

and the maximum number of iterations at each time step \"ere limited to 

50. First order time differencing was used at the first time step and 

sl2lcond order time-differencing scheme was used for all subsequent time 

steps. The flow was laminar till time t = 0,5. For turbulent flow, 

cClmputatiCin of eddy viscosity was: turned on at timE! t .. 0.51 and trans-

ition t"as assumed to occur at minimum pressure on the upper and lower 

ai.rfoil surfaces. For solutions with an artificial viscosity, the arti-

ficial Viscosity was turned on at time t = 0.51 and it was computed P.t 

every time step. Also, whenever artific:l.al viscosity t.,as switched on, 

turbulence was assumed to be turned on at the same time. Except for some 

in:I.Ual cases, the trailing edge pl:essure was extrapolated and the diver-

gence of v(~locity smoother was used for the flow simulation. Some excep-

ticms to the ahove-described procedure will be mentioned at appropriate 

plslces in the fo110\ ... 1ng paragraphs. 

The first type of coordinate system CORDl cClns1dered in this study 

was generated using Sorenson's approach [35] and is shotvn in fig. 8. 
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The lamJnar flow past the airfoil was considered at Reynolds number 

of 10,000 .. The pressure distribut :lons at time t •• 0.5 and t III 

0.7 are shown in fig. 11 and fig. 12 respectively. These pressure 

distributltons indicate that the flow was well behaved until time t ... 

0 .. 7. The solution was restarted from time t .. 0.5 toTith the turbulence 

model sWl.t:ched on and transition occuring at the minimum pressure. 

The turbulent flow solution at time t '" 0.7 was essentially the same 

as thl~ laminar flo,,, solution at the same time. At time t "" 0.8 the 

pressure started oscillating at the trailing edge (fig. 13). \.,Tith the 

passage of time, the solution diverged at time t .. 0.85. To damp out 

the trailing edge oscillations in the turbulent flow, the transition was 

forced to occur at the maximum. airfoil thickness points on both surfaces 

instead of minimum pressure points which were almost at the trailing 

edge. As shown in fig. 14 the amplitude of the pressure oscillations 

was reduced somewhat at t .. 0.8, however the solution diverged at 

tinle t .. 0.89. Again turbulent flow was restarted from time t .. 0.5 

with artifj,cial viscosity added. The artificial viscosity was computed 

usjng QReJIV • vI, with Q = 1.0. Previously observed os~illation 

disappeared at time t "" 0.8 [fig. l5J due to artific:1.al diffusion. As 

expected, the pressure coefficient was going down with increase in time. 

Figllre 16 shows the pressure distribution at time t .. 1.0. With further 

increase in t:1.me, the solution diverged at t = 1.22. In pressure 

distributions for all stable solutions described R0 far t there was abrupt 

pre:9sure ri:se at the trailing edge. To remedy this problem, the pressure 

at the tra:l.ling edge was extrapolated Ilsing eqs. (4.17-4.18). Fig. 17 shows 

the pressul'l~ distribuiton with the E~trapolation for turbulent flow at 

t '" 0.7. Another form of artifici.aJ. viscosity, QReJ I 'l • v I, where 
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n •• € was attempted with transition occuring at maximum airfoil thick-

nel,s points. The solution started oscillating at t ". 1.0 (fig. 18). 

Onc~e again an artificial viscosity • nReJ I 'V • V I with Q .. 1. O. was 

attempted. Hmllever this time the artificial viscosity ,"as cl)mputed at 

evc~ry iteration instead of every t:lme step. Pressure distributions at 

time t = 1..0 and t .. 2.0 are shown in fig. 19 and fig. 20 and the 

solution d:lver30d at t = 2.28. Next an artificial viscosity 

QRf:!J/r~TTv-:-vr with Q '" 1.0 was considered. Fig. 21 and fig 22 

sho~r the plcessure distribution at t·= 1.7 and t '" 2.0. At time t == 1.6 

thl~ solut:!.on already started osciUating in the trailing edge region. 

Since coordinate system CORDI was rather crude, computations using 

CORDI were stopped. 

A sec~ond coordinate system CORD2 (fig. 9) waL> generated using 

Thompson's approach [10] with control functions involving hyperbolic tan-

gent to control n-line spacing in the boundary layer region. The Reynolds 

number COllsidered was 10,000. The pressure distributions and leading . 

edl?e and trailing-edge velocity vectors at time t '" 0.5 and t .. 0.7 for 

thle 1aminalr flow are shown in fig. 23 and fig. 24. The turbulent flow 

wa:~1 restarted from time t == 0.5 with transition occuring at minimum 

prIE!SSure. Fig. 25 and fig. 26 shet., the pressure distribution and 

velocity VIElctors at time t .. 0.7 and t .. 1.0. The laminar and turhu-

lent solution at time t .. 0.7 were almost the same. An abrupt increase 

in the magnitude of velocity vecto:l.'s at time t ... 1.0 in the trailing 

ed~:e regio!:l .indicates the presence of nonlinear oscillations in the 

solution. The turbulent flo,,, solution diverged at t .. 1.07. The 

turbulent flow with transistion forced at the maximum airfoil thick-

ness was CIJnsidered next and the solution at time t .. 1.0 is sho,m 
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ill fig. 2'7. No significant improvement in the solution was found. 

All artificial viscosity, nReJ11,7 • vi ,dth n = € and transition occuring 

at: maximum airfoil thickness was attempted. Comparing previous solutions 

w:l.th this solution at time t '" 1.0 (fig. 28), no sufficient diffusion 

is the trailing edge region could be obtained. Perhaps, this was due 

to very small values of eddy viscosity which diluted the artificial 

v:t.scosity.. The solution diverged at time t =: 1.32. An artHicial 

vis(!osity S1ReJ I 'iJ • V I with n .. 1.0 \Vas com;idered. The turbu1 ent: flow 

solutions., using this artificial viscosity, at time t =: 1. 0 and t =: 2.0 

al:e shown in fig. 29 and fig. 30. The solution diverged at time 

t =: 2.18. Thcsfl solutions indicated nonlinear oscillations in the 

tI:ailing E!dge region, which could not be eliminated using the above 

dE!scribed forms of artificial viscosity. It was thought that these 

o8ci11aticms were caused by skewed grid lines in the trailing edge 

rE!gion (fig. 9) which ultimately destroyed the solution. 

