
NASA Contractor Report 172251
NASA-CR. 172251
19840005424

ICASE "
COMPLEX EIGENVALUES FOR THE STABILITY OF COUETTE FLOW

f_".,--__ _._,_._, .......

trOTTo _E TA;_ N FRS_.__.;i__OO'_IR. C. DiPrima

and

P. Hall

Contract No. NASI-17070

October 1983

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING

NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association

LIB AR'/OPY

NationalAeronauticsanO
Space Administration .LANGLEYRESEARCHCENTER

Langley Research Oo1116,1" LIBRARY,NASA
Hampton:Virginia23665 _V,_Pton,VIRGINIA





COMPLEX EIGENVALUES FOR THE STABILITY OF COUETTE FLOW

R. C. DiPrima

Rensselaer Polytechnic Institute

and

P. Hall

Imperial College, London, England

and

Institute for Computer Applications in Science and Engineering

ABSTRACT

The eigenvalue problem for the linear stability of Couette

flow between rotating concentric cylinders to axisymmetric

disturbances is considered. It is shown by numerical

caluculations and by formal perturbation methods that when the

outer cylinder is at rest there exist complex eigenvalues

corresponding to oscillatory damped disturbances. The structure

of the first few eigenvalues in the spectrum is discussed. The

results do not contradict the "principle of exchange of

stabilities"; namely, for a fixed axial wavenumber the first mode

to become unstable as the speed of the inner cylinder is

increased is nonoscillatory as the stability boundary is crossed.
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I. INTRODUCTION

In this paper we reconsider the classical eigenvalue problem

for the linear stability of Couette flow between rotating con-

centric cylinder to axisymmetric disturbances. First we state the

mathematical problem.

Let r, 8, z denote the usual cylindrical coordinates, and

leg RI, R1 and R 2, _2 be the radii and angular velocities of the

inner and outer cylinders, respectively. In the formulation of

the eigenvalue problem we will not take _2 equal to zero; however,

in all the calculations _2 is equal to zero. With d = R2 - RI,

we define the following dimensionless parameters:

n = RI/R2, 6 = d/R 2, _ = n2/9I, (1.1)

y = 2n(l - _/n2)/(l + n), R = QIRld/_,

where _ is the kinematic viscosity. We scale all length variables

with respect to d, time with respect to d2/v, and all velocities

with respect to RI_ I. Then the linear stability problem for the

stability of Couette flow to disturbances proportional to

exp(_t + iaz), where a is real and positive, can be written in

the form

(DD* - a2)2u - 2a2RF£(r) v - o(DD* - a2)u = 0 , (1.2)

¥Ru + (DD* - a2)v - _v = 0 , (1.3)

for r! < r < r2 with

u = Du = v = 0 at r = rI, r2. (1.4)
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Here

D=d/dr, D* = D + r-!, rI = n/(l-n), r2 = rI + i; (1.5)

u(r) and v(r) are proportional to the radial and azimuthal

components of the disturbance velocity; and F£(r), the diinension-

less Couette angular velocity, is

F£(r) = _ y + n(l - u) 1 • (1.6)
2 (i + n) (i - n)2 r2

Equations (1.2) - (1.4) define a non-selfadjointeigenvalue

problem

H(n , u, a, R, _) = 0. (1.7)

DiPrima and Habetler (1969) have shown that for fixed values of a,

R, u, and n this eigenvalue problem has a countable spectrum {_j},

which can be ordered with Re(ol) > Re(o2) > "'', with no cluster

points in the complex plane and that the corresponding

(generalized) eigenfunctions span a certain Hilbert space.

In this paper we will show by numerical calculations and by

forma! peturbation methods that for fixed n and _ = 0 (outer

cylinder at rest) there are values of a > 0 and R > 0 SUCh that

some of the oj are complex. To the best of our knowledge, this is

the first demonstration of the existence of complex eigenvalues

for the boundary value problem defined by Eqs. (1.2) - (1.4). This

result contradicts a proof by Yih (Main Theorem p. 299, 1972b) that

all the eigenvalues are real when the cylinders rotate in the same

direction and the circulation of the basic flow decreases in the
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outward radial direction. However, all of the complex eigenvalues

we have found correspond to damped disturbances, Re(o) < 0. Thus

the results do not contradict the conjectured (and widely

believed) principle of exchange of stabilities; namely, for fixed

values of q, a > 0, and _ > 0 the first eigenvalue (aI) to cross

the imaginary axis as R is increased is real. However, the present

results show that a proof o_ the principle of exchange of

stabilities must be restricted to a s_udy of the behaviour of the

first eigenvalue. The condition that _i is real and simple is

required in a rigorous proof of the existence of Taylor vortex

flow following the instability of Couette flow; see Velte (1966)

and Kirchgassner and Sorger (1969).

In Section 2 we give an example of how complex eigenvalues

can arise due to small perturbations of a selfadjoint eigenvalue

problem. The example is related to the eigenvalue problem (1.2)-

(1.4), but is simple enough that one can carry out the

calculations readily and explicitly. In Section 3 we give some

results for the numerical calculation of complex eigenvalues of

Eqs.(l.2)-(l.4) and confirm these results by forma! per_uroation

calculations. In Section 4 we study the eigenvalue problem in the

limit a + 0 in order to obtain a better understanding of now the

complex eigenvalues occur. Finally, the results are discussed in

Section 5 where we also make a few remarks aDout the limiting case

a . _.

