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Abstract

The numerical solution of the laminar boundary-layer flow over an

embedded cavity is studied. The purpose of the study is to examine the

relevant drag characteristics of laminar cavity flow. The solution field is

obtained in terms of velocity and vorticity variables, with the stream

function and pressure derivable from the directly computed variables. An

analysis and comparison is made among four square cavities, ranging in size

from 0.25 to 1.00 boundary-layer thicknesses deep. The dominant flow features

are examined in the vicinity of the cavity by means of the stream function and

iso-vorticity contours. The dominant physics in the overall drag

characteristics of the flow is examined by an analysis of the pressure and

wall shear stress distributions in the cavity, and upstream and downstream of

the cavity. Pressure forces and frictional forces in, and in the vicinity of,

the cavity are determined. Stress relaxation distances, both upstream and

downstream of the cavity, are calculated and analyzed. The flow dynamics of

the boundary-layer flow over an embedded cavity is summarized. Finally, the

relevance of the present results to the control of flow separation in such

flows is discussed.

*Research supported by the National Aeronautics and Space Administration under
NASA Contract No. NASI-17130 while the author was in residence at ICASE, NASA

Langley Research Center, Hampton, VA 23665.





Introduction

A distribution of roughness elements along an otherwise smooth wall

,. bounding surface can significantly alter the dynamic processes of the flow.

Such an alteration causes no change in the surface drag along these surfaces

in a laminar flow; however, in a turbulent flow there is an increase in the

surface drag. It as, of course, necessary to understand the dynamic

mechanisms of such surface flows, both ]amlnar and turbulent, so that

effective drag controlling measures can be implemented. In the turbulent

case, the flow-surface interaction is rather complex due to the broad spectrum

of dynamically relevant scales of motion present in the flow. Initially, it

is advantageous to treat a more tractable flow situation which incorporates

the important parameters and features of the flow. The two-dimensional

laminar boundary-layer flow over an embedded cavity constitutes such an

initial approximation, and the purpose of this study is to gain further

insight into the dynamics of such flows.

There have been several experimental studies of boundary-layer flows over

embedded cavities (e.g. Refs. 1-6). Several of these studies, whJch were

mostly for turbulent boundary-layer flows, concentrated on the overall

features of the flow, such as velocity and surface pressure distributions as

well as skin friction variations: other studies concentrated on more dynamic

features of the flow, such as Interfaclal stability characteristics. There

have also been numerical studies on the shear flow driven cavity problem (e.g.

Refs. 7-8). These numerical studies have been limited to high-speed flows and

do not provide the [nslght required in the present case. The intent here is

to provide flow characteristic information over a range of cavity sizes in a

relatively low-speed near-wall environment, which is typical of the local

conditions for roughness elements.



The numerlca] algorithm is a compact d|fference scheme expressed in terms

of the vortlclty and velocity (Ref. 9). This work and that appearing in

Ref. I0 are applications of the algorithm development presented in Ref. 9 and _

serve as verification and extensions of the method while also a_dlng the

understanding of the flow dynamics. The compact nature of the algorlthm

allows for unequally sized computational cells to be easily placed in regions

where high resolution is necessary. This aspect of the formulation is

important, especially when shear stress and wall-pressure distributions are

required. Another important feature of the algorithm is the fact that the

dependent variables used in the calculations are interpreted as average values

over each edge of the ce11. Since these varlables are defined at the center

of each edge, the corner problem at the upstream and downstream sides of the

cavity can be handled in an unambiguous manner. Thus, the pressure induced

forces on the vertical walls of the cavity which are critical in the overall

drag characteristics, are accurately computed. F_nally, wall shear stress, or

friction velocity, values are easily extracted from the computed results, as

well as other derlvab]e flow variables such as stream function. In addition,

velocity profiles and vortlclty contour maps in the vicinity of the cavity can

be generated to allow for a detailed study of the flow dynamics. The present

paper discusses the physical characteristics of the flow in the vicinity of

the cavity. Pominant flow features are Identifled along with a discussion of

the possible application of such flow embedded cavities to the control and

delay of flow separation.



