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THREE-DIMENSIOHAL ANALYSIS OF CHEVRON"-_Y_HED SPECIMENS

BY BOUNDARY INTEGRAL METHOD

Abstract

by

Alexander Mendelson and Louis Ghosn

A three-dimensional elastic analysis was performed on the

chevron-notched short-bar and short-rod specimemens, using the

boundary integral equations method. This method makes use of

boundary surface elements in obtaining the solution. The

boundary integral models were composed of linear triangular and

rectangular surface segments. Results were obtained for two

specimens with width-to-thickness ratios of 1.45 and 2.00 and for

different crack-length-to-wldth ratios ranging from 0.4 to 0.7.

Crack opening displacement, and stress intensity factors

determined both from displacement calculations along the crack

front and compliance calculations were compared with experimental

values obtained at NASA Lewis research Center, and with

finite-element analysis done at NASA Langley Research Center.
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C_APTER I

Introduction

The outstanding physical properties of ceramic materials from

high temperature strength and corrosion resistance, to low

density and low thermal conductivity has stimulated interest in

manufacturing ceramic materials for high temperature structural

applications. As an example, a gas turbine with ceramic

components, could operate at higher temperatures than metallic

components, thus improving the overall efficiency of power

generation, and reducing fuel consumption.

Design criteria for ceramic structures are very complicated

due to the great amount of data scatter encountered in the

fracture strength of thesame material, and due to low resistance

to failure in the presence of defects, as compared to structural

metals of similar strength levels. The inherent brittleness of

ceramic materials allows no plastic flow to occur to relieve the

high stress. Therefore, very small flaws (0.001 in. or less) can

create very high localized stresses at crack tips. When the

local stress level reaches the inherent strength of the material,

failure occurs. This failure concept can be analyzed using

linear elastic fracture mechanics, since the basic concepts in
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Figure I. Crack in an infinite plate under uniform stress condition



fracture mechanics were derived from perfect linear elastic

inherentlybrittlematerialbehavior.

The presence of a flaw of length 2a in a ceramic structural

component, loaded with a force P, creates high stress gradients

near the crack tip. Considering the two dimensional solution for

an infinite plate with applied stress cr normal to the crack

plane_ the stress distribution near the crack tip can be shown to

bell]

o .  os-O+s.-so ,o ]y _ 2_"- 2 2
'v

o : °a_--cos _ [l-sin O cos 3_]+ 0 [r I/2]
x _ 2 2

o_Va- o o 30 rrI/2]

Txy =2_ sin -2cos -2cos _+2 0
L J

where r and 0 are the polar coordinates of a point measured from

the tip of the crack (Figure I). Linear fracture mechanics

defines the opening mode stress intensity factor (KI) as

Iim Oy2_ = KI

r-_0
0=0

For an infinite plate KI : o _ a and in general for a finite

plate of a particular geometry K I = Y oK where Y is a

geometric correction factor. Similarly for wedge loading the
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Yp

opening mode stress intensity factor can be expressed as KI =

, where W is the distance between the crack tip and position of

the load P while B is the width of the specimen.

It is assumed that beyond a critical value of the stress

intensity factor (KI>KIc) the crack will propagate. The fracture

toughness (KIc) is defined as an inherent material strength

property which refers to the resistance of a material to fracture

in the presence of a flaw. The value of KIC can be determined

only experimentally.

There exists no standard test for the determination of

fracture toughness (KIc) of brittle non metallic materials. The

test specimens that have been used in ceramic materials testing

can roughly be divided into five groups (Figures 2 and 3).

I. Bent Bar.

2. Compact type.

3. Double cantilever beam.

4. Controlled surface flaw.

5. Short-bar and short-rod chevron-notched.

The first four specimens have either blunt notches produced by

sawcutting or cracks produced by wedge loading. Specimens with

blunt notches can overestimate KIC. Precracked specimens are

difficult to prepare in a reproducible manner, and it is

relatively difficult to monitor the crack length and the crack

growth rate.