For many purposes, and especially for numerical work, it is

convenient to write Eqs. (1.2) and (1.3) as a system of six first
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order equations. If we introduce the axial component of the

perturbation w ia-iD *= u and the pressure perturbation p and let

q = [p, dv/dr, dw/dr, u, v, w], we can write Eqs. (1.2) and

(1.3) in the form

dq/dr - Aq - oBq = 0, r I < r < r2 (1.8)

with the boundary conditions

u = v = w = 0 at r = r I, r 2. (1.9)

The matrices A and B are

0 0 -ia -a 2 2RF£(r) 01

0 -i/r 0 -Ry a2+i/r 2 0

ia 0 -i/r 0 0 a 2

g

0 0 0 -i/r 0 -ia

Io o o o i/0 0 1 0 0

and

0 o o -i o o\ (!.lo)0 0 0 0 1 0

0 0 0 0 0 !
B=

0 0 0 0 0 0

0 0 0 0 0 0,

o/0 0 0 0 0

Finally, for use later, it is helpful to have the results

y = (i - u) - 6 i + 3u _ 62 i + 7u + 0(63) , (i.Ii)
2 2
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F£(r) = _i [(i + u) - (i - _)x] + !2 [I + 3_ _ 3(1 - _)x2 2 z 2

2 3
(1.12)+ (i- _)x] + 0(6) ,

and, for _ = O,

2yF£(r) = 6(1- x) - 62(x- x2) + 0(_3) , (1.13)

where x = r - rI = r + 1 - 1/6.
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2. AN EX.%\IPLE

If we solve Eq. (1.3) for u, substitute in Eq. (1.2), let x =

r - rI, T = R2_(I - u2), and take the small-gap limit 6 + 0 with

_, T, and a fixed we obtain the classic small-gap equation

(d2/dx2 - a2 _ _)2 (d2/dx 2 _ a2 )v

(2.1)
+ a2T (i - _x)v = 0, 0 < x < i,

where _ = (i - _)/(i + _). We consider Eq. (2.1) with the

boundary conditions

v = v'' = v'''' = 0 at x = 0 and x = i. (2.2)

The eigenvalue problem defined by Eqs. (2.1) and (2.2) is the

small-gap limit of the auxiliary problem introduced by Yih [Eqs.

(ii), (12), and (14), 1972a] for a > 0, T > 0, 0 ( _ < I. Yih (p.

296, !972b) asserts that for R2 > 0 (T > 0), a > 0, and 0 _ _ _ 1

the eigenvalues o of his auxiliary system are real. We wil! snow

that this is not true for the corresponding small-gap equations

(2.1) and (2.2).

For E = 0, Eqs. (2.1) and (2.2) are simply those of the

classic Benard problem with free-free boundaries - a selfadjoin<

boundary value problem. The eigenva!ues _ can be split into two

sets {_n+} and (On-} where

t 2 2 2

_n = _ n _ - a ± #n a2T n = i, 2, . (2.3)272 + a2 ' ...
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The corresponding eigenfunction for On + and on- is Vn(X) =

sin n_x. Notice that if T = 0, then the eigenvalues are negative

and each eigenvalue has multiplicity two (On+ = On-) with only one

eigenfunction; however, this degeneracy is not of interest at the

+
moment. More important is to observe that for any n, on

increases monotonically with increasing T and eventually becomes

positive while on- decreases montonically with increasing T.

Thus we can choose positive integers N and M with N > M such

that

°N+ = °M- = -N2_2 - a2 + V a2TN (2.4)
N2_ 2+a 2

where

TO = (N2 - M2) _2 [ 1 + 1 ] -i
a [ (N2_2 + a2)±/2 (M2_2 + a2)I/2J .(2.5)

For a given value of a with s = 0 and T = T0 the eigenvalue

problem (2.1) and (2.2) has an eigenvalue of multiplicity two, o =

ON+ = OM-, with two linearly independent eigenvectors vN(x) =

sin N._x and vM(x) = sin M=x, N # M. We will now show by standard

perturbation methods that for values of T close to T0 and _ _ 0,

Eqs. (2.1) and (2.2) have complex eigenvalues.

We write

o = o0 + _oI + "'-, G0 = -(N2_ 2 + a2) + a TI) ,N2._2 + a2

T = T0 + _T1 + "'', (2.6)

v(x) = v0(x)+  Vl(X)+ "'',



where v0(x) = a sin N_x + B sin M_x = aVN(X) + BvM(x). The

constants a and B are to be determined as part of the calculation.

Substituting the series (2.6) in Eqs. (2.1) and (2.2), we obtain

Lv0 = [(d2/dx 2 - a2 _ 00 )2 (d2/dx2 - a2)

+ a2T0] v0 = 0 , (2.7)

and

LvI = 2_l(d2/dx 2 - a2)2v0 - 2O0_l(d2/dx2 - a2)v0 - a2Tlv 0

+ a2T0xv 0 , (2.8)

and the boundary conditions (2.2) for v0 and vI. Equation (2.7)

with the boundary conditions (2.2) is automatically sat!szlea. In

order for the boundary value problem for vI to have a solution, it

is necessary that the right side of Eq. (2.8) be orthogonal to

vN(x) and vM(x); see Courant and Hilbert (po 346-350 1953) or

Case I of the Appendix of this paper. This leads to two linear

homogenous equations for a and 8, and the condition that these

equations have a non-trivial solution is

(TliT N22a2}( )0 '_ + )To T1 - IT + (M2_2 + a2)T 0T0

- 16N2M2T02 [(-1)N+M - i]2 = 0. (2.9)
_4(N2 - M2)4
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It is clear from Eq. (2.9) that if N + M is odd and

(T1 - T0/2)2 < 64N2M2T02/_4(_ 2 - M2) then oI is pure imaginary.