Nathematlcal and Numerical Formulatlon

The problem considered is the incompressible two-dlmensional laminar

boundary-layer flow over an embedded cavity (see Fig. I). The governing

differential equations for this [low can be written in terms of the velocity

and vortlclty as

_u _v

Bv Bu

3x _y _ (2)

where u and v are the nondlmensional streamwlse and normal velocity compo-

u 6o
nents, respectively, _ is the nondfmenslonal vortfclty, and R- v is

the Reynolds number based on the free-stream velocity U and a reference

boundary-layer thickness _. In most previous numerical approaches, the
O

vortlclty transport equation is numerlcally solved in conjunction with an

equivalent stream function representation of equations (I) and (2). Such a

stream function, vortlcity solution fleld then al]ows for the calculation of

the equivalent velocity and pressure flelds. In the present paper, the

differential forms, equations (I) to (3), are dfscretfzed directly and thus

provide a veloclty-vorticlty description of the flow. Since the details of

the dfscretization and the algorithm appear in Ref. q, we only present the

discretlzed form of the equatlons, for completeness, and the various

extensions and enhancements unique to the present problem.

Since the present formulation can be expressed in Cartesian coordinates,

consider the computational cell depicted in Fig. 2 with the associated dis-

trfbutlon of dependent variables about the cell. As mentioned earlier, a



variable associated wltb the side of a cell is interpreted as the average of

that variable over the side of the cell and one associated with the center of

a cell is an average over the cell. In addition, the notation

n n + n
_x Wj,k = (wj+I/2,k wj-I /2,k)/2 (4a)

n n

6 wn = (wj+i/2 - ws_i/2,k)/Axj (4b)X J,k . ,k .

n

is used for the x-direction in the following: with a completely analagous form

used for the y-dlrection. Also, for brevity and to avoid confusion, the

spatial indices will be suppressed, that is w_ = w(Axj, Ayk, n At). In the

following subsections, the velocity and vorticlty solvers will be described

along with the details of the solution procedure.

Velocity Difference Equations and Solver

The difference approximations to equations (i) and (2) and the auxl)lary

averaging conditions needed in the solution procedure are given by (Ref. a)

un + _ vn = 0 (5a)
x ° y °

n n n-1/2v - 6 u = _. (5b)
x • y "

(Bx - By)un = O, (_x - _y)vn = 0 (6a,b)



An iteration scheme can be applied to equations (5) and (6) for the values

U = (u,v)T associated with the sides of a computational cell" the resulting

algorithm is

U(A+I) = U(%) + _BT,B[ • BT,-I_ (7)

where U(%) is the approximation to U at the %th iteration,

B _ , C = , (Sa,b)

_I, I, -I, -I

AYk

I is the 2 x 2 identity matrix, _. is the aspect ratio Ax--_ of each cell,

and m(=l.7) is an extrapolation parameter whose value is determined by

numerical experiments. Rl(U!£) ) and R2(U!A) ) are residuals defined by

RI(U!%) ) _ _ U(A) + C 6 U(A) - (0,_)T (ga)x • y •

Thus equation (7) is analogous to an SOR-type iterative technique. At cells

adjacent to the boundaries the matrix B is altered to account for the known

velocity values at the edges of the bounding cells.

In the solution procedure the flow domain is divided into two regions"

the region above the hounding flat plate and cavity, that is. the top region,

and the cavity region itself. The coupling of the two regions in an overall

solution solver will be described in the "Solution Procedure" section. For

the present it will suffice to specify the boundary conditions in each region.



In the top region, the inflow u ve]oclty Is specified and is determined

from the Blaslus solution to the streamwlse momentum equation for a Riven

inflow boundary-layer thickness. This u ve]oclty boundary condition is time

independent. Along the flat plate the v velocity is set to zero, and along

the top of the computational domain the nondlmenslonal free-stream ve]oclty

U is set to unity. Both of these boundary conditions are also time indepen-

dent. Final]y, at the outflow boundary a time dependent flux condition for

the v velocity is used, that is

n n-I ( n-I n-I n-i V n-l)_,k = _,k - At _,j Vx_,j - VM,j x_,j (I0)

where J + 1/2 = M is the location of the outflow edge of the downstream

boundary cells. Note that in equation (I0) the continuity equation (eq. (i))

has been utilized, while viscous and transverse pressure gradient effects have

been neglected.

In the cavity region, the specification of the boundary conditions is

straightforward. Along the solid boundaries of the cavity, the normal

velocity components are specified. All these velocities are zero and are time

independent. Along the interface with the top region of the computational

domain, all velocities are required to be continuous. The detal]s of the

solution sequence at the interface is described in the "S'olution Procedure"

section.