A third coordinate system CORD3 (fig. 10) WilS generated with 

nE!arly orthogonal lines in the trailing edge region using So'r~nsen' s 

approach. Laminar flow solutions for Reynolds numbE!r 10.000 at time 

t = 0.5 and t = 0.7 are shovm in fig. 31 and fig. 32. The flow was 

we:ll behaved as· expected. Turbulent flow solution with transition 

oc,curing a.t minimum pressure was attempted and fig. 33 shows the 

solution a.t t = 0.9. Velocity vectors at the traiU.ng edge reversed 

their dil:E!ction with unusually large magnitude. This phenomena also 

indicates the presence of oscillations in the so~"utj,on. The solution 

diverged at time t = 1.02. In an attempt to damp out these oscillations, 

transition VIas enforced at maximum airfoil thickness points. Fig. 34 

__ shows the pressure distribution and velocity vector plots at time 
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t: = 0.9. Note the magnitude of velocity vectors at the trailing edge 

has reduc:ed somewhat but not sufficiently. At this stage, the divergence 

of veloclty smoother and two-point backward differencing scheme for 

ClD f' h at termo t e pressure equation were incorporated. The sclution was 

started from rest and the pressure distribution and velocity vectors 

a,t time t: .. 1.0 are shown in fig. 35. The rutS smoother, as discussed 

in Section 5.6 w,.s also considered. The solution at. time t = 1.0 is shown 

In fIg. 36. No significant differe.nces in the solutions obtained using 

these t\Y'Q smoothers were found. Smoothing of the pressure gave in-

valid solutions. The smoothers were able to filter out some oscillations 

a,t the trailing edge. For all results presented hereafter. the diver-

gence of velocity smoother was turned on and two-point backward dif­

elD ferencing scheme for at term were employed all the time. Attention 

was now focused on the artifkial viscosity. Fig. 37 shows the solution 

obtained at t .. 1.0 using an artificial viscosity QReJIV • vi with 

f"\ = {(Cl~:.)2 + (Cl'!n
2

)2}!z. f 1 h h b f .. Q~ Q Arti icia viscosity wit t e same n. ut 0 

form nReJ/I~1 Iv • ~l was considered next. Solution (Fig. 38) obtained 

using the latter form was somewhat better. Solutions obtained at t .. 

1.0 using artificial viscosity nReJIV • vi with n = €I~I and n = 1.0 

ar.e shown in fig. 39 and fig. 40 respectively. An artificial viscosity 

bllsed on Laplacicm of the pressure Le. nReJlitlv2pl with n' = 1.0 was 

attempted and the solution at t .. 1.0 is shown in fig. 41. Artificial 

viscosity I1ReJIV • vi \-lith n = [e$€ - 1.0] I~I and $ .. 4.0 gave some 

illteresti:ng results [fig. 42]. The values of $ greater than 7.0 led 

t() divergence of the solution for this particular case. The time 

history of solution obtained using artificial viscosity nReJIV • vi 
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with Q .. $1 w I and $ = 1. 0 is shown in figs. 43 - 46. The solution was 

almost steady at time t = 4.0 (fig. 46). This Reynolds number 10,000 

numerical solution was compared with Reynolds number 40,000 experimental 

solution [31] for qualitative purpose only. The discrepancies between 

the computational experiment results was thought due to unreasonably 

thick boundary layer and/or due to grid characteristics such as stretch-

ing function. An attempt was lDade to restart flow from time t 4.0 

without inclusion of the ar.:ificial viscosi.ty. to obtain correct 

boundary layer. However. the solution diverged at time t = 4.28. 

Several values of CPo ranging from 0.05 to 0.9 were experimented with but 

the results were not encouraging. Several computer runs with artificial 

viscosity given by QReJ I 'V • V I and Q == $f; for values of $ from 10 to 

1000 ,~ere made but without certain: improvement. At this point. it was 

d'Elcided to lower the Reynolds number to isolate oscillations caused by 

h.igher Reynolds number and to invf~stigate the effects of the coordinate 

systems on the solution. 

Coordinate system CORD3 was used for a Reynolds number 1000. The 

p],essure distribtuion and velocity vectors plots for the laminar flow 

a1l: time t == 1.0 and t == 1.5 are sho\m in fig. 47 and fig. 48. With 

increase :In time the solution divElrged at time 2.02 and the pressure 

d:l.stribution at time t = 2.0 is shown in fig. 49. Perhaps insufficient 

gl:id resolution in the boundary laYE!r was responsible for the divergence 

of the solution. 

Next., coordinate system CORD2 was considered for the laminar flow 

at: a Reynold number of 1000. Time history of the fl.ow at time t = 1.2, 

2.0, 3.0 and 4.0 is shown in figs. 50 - 53. The flow characteristics 

were not c.hanging with further increase in time and the number of 
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iteratj,(lns came down to 8. Hence the flow was considered steady at 

time t:, 4.0. For, qualitative comparison, the numerical solution is 

compared with the experimental solution at a Reynolds number 40.000. 

The discrepancies in the pressure distribution from the leading edge 

to the n~ximUtn airfoil thickness can be identified. It is interesting 

to note here that coordinate system CORD2 allowed to obtain the steady 

state solution while CORD3 did not. A coordinate control functlon ~lhich 

I.as found uslng the hyperhol1.c tangent as the point distribution func-

Cion was used for coordinate system CORD2. It was noted in reference 

[34] that a hyperbolic tangent function gave optlmum truncation error. 

With the same coordinate system, Le., CORD2 an attempt \'las made to 

obtain R(~ynolds number 10,000 solution by restarting the laminar flow 

from Reynolds number IJOO solution at t = 4.0. The pressure distribution 

and velocity vectors for Reynolds number 10,000 at t .. 5.0 is shown in 

fig. 54. 

It \ifaS thought that the accuracy of the soluU,on during the 

a.cceleration phase had significant effect on the total flow field 

solution. Hence coordinate system CORD2 was considered for Reynolds 

number +000 laminar flow solution with increased number of iterations 

i'l initial stages. 
.. -4 

The error norm used was the same as before (10 ), 

hotvever, the maximum numbE}r of iterations for initial time steps were 

increased to satisfy the above convergence criteria exactly. The 

number of iterations started increasing from 10 at the first time step 

to 75 at time t 1.0, about 100 at time t = 1.5, about 90 at t = 2.0 

and about: 60 at t = 2.5. Some test runs were made with increased 

number of iterations and maximum' number of _.iterations fixed at 50 beyond 
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time t = 3.0. No noticible difference between the solutions using 50 

and increased iterations was found. Hence the maximum number of iter-

ations beyond time t = 3.0 were again fixed to 50. The time history 

of the solution starting with tDne t = 1.0 till time t = 10.0 is shown 

in figs. 55 - 64 at an interval of 100 time steps. Note the difference 

in the pressure distribution at t '" 1. 0 between this case (fig. 55) 

.and a case with fixed iteration (fig. 50). This difference in the 

pressure distribution becomes mor.e obvious at time t = 2.0, 3.0 and 

fl. O. For the present approach the solution had not achieved steady 

state at t = 4.0, with number of iteration about 40. Note that starting 

at time t = 3.0 velocity vectors at the leading edge region start 

changing its angle of inclination gradually and becoming parallel to 

the airfoil surfaces. Also the magnitude of veloc:lty vectors in the 

t.railing edge region keep increasing with passage of time. No notice-

able difference in the pressure distribution was found between the 

solution at time t = 9.0 and t = lO.O and henc.e computations for 

Reynolds number 1000 were stopped at t = 10.0. Tht. pressure distribution 

:[n the J.E~ading edge region (fig. 64) has improved eonsiderably compared 

to the previous steady state solution (fig. 53). Also, the experimental 

l:esults at Reynolds number 40,000 matched qualitat:l.vely better than 

previous approaches. The pressure distribution in the leading edge 

J:egion was the major cause of discrepancies. A closer look at coor-

dinate system CORD2 (fig. 9) shows that there is a sudden change in 

grid points spacing after approximately 9 points from the leading 
I· •. ,: 

edge on both, upper and lower surfa.ces. Note that these points were .. ' 

placed by curvature of this surface. 