To overcome these difficulties Barker [2] has proposed a



P

o o

(i) Bend Bar Specimen

P

(2) Compact Type Specimen

J_, ,

_p
(3) Double Cantilever Beam Specimen

F1aw

....J J_M

(4) Controlled Surface Flaw Specimen

Figure 2. Different specimens for fracture toughness testing
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Figure 3. Chevron-Notched short-bar and short-rod specimens



specimen with a chevron-notch, as shown in Figure 3, in which a

crack always originates at the tip of the triangular notch during

loading. The crack growth has been found to be stable since it

requires an increasing load for continued crack advance until

the crack length reaches a critical value a where the load goes
C

through a smooth maximum. The fracture toughness KIC is

determined from the peak load PMAX and the specimen geometry. The

measurement of the crack length is not necessary.

Taking into consideration the advantages of the chevron-notch

specimen, the American Society for Testing and Materials Cowmitte

E24 has been considering this type of specimen for standarlzatlon

to determine the plane strain fracture toughness of brittle non-

metallic materials. For the universal application of the

short-bar and short-rod specimens the relation between KI , PMAX

and Y must be known. This requires a three-dimenslonal analysis

and/or an experimental compliance calibration of this relatively

complex geometry.

Extensive experimental compliance calibrations of the

short-bar and short-rod specimens had been carried out by Barker

[3] [4], Barker and Guest [5], Munz et.al. [6], Budsey et.al. [7]

and Shannon et. al. [8]. To back the experimental results a

rigorous stress analysis is needed to determine the stress and

displacement distributions in the vicinity of the crack-tlp of

the chevron-notch specimens.

Some numerical calibration of short-bar and short-rod



specimens had been performed and presented at the ASTM Symposium

on Chevron-Notched Specimens: Testing and Stress-Analysls, on

April 21, 1983, in Louisville, Kentucky. Raju and Newman [9]

presented their calibrations of the short-bar and short-rod

specimens calculated by a three-dimenslonal finite element

analysis. Mendelson and Ghosn [I0], as part of the investigation

described herein, presented one calibration of a short-bar

specimen with width-to-thickness ratio equal to 2.0, using the

boundary integral methods. Ingraffea et.al. [I[] presented

results using both numerical methods on the short-rod with width

to thickness ratio equal to 1.45.

The purpose of this work is to present numerical calibrations

of the chevron-notched short-bar and short-rod specimens using

the boundary integrals equation method. The crack opening

displacement and stress-lntenslty factor calculated from the

displacement distribution along the crack front and the

compliance method will be presented. The dimensions used for the

specimens were the ones suggested by ASTM E24.01.05 Task Group

with two wldth-to-specimen thicknesses of 1.45 and 2.0, and

different crack-length-to-width ratios ranging from 0.4 to 0.7.

A complete analysis of the chevron-notched specimens is given

in Chapter II of this report. The derivation of the stability

analysis for this notched geometry is also given with a review of

the different methods to determine the stress intensity factor. •

Chapter III is concerned with the boundary integral equations



method and its mathematical derivations. Chapter IV deals with

the numerical procedures for this method. In that Chapter

several mesh sizes were used to determine the effect of mesh

sizes on the stress intensity factor. To check the equations and

computer program, the single-edge-cracked tension specimen is

analyzed, since the results for the SECT were available by other

methods.

Finally in Chapter V the stress intensity factors for the

chevron-notched short-bar and short-rod are presented. The

results from the compliance calibration method ( see Chapter II

Section 2.4) and from displacements near the crack tip are

compared. And finally the calibration constant Y* for different

specimen geometriesat the critical crack length is determined.



CHAPTER IX

C_nevron-no tched specimen

2.1 Introduction

For extremely brittle materials, such as ceramics,

experimental results to determine the fracture toughness using a

conventional straight thru crack are very difficult to obtain. A

ceramic specimen containing a blunt notch usually overestimates

the fracture toughness. Attempts to introduce a sharp crack by

fatigue or local thermal-shock in a reproducible manner are very

difficult. Furthermore, the initial crack front often cannot be

seen on the fracture surface after testing, making it impossible

to measure the initial crack length required to measure the

fracture toughness.