Vorticlty Difference Equations and Solver

The difference approximations to equation (3) and the auxiliary averaging

conditions needed in the solution procedure are given by (Ref. 9)



Sn n 1 n
(6t + un.6x + " _y)_" = R (6x *" + _y ,n) (II)

wl th

_n n n
_t • = _x _. = _y _" (12a)

x _.n = (Bx -21 Axj qx 6x)_n (12b)

n I n

y _. = (Uy -_ AYk qy _y)*. (12c)

where

^n n ^n n

u = _x u , v = _y v

= q(ey) =qx = a(Sx)" = coth 8x - 8xl , qy coth 8y 8-ly

u Ax R v Ayk R
o - " J o = " (12d)
X 2 ' y 2

As shown in Ref. 9, this system of equations, and the corresponding ADI

approximations, can be solved by repeated use of a tridiagonal system of

equations. For example, in the x-direction the _n variables associated with

the sides of each cell are determined from

I n

2[(i-qx)C+ Kx]-- x j+l,k

1 n

x - Kx]_j-l,k

+ [I + X u'n qx + Kx] nX J,k

n + (I + qx) n-- (I - qx ) gJ+I/2,k gj-i/2,k (13)



where X _ At K - 2 At and the function gn are described in

Axj' _ '
x x R Ax

Ref. 9. Note that the index J = I, 2, ..., M-I varies over the range of

cells in the x-directlon and that at each ce]l the coefficient values differ

due to the dependence on grid size. The corresponding function _? can be

obtained from the vortlclty values obtained in equation (13) by solving

sn R [(qx I)(I + X un) + Kx] _n= _ - x J+l ,k

n n

+2[%+ un] j,k+[(qx+l)(1 un)Kx]

n - 2(1 + qx ) gn (14)+ 2(1 - qx ) gj+I/2,k j-1/2,k

With the solution of equations (13) and (14), the solution set (_n,_n) are

known throughout the field; and with the solution of a completely analogous

set of equations for the y-direction, the solution set (_n,_n) will be known

throughout the field. Once the variables (_n, _n, _n) are known at time

level n, it is a simple step to directly impose either equation (II) or

equation (12) and obtain _n+I/2 for the entire flow field.

The remaining issue to be addressed is the choice of boundary conditions

for the vorticity. Due to the tridiagonal formulation, it is not necessary in

the vortlcity solver to solve the equations in the top and cavity region

separately, but to simply solve for the vorticity edge values by successive

sweeps over the range of x and y values. Thus, in the x-direction the

sweep goes from the inflow boundary to the outflow boundary, and in the

y-direction from the flat plate or bottom of the cavity to the top of the

computational domain. At the inflow boundary, the vorticity values are deter-
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mined from the Blaslus solution and are held fixed for all time. Along the

flat plate and cavity solid boundaries, the vorticlty is determined from

second order accurate one-sided difference approximationto the appropriate

nonzero velocity derivative. Finally, along the top and outflowboundaries,

vorticity flux conditions are applied. For example, the flux condition

applied at the outflow boundary is derived from the vortlcity transport

differenceequationand is writtenas

+ 2.0 _[-1/2-rn n

o__-l,k

-At u.v _U-I/2+;Uv _U-I/2 (is)Y

where J = M - i/2, k is the center of an outflow boundary cell. A

completely analogous equation is used for determining the vorticlty boundary

values at the free-stream boundary at the top of the computational domain.

Solution Procedure

The tlme-dependent solution for flow over the embedded cavity was

obtained by first solving the equations for the flow over a flat plate and

then using the flat plate solution field as initial conditions for the flow

over an embedded cavity. The computational domain for the flat plate case was

the same as the corresponding embedded cavity case except that the top of the

cavity was replaced by a solid surface. All grid spacings in both cases were

the same.

First, a description of the solution procedure for the flat plate case

will be given. In all test cases presented, the initial values used



I0

throughout the flow domain were the appropriately averaged Inflow Blaslus

velocity and vortlclty fields. This initial set of field values is in error

since it does not account for the boundary-layer _rowth in the streamwlse

direction and, even if boundary-layer growth were accounted for, the Blaslus

solution is not a solution to the full Navier-Stokes equations.

The solution procedure begins by entering the veloclty solver, described

in the "Ve]oclty Difference Equation and Solver" section, and iterating the

solution set obtained from equation (7) until the convergence criteria

max (RI(U!£)),R2(U!£)))_ mln (Ax2i,Ay2) (16)i,k

are met. When these criteria are met, the velocity values at time level n

are known. From these velocity values, the requisite vortlclty boundary

values at time level n are determined using second order accurate one-slded

differences.