8J. 



Perhaps the red:f.stribution of points in this region may help us to 

obtain correct pressure solution. 

Finally, Reynoldfl number was increased to 40, 000 and t he flow was 

restarted from the Reynolds number 1000 laminar solution at t .. 10.0. 

The maximum number of iterations were limited to 50. The laminar flow 

solution diverged at t ., 10.16 indicating the presence of large ampli-

tude osc:tlliltlon~l ilt higher Reynolds number. An attempt was made tll 

damp out osd.lla tions with the tur.bulence turned on at t '" 10.01 and 

transition occuring at minimum pressure points. Again, the solution 

diverged at t .. 10.17. Next the turbulent flow solution using artifi­

cial ViSl:OSity ~IReJ I ~ . ~ I with 11 .. rp I ~ I and rp os 1. 0 was considered. 

The use of the a:rtificial viscosity allot'led a steady solution to be 

obtained. Some m:lnor osci 11ations in the trailing edge reglon ,~ere 

observed at about time t = 16.0. Hence the value of rp was increased 

to 10.0 after tilne t ... 16.5. The surface ·pressure distribution and 

the lead5.ng and trailing edge velocity vector plots at time t ... 20.0 

are ShOWll in fig. 65. The separation \'1al~ found to occur at about 60% 

chord pOlsition 011 the upper surface and at about 64.1% chord position 

on the lower surface. The computed surface pressure distr.::lbution is 

compared with thc~ experimental data. The use of artificial viscosity 

increased the th:LCkness of the boundary layer. The surface grid po in t 

distribution was though to be responsible for the discrepancies between 

the computed and experimental surface prl~SHlIre distribution in the lead-

ing edge :cegion. The distrj,bution of the d:lvergence of the velocity and 

the total viscosity (1 + e: + \1), for the first 20 T) ,. constant lines, at 

the lead:lng and t:raili.ng edge is sho,m in Table 1. The Inaltiumm of the 

divergen<:e of thEl velocity field occured at the second node point off 
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the wall. at the leading edge and the value of the total viscosity at 

the samli~ node was 1.11. Since the value, of the eddy viscos it:y E was 

zero at the leading edge, the value of artificial viscosity was 0.11 at 

that point. tath increase in the value of J, the magnitude of the 

divergence started decreasing, however values of the aritHica1 viscos-

tty was increasing till J '" 10 and then it started decreasing. At the 

trailing edge the values of the divergence of the velocity were les8 

compared to the values at the leading edge. HOvlever, the values of 

the artificial v1scoisCy at the trailing edge were larger than at the 

leading I~dge. The values were increasing with 1ncrease in J till J '" 

15 and then it IJtartcd decreasing. The :Lncreas~ in the values of the 

artificioOLl viscosity at the traHing edg(~ was probably due to increase 

in the magnitude of vorticity and increase ill the cell size. 

The computat:lons were performed on the CDC, CYBER-203 computer at 

NASA LanHley ReElE!arch Center. Hampton, V1.rginia. For about: 50 iterations 

per time step. average CPU time for these~ computations was observed to 

be 3.3 sE!conds/Ume step. This compares to 37.4 seconds/ti.me step [30] 

for a similar sadal code on the CDC 7600. A factor of 11..36 \-Jas 

observed improvement in speed. A coordinat,e system with 5763 (113 x 

51) grid points 1O'as used in the present study, giving average computa­

-5 tiona1 ra,te of 1.145 x 10 seconds/ iteration/ grid point. Further in-

crease in speed through data management optlmlzatioll and additional code 

seems possible. 
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Chapter VIII 

CONCLUSIONS 

The prime motivation of this study was to develop a vectorizable 

al&orithm for the implicit finite-differ.ence solu tion of the incompres-

sible N'!lI.vier-Stc:>kes equations in general curvlinear coordinates. The 

results indicat.(~ that it is economically feasible to obtain flow field 

soluiton past complex geometries. Much of the present effort was divert·· 

cd to the. nurncr.ic.al solution of the incompressible two-dimemlional 

Reynold,g averag4~d Navier-Stokes equations in nonconservative primitive 

variablp.. formulation on the vector computer, especially to the development 

of a relaxation technique amenable to vEH~l:or processing. The checkboard 

SOR relaxation t.eclmq:l.ue and boundary-conforming coordinate system make 

the method efficient and versatile for EL wide variety of configurations 

which could be "lddressed using a vec tor compu ter. The computer code was 

fully vectorized in the sense that all vectorizable loops were vectorized 

using eltplicit vector instructions and 8rit:hmetic operations ~Iere per-

formed ;[n a vector mode. The present computations on the CYBER-203 

indicat(~d a spcE!d gain of about 11 over CDC-7600. The ac(~eleration para-

meters, based Otl local velocities, were computed using the classical 

point SOR analYHis and need to be studied in detail to make them optimal 

for the checkerboard SOR. The present i.mplicit scheme is U.nearly un-

conditicmally stable excluding the pn~sSlure terms. This scheme ,,11th 

central··difference approximations for the spatial derivatives, exhibited 

oscillatory behl.llVior at the higher Reynolds number. Out of several 

smoothers attempted, the divergence of velocity smoother proved to be an 

effective "lay of filtering oscillations during the early stagE!s of the 
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solution. However, with passage of the time and increase amplitude of 

oscillal:ions, the effectiveness of the flfaoother was lost Ilnd the accuracy 

of the solution was destroyed. Perhpas the use of an artificial viscosity 

was the most effective way of eliminatulg the flow field oscillations at 

higher Reynolds! number for the present method. For solution at higher 

Reynolds nWllber., restarting the flow from the steady state solution at 

lower Reynolds number was not parti.culurly effective in controling the 

nonlinear oscillations. Thus initial cond:ltions had little effect on the 

stability of the flow field soluti.on. On the other hand, the accuracy 

of the solution during the accleration phase had Significant influence 

on the steady sl)J.ution. The down-stream boundary c:mditions showed little 

influen(:e on the total flow field solution. Also it is not clear what 

type of initial guess for the checkerboard SOR can accelerate the conver-

gence and reduce the number of iterations required for a gf.ven error norm. 