Thus for some, but not al!, values of T1 the perturbation in € of

the double eigenvalue, gives complex eigenvalues. For example, if

T1 = T0/2, then

oI = ±i_, _ = 4NMaT01/2
_2(N2 - M2)2(N2_2 + a2)I/4 (M2_2 + a2)I/4

(2.10)

Hence for £ + 0 with T = T0(I + s/2) there are complex eigenvalues

of the boundary value problem (2.1) and (2.2) of the form o0 ± iau

+ 0(_2). While the above arguments do not provide a rigorous

proof that the boundary value problem (2.1) and (2.2) has complex

eigenvalues for certain positive values of a, T, and _ it is

strongly suggestive of such an assertion. Moreover, it suggests

that the corresponding problem without the small-gap limit, the

auxiliary problem discussed by Yih, also has complex eigenvalues

which contradicts his assertion.
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3. COMPLEX EIGENVALUES

We have solved the eigenvalue problem (1.8), (1.9) for

several different sets of parameter values using a standard

shooting procedure. The integration routine was a fourth order

Runge-Kutta procedure with a step size of 0.025, and Mueller's

method was used for the eigenvalue search routine. In Figure 1

we. show our calculation of the first five eigenvalues for n =

0.877, _ = 0, and R = 150. For this value of n the critical value

of R, above which there exist values of a such that _ > 0, is Rc =

119.3. The corresponding critical value of a is a = 3.13.

It can be seen in Figure I that the first eigenvalue is real

and becomes positive for a finite band of wavenumbers

(approximately i.7 < a < 5.3) corresponding to the band of

wavenumbers inside the neutral curve at R = 150. _he second and

third eigenvalues are real and negative for R = 150 and I < a

< 8. The fourth and fifth eigenvalues merge at a _ 2.56 and form

a pair of complex conjugate eigenvalues for 2.56 < a < 6.6.

Indeed for a < 1 the second and third eigenva!ues cross over and

for a very small interval of wavenumbers form a pair of complex

conjugate eigenvalues. In Figures 2 and 3 we show the first five

eigenvalues for n = 0.75 and n = 0.5, respectively, for R = 150.

The overall structure of the eigenvalues remains virtually

unchanged as q is varied, except that the interval of wavenumbers

for which the fourth and fifth eigenvalues form a complex
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conjugate pair decreases with decreasing values of n. We found

no indication of a possible crossing of any eigenvalue with the

first eigenvalue in any of our calculations; note that R = 150

corresponds to 1.26R c, 1.75R c, and 2.20Rc for n equal to 0.877,

0.75, and 0.5, respectively.

At a value of a, say a0, in Figures i, 2, and 3 where two

real eigenvalues merge to give an eigenvalue of multiplicity two

our calculations show that there is one only eigenvector. A

generalized eigenvection _ can be obtained by numerical

integration of the equation

d_/dr - A_ - oB_ = Bq (3.±)

with the boundary conditions (1.9) and where q is the eigenvector.

As a check on the consistency of the numerical calculations we can

follow the procedure described in the Appendix (Case II) to cal-

culate the variation of the two eigenvalues with a for la - a01

small. In addition to calculating q and _ we must also cal-

culate the eigenvector and the generalized eigenvector of the

adjoint system

dq*/dr + Atrq * + oBtrq * = 0 (3.2)

with the boundary conditions that the first, second, and third
w

components of q vanish at r = rI and r = r2.

We find for n = 0.877, ._= 0, R = 150, and a0 = 2.5576 tha_

04,5 = -92.1818 -+3.229 (a0 - a)l/2 + O(a - a0) . (3.3)
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Formula (3.3) shows that for la0 - a I small, the eigenvalues °4

and °5 are real for a < a 0 and are complex conjugates for a > a 0.

The agreement of the perturbation formula (3.3) with the numerical

calculations is satisfactory, especially for oi, as can be seen in

Figure 4.

It is impossible to carry out a complete analysis of the

spectrum of the eigenvalue problem defined by Eqs. (1.2) - (1.4)

or Eqs. (1.8) - (1.9) for all allowable values of n, _, a, and R.

Our primary goal was to show the existence of complex eigenvalues

for _ = 0 with values of a and R typical of those for which there

exist eigenvalues which are real and positive (unstable modes).

Having found complex eigenvalues we snail now consider the

limiting case a . O. We will find that the structure of the

spectrum found Dy numerical calculations for the full equations is

preserved in this limit. As a consequence, we can gain some

understanding of the origin of the complex eigenvalues.
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4. THE STRUCTURE OF THE SPECTRUM IN THE LIMIT a . 0

In this section we consider the eigenvalue problem (1.2)

- (1.4) in the limit a + 0. It is known that on the neutral curve

R = O(i/a) as a + 0. If we take R = O(i/a) then it is also clear

from Eqs. (1.2) and (1.3) that in order to obtain a meaningful

problem we must take u = O(a). It is also convenient to introduce

the scaling that is used for the small-gap problem. Thus we let

R a = aR, u = aU, v = YRaV. (4.1)

If we substitute these expressions in Eqs. (1.2) - (1.4), and then

let a + 0 with n, o, R a, U, and V fixed, we obtain the eigenvalue

problem

((DD*)2 Ra26G£(r)) U DD* 0 0

-o = 0

-I DD* V 0 1 V (4.2 )

with

O = DO = V = 0, (4.3)
l

and where G_(r) = 2y6-1F£(r).