An alternative to the conventional straight thru notch is the

chevron or V notch, first used by Tattersall and Tappin [12] in

their bending tests. Two inclined cuts are put into the specimen

such that the remaining ligament is an isosceles triangle. When

a small load is applied, a stress concentration of sufficient

magnitude exists at the apex of the triangle to initiate a sharp

stable crack. Barker [2] applied this notch geometry to double

cantilever type specimens called short-bar and short-rod (see

i0
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Figure 31. He found that this configuration exhibits an initial

crack growth stability up to a critical crack length ac,

independent of material properties. At this point the load

versus opening displacement curve goes thru a smooth maximum, and

then the crack growth will become unstable (see Figure 4). Such

a specimen configuration, once calibrated, can be used for

fracture toughness tests, in which the only measured parameter is

the peak force. A theoretical review of the stability and

calibartlon procedure for the chevron-notch specimens is

discussed in the next sections.

2.2 Stability Analysis

The strain energy release rate, GI, is defined as the

mechanical energy released during an incremental crack area

extension

GI _ d(WL-U) (2.11dS

WL is the work done by external forces and U is the elastic

strain energy. For elastic materials GI is equal to (Figure 4)

2
] P dC (2.2)

GI - 2 b da

where d = Derivative

p = total load
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, W H

i

D a lI

I

Figure 4. a) Side-view of the Chevron-notched specimen

slotted surface I

' { _/a fractured{_

ra_ktip

I, aI

Figure4 . b) Section-viewof the planeof the chevronnotch

c
f

0
Load Opening Di_lacement (V)

Figure 4. c) Load versus Opening displacement of the
chevron-notchedspecimens
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b = crack width ( b_B for straight thru crack)

a -a0
( b=B for chevron-notch)

a]-a0
B = thickness of specimen

•V

C TM compliance =

V = opening displacement under load P=ACMOD

F tom linear elastic fracture mechanics, where a plane strain

condition exists in the vicinity of the cracktlp, the crack will

not advance if

(2.3)
GI < GIC

where GIC is the plane strain crlt[cal energy release rate. If

the inequality is satisfied the crack is said to be stable.

Substitutingthe value of GI from eq (2.2), (2.3) becomes

l p2 dc < b (2.4)
_ GIc"

Inequality (2.4) is the well known condition for crack position

stability.

If we increase P until the left hand side of (2.4) equals the

right hand side, the crack will begin to advance. As the crack

advances, the inequality (2.4) might be restored since both sides

of the above equation might increase. For a straight thru crack

b is equal to the specimen width (B) and is constant. Since GIC

is assumed to be a material constant, the right hand side of

(2.4) cannot increase. However for the chevron-notch, b is not

constant and it will increase as the crack length increases. If

b increases faster than the left hand side, then the crack growth



14

will stop. The original inequality will be restored. The

condition for stable crack growth of the chevron-notch is then

2

_ < _ .GIc (2.5.a)

for constant P

2 2

P d C db (2.5.b)

2 da2 < GIc

when the cracks start to grow; from eq. (2.4)

2 2 b GIp : ,. c
dC
ZIT

Also noting that: db B = b
' d--a= al-a0 a -a0 (SeeFigure 4.b), then

equation (2.5) becomes :

2

2 b Gic l d C b (2.6.a)<G
d_..C_C2 da 2 Ica -a 0da

2 dC

d..___C< _ (2.6.b)
da2 a -a0

Experiments have shown that the crack will grow in a stable

fashion until a critical value a = a is reached. At a = a the
c c

crack growth will become unstable , i.e. the crack will then

propagate until the specimen fractures. Since inequality (2.6)

is satisfied for a < a and not satisfied for a > a , then at a
C C

= a we must have
c
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21 Id CE _ 1 dCE (2.7)
ac-a0 da a=a '

a=ac c

where both sides were multiplied by the modulus of elasticity, E.