W_th the velocity fle]d at time level n known, the vortlclty fle]d at

time level n is required. As outlined in the "Vortlclty Difference

Equations and Solver" section, the solution procedure is a straightforward

implementation of equations (ll) through (13), and the corresponding equations

for the y-dlrectlon, using the prescribed vortlclty boundary conditions

(Ref. 9). Once the vorticity values and their derivatives at the edges of the

computational cells and at time level n are known, it is necessary to obtain

the vortlclty values associated with the center of each cell at time level

n + 1/2. This is done by solving the vorticlty transport equation (eq. (ll)),

or implementing the averaging condition equation (eq. (12a)). The solution

procedure then continues onto the velocity solver with the vortlcity values

_n+l/2 as new input forcing functions.



The entire solution sequence continues untll the number of iterations in

the velocity solver falls to £ < 3, and the velocity and vortlclty L2

norms, that is the energy and enstrophy, become time independent. A schematic

representation of the solution sequence is shown in Fig. 3.

With the establishment of the flat plate solution, the computed velocity

and vorticity values are used as input in the embedded cavity problem. The

cavity domain is initially filled with zero values for both the velocity and

vorticlty.

In the velocity solver a two-step procedure is used: first, the cavity

field is swept and the common velocity values at the interface between the

cavity domain and top domain are equated; second, the top domain is swept

using the boundary conditions and interface velocity values. The maximum

residuals from both the cavity and top are compared with the convergence

criteria, equation (16). The process is repeated through both the cavity and

top computational domains until the convergence criteria are met. Once this

occurs, the velocity field for the entire domain is known at time level n:

and, in addition, the vorticity values along the solid boundaries are also

known at time level n.

The vorticity solution sequence is not altered by the presence of the

cavity. The solution values are determined by sequential sweeps in both the

streamwise and transverse directions. When the sweep Ks in the x-direction,

it is either from the inflow boundary to the outflow boundary in the top or

from the left wall to the right wall in the cavity. When the sweep is in the

y-direction, it is either from the flat plate to the top of the computational

domain or from the bottom of the cavity to the top of the computational

domain. This procedure yields _n, sn, and _n values for the entire

domain. Finally, the _n+l/2 vorticlty values at the center of the
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computational Cells for both the top and cavity domains are determined from

eltber equation (ll) or (12a).

From the results of the computations, it appears that even with the

embedded cavities the flow does reach a state of dynamic equilibrium. Thus,

the computational procedure continues for the flow over an embedded cavity

until the termination criteria of _ _ 3 and time independent L2 norms are

met.

RESULTS AND DISCUSSION

As mentioned in the Introduction, one of the purposes of this study is to

isolate the important dynamic characteristics of the flow over an embedded

cavity. In the present work the flow above the cavity is laminar and is used

as an aid in sorting out the physics of the turbulent case. In the turbulent

case, the presence of vortical structures in the vicinity of the wall can

cause significant alteration of the dynamics in the vicinity of the cavity.

Unfortunately, it is difficult to delineate the overriding dynamic process, or

processes, since the boundary turbulent flow encompasses a broad spectrum of

dynamically relevant scales. A similar motivation prompted the experimental

study in Ref. 3, where it was determined that the strong random massexchange

activity observed in cavities with bounding turbulent flow was due to

excitation from the turbulent fluctuations rather than an instability of the

cavity flow itself. With the present numerical study, a more detailed

analysis of the relevant dynamic variables can be performed. For example,

as will be shown later in this section, the flow relaxation length upstream

and downstream of the various cavities examined can be determined. This can

be used to optimize the relative spacing between transverse rows of cavities

to enhance the drag reducing characteristics of such flows.
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The results presented were compiled from four test cases. All cavities