We wil! first study the eigenvalue problem (4.2) and (4.3)

for small values of _ and Ra2_ using perturbation methods. For

this purpose we set x = r - r I, observe from Eq. (1.13) that Gz(r)

= (i - x) + _(x - x2) + O(_2), and then let 6 . 0 and Ra2_ . 0 in
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Eq. (4.2). We obtain

(dildx40 )(d2Jx20)-_ =0

d2/dx 2 V 0 1 V (4.4)

with the boundary conditions

U = dU/dx = V = 0 at x = 0 and x = i. (4.5)

This is a non-selfadjoint eigenvalue problem with the following

sets of real eigenvalues and eigenvectors:

qAn -4n2_2 = 1 - cos 2n,_x, VAn= , UAn = 1 (1-cos 2n,_x)

(4.6)
_ x sin 2n_x ;

4nn

2 2
_Bn = - n _ , UBn = 0, VBn = sin n_x ; ("-..7)

_Cn = - In2' UCn = 1 - cos lnX -

(4.8)
_ sin In (I x - sin i x) ,

l-cos I n n n ' VCn

n = I, 2, .... The in are the roots of I/2 = tan i/2 with 11

• . ,_. (2n + 1)7 for n . _. The functions8 986, 12 E 15 45, and in

VC n are the solutions of

(d2/dx 2 -In2) =VCn UCn, Vcn(0) = Vcn(1) = 0. (4.9)
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The first nine eigenvalues are

- -9.870
al = _BI = -_ -

2
o2 = OA1 =-4_ ---39.48

o3 = OB2 = -4_2 =--39.48

o 4 = oCl = -112 =_-80.75

2
o5 = OB3 =-9_ ----88.83

2
o6 = OA2 = -!6= =_ -157.9

2
= o__ = -16_ _= -157.9

° 7 Bq

2

o8 = OC2 = -I 2 -- -238.7

2
o9 = OB5 = -25_ _---246.7

The reason we have labeled the eigenvalues in the above manner

will become clear later in this section. For the moment, notice

that with the exception of the first eigenvalue, the B eigenvalues

for n even pair with the A eigenvalues and for n odd pair with

the C eigenvalues.

It is possible to study the behavior of the multiple

eigenvalues at o = -4m2_ 2, m = I, 2, --', for small values of Ra26

and 6 using formal perturbation methods. In order to study the
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_fect on these eigenvalues of comparable perturbations in Ra2_

and 6, we set

Ra26 = A26 2, A = O(i) (4.10)

in Eq. (4.2), and then expand in _ following the procedure

described in Case I of the Appendix. In order to carry out this

calculation we need the adjoint eigenvectors for the eigenvalue

prQblem (4.2) and (4.3). If we let q = [0, v]tr and introduce the

inner product

1

< ql' q2 > = /0 (°1°2+ viv2) dx, (4.11)

then we find that the adjoint eigenvaiue problem is given by Eq.

<4.4), with each matrix replaced by its transpose and Eq. (4.5).

]tr'fhe adjoint eigenvectors corresponding te qAn = lOAn' VBn and

tr

qBn = [UBn, VBn ] are

UAn = 1 - cos 2n_x, VAn = 0, n = i, 2, ... (4.12)

and

UBn _ 1 - cos n_x sin n_x + x cos n_x VBn*
= - = sin n_x,

4n3 3 2n3 3

n = i, 3, -.-

(4.13)

3

UBn ..-= x (COS 2n_x - i), V = sin n_x, n = 2, 4, .
2n3_3 Bn
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If we let

d2/dx 2 0

P = , (4.14)

0 1

then one can readily verify the orthogonality relations

<PqAn' qAm > = 0, <PqBn' qBm > = 0, n _ m ,

and (4.15)

<PqAn' qBm > =0, <PqBn' qAm > = 0.

Returning to the eigenvalue problem (4.2) and (4.3) we now

consider the perturbation of the double eigenvalue o = -4m2_ for

small _ with A = O(i). The series expansions are

= 4m2= 2 + 6u + 62v + "'" ,
(4.16)

q = (= qAm + 8 qB,2m ) + _ql + 62q2 + "'" '

for m = i, 2, "--, where the ratio a/S, which depends on m, is to

be determined in the course of the analysis. (We use u and v as

perturbation coefficients. There should be no confusion with

their earlier usage for the ratio _2/_i, and the kinematic

viscosity. ) Following the procedure described in Case I of the

Appendix, we find at 0(6) that u = 0 and

i x (cos 2 m_x - i)
2

ql = _
_ x (I - COS 2m_x) - __x2 sin 2m=x

8m2_ 2 8m_
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_ 1 x sin 2m_x • (4.17)
2

The function ql is only determined up to additive multiples of the

eigenfunctions qAm and qB,2m' but as explained in the Appendix

there multiples can be chosen to be zero. If they are included in

ql" they will not affect the calculations of _. At O(62) we

obtain the following two linear homogeneous equations for e and 8:

°[3 fill05)] 03_m_ 2_6ms_s i[m2_2 [

(4.18)

e ( 3m2_2 - 3A216m2_2-2m2_2u)+ 8 (- 3A2 ) = 0•

These equations determine _ and the ratio a/8. There are two

values of _ given by

_ = i{ -312 . [ 9- 27A2 + 6A4 { 5 + i05 I]!/2}2 _mT_r4- _" 64m4_4 i024m8_8 y 16m2_2

(4.19)

For 6 . 0 with _ >> Ra2, whicn corresoonds, to letting A . 0,

we find that _ = ± 3/4. Thus a perturbation in 6 splits the

double eigenvalue at o = -4m2_ 2 into two real and unequal

eigenvalues,
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_4m2_2 + 62 [ _+3 + O(A2)]. (4.20)O
L

For Ra . 0 with Ra2 >> 6, which corresponds to letting A . _,

we find that

v = A2 3 -+_ _5+ 105 2 + O(I/A2) "64m4w 4 16m2_

Hence, again the double eigenvalue at o = -4m2_ 2 is split into two

real eigenvaiues,

+ o(!/yz)]. (4.21)