computed results indicate that it is possible to obtain considerable speed-

up using tte present method. The effects of several coordinate systems 

on the 11umerical solution were studied. The importance of a proper coor-

dinate line distribution to avoid grid induced errors and sensitiveness 

of the algorithm to the coordinate system were observed. In particular, 

the rate of chal~ge of line spacing in the boundary layer region was found 

to be more important than the grid line ske\vuess at the boundary. Also, 

the grid point distribution on the body surface showed considerable in-

fluence on the solution. The turbulence model used in this study shows 

little control over nonlinear oscillations. Hence some compromise in the 

flow fi.eld solution was made by using an artifid.al viscosity. The use 

of an a.rtifici.al viscosity usually made the boundary layer thicker than 

what it should be, however it did stabilize the £10\>1 solution. The effects 
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of several forms of artificial viscosities on the solution were studied 

and compared for several test runs. Although steady state> solutions 

were not attempted using each of them, the information ·'lbout their 

relative merit can help to choose an appropriate form for particular 

application. Some ranges of a paramete:r, which was used to control 

the effect of various forms of airfoil viscosities, were obtained from 

numerical experiments. The use of varj.olls smoothers was found to reduce 

the need of an artificial viscosity by little margin. 

In the course of the present study the coordinate systems played 

a crud.al role. The need for an optimized coordinate system for the 

Navier-Stokes solutions became apparent. Inability to compute flow 

field solution on one coordinate system and the discrepancies between the 

compute.d results and experimental data on tb~ other coordinate system 

was per'haps due to the deficiencies of th(~ coordinate sY8tems. An 

adaptive coordinate system, which adapts to flow field variables 

gradien.ts in a numerical solution may effectively solve this problem. 

The dynamiC coupling of the coordinate governing equations with the 

flow fj.eld gove:rning equations to resolve developing gradients is 

perhaps: the most promising apP':oach to improve the overall outcome of 

the pre:sent computational procedure. An. adaptive grid may eliminate 

the extreme osc:.1llations encountered using a fixed grid and enhance 

the pex'formance: of the algorithm because fewer iterations will be 

requirE!d due to. improve.d convergence. Slnce computer operations become 

more efficient. with increase in vector length on the CYBER-2'J3 an 

application involving large number .of grld points can incrr,ase the 

relative speed galn. The CYBER-203 is a one-pipe machin~ while the 

CYBER-205 is two -pipe machine. TlulS s:lgnificant speed up in computa-
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tional rate can be obtained by running the computer code on the CYBER-

205. 'fhe primltive variable formulation used for the governing equa-

tions can be e~Lsily extended to three-dimensional problems. For large 

three-dimensional problems, the increased number of grid points saturate 

or neady saturate the available memory. Hence some grid points must 

be held in sec!cmdary storage and they must be transmitted to and from 

the central m(~rnory. As overall execution time is a function of this 

memory transf(~.l:", the memory and data managment become much more important 

for three-dimensional problems. The. computer time requ.i.red for large 

scient:l.fic problem is generally so large that any increase in efficiency 

can represent substantial savings. In recent years, success in the 

development of high technology, such as very large scale integrated 

(VLSI) systems has revolutionized computer architecture. It seems 

possible to build a special purpose computer tailored for a special 

application. The software logic of a relaxation method, such as 

checkerboard SOR, can be implemented in hardware using VLSI elements. 

As POillt relaxation techniques are at the core of many systems of 

partial differential equations occuring in fluid dynamiCS, heat trans-

fer, plaE>ma dynamiCS, eiectrical network, semiconductor device model-

ling and structural analysis. the hardware implementation cost can 

be justified. Success in the developm.ent of a special purpose computer 

in the future will signifi.cantly reduce real time processing and cost 

of computing. The future of high-speed scientific computing, with 

increClLsed emphasis on vector processin.g, seems to be quite promising. 
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APPENDIX A 

VARIOUS RELATIONS AND DEFINITIONS IN THg TRANSFORMED PLANE 

This appendix contains the relations and definitions necessary to 

transform the equations of motion and boundary conditions from the physical 

to the computational plane. All transformations are presented in fully 

non-conservative form. The two following definitions are applicable 

throughout this appendix: 

f(lt,y,t) :: a scalar function with conti.nuous first and s(~cond 
deri.vatives. 

F(X,y) '" ;!. F, (}"y} + J F2 (x.y) :: a VE:ctor function with con­
tiniious first derivatives. ! and 1 are Cartesian 
unit: vectors. 

Definitions of the Transformation 

J"X'~ -xy 
1;;" Tl I;; 11 

a" 

2 2 
Y III x~ + yl;; 

Dy .. Ctxl';l'; - 2Sxt;n + YXnn 

C1 .. 

't = (:~ Dy - y Dx) / J 
n 11 

(A.l) 

(A.2) 

(A.3) 

(A.4) 

(A.S) 

(A.6) 

(A.7) 

(A.8) 
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Transforma.tion of Scalar Derivatives 

ORlcm!AL Pi"l~~ ~s 
OF POOR QUALITY 

f - (af/ay) t a (x~f - X f~)/J (A.IO) y X, ~ n n ~ 

f~'V' ,. (a2f/ax2) .. (y2f 2 f + 2f )/ 2 _. y,t n f,;E; - YE;Yn E;n YE; nn J 

223 
+ (YnYt;,E; - 2Yf,YnYt;.n + Yf,Y nn ) (xnft;, - Xt;,fn)/J 

223 + (YnXcc - 2yEy XE + Y~X )(Yc f - Ynfc)/J (A. II) 
~~ • n.n ~ nn ~ n ~ 

223 
+ (XnYE;C - 2xt;,xnYf,n + XE;Y nn) (xnft;, - xf,fn)/J 

2 2 3 
+ (Xnll:E;E; - 2xf,xnxCn+ Xf,Xnn )(YE;fn - ynff,)/J (A.I2) 

2 
f xy " (a f/axaY)t .. [(ltE;Yn + xnYf,)fF,; n-' xf,Yf;fnn 

2 
- xnynfF.E;]/J + [xnynxF.F. - (xCYn + xnYt;,)xE;n 

f ~ (af/at) - (f ) - (f X + f Y ) t x,y t F.,n x t Y t (A.I4) 

Transforma~tj.on of._ Vee tor Der:l.vatives 

Laplacian: 

(A. IS) 
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or 

Gradient: 

omGrf\.~,L r',::,:;, '::; r~ 
OF POOR QUAlrrv. 