2.3 Determination of Stress Intensity Factor

Consider an experiment in which the load P is slowly

increased. The crack length will increase from a = a0 , at the

tip of the triangular ligament. When the crack length reaches aC

the load will have reached a critical value P ( See Figure 4.c).
c

From equation 2.4 , we have :

1 2 dCI = bc'GlcPc _ a:ac

Multiplying by EB3

3

3 I _ GI EB

1 B E dC c .(2.8)
Oa p2

2 bc a=a c

Defining A2 to be equal to the le[t hand side of equation 2.8

then

A2 2Pc
Glc -

EB3 (2.9)

The critical stress intensity factor KIC can then be determined

from ref [1]
2

Glc E = K_c( 1 - u )
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So equation 2.9 can be written as

P.A

KIc = c3/2 (2.I0)
B (l - u2)

Barker has shown that A will always be the same independent of

material properties, and the absolute size of the specimen. A is

shown to be a function of the compliance at the critical crack

length a . For the sample configuration that Barker hadC

considered, a is to a good approximation independent of materialc

properties. Therefore, A is also assumed to be independent of

material properties.

Once A is calibrated, to determine KIC , a short-bar or a

short-rod fracture test is performed where the only parameter

measured is the maximum load P required for failure. Toc

determine the calibration constant A, Barker ran fracture tests

with a chevron-notch on materials with well known KIC. Then he

simply determined A by the known value of KIC , D and the

experimentally measured value of P .
c

For universal application of the short-bar and short-rod

specimens, the stress intensity factor should be analyzed using

more standardized methods.

In this work, KI is determined using compliance calcultalons

and the displacement fields along the crack front.
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2.4 Compliance Calibration

The compliance calibration test is basically a method to

determine the rate of change of the compliance as the crack

dC
length increases. If --- is known then from equation (2.2), the

da

strain energy release rate can be calculated. What is usually

done is to run tests for different crack lengths a, and the load

versus displacement is recorded for every crack length. This

procedure can be done analytically using the boundary integral

equations method. For every crack length position, the opening

displacement is calculated for a given load. Since ceramic

materials are brittle, the linear elastic assumption is valid;

V
i.e. the compliance is given by C = --.

P

The compliance C is plotted as function of crack length, and

then fitted by a polynomial. Finally GI and KI are determined by

differentiating the polynomial.

2
1 P dC

From equation (2.2) GI : _b--_

Substituting the value of b for a chevron-notch specimen, and

defining a new dimensionless variable _j = aj/W then eq. (2.2)

will have the form

2
= 1 P cLl-C_O dC (2. II)

GI _ Bl_
O{ -0_0
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and

ii12KI-P 11-2el-_o d cE' (2.12)_ -or0 d ot °

where E' = E for plane stress condition

E' E=-----_ for plane strain condition
]-U

Introducing a dimensionless compliance

* E'VB
C = CE'B =

P

Then (2.12) becomes

_ P . al-aO dC (2.13)

KI BNrff ct -a 0 da

Munz et.al. [6] defined

y* = 1 . _I-_0 . dC

2 _ -sO do

Then equation (2.13) becomes

p *
Ki - Y (2.14)

B,/ff-

At the critical crack length a , comparing eq. (2.14) andc

eq.(2.10), one gets:

A= 13 . Y
a=a

c

Thus if Barker had normalized his calibration constant A using

2 B3' * [B W instead of the two geomtrlc factors A and Y would be
I

the same. la=ac
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2.5 Stress and displacement fields

Since the stress and displacement solutions are provided by

the boundary integral equations method, the stress intensity

factor can be determined from its basic definition.

lim Oy2_ = KI (2.15)

r.O
6 = 0

The stresses, in a region not far from the crack tip, are

multiplied by the square root of the distance x from the crack

front, then plotted versus x. A curve Is then fitted thru those

points, where its value at x equal zero is proportional to KI.

Alternatively, the displacements could be used, by noting

that

V_ _2_E (2.16)
Iim = KI

r.O

Now the displacement divided by _-is plotted versus x, and the

intersection of this curve at x = 0 is proprtional to KI. Using
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the displacements, an unknown parameter _ is introduced. For

plane strain condition a is assumed to be equal to 4 (I-D2), and

for plane stress _ is equal to 4.

Determining the stress intensity factor, using thls method,

gives the variation of KI along the crack front, while the

compliance method Just gives an average stress intensity factor.

By using both approaches a better understanding of the variation

of KI with the crack length can be determined, for the

chevron-notched specimens.



Chapter III

Three-Dimensional Boundary Integral Equation Method

3.1. Introduction

Three dimensional elasticity does not enjoy the wealth of

solutions that are available in two-dlmensional elasticity.