However, for each value of m there is a finite interval of values

of A2 given by

4 2

( A ) ( 5 + i05 ) -72 ( A ) + 384 < 0 (4 2°)_ 16mZw2 m2w-----_ •

for which Eq. (4.i9) yields complex con3ugate values for _. For

m = i, the values of _ are complex conjugates if

8.54_ 4 < A2 < 14.21_ 4. (4.23)

We can interpret this result as follows. Suppose we fix 6,

0 < 6 << I, and take Ra = 0 so Ra2_ = 0 and hence A = 0.
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Then the double eigenvalue o = -4m2= 2 of Eqs. (4.2) and (4.3) when

6 = 0 splits into two real eigenvalues, o = -4m2= 2 ± 362/4 at

leading order. Now we increase Ra, but with Ra26 << 62 and hence

A << i; then the dominant correction term to o = -4m2_ 2 remains

± 362/4 and the two eigenvalues are still real. However, as Ra is

increased still further until Ra26 = 0(62 ) the correction term

becomes complex when A reaches the lower value determined by Eq.

(4_23) and _ stays complex until A reaches the larger value

determined by Eq. (4.23). For 62 << Ra26 << 1 so A2 >> 1 the

eigenvalues are real and distinct differing from -4m2= 2 by terms

O(Ra26) as given by Eq. (4.21).

In Figure 5 we show the results of the perturbation analysis

for _ = 0.123 (n = 0.877) for the eigenvalues °2 and o3

corresponding to m = i. For R = 0 the eigenvalues are o2 =a

-39.4897 (corresponding to OAf) and o3 = -39.4671 (corresponding

to OB2); as Ra is increased they coalesce at Ra = i0.i0 (A2 =

8.54_ 4) and become complex conjugates until Ra = 13.05 (A2 =

14.21_ 4) it which point they ccalesce again; and for Ra > 13.05

they are again real. Also in Figure 5 we show the corresponding

results obtained by solving the full equations (4.2) and (4.3)

numerically. We have labeled the modes according to their

ordering at 6 = 0 and Ra = 0. Note the crossing of the

eigenvalues. The perturbation and numerical results are in

reasonable agreement even though Ra2_ is not numerically small for

A2 = 8.54= 2 and larger values of A2. We note that it would not

have been easy to determine these eigenvalue curves numerically
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without the information gained from the perturbation analysis.

For the other double eigenvalues o = -4m2_ 2, m = 2, 3, -.', at

= 0 and Ra = 0 the splitting structure for perturbations in 6

and Ra is similar to the case m = I just discussed.

For a fixed value of 6 and moderate values of R a it is

necessary to resort to standard numerical procedures (discussed in

Section 3) to solve the eigenvalue problem (4.2) and (4.3) for the

variation of the eigenvalues o with Ra. In Figure 6 we show the

development of the first five eigenvalues with Ra for 0 < R a

< 1200 for n = 0.877 (5 = 0.123). The modes are labeled

accordingly to their ordering at Ra = 0. Along the branch denoted

by * - ** the eigenvalues 04 and o5 are complex conjugates. The

corresponding modes interchange their order at the point ** just

as was the case for the o2 and o3 eigenvalues. Our numerical

calculations (and perturbation calculations for 02 and 03) snow

the following continuous mode association: °I_ qBl' °2_ qAl'

°3 "_ qB2' 04 "_ qcl' and _5"_ qB3"

For the modes we have investigated, we find that the B

eigenvalues initially increase monotonically with Ra, while the A

and C eigenvalues initially decrease with R a. When a B and an A

eigenvalue or a B and a C eigenvalue coalesce (recall the pairing

mentioned earlier) the eigenvalues become complex conjugates for

some finite interval of values of Ra, the eigenvalues then

coalesce again and split as two real eigenvalues with the
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corresponding modes interchanging their order. The only

eigenvalue which does not have such a crossing (and hence for some

R a an association with a complex eigenvalue) is t_le first, or most

unstable mode, °l _ qBl" None of our numerical calculations

= + io i ,showed the existence of a complex eigenvalue o or

with or > 0; however we did not make an exhaustive search.

Finally, we want to mention a not so obvious way in which the

B and A modes can cross. This is associated with a branching at

points at which do/dR a = 0. At such points the inverse eigenvalue

relation R = R(o) has a double eigenvalue which can split apart as

a pair of complex conjugate eigenvalues as o (real) is varied.

Thus in Figure 6 the points O and _ at which do/dR = 0 are

connected by a branch on which o is real and there are two complex

conjugate values of R a. In this way the A1 and the B3 modes

interchange their order with o remaining real but Ra being

complex. Of course for the physical problem R, and hence Ra, is

real.

Corresponding to the segment . - ** in Figures 5 and 6 the

eigenvalues o2 and o3 and o4 and o5, respectively, are complex

conjugates. From the numerical calculations these intervals

correspond approximately to

o2 and o3 , 7.8 < Ra < 9.8 or 7.8/a < R < 9.8/a;

(4.24)

o4 and o5 , 320 < R < 720 or 320/a < R < 720/aa

With this in mind we investigated the full problem for n = 0.877

to determine regions in the a-R plane where complex eigenvalues
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would be found. In Figure 7 we show this region (between the two

curves) for the eigenvalues 04 and 05 . The asymptotic results for

a + 0 are in reasonable agreement with the numerical calculations

even for moderate values of a. There is a similar region for the

eigenvalues 02 and 03 , and, we believe, for the other B

eigenvalues as they cross the A or C eigenvalues . Again we note

that the numerical calculations were motivated by the results of

the asymptotic analysis.
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5. DISCUSSION

We have demonstrated by numerical computation and formal

perturbation methods that the eigenvalue problem for the linear

stability of Couette flow to axisymmetric disturbances (the Taylor

problem) has complex eigenvalues when the outer cylinder is at

rest. However, it is not inherent in the analysis that the outer

cylinder is at rest (for example the asymptotic analysis for a . 0

in Section 4) and we anticipate the occurence of complex

eigenvalues when the outer cylinder also rotates. All of the

complex eigenvalues which we have found correspond to damped

oscillatory modes; and in particular there is no indication that

the first eigenvalue is complex for any values of n, a, and R with

the outer cylinder at rest. Thus it seems likely that the

principle of exchange of stabilities holds. However, the

existence of complex eigenvaiues shows that, unlike the situation

for the Benard problem, a proof of this principle cannot be

constructed by showing that all the eigenvalues are real.