Vf = (y f, - y~f )i + (x~f - x f~)jJ/J n, ~ n - ~ n n ~ 

Divergence :: 

. Normal to n,··lina: 

Normal to ';, .. line: 

n (t;) ,. V_ t;/j V_ t; j ... (y i-x j) / ra 
n_ n_ 

Tangent to n-line: 

Tanget to ~-line: 

Directional Der:l.vat:Lves 

af/an(n) .. n ( T1) 
• V£ .. (Yfn - Bft;)/JIY 

af/at (n) ... t (n) • Vf = fr./ IY 

af/an(~) .. n (.;) 
• Vf '" (exf.; - (3fn)/Jra 

90 

(A.16) 

(A.Il) 

.+ 

(A.18) 

(A.l9) 

(A.20) 

(A.21) 

(A.22) 

(A.23) 

(A.24) 

(A.25) 



(A.26) 

Transformat:~on M.etr:ics 

(A.27) 

Xn 
E; = ... -
y J 

(A.28) 

(A.29) 
Y 

n = .. :i 
x J 

(A.3D) 



APPENDIX B 

The Navier-Stokes equations in non-conservative primitive variables 

formulatl.vn <:an be represented by the following general partial differen-

tial equatiorl, neglecting the cross derivative terms 

(B.l) 

where f denotes velocity u or v. For (lL-l) * (JL-l) simultaneous equations, 

the spectral radius 1;. of Jacobi iteration is givE'.n by [52]. 
J 

(B.2) 

The optimal acceleration parameter K for SOR iterations can be obtained 

using the following re.lations 

(B.3) 

and 

K = otherwise (B.4) 

In this litudy, when conditions for equation (B.3) were satisfied, instead 

of computing acceleration parameter using equation (B.3) which gives 

K > 1.0, the acceleration parameters tl1ere set equal to 1. In other 

words, the momentum equations were solved using acceleration parameter 

less than or equal to 1.0. 
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Th,El coeffi,::ients in equation (B.I) are defined as follows. 

TI = ~ + Z (x v .. y u) 
ReJZ n n 

TZ = --H!._ - Z(x v •. y u) 
ReJ2 ~ ~ 

For x momentum equation 

For y momentum equation 

c T 
- At 

T = I for first-order time differencing 

3 
T = 2 for second-order time differencing 
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~ 
.; ... 

r 

\0 

"'" 

! 

I 
I 

I 

I 

I 

J 

Coordinate System 
CORD3 

I = 93 ! I = 57 

Arc length Arc length 
S s 

! 

Coordinate System 
C0RD2 

I = 93 I 
I = 57 

Arc length Arc length 
S S 

, 

Coordinate System CORD2 Re 40,000 
Solution at t = 20.0 

I = 93 I = 57 I 
ABS(V • V) 1+£+1l ABS(V • V) l+£+lJ I - - a - - a I 

I I I 
I 1 I 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
, " .1..) 

14 
15 
16 
17 
18 
19 
20 

0.0000116 
0.0000269 
0.0000470 
0.0000736 
0.000108 
0.000154 
0.000215 
0.000295 
0.00040 
0.000538 
0.0007211 
0.000962 
0.001279 
0.001697 
0.00225 
0.00297 
0.00394 
0.00521 
0.00689 

0.0000116 
0.0000269 
0.0000470 
0.0000734 
0.0000108 
0.000153 
0.000213 
0.000292 
0.000395 
0.000530 
0.000706 

,0.000935 
10.00123 
0.001621 
0.002121 
0.00276 
0.00359 
0.00464 
0.00599 

0.0000559 
0.0001273 
0.000220 
0.000341 
0.000498 
0.000702 
0.000965 
0.001309 
0.001756 
0.002337 
0.003094 

I 0.004079 I 0.005363 
0.997039 
0.00922 
0.01206 
0.01574 
0.02049 
0.02659 

0.0000026 
0.0000061 
0.000CI05 
0.0000163 
0.0000239 
0.0000336 
0.000046 
0.000062 
0.000083 

10.000111 
0.000147 

. 0.000193 
0.000253 
0.000331 
0.000433 
0.000565 
0.000737 
0.000962 
0.00125 

1.13 
1.54 I 1.53 
1.15 
1.44 
0.96 
1.25 
0.87 
1.03 
0.80 
0.78 

I 0.70 I 0.54 
0.58 
0.33 
0.43 
0.10 
0.23 
0.11 

3.75 
5.78 
7.07 
6.79 

10.18 
8.76 

13.75 
12.04 
17.15 
16.35 
19.17 
20.44 
18.50 
22.48 
14.86 
20.52 

5.33 
i 13.22 

7.55 

43.22 
50.96 
50.41 
50.25 
49.37 
48.82 
47.48 
46.38 
44.46 
42.73 
40.15 

I 37.72 I 34.46 
31.37 
27.53 
23.90 
19.67 
15.74 
11.39 

Table 1. Coordinate Line Distribution and Divergence of Velocity and 
Artificial Viscosity Field at Leading and Trailing Edge. 

1.07 
1.11 
1.14 
1.18 
1.23 
1.29 
1.37 
1.46 
1.57 
1. 70 
1.84 

I 2.01 I 2.19 
2.38 
2.56 
2.73 
2.81 
2.84 
2.67 

y ~::~~~ 



(2,1) 

r2 • outer boundary 

D 

r 5 al upper cut 
'-:::;::;:;::t-4-1-~ 

----------
A-"'i----------I'j 

r c, lower cut L. 

E;" E;max 

r3 u upper down­
, stream 

boundary 

r lo,,,cr dOlm-
3,L stream 

boundary 
-" ---- ._._-,_. _ ... --;" IC/L _ r .......... ----. n - 1max. 

a. Physical Field 

n 

* f2 

JL---r---------------------'~ 

1 

(NWS-l,lJ 

* D 

(NHS-l,2) 

(NHE+.l,2) 

(NHS,l) 

b. Transformed Field 

Fig. 1 C-Type Coordinate System 
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f)RrGm\!.!\l PJ\GE rs 
OF POOR QUALITV 

n 

41$ 

----------- ------

e.. Thompson's Approach 

n 

------. 
-------~.-----------.------------

---- 6SJI First line spacing . ...t.....::...,~.....".....,......". __ 
and angle contro~7 7 77"~ 

E; 
b. Sorenson's Approach 

Fig. 2 Coordinate Line Control 
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U' ::~r'''''~'.'~~~''<' :~1J; :r-~:~·l~' . 
\ 

Bit Vector 

-m -0 
2 ___ .9-
~ 0 

-~-*------

4 0 . __ ._ ... 
5 0 
6 0 
7 0 
8 I 
9 0 

10 0 
II 0 
12 I 
13 0 
14 --"T 
15 0 
15 0 
17 0 
18 I .-
/9 0 

20 -0--
21 0 
22 --i) 
23 0 
24 0 
25 0 

(25) 

" , 
2,1 

3, I 

4, I 

5, I 

1,2 

2,2 

3,2 

4,2 

5,2 

1,3 

2,3 

3,3 

4,3 

5,3 
1,4 

2,4 

3,4 

4,4 

5,4 

1,5 

2,5 

3,5 

4,5 

~,5 

." 