were square and ranged from 0.25 to 1.00 boundary-layer thicknesses deep. In

order to establish the relevant base parameters from which the calculations

could be run, the experimental study of Ref. 5 was used as a guide. This was

done to insure that over the range of parameters studied the flow in the

vicinity of the cavity could be characterized as laminar separating flow and

that within this computational range the flow neither became transitional nor

turbulent. The reference boundary-layer thickness was determined from a

Blasius solution of the streamwise momentum equation at a dimensional distance

of x = 80 cm from the leading edge of the flat plate and a corresponding

free-stream velocity of 120 cm/sec. The boundary-layer thickness was
u

O
6 = 1.68 cm and the reference Reynolds number, R - , was 1188.
o

The flow domain was discretized into a nonuniform set of Cartesian grid

cells in the top boundary-layer region and a set of uniform grid cells in the

cavity. The minimum and maximum nondimensional grid cell sizes ranged from

0.0125 to 0.8, respectively. The largest were placed away from regions of

dynamic significance. The grid cell distribution in the cavity ranged from

l0 x l0 cells in the smallest cavity to 40 x 40 cells in the largest

cavity. In the case of the smallest cavity, the number of grid cells in the

cavity was increased to 20 x 20 to insure the accuracy of the results with

the coarser grid. In the top region, the number of grid cells in the vertical

direction was held fixed at 40 and the number of grid cells in the streamwise

direction ranged from 70 in the small cavity case to 90 in the large cavity

case. In all cases the ratio of lengths in a given direction in adjacent

cells never exceeded 2. The free-stream boundary was located approximately 5

boundary-layer thicknesses above the flat plate; and the inflow and outflow

boundaries were placed approximately 2.5 and 5 boundary-layer thicknesses
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upstream and downstream of the cavity, respectively. In all cases pressure

contour plots were used to confirm that none of the computational boundaries

interferes with the physical results in the vicinity of the cavity.

Figure 4 shows stream function contours in the vicinity of the cavity.

It must be noted that in this figure and subsequent figures where the cavities

are sketched, the physical size of the cavities differ; however, for presenta-

tion purposes, the cavity sizes in the figures have been normalized. In

addition, in all the contour plots presented the dashed lines represent

contours with negative values and solid lines represent contours with positive

values. As can be seen, a strong reclrculation region characterizes the

cavity flow over most of the cavity. This causes the flow in the vicinity of

the interface with the outer boundary flow to be accelerated locally; that is,

a favorable pressure gradient is induced locally by the presence of the

cavity. This effect is depicted by the convex curvature of the bounding

streamline at the mouth of the cavity. Note that the bounding streamline,

which has a value of 10-4 in all cases presented, is located at differing

distances from the flat plate bounding surface. This is due to the fact that,

as indicated earlier, the different physically sized cavities have been

normalized for presentation purposes. As the cavities deepen, although they

remain square, the reclrculation region begins to be skewed to the downstream

side of the cavity. This increases the curvature of the bounding streamline

pattern, thus causing a more favorable local pressure gradient and a stronger

local flow acceleration. In addition, the bounding streamline pattern in all

the cases indicates that the flow is locally accelerated at both the upstream

and downstream corners.

In conjunction with the stream function contours the local velocity

profiles can be examined. Figure 5 shows the variation of the streamwlse
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velocity profiles at various stations in the cavity. The figure indicates a

relatively low level of streamwise momentum in the cavity: however, as the

cavfty's size is increased, stronger backflow begins to become evident near

the downstream side of the cavity. This shear layer thickening is caused by

the recfrculation region becoming skewed in the downstream direction. It

could be anticipated that as the recirculation region grew the shear layer

thickening would become evident closer to the upstream side of the cavity. It

should be noted at this point that in the Reynolds number and cavity sizes

studied no laminar flow instabilities arose in this bounding shear layer.

Since this was a time dependent numerical study incorporating the full form of

the vorticlty transport equation, any interfacial instabilities, either

spatial or temporal, would be easily detected in the streamline or velocity

plots. An examination of these plots, or the vorticity contour plots to be

presented next, showed no indication of Interracial instabilities. This

observation is in agreement with Ref. 3 where no laminar oscillations occurred

U d

below a cavity Reynolds number, _ , of 2400. In the present study, the

maximum cavity Reynolds number is approximately 1400.