It is interesting to speculate on whether an experimental

investigation of the Taylor problem could confirm the existence of

decaying oscillatory axisymmetric disturbances. In any

experimental situation there are small imperfections and

random fluctuations present which, presumably, will excite all the

modes of linear thoery. However, all of the oscillatory decaying

modes have large decay rates. The least damped oscillatory modes

have or _ -4_ 2 (corresponding to o2 and o3 coalescing), but this
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occurs for only a small area in the a-R plane. The eigenvalues

o4 and o 5 can be complex conjugates for a slgnificant set of

values of a and R, as is shown in Figure 7. For n = 0.877, a = 5,

and R 150 we find the complex conjugate eigenvalues*= o = -110.2

±i3.72. The physical time T for such a mode to decay to e-I

times its initial amplitude is given by T = 0.19/_i, which may

allow sufficient time for observation.

We have seen that the structure of the spectrum of the linear

problem for a = O(i) is preserved in the limiting problem

discussed in Section 4 for a . 0. Moreover, for the latter

problem we found that the complex eigenvalues occur because there

are two denumerable sets of negative eigenva!ues at R a = 0 which

separate each other and move in opposite directions as R a, and

hence R, is increased. One set of eigenvalues have or increasing,

and ultimately correspond to unstable modes, while or decreases

for the other set. It follows that there will be an infinite

number of intersections and at these points of intersection we can

expect the occurence of complex conjugate eigenvalues. As we have

noted these points of intersection correspond to damped

oscillatory disturbances. Ic is of course possible that the

eigenvalues corresponding to two unstable modes can grow at

different rates with R, and hence eventually intersect so as to

give rise to complex conjugate eigenvalues and growing oscillatory

* This calculation was confirmed by Dr. P.M. Eagles using an

independent program.
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modes; however, we have not explored such possibilities.

It is also possible to study the full eigenvalue problem,

Eqs. (1.2) and (1.3), in the limit a . _ with n and R fixed. In

this limit we can expect that o = O(-a 2) for all the modes so an

expansion will take the form

= a2(-i + a-i _ + ...).

It burns out that the eigenfunctions have a boundary layer

behaviour at the cylinder walls and satisfy a fourth order

differential equation in the interior. The parameter _ and the

higher order coefficients are determined by solving a sequence of

fourth oraer equations with boundary conditions at the cylinder

walls determined by matching conditions. We dld not study th!s

problem in detail, but our few calculations for the smali-gap case

did show that _ can be complex and that the curves of Figure 7

will asymptote to horizontal straight lines as a . _. In is

interesting to note that if a + _ with R = O(a2), corresponding to

the behaviour of R on the neutral curve, the asymptotic analysis

of Hall (1982) shows that all the eigenvalues _ are rea!. This

result gives additional credence to the principle of exchange of

stabilities, but a proof is yet to be constructed.
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APPENDIX

Consider a boundary value problem consisting of a system of

ordinary differential equation of the form

(L + £M + £2N + ...) q - _ (A + £B + _2C + -..) _ = 0, (AI)

where L, M, N, ---, A, B, C, --- are matrix differential

operators with non-singular coefficients; q is a vector function

satisfying separated homogeneous boundary conditions at the end

points of some finite interval; say 0 < x < I; E is a small

non-negative parameter; _ is the eigenvalue; and the order of the

system (AI) is equal to the order of the operator L. The boundary

value problem (AI), including the boundary conditions, need not be

selfadjoint. Our discussion is formal; moreover, we do not

consider all possible cases.

We assume that the boundary value problem

(L - _A) q = 0 (A2)

has an infinite denumerable set of eigenvalue {o n } with oI = _2

while al! the other eigenvalues are simple. We are interested in

m

1.,._S
how the corresponding eigenvalues _l and s2 of (AI), whose 1"_

are _i and _2 as £ . 0, vary with _. We consider two cases

I. Corresponding to _i = _2 _nere are two linearly

independent vectors q and q of (A2),
1 2

and

Ii. Corresponding to _i = _2 _ere is one eigenvector ql oi

(A2) and a generalized eigenvector qll satisfying
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(L - OlA) qll = Aql" (A3)

We assume that ql' q2' q3' "'" in Case I and ql' qll' q3' "'"

in Case II are complete in an appropriate function space. Let

<. , -> denote the inner product, and let

(L* - oA*) q* = 0 (A4)

wi_h appropriate boundary conditions be the adjoint boundary value

m

problem corresponding to (A2). We also assume that oI _ o2 for €

small and non-zero.

Case I. For this case the discussion is similar to that

given in Courant and Hilbert (1953, pp. 346-350) for a multiple

eigenvalue of a second order selfadjoint boundary value problem.