Array £(5,5) 

.-

1-- .-

-----
C) G e ({J; f-_.-

---
1-.-----

--
~ @@ e ~-

--'--

--
@ @ ® (J ----

-
.--

@ @~ 0 

---
--
--

.---
----1 

L-. ____ .. _._ 
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Vecto~ £(n,r) (4) 
1,j --_._-..... 

------ 1 
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3 

4 

"l : ~ 
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'.1. 

I 
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I I 
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, 
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omG'H'~:,~t. r-:<;': tS' 
OF POO/~ QUii,UTV 

Bit Vectol: (25) Array f(5,5) Vector [(n,b) (4) 
-i+l,j 

'0 
2 0 
;5 0 
4 0 
5 0 
6 0 ...... ....-__ r ., 0 
8 0 
9 

10 0 
II 0 
12 

13 

14 

15 

16 

17-

18 

19 , 
20 0 
21 0 
22 0 
23 0--
24 0 ---
25 0 

I, I 

2,1 

3, I 

4,1 

5, I 

" '2. 
.2, '2. 

3,2 

------
--,-.-~-.---

1--------1 

1------
4,2 $ ~ @. --

5,2 
t------I 

1,3 
1-------1 

2,3 
I--------~ 

3,3 ~ (;) 0 @ :--------
_. 

4,3 
1-------1 

5,3 ~ ~ () @ 
1------_.-

1--

1,4 

2,4 1-----
3,4 

~---.---.,-

,..-.... 

r->-

--

._--

4,4 W ~ ~ (j I------

5,4 

I, !) 

2,5 
3,5 

4,5 
5,5 

1----_._._-

__ ----1 
1-'""-----.---
1---_._--- I 

I L..-______ j 

,.--" 
<D 0 

~ ® 

~ @ 

~ 19 

Fig. 5 Gen€!ration of f (n, b) Vector Using the CMPRS Function 
i+l,j 
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Bit Vector 

2 

.3 

4 
5 

6 

7 

8 

9 

10 

II 

12 

13 

14 

15 
'16 
17 

18 
19 

20 

21 

22 

23 

24 

25 

,..---. 

0 ---' 0 
---.--~ 

0 
-'---~ 

0 -
0 

;----

O. 
a 
I _._. 
0 --.--
0 

f---' 
0 
I 

0 '-,-' 
a 
0 --_. 
a 

1-'--' 

I 
1---'-a 
1---:;:;.-' 

·0 1----

0 
a r-._-' o· .. _-
0 -----
0 .. -

(25) 

Fig. 6 

~ ~ o tli . 

@ Q ~ cIt 

€I) €i) (') t» 

~ @ eO ----
Dummy Vec~or DM (25) Result Vector RS(25) 

I, I 

2, I 

+-----+:-, ~.-=.==~ ---or. 

3, I 

4, I 

5, ' 
',2 
2,2 

3,2 

4,2-

5,2 

',3 
2,3 

3,3 

4,3 

-----

---_._ ... -

1-------'/ 

5,31--___ -

',4 1.-------1 
'24 

, l------j 

3,4 
4,4 

1---------1 
5,4 

1----

1,5/.-__ -

2,5 
3,5' ~ ____ .--j 

4,5 J.--

~, 5 1--_____ --' 

... -' ------.,.... 

. • (n+l r) 
Merging of Vectors f i,j - i • and DM in 

vector RS Using the ffi~RG Function 
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... _o.' • 4. . .. o.' ....... .. 

Bit Vector 

0 
2 0 

.3 0 --
4 a -_.--"' 
5 0 

'-'-~-
6 ~-" 
7' 0 
B I 
9 0 

10· 0 
II ,.0 
12 I 
13 0 
14 -I 
15 0 
16 () 

--, 
17 0 
la· " _ ... 
/9 0 

20 0 
2/ 0 
22 0 
23 0: 
24 0 
25 0 

(2.5) 

" 
2, 

1 

/ 

3, 

4, 

5, 

',2 
2/2 

3,2 

4,2. 

5,2 

/ ,3 

2,3 

3,3 

4,3 

I , 
I 

5,3 
1,4 

2,4 

3,4 

4,4 

5,4 

1,5 
2,5 
3,5 

4,5 

~,~ 

Vector RS(25) 

, 

--
---

--...-:--

-
@ ~ 8 fl.9 

--
--

._---
~ @ f.9 @ _._------

1-._-'---
@ ~ ~ 6 
--

-

~ (& 0 @ 
.. _-

f--. -
--

-
--

1---

-' 

Array f(5,5) 

I, , 

2,1 

3,1 

4,' f----.------
5, 
, 

',2. 
~----

2,2 \---------.. '" @, (\) fJ $ -oJ,-r.:. -_ ... _--
4,2 f----------
5,2 1------
1,3 - . __ ....• -----;-

a ~ ~ 0 <..,;;:) -------_ .. --
3,3 ------_ .. _ •. --

----4;0 .. o Ii) 0 0 ._---_.- ---
5,3 1---._----_.-.. -
1,4 1------._--. 
2,4 -----. 0 0 d) 0 -v, -.-------
4,4 f--'._-
5,4 

',5 1--------

2,5 --
3,5 

f-.-----
4,5 1------
5,5 -. 

Fig. 7 Changing Values of Selected Elements ~sing 
the CTRL Function . 
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ORIC:'~i~(l t. F ,', ~':r~ ~:':, 
OF P0~;~ Q0'i~L'n~:~~ 
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I· 

(a) Enti.re Grid 

I :._ I 
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I 
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I ~ 
I ~, 

I 
i 

'I 

I :i 
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(b) Region Near Airfoil 
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Fig. 8 Coordinate System CORD1 
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(c) Close-up of Leading Edge 

~-~~--~~-----"~' . 

~....---k'~-~-~-~ 
(d) Close-up of Tra.iling Edge 

Fig. 8 Coordinate System CaROL 
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(a) Ent.ire Grid 

(b) Region Near Airfoil 

Fig. 9 Coordinate System CORD2 
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OHlG!Nt\L Pl\illS rs 
OF POOR QUAllN; 

(c) Close-up of Leading Edge 

(d) Close-up of Trailing Edge 

Fig. 9 Coordinate System CORD2 
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ORlGmAt rt~Ci:: ~g 
OF POOR QUALITY, 

(a) Entire Grid 

(b) Close-up of Leading Edge 

Fig. 10 Coordinate System CORD'3 
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(c) Close-up of Trailing Edge 

-- ---- -----.-t--------------------------------

. __ ------- -.-r--------~-­---
.<d) Very Close Vie~. of Trailing Edge 

Fig. 10 Coordinatl~ System CORD3 
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ORIGIl\YU. p~C~ iSr 
OF POOR QUALITY 

~u.u.J..l.1.y..LJ..Uu.LLJ,L;WJllu.LllJ II ! " , L I !! !! (lll 
X·/O .8 1.0 , 

Fig. 11 Surface Pressure Distribution 
Laminar Flow, t = 0.5, Re = 10,000 

Fig. 12 Surface Pressure Distribution 
Laminar Flow, t ~ 0.7, Re = 10,000 
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ORlG!V~\!"'i. PAGE i~~ 
OF POOl~ QU,.\UTV: 

Fig. 13 Surface Pressure Distribution 
Turbulent flow, t = 0.8, Re = 10,000 

.2 

.... [ .'" 