Solutions, for example, have been obtained for infinite and

semi-inflnite regions using the stress functions techniques,

which satlsfy the desired boundary conditions near the origin and

have the properties that the stress and/or displacement vanish or

remain bounded asthe boundary at infinity is approached.

For finite three-dimenslonal problems analytical solutions

have been used for simple geometries and loading conditions.

However, for most engineering problems purely numerical methods

such as finite difference and finite element are necessary. In

these methods the whole continuum is discretized making the

solution sensitive to the geometry of dlscritization.

Another method of analysis recently rediscovered by Rizzo in

1967 [20], the boundary integral equations method, offers an

attractive alternative. The boundary integral method involves

the transformation of the partial differential equations

describing the behavior of the unknowns inside and on the

21



22

boundary of the domain to integral equations over the boundary,

i.e. the integrals are functions of the boundary data only.

Values at interior points if required can be calculated

afterwards from the surface data. The system of equations

resulting from dlscretlzation of the boundary integral equations

may be smaller by an order of magnitude than that obtained by,

for example, the finite element or finite difference methods.

One drawback is that the resulting matrices are non-symmetrlc and

fully-populated, whereas in finite element methods the matrices

are symmetric and most of the time banded. •

3.2. Mathematical Derivation

The most direct derivation of the boundary integral equations

is based on a singular solution of the Navier equations. The

Navier equations of equilibrium (in terms of displacements) for

three-dlmensional problems in elasticity ( for brittle materials)

are : 2 ]
V u + 8 = 0 (3.l.a)

I 1-2u ,i

o = uj,j i,j = 1,2,3

where uj are the displacements, D is Polsson's ratio and the

usual tensor notation is used, where a repeated subscript

indicates summation over its range and a comma indicates partial

differentiation. The Navler equations can be written in another

form as :
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.. + 1 u = 0
ui'j3 l-2u k,ki (3.l.b)

A solution to these equations can be obtained by making use

of Kelvin's singular solution due to a single unit concentrated

force acting in the interior of an infinite body [13] (see Figure

5).

le_3_v_'eX3_

e3|__2_ InfiniteRegion R

el X!

Figure 5. Point load in an infinite region

The displacement field at any point Q at distance r from the

point where the force is applied is given by Ref. [15] :

uj a.. r • ei (3.2.a)4_G (4(l-u) 19 4(l-u) 'ir'j
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or

u.=U...e.
J 1J 1 (3.2.b)

and

Uij 4_G 4(I-u) 1j 4(l-u) ,1 ,j

where r is the distance between a field point Q with coordinates

(xi) and the point of load P with coordinates (Xp) ;

I/2

r : [(Xi-X p) (Xi-X p) ] (3.3)

and ei is the component of the unit base vector in the i

direction.

If we consider the field point Q to be on the boundary of a

body cut out of the infinite region, then by making use of the

solution for the displacement field uj_ the traction forces can

be determined on this boundary by

tj = oji. ni (3.4)

where n is the outward normal at the surface of the body.

Expressing the stress tensor in terms of displacements

°Ji - l-2u2GUajl Um,m+ G [ uj,i + ui,j ] (3.5)

where G is the shear modulus, differentiating equations (3.2) and

substituting in Equation (3.5), equation (3.4) becomes :
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8_(l-u) (l-2u) 'ir'j - njr'i

+ nir'j I " ei (3.6.a)

or

t. = T...e (3.6.b)
3 31 i

where

Tij 8_(l-u) ij (l_2u)r,ir,j ,i I ,j

We now make use of Betti's reciprocal theorem [14] which

states: If an elastic body is subjected to two systems of surface

• tractions tj and t'j, then the work that would be done by the

first system tj in acting through the displacement u*j of the

second system is equal to the work that would be done by the

second system t*j acting through the displacement uj of the

first system, i.e.

/ * /t" ds (3.7)tj uj ds = j uj
s s

where s is the boundary surface of the body, and ds is an element

of surface area.