The iso-vorticity contours in Fig. 6 show that as the cavity size

increases the vortex in the cavity is, indeed, skewed to the downstream side

of the cavity. This downstream shift causes a thickening of the shear layer

on this side of the cavity. Note that this asymmetry of vorticlty in the

vortical reclrculatfon region must also cause a corresponding increase of

vortlcity, of opposite sign, in the immediate vicinity of the downstream

wall of the cavity as well. A consequence of this is the strengthening of

the relatively weak vortex region present in the lower right-hand corner of

the cavity. This is due to the fact that fluid is accelerated downward by the

action of the two counterrotatfng vortical regions at the top of the cavity
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and this accelerated fluid causes the strengthening of the rotational motion

at the bottom of the cavity. Note that the stream function contours did not

indicate the presence of the recirculation regions at the bottom of the

cavities. This was due to the fact that the vorticity is a more sensitive

measure of such flow dynamics and to include such motion into a streamline

representation would have required an unnecessary significant increase in the

number of streamline contours. Finally, it can be concluded that in the

temporal development of the embedded cavity flow, the vortex in the lower

downstream corner of the cavity must be developed before the vortex in the
%

lower upstream corner of the cavity. This leads to the speculation that if

the downstream vortex is precluded from forming, by either flow suction or

some other means, then the upstream vortex may also be inhibited.

One of the main objectives of the present study was to examine the

effects of the embedded cavity on total drag. In the absence of the cavity

the drag is due solely to skin frlctlon_ with the cavity, the effects of

pressure drag on the vertical walls of the cavity must be accounted for in

addition to friction drag. A comparison of integrated CD/C F between the

flat plate with cavity and the flat plate is shown in Fig. 7 as a function of

the nondlmensional streamwlse coordinate x. Upstream of the cavity there is

very little difference between the two cases, although there is a slight

increase near the upstream corner of the cavity in all cases. Along the

upstream vertical wall the pressure thrust is such as to cause a local drag

reduction: and along the downstream vertical wall the pressure drag is such as

to cause a local drag increase. Note that pressure drag increase on the

downstream vertical wail is larger than the pressure drag decrease on the

upstream vertical wall. In addition, the frictional drag on the bottom of the

cavity is significantly lower than the reference frictional drag on the
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corresponding flat plate In the absence of the cavity. This, of course, is

due to the insignificant induced motion on the bottom of the cavity. In £act,

If these were the only a441tlonal induced forces due to the presence of the

cavity, the net drag reduction would be approximately 3%, 5%, 9%, and 7%,

respectively, for the range of shallow to deep cavities studied.

Unfortunately, there Is another dynamic process involved which causes an

additional increase in drag. Even in the laminar flow case studied here there

are stress relaxation effects present in the flow. As can be seen In Fig. 7,

these frictional forces cause the total drag to eventually relax back to the

flat plate boundary-layer case. Thus, In the present study the embedded

cavities do not appreciably alter the drag characteristics of the flow. This

is in agreement with the laminar behavior of rough walls as documented in Ref.

Ii.

Even in light of the benign effect of the embedded cavities, It is of

interest to analyze in some 4etall the various contributing forces to the

total drag. In Fig. R are depicted the variation of Cp on the upstream and

downstream vertical walls of the cavity as well as on the bottom of the

cavity. As is shown, only near the top of the cavity at the upstream corner

do pressure forces act to reduce the overall drag. In the remaining portions

of the vertical walls, pressure forces add to the net drag. It is also of

interest to note in this figure that the pressure is relatively uniform over a

large portion of the cavity and that any significant pressure thrust or

pressure drag occur in the upper portions of the cavity near the corners.

Finally, it is necessary to examine the remaining contributor to the

total drag, that is, the drag due to the stress overshoots upstream and down-

stream of the cavity. In Fig. 9 the variation of the wall shear stress,

I _u
T = ---- with downstream location is shown. The stress overshoot regions,
w R _y '

w
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relative to the flat plate case, are clearly depicted in the figure. Note

that the flat plate wall shear is indicated by the dashed line which, of

course, is a decreasing function of the streamwise distance x. In all cases,

the magnitudes of the overshoots are quite similar; however, the relaxation

distances tend to increase with the size of the cavity. This suggests that a

maximum separation distance exists, beyond which the cavities act indepen-

dently and no net drag reduction occurs. If the cavities are placed within

the relaxation distance it may be possible to effectively couple the

sequential cavities and achieve some net drag reduction. This type of

placement is further indicated by the drag due to the stress relaxation.

For example, In the four cases examined, the drag increase due to the stress

overshoots is about 35% of the frictional drag decrease due to the presence of

the cavity. Thus, if some means of minimizing the overshoots could be found,

either by optimal spacing of sequential cavities or optimal design of the

cavities themselves, then some net drag reduction might be realized.