We assume that the eigenvectors and adjoint eigenvectors have been

chosen so that

A > = (A5)
<Aqi' qj > = <qi' qj 6ij "

As part of the perturbation calculation it is necessary to

" (.4--)
determine the "directions of the eigenvectors ql and q2 of ,l

as £ - 0. Thus we choose as our eigenvectors of (A2) the set

u I = ellql + e12q2 ; u2 = e21ql + a22q 2 ;

uj = qj , 3 = 3, 4, ..., (A6)

N m

where the e's are to be chosen so that ql + Ul' q2 . u2 as e . 0.
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%_e expand _n' _n in the series

-- .. _2w n •.on = on + E_ n + C2Vn + " , _n = Un + £Vn + + " '

n = i, 2, "''. (A7)

If we substitute (A7) in (AI), we obtain

(L - snA)v n = (-M + snB + _nA)Un , (A8)

(L - snA)Wn = (-N + snC + Un B + _nA)Un

+ (-M + snB + UnA)vn • (A9)

Next we assume that we can write

If we suOstitute for vn (A8) and hake the inner proauct winn

qm , we obtain

an m (sln - On) = <(-M + snB)U n, qm*> + Un 6nm" (A!l)

For n = i, 2 and m = i, 2 the left side of (All) vanishes since

oI = 02 and we obtain the equation

<(-M + OlB)q I, ql > + u <(-M + slB)q 2, ql > = 0

<(-_,i+ olB)q I, q2 > <(-M + s±B)q 2, q2 > + _ (All)
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for Ul and u2" For n = m = 3, 4, --., (All) gives "n =

<(M - onB)qn, qn*>. If we only need the first order

corrections to the eigenvalues _n we can stop at this point.

However, if we also require the first order corrections to the

eigenvectors and the second order corrections to the

eigenvalues, it is advantageous to reorganize our computations.

We also find from (All) that

a12 <(M - _lB)ql , ql > - U]

all <(M- _iB)q2 , ql*>

= _ <(Yl - _lB)ql, q2 >
* , (AI3)

<(M - _lB)q2 , q2 > - Ul

and

W

= _a2! = _ <(M - _]B)q2, q] >

a22 <(M - _iB)ql , ql'> - u2

* (AI4)
_ <(M - o]B)q2, q2 > - u2 ,

<(M- _lB)ql , q2 >

where we have assumed <(M - _iB)q2 , ql > _ 0 and <(M - _iB)q2 ,

q2 > # 0. Now introduce new ad]oint eigenvectors u! = ql

_q2 ' u2 = -aql + q2 ' uj = qj for j = 3, 4, "'', and choose

-I
all = _22 = (i - aS) . As a result we have

<Aui, u3 > = <u!, A u3 > = 613 • (AI5)

We can also write

Vn = _. Cnj uj , Wn = _ dnj uj •
j=l j=l (AI6)
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Substituting this expansion for vn in (AS) and taking the

inner product with um , we obtain

Cnm(Om - _n ) = - Fnm + _n 6nm (AI7)

where Fnm = <(M - onB)un, Um*>. We will restrict our attention to

the eigenvalues oI and 02 and the corresponding eigenfunctions;

that is, n = 1 and n = 2. For n = 3, 4, ... the calculation is

st#aightforward. Equation (AI7) yields the following information

for n = i, 2 and m = i, 2

Ul = FII' _2 = F22 , FI2 = 0, F21 = 0, (AIS)

and

Cnm = - Fnm/(_ m - _n ), n = i, 2, m = 3, 4, ---. (AI9)

Equations (AIS) are consistent with our choice of Ul' u2' Ul' u2'

u I , and u 2 as can be verified by doing the necessary algebra.

Alternatively, if we had chosen the uj according to (A6), the

uj so that the biorthogonality condition (AI5) is satisfied, and

then used the expansions (AI6) we would have obtained (AIS) for

ul' u2' and the ratios a12/_l! and _21/_22.

The coefficients Clm and c2m in the series expansions for v1

and v2 are given by (AI9) for m = 3, 4, ''-. We must determine

Cl!, c12, c21, and c22. Imposition of the normalization condition

<Aqn, un > = 1 , n = I, 2, "-- (A20)

yields Cll = c22 = 0. To determine c12 and c21 we must consider

(Ag) for wn.
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Substituting the expansion for w n given in (_16) and (}{9) and

taking the inner product wltn um gives

dnm (om on ) = -<(N - onC - BnB)un , um > + Vn6n m

(A21)

+ 2 Cnj (-Fjm + Un6jm )-

j:l

For n = m = 1 and n = m = 2 we obtain

* _ Fnj Fin ; (A22)_n = <(N - onC - unB)un , un > - oj - on

j=3

and for n = I, m = 2 and n = 2, m = i we obtain

l

Cnm = I I <(N - onC - _nB)un, Um* >
Un - Um

• o3 - on . (A23)

3=3

m

This completes the calculation of oI and o2 through _erms

O(s 2) and the corresponding eigenfunctions ql and q2 through terms

O(s). To compute corrections to the other eigenvalues and

eigenvectors as well as higher order corrections for ol, °2' ql'

and q2 is straight forward in principle. In practice the

calculations would probably not be carried out using eigenfunction

expansions, but rather the nonhomogeneous equations for vI and v2

would be solved numerically after the solvabillty conditions (A±8)

had been used.
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Case II For this case the discussions by Wilkinson (1965,

pp. 62-70) for the matrix eigenvalue problem, Friedman (1956, pp.