: 
.,.,L"",,,,,,,, h, "" "d uwuulw.wmJ 

U d d ~ d 1~ 
)( 

Fig. 14 Surface Pressure Distribution 
Turbulent flow, t '" 0.8. Re '" 
Transition at l'1aximum Airfoil 
Points. 
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ORIGh'1.4AL ?hm: [3 
OF POOR QUALITV 

~.l ~ 
-Ill' .. 

-100 .• .w.u.wl.WJJillJ.1 U 1JJ!l ulu.tI II II II 

Fig. 15 

a­
U 

II .:1 .e .£ .11, 1.0 
It 

Surface Pressure Distributi.on 
Turbulentflow, t = 0.8, Re ~ 10,000 
~a a nReJlg ~ vi; n = 1.0 

.~/ 

~"""""...lfJ-liL.U..U..lJ1l.lJ.JJ.LUlWl.LU..U.!.w.L.W.U.1 
.11 ~ ... 1.0 

X ' 

Fig. 16 Surface Pressure Distribution 
Turbulent flow, t "" 1.0, Re .., 10,000 
~ '" nReJ I 'V • v I. n .. 1.0 a ~ ~ 
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Fig. 17 Surface Pressure Distribution 
Turbulent floW', t = 0.7. Re .. 10,000 
Extrapolated trailing edge pressure. 

··,t ---~-

-1'D~llll.J.J.lW..L.llJ"u t I! I! II! w..u!llU.U.llJJ 
III .:1 .1 .r; .K 1.0 

'. X '. 

Fig. 18 Surface Pressure Distribution 
Turbulent flow, t "" 0.7, Re '" 10,000 
Extrapolated traillilg edge pressure 
~ = nReJIV . vi. n = £ a 
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OmGeNAt: ?rc~.' f:r 
OF pooa QU.\LnY 

Fig. 19 Surface Pressure Distribution 
Laminar Flow, t ~ 1.0. Re = 10.000 
Il = IIReJ I 'Y • V I. II '" 1. 0 a ~ ~ 

Il applied every iteration a 

Fig. 20 Surface Pressure Distribution 
Laminar Flow, t = 2.0. Re = 10,000 
Il = QReJI'Y • vi. Q ~ 1.0 a .. ~ 

Ila applied every iteration 
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Fig. 21 Surface Pressure Distribution 
Turbulent flOW! t = 1.6 Re = 10,000 
\.I III QReJ I/l;jf 'V • V r, Q .. 1. 0 a ~ ~ ~ 

l fo.1 

II. u 
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X 

Fig. 22 Surface Pressure Distribution 
Turbulent flo~ t = 2.0, Re m 10,000 
\l .. QReJ Ifwf I V • V I, Q .. 1. 0 a _ ~ _ 

11:3 

:.-!:~. ~-'" 
\.-. ..... ....... 
,', . 

i . , 
I 
I 
'I 

~: 
1.', .. ii, ' . 
t, I 
t, ! 

J." I 
'\ 
1 

I 
I 

I '. ,." 1 
~ 
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(a) 

-+ - ... 

ORrQfl\!.~,l Pt;C:~ t9 
Of: POOH QUALITY 

----------
}JJ.ULU~1 .u~.w~lllJ.1Wtl .. 

x 

........ --' ..-.... -- _ .... - -" ---'- -.. 

-_ -. -_ -.:r~~~~_ :.. -.::. _ ..:::-...::;: "=;;'bo ~ .::::: ~-: -=~-d _~~ _ '# ~~~.:; 
.... --....--- - -. _ _ .-to _- ..::::;;.~_ 
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(a; Surface Pressure Distribution 
(b) Leading & Trailing-edge Velocity Vec:tor Fields 

laminar Flow, t = 0.7, Re ~ 10,000 
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Fig. 25 . (a) 
(b) 
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Fig. 26 
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(a) Surface Pressure Distribution 
(b) Leading & Trailing-edge Velocity Vector Fields 

Turbulent Flow, t "" 1.0, Re .. 10,000 
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Fig. 27 
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(a) Surface Pressure Distribution 
(b) Leading & Trailing-edge Velocity Vector Fields 

Turbulent Flow, t .. .1.0, Re .. 10,000 
Transition at MaximUIn Airfoil Thickness Points 

118 

'1 



(a) 

(b) 

E'ig. 28 

". 

ORIGrNAt P.l.'\C~ FrI' 
OF POOR QUALITY 

--------
x 

--- -- -- ~ ~ .--+ --40 ~;:----~ -s--.....-~ 
-----~ __ 0;. ,..;:;~. ___ ~ ________ ~ -- .- -~ -....- ------- -=-~---. .::-:,;:::::~ ~---.::;;:-===-~ 

:=:-:::~ ~ ~~,,}*J"'ll';~ .It!h-~ 
~~-.~;~~~~~~~.~¥~ ______ -._~-~-----.r--
-=.--------.---=::~~~ 

------.~ ~--. --~ ---"'-'-----.. ---....... ---: --- ~ 
---... --.. ~ --.~ '-~~ -------

---._---..... _.....,,"' ..... ------. ..... 

(a) Surface Pressure Distribution 
(b) Leading & Trailing-edge Velocity Vector 

Turbulent Flm<1, t = 1.0, Re = 10,000 
Transition at Maximum Airfoil Thic~less 
\.l = QReJ I 'V • V I, Q = e: a 
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Fi.g. 29 (a) 
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ORIGtNi~L ,; hC~ l~ 
OF POOR QU/tLITY. 