Table I summarizes the component drag contributions from the pressure

forces and frictional forces. In all cases the comparisons are made up to the

end of the stress relaxation region downstream of the cavity. As is shown,

the net reduction in drag, relative to the flat plate case, is insignificant

for the cases studied in this work. Nevertheless, in the deepest cavity case,

the reduction, even though small, is less than in the d = 1/2 and d = 3/4

cases. Whether this is the beginning of a trend toward increased drag for

deeper cavities is not clear, and must, for the time being, remain as a

subject for future study.

Finally, the fact that the flow in the vicinity of the cavity has a

smaller momentum thickness than that of the flow on a flat plate suggest that

a cavity may have a positive effect on a separating flow. The usual physical
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description of separation is that an adverse pressure gradient causes the

decelerat|on of the low momentum flow near the surface. The results in thls

paper show that the cavity creates, in effect, a locally favorable pressure

gradient. It therefore appears that the Introduction of a cavity at. or just

forward of, the separation point on a body might shift the separation point

downstream. Such a conjecture is substantiated by the results In Ref. 12

where circumferential grooves were used to delay separation and reduce drag on

an axlsymmetrlc bluff-body. The detailed flow structure about a cavity placed

in the vicinity of a separation point can be studied by the method described

in this paper, and initial calculations on such flows are in progress.

Conclusions

From the results presented In this section, a clear picture of the flow

in the vicinity of the cavity emerges. The presence of the cavity causes an

upstream as well as downstream modification of the flow, as was seen from the

variation of wall shear stress with position in Fig. 9. From these results,

it can be seen that, in all cases, the upstream influence extends for a

distance equal to about 0.25 of a boundary-layer thickness. Downstream of the

cavity the region of cavity Influence increases with Increasing cavity slze.

The length of this region changes from about I boundary-layer thickness for

the smallest cavity to about 1.75 boundary-layer thicknesses for the largest

cavity. Upstream of the cavity there is, effectively, a favorable pressure

. gradient; the boundary-layer thickness decreases and the shear stress

increases. The flow accelerates across the cavity and, on the downstream edge

of the cavity the shear stress is very high, reaching approximately twice that

of the zero pressure gradient Blasius boundary layer. Thus, for the range of
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cavity slzes studled, it can be concluded that cavities which are approxi-

mately 2 to 3 boundary-layer thicknesses apart can be treated as If they were

isolated. An interestlng question arises as to what the flow characteristics

are for closely spaced cavities, those separated by a boundary-layer thickness

or less.

Finally, as mentloned at the end of the last section, the results of this

study can be extrapolated to suggest that the placement of a cavity in the

vicinity of a separation point can delay separation.
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Table I.- Distribution of Drag Forces and Percent Drag Reduction

Cavity Pressure Differential Total Percent
drag frictiondraga differentialdragb reductionc

size (x 10-4) (x 10-4) (x 10-4)

I
£ = d = 4 1.4 -2.0 -0.6 -0.9

I
£ = d = -- 3.3 -4.2 -0.9 -I.32

3
£ = d =- 4.9 -6.8 -I.9 -2.4

4

£ = d = I 7.5 -8.7 -I.2 -I .5

aFrictional drag with cavity minus frictional drag without cavity.
bpressure drag plus differential frictional drag.
CTotal differential drag divided by frictional drag on flat plate.
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Figure Captions

Fig. 1 Cavity embedded in laminar boundary-layer flow.

Fig. 2 Dependent variable distribution in a computational cell.

Fig. 3 Schematic of solution procedure.

Fig. 4 Stream function contours. Contour levels: (a) -0.0006 to 0.0035;

(b) -0.0025 to 0.018; (c) -0.005 to 0.012; (d) -0.007 to 0.012.

Fig. 5 Streamwise velocity profiles in and near cavity. Profiles drawn in

cavity are equi-spaced over length of cavity £.

Fig. 6 Iso-vorticity contours. Contour levels: (a) -3.20 to 0.60;

(b) -2.80 to 1.00; c) -3.20 to 1.40; d) -3.20 to 1.40.

I

Fig. 7 Cd/C f as a function of streamwise distance x: (a) £ = d = _;

= I__;(c) £ = d = 3; (d) £ = d = I.(b) £ d
z 4

1 1

Cp along walls and floor of cavity: (a) _ = d = _; (b) £ = d = _;Fig. 8

= d = _; (d) % = d = i.(c)
4

Fig. 9 Wall shear stress as a function of streamwise distance x"

(a) £ = d = I (b)_ = d =I (c)_ = d =3 (d)_ = d = I.

Flat plate reference case
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