Suppose we now choose the second system of traction and

displacement ( t*j and u*j ) to be the one produced by a single

unit concentrated load, and the system uj , tj to correspond to
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the solution we are seeking, then since we know the solution to

the unit concentrated load (Kelvin solution), we can solve for

any of the unknown traction and displacement ( tj , uj ) by

substituting equations (3.6) and (3.2) for t and u
J J

respectively, and solving the integral equation (3.7). Because

of the singular nature of Uij and Tij at r = O, it is necessary

to employ a limiting process as shown in Appendix A, resulting in

the following equation, known as the boundary integral equations:

tj Uij !u. - uj

Z"
ds

J Tij ds 6ij (3.8.a)
s S

or in another form

where CI] = 6ij for interior points and Ctj = _J for boundary2

points with smooth tangents. Equations (3,8) are also known as

Somigllana's identity. For very simple geometries and boundary

conditions Somigllana's identity is satisfactory for obtaining

analytical solutions, but for complex bodies a numerical solution

is necessary and is discussed in the next chapter.

Once the unknown traction and displacement are determined on

the boundary, internal displacements and stresses can be

calculated as functions of the boundary displacements and

tractions. For internal displacement, equations (3.8) is used

with Cij = 61j ,however for internal stresses equations (3.8) is
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differentiated and substituted in equation (3.5), to get [15]:

cij =_slVij k tk- Tijk Ukl ds (3.9)

where

2" (l-2u)(6ikr,j+ 6jkr,i)+ 3 r,ir,jr,k
Vijk - 8_(l-u)r

- 6ijr,k (I-2u) }

G 16 _[U6ik r .+U6.kri+(l-2u)
Tijk: 8_(l-u)r 3 dn '3 3 ' 6ijr'k

.+6ur,jr-5r,ir,jr,k]+ 6ur,kr inj ,kni9

+6(1-2u)r,ir,jnk-2(1-4u)6ijnk+26iknj

+26jkni}

Thus, the displacements and stresses at any interior point can be

obtained by integrating numerically over the boundary equations

(3.8) and (3.9) respectively with cij = 8ij ' in the absence of 0

body forces.



CHAPTER 1V

NUMERICALPROCEDURE

4.1. Reduction of the Integral Equation to a set of

Simultaneous Equations

The first step in solving the boundary integral equations is

to reduce them to a set of linear simultaneous equations. The

boundary of a body to be analyzed is divided into N surface

segments. Those segments can be rectangles or triangles as seen

in Figure 6. Eq. 3.8 can then be rewritten as:

N

o£fCij uj = _ Uij tj d s -n=l n Tij uj d sn (4.1)

n s n

As an approximation the traction, tj and displacement, uj are

assumed constant over each surface segment, and concentrated at

the centerpoint of that segment. Equation (4.1) can be written

as:

N N

Cij uj =n_ 5f Uij dSn-n_Ujf Tij dSn (4.2)=l S = S
n n

28
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The expression (4.2) represents a set of 3N equations which can

be written in matrix form as:

I _s 1 I nl =[ _s 1 Itnl
Cin + Tin d sn uj Uin d sn j (4.3.a)

n n

where J _ 1,3 i, n - I,N

or in general form

[ A ] {u } = [ B ] Itl (4.3.b)

For the case of a traction problem where the t's are known, or

the case of a displacement problem where the u's are known,

equation (4.3) reduces tothe form

[ A ] {X} = {C} (4.4)

Equations (4.4) represents a set of 3N linear algebraic equations

which are to be solved by Gauss Elimination method. In case of

mixed boundary value problem, where some values of both t and u

are specified, it is necessary to interchange the columns of

matrices A and B (in Eq. 4.3), that all the unknown quantities

are contained in the column vector u and the known values are

contained in t, before reducing the equation to the form of Eq.

(4.4).
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ii

O

Constant Triangular Constant Rectangle

Element Element

Figure 6. Typical surface mesh for constant segment
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The assumption of constant values of t and u is a good

approximation for simple problems. However when a stress

gradient exists, this method needs a very large number of surface

segments to converge.

As an improvment, the traction and displacement are assumed

to vary linearly over each surface segment. Values of tractions

and displacements are assigned to nodes located at the corners of

the triangular or rectangular segments rather than at their

centerpolnts (See Figure 7). A review of the linear variation

used, and the integration methods implemented in the computer

program written are shown in appendix B.