. Distribution Fi 1ds Surface Pressure d Velocity Vector e 
~ ding & Trailing-e ge 10 000 
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Fig. 30 (a) 
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Leading & Trailing-edge Velocity Vector Fields 
Laminar Flow, t = 0.5, Re = 10,000 
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Fig. 32 (a) 
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Surface Pressure Distribution 
Leading & Trailing-.edge Velocity Vector Fields 
Lamina.r flow, t =, 0.7, Re = 10, 000 
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Fig. 33. (a) 
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OI~rGlNAl PACE rs 
OF POOR QUALITY 
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Surface Pressure Distribution 
Leading & Trailing Edge Velocity Vector 
TUl:bulent flow, t .. 0.9, Re .. 10,000 
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(a) 

(b) 

Fig. 34 (a) 
(b) 
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Surface Pressure Distribution 
Leading & Trailing-edge Velocity Vector Fields 
Turbulent flow, t - 0.9, Re • 10,000 
Transition at Maximum Airfoil Thickness Points. 
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Fig. 35 
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(a) Surface Pressure Distribution 
(b) Leading [:. Trailing-edge Velocity Vector Fields 

Turbulent FIO\ .... t '" 1.0. Re ... 10.000 
Divergence of Ve1oc1.ty Smoothers. 
aD at 1st Order Accu.rate 
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Fig. 36 
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(a) Surface Pressure Distr.ibution 
(b) Lead~ng & Trailing-edge Velocity Vector Fields 

Turbulent Flo'1, t = 1. 0, Re '" 10, 000 
RHS Smoother 
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(a) 

(b) 

Fig, 37 

,.. 
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a .:t .<1 ., •• 1.0 

(a) Surface Pressure Distribution 
(b) Leading & Trailing-edge Velocity Vector Fields 

Turbulent Flow, t = 1.0, Re = 10,000 , 
~ = ReJIV· vi, ~ = {(dv2/a~)2 + (av2/an)2}Yz 

a ~ ~ 
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ORIGfNAt P!\G£ is 
OF POOR QUALITY 
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Flg. 38 (a) Surface Pressure Distribution 
(b) Leading & Trai1ing··edge Velocity Vector Fields 

Turbulent Fl~'" 1.0. Re .. 10,000 2.' 
\.I .. nReJ/r;'1 IV • "\iT. n '" {(av2/al;)2 + (av2/()n)j~ 

a ~ ~ 
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ng. 39 (a) 
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Surface Pressure Distribution 
Leading Ex TraiHng-edge Velocity Vector Fields 
Turbulent Flmo1, t 1. 0, Re .. 10,000 
~a = nReJI~ • vi n = clwl 
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Fig. 40 
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(a) Surface Pressure D:l.stribution 
(b) Leading & Trailing··edge Velocity 'lector Fields 

Turbulent Flow, t 1.0, Re '" 10,000 
lJa '" nReJ I V' • V I, n ., 1. ° 
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Fig. 41 (a) 
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Surface Pressure Distribution 
Leading & Trailing-edge Velocity Vector Fields 
Turbulent Flow. t '" 1. O. Re '" 10.000 
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Fig. 42 (a) 
(b) 
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Surface Pressure Distribution 
Leading & Trailing-edge Velocity Vector Fields 
Turbulent flow, t = 1.0, Re = 10,000 
Tr.ansition at Maximum Airfoil Thickness Points 
Ila = QReJI~ . vi, Q = [~E: - 1.0] I~I, lj> ,. 4.0 
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Fig. 43 
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(a) Surface Pressure Distribution 
(b) Leading & Trailing-edge Velocity Vector Fields 

Turbulent Flow, t = 1.0, Re = 10,000 
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Surface Pressure Distribution 
Leading & Trailing-E!dge Velocity Vector Fields 
Turbulent Flow, t = 2.0, Re = 10,000 
J.l a = r2ReJ I '7 • V I. r2 '" 4> I ~ I. 4> 0: 1. a 
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Fig. 45 
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(a) Surface Pressure Distribution 
(b) Leading & Trailing-edge Velocity Vector Fields 

Turbulent Flow, t = 3.0, Re 10,000 
~ = ~ReJlv • vi, ~ = ~Iwl, ~ = 1.0 a 
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Computational. Re = 10,000 
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Fig .. 46 (a.) Surface Pressure· Distribtuion 
(b) Leading & Trailing-edge Velocity Vector Fields 

Turbulent f1ow, t: = 4.0, Re = 10,000 
Ila = nReJIIJ vi, n = $Iwl. cp' .. 1~0' 
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Fig. 47 Ca) Surface Pressure Distribution 
(b) Leading & Trailing·-edge Velocity Vector Fields 

Laminar now, t '" 1. O. Re .. ~ 000 
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Surface Pressure Distribution 
Leading & Trailing-edge Vector Velocity Plots 
Laminar' Fl!'ow, t .. 1. 5, Re 1000 
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Fig. 49 Surface Pr.essure Distribution 
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Fig. 50 (a) 
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Surface Pressure Distribtuion 
Leading & trailing-edge Velocity Vector Fields 
Laminar Flow, t '" l.O, Re •• : 100.0" 
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(a) 
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(b) 

Fig. 5>1 (a) Surface Pressure Di.stributiol1 
(b) Leadi.ng & Trailing-edge Ve1oc~ty Vector Fields 

Laminar Flow, t ~ 2.0, Re ~'100Q 
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Fig. 52 (a) 
(b) 
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OmG!N.~L Ptm,s: is 
OIF POOl~ QUALITY 

Surface Pre$sure Distribution 
Leading & TraUing-edge Veloctiy'Vector Fields 
Laminar Flow. t .. ". 3.0. Re ., 1000 
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Fig. 53 (a) 

(b) 
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Computational, Re - ,1000 

xxxx Experimental, Re • 40,000 
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Surface PreGsure Distribution. 
Leading & Trailing-edge Velo'city. V"ector Fields 
Laminar Flow, t 4.0, Re = 1000 
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Fig. 54 
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(a) Surface Pressure Distributiop 
(b) Leading & irai1i~g-edge Ve1qcfty ~ector Fields 

Laminar Flow, t 5.0, Re = 10,000 
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(b) 

Fig. 55 (a) 
(b) 

Surface 
Leading 
Laminar 

O~lrnNAl PAGE IS 
OF POOR QUALITY. 

Pressure Distributidn 
& Trailing-edge Velocity Vector 
Flow, c = 1.0, Re = 1000 
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Fig. 56 
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(a) Surface Pressure Distribution 
(b) Leading & Trailing-edge Velocity Vector 

Laminar Flow, t 2.0, Re = 1000. 
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Fig, 57 (a) 
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Fig. 58 
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(a) Surface Pressure Distributidn 
(b) Leading & Trailing-edge Velocity Vector ~ields 

Laminar Flow, t 4.0, Re = 1000 
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Fig. 59 

ORf~l\!l~L PACE rs 
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(a) Surface Pressure Distribution . 
(b) Leading & Trailing-edge Velocity Vector Fields 

Laminar Flow, t = 5.0, Re = 1000 
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Fig. 60 (a) 
(b) 

Surface P~essure,Distribtuion 
Leading & Trailing-edge Velocity 
Laminar Flo,V. t '" 6.0, Re '" 1090 
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Fig. 61 
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(a) Surface Pressure Distribution 
(b) Leading & Trhiling-edge Velocit:)' Vector Fields 

Laminar Flow, t = 7.0, Re Q rooo 
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Fig .. 62 (a) Surfa~e Pr"essure'Distribution 
(b) Leading & T;!:ailing-edge VelociJ::y Vector Fields 
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