110-113 and 131-133), and Kato (1980, Chapter 2) are useful. Let

ql ' q3 ' "'" and qll be the corresponding eigenvectors and

generalized eigenvector of (A4). We assume that the vectors have

been normalized (see Friedman for the case A is the identity

operator) so that

<Aql' ql > = <Aqll' qll > = 0, <Aql, qll > = <Aqll' ql > = I,

<Aql , qj > = <Aqll, qj > = 0, j = 3, 4, ---,

i, j = 3, 4, .... (A24)<Aqi' qj > = _ij'

We will only consider the eigenvalues _I' and _2 of (AI)

which coalesce at _ = 0. The form of the expansion is

_ 1/2 3/2

= _i + _ _ + g_ + g _ + "'''

_ 1/2 3/2
(A25)

q = ql + _ u + _v + € w + -''.

If we substitute (A25) in (AI) we obtain

(A26)
O( 0): (L - olA)ql = 0 ,

i/2
O(s ): (L - OlA)U = uAq I , (A27)

O(a): (L - olA)v = -Mql + uAu + (_A + OlB)ql , (A28)

3/2

O(£ ): (L - _iA)W = -Mu + uAv + (oA + _IB)U

(A29)
+ (_A + uB)qI .
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Equation (A26) is the eigenvalue problem for _!' ql" The solution

of (A27) is u = _qll plus a multiple of the eigenvector ql which

we can take to be zero. The parameter U is still to be

determined. Next we write

v = alq I + allql I + _ ajqj , (A30)

j=3

and substitute for v and u in (A28) to obtain

om

allAql + _ aj (_j - Ol)Aqj = - Mql + u2Aqll
j=3

+ (_A + OlB)ql • (A31)

w

If we take the inner product of (A31) with respect to ql ' qli '

and qm for m = 3, 4, ---, we obtain, respectively,

u = <Mql' ql > - _l<Bql ' ql > ' (A32)

all = - <Mql' qll > + 9 + _l<Bql ' qll > ' (A33)

W W

am(am - °1) = - <Mql' qm > + Ol<Bql ' qm > '

m = 3, 4, -''. (A34)
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Notice that in order to calculate 2 we need only know ql'

ql ' and qll (which is needed in the normalizing condition

* 2
<Aql' qll > = i). If u is real and u is positive, then the

perturbed eigenvalues are real oi, _2 = _I ±_ I_I + O(£),

and if 2 is negative then the perturbed eigenvalues are complex

conjugates _i' _2 = _i ± i_/_ l_I + O(_2)" If _ = 0 then also

u = 0 and the splitting of the eigenvalues occurs at O(_) or a

higher order. Assuming that u is real and non-zero, then the

corresponding eigenvectors of (AI) at this order are ql' q2 =

ql ±_ I_I qll or ql' q2 = ql ± i_ l_I qll" Equation (A34)

provides a linear nonhomogeneous equation for all and v, while

the am for m = 3, 4, ... are given by (A34). The coefficient a I

ia arbitrary; however if we impose the normalization conditions

<Aql' q!l > = <Aq2' q!l > = 1 then a 1 = 0. In order to determine

v and all we turn to (A29) for w.

We expand w in the Series

w = blq I + bllql I + _ bj qj , (A35)
j=3

substitute in (A29) for w, v, and u, and take the inner product

with respect to ql " We obtain

0 = U -<Mqll' ql > + all + v + <Bqll, ql >

+ <Bql' ql > " (A36)
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Again, assuming _ _ 0 and solving (A36) and (A33) for _ and all we

obtain

* *> ,u = <Mqll' ql > + <Mql' qll - <Bqll ql

* ) _ 1 <Bql' ql*> (A37)+ <Bql' qll > _

al! = <Mqll' ql > - <Mql' qll > - <Bqll' ql >

*) *
- <Bql' qll > _ 1 <Bql ' ql > " (A38)2

M

This completes the calculation of the eigenvalues oI and o2 and

the corresponding eigenvectors through terms 0(_). Note that both

and _ can be calculated once ql' qll' ql ' and qll are known.
m

The calculation of higher order corrections for _i and o2 is

straightforward.
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Legends for Figures

Figure i. Tne variation of the first five eigenvalues with a

for i _ a < 8, n = 0.877 and R = 150. R = 119 3 Eigenvalues o4

and o5 are complex conjugates for 2.6 < a < 6.5. The imaginary

parts of o4 and 05 are shown by the dashed curve with the scale

given by the axis at the right. The labeling of the eigenvalues

corresponds to their ordering at R = 0.

Figure 2. The same as Figure 1 except for n = 0.75 and R =
85.79 c

Figure 3. The same as Figure i except for n = 0.5 and R =
68.18 c

Figure 4. The real and imaginary parts of the eigenvalues 04

and 05 for n = 0.877, R = 150, and a near a0 = 2.5576.

O Numerical calculation. Perturbation formula (3.3)
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Figure 5 Behaviour of the second and third eigenvalues of

Eqs. (4.2) and (4.3) for n = 0.877 and _a6-1/2 = O(I). The

eigenvalues correspond to a double eigenvalue o = -4_2 for 6 = 0

and Ra = 0. The perturbation analysis, Eqs. (4.16) and (4.19), is

given by the dashed curve. The numerical calculation using Eqs.

(4.2) and (4.3) is shown by the solid curve. On the branch • - **

the two eigenvalues are complex conjugates and only the real part

is shown.

Figure 6. The behaviour of the first five eigenvalues of Eqs.

(4.2) and (4.3) for n = 0.877 (6 = 0.123) and 0 _ Ra _ 1200. The

eigenvalues o4 and o 5 are complex conjugates on the branch * - **

and only the real part is shown. A branch connects the points O

and O along which o is real corresponding to two complex

conjugate values of Ra-

Figure 7. For points (a, R) between the two curves the

eigenvalues o4 and 05 of the full problem, Eqs. (1.2)-(1.4), are

complex conjugates. Numerical calculation.

Asymptotic formula (4.24).
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