By placing the nodes at the corners of the segments two

difficulties become apparent:

I) The possibility exists for nodes to be placed at

sharp edges of the body rather than at flat surfaces. While Cij

( in Eq. 4.1 ) is equal to I/2 6ij for flat surfaces ( see chap.

3 for explanation of 6ij and Cij terms ), Cij for nodes at edges

must be computed, using a limiting process derived as explaine d

in Ref. [18].

N

Cij(P,Q) = -_ f Tij(P,Q) dSn for P _ Q (4.5)
n=]

s n

In the computer program, all Clj terms are computed using

Eq.(4.5) • The value for Cij on flat surfaces was computed and
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i
Linear Triangular Linear Rectangular

Element Element

Figure 7. Linear segments

t t

Btl

:_ X

Figure 8 . Intersection of two segments that lie in different planes
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it was found to be excactly equal to I/2 61j as predicted by the

analytical formulation.

2) Placing nodes at corners of segments assures the

continuity of displacements and tractions. However, in modelling

real problems a step change in traction may exist. To assure

discontinuity of applied tractions, the input values of traction

are associated with the segment they act on instead of the nodes.

As an example, consider two adjacent segments which lle in two

different planes ( see Figure 8). Segment I is under uniform

tension t while segment 2 is traction free. If the traction is

associated with node A directly, an extra shearing traction

exists in segment 2 varying from zero at node C to t at node A.

By assigning the traction to a node of a specific segment, in

this example to node A of segment I, the problem of adding extra

traction is avoided. Alternatively, one can place two distinct

nodes between segments 1 and 2, but this method is not

implemented here.

Another problem due to the discontinuity of traction occurs

at crack fronts. To solve this problem the crack front is left

free of surface segments (see Figure 9). This method causes

oscillation of the traction distribution ahead of the crack

front: This oscillation is demonstrated in the next section. To

avoid these oscillations, two special segments are used near

crack fronts. In the first case, the surface segment adjacent to
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Segment free crack front

Figure 9. Segment free crack front

_:0.0 V=O.O

i

1
i

Parabolic segment s

I I 3 5 ]Y

ICrack__ l I! !!Front .... _ .... __

Figure 10. Parabolic segment for discontinuity regions

near crack fronts
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the discontinuity is assumed free of nodes. The traction and

displacement in this surface segment is assumed to be a parabolic

(the next highest order of magnitude after linear variation)

function of the tractions and displacements of the six nodes

behind it (see Figure 10).The variation of the traction, and

displacement over the node free segment has the form.

t = SI tI + $2 t2 + $3 t3 + $4 t4 + $5 t5 + $6 t6

u = SI uI + $2 u2 + $3 u3 + $4 u4 + $5 u5 + $6 u6

(x - x3) (x - x5) (y - y2)

Sl = ; S2= .......

(xl- x3) (xl- x5) (yl- y2)

Where x,y are the in-plane coordinates of the nodes. When x = xl

and y = yl , S1 = I and all the other S'n are equal to zero.

This variation is based on Lagrange's interpolation formula.

When the number of nodes around the discontinuity is smaller

than six, a simplified constant segment is used. This simplified

constant segment is the same as a regular constant triangular

segment, except that the node is positioned at one of the corners

rather than at its centerpoint (see Figure l[).

Discontinuity

Nodal Position

Figure II. Special constant segment
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While the linear variation is more complex than the constant

model, little extra effort is required to assemble the matrix in

the form of equation (4.4). The resulting system was then solved

by the Gauss Elimination Method on the CRAY-I system at NASA Lewis

Research Center.

To check the computer program, the Single-Edge-Cracked-Tension

specimen (SECT), shown in Figure 12, is analyzed, and the results

of the stress intensity factors are compared with two other methods

(the method of line and finite element) as shown in the next

section.

4.2 Results For The Single-Edge-Cracked-Tension Specimen

The computer program of the Boundary Integral Equations (BIE),

is first applied to a single-edge-cracked specimen in tensile

loading. The SECT specimen has dimensions, W = 2.0, B = 3.0,

H = 1.75, a = 1.0, and Poisson's ratio equal to 0.333, where a, B,

W, and 2H, are the specimen's crack length, thickness, width, and

height, respectively (see Figure 12). The same SECT specimen has

also been analyzed by the Finite Element Methods (FEM) in

Ref. [16], and by the Method of Lines (MOL) in Ref. [17]. The

effect of the discontinuity segments is also studied below.
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Two computer runs of identical number of nodes (304), are

used in this study. The difference between the two meshes is

that mesh A contains discontinuity segments while B uses segment

free crack front. A plot of the normalized stress distribution

at the center of the specimen is shown for both meshes (Figure

13). Also shown is the Finite Element stress distribution. From

the results, two observations can be made: I) The stress

distribution for mesh B oscillates sharply near the crak tip, 2)

the stress distribution for mesh A agrees with the FEM results.

The effect of the discontinuity segments is not apparent in the

plot of the displacement distribution (Figure 14), and the

results of the displacement seem in good agreement with FEM. The

difference between the displacements of meshes A and B is

accentuated in determining the stress intensity factor from Eq.

(2.16).

In Figure 15, a plot of the displacements at the center of

the SECT specimen Divided by the square root of the distance r

from the crack front, is shown for both meshes. The solution of

mesh B (with segment free crack front ) diverges as r goes to

zero. The solution for mesh A (with special segments at the

crack front ) is almost a linear function of r. This behavior of

mesh A at the center of the specimen is true throughout the

thickness as seen in Figure 16. The stress intensity factor

(S IF) is then determined through the thickness of mesh A as

described in section 2.5 using the displacements. A plane strain
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condition is assumed throughout the thickness of the specimen,

except at the surface where a plane stress is assumed.

Correspondingly _ in Eq. (2.16) is equal to 3.556 for plane

strain and 4.0 for plane stress. Figure 17 shows the variation

through the thickness of the dimensionless stress intensity

factor ( k ), obtained by the BIE method with discontinuity
_-_a

segments as well as the FEM and the MOL. THere is a -2.5 percent

difference between BIE and FEM at the center and +4.0 % at the

outer surface of the specimen. The difference between BIE and

MOL is only -1.4 % as shown in Table I.

Table l--Normalized stress intensity factor for Sect

specimen, W = a = 1.0, B = 3.0 ,H = 1.75, D = 0.333.

z BIE FEM [16] MOL [17]
B

0.000 2.72 2.79 2.76

0.266 2.70 2.76 2.78

0.483 2.47 2.43 2.47

0.500 2.24 2.15 2.38
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Figure 12. Single-Edge-Cracked-tension specimen
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Figure 13. Stress distribution at the centerline of the SECT specimen I'
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Figure 14. Displacement distribution at the centerline of the SECT
specimen
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Figure 15. V/%_--versus r for the two meshes of the SECT specimen
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Figure 16. Variation of V/_-r-along the crack front for SECT
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Figure 17. Normalized stress intensity factor for the SECT specimen
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The SIF decreases approximately by 18 % in going from the

center to the surface of the specimen for BIE, compared with only

15 % for MOL and 23 % for F EM. The difference of less than 5 %

for the three methods can be considered a good agreement, for a

three dimensional fracture mechanics problem.

4.3 Discretlzatlon of the Chevron-Notched Specimens.

Having verified the accuracy of the equations and the

computer program on the SECT specimen, a convergence study on the

Chevron-Notched short-bar specimen is performed in this section.

The basic dimensions of the specimen are:

B = 1.0, W - aI I 2.0, a0 TM 0.4,2H = 1.0, D = 0.333,

W + x' = 2.10

where x' is the distance between the loading line and the end of

the specimen as seen in Figure 18. X' is equal to O. IB. In

terms of the dimensionless quantities _i TM al/W ' the values of

and _ are 0.2 and 1.0 respectively. A square grip groove is0 1

also modelled having the dimensions recommanded by ASTM E24.01.05

task group. The total height of the groove is 0.35B and its

depth is 0.15B. The only discrepancy with the recommendation is

the absence of the finite width slot cut into the actual

specimens to form the chevron-notch.

The usual loading of the chevron-notched specimens is with a

knife edged fixture [6]. The type of loading applied in this

analytical work is a uniform traction in the Z-dlrectlon and a
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triangular variation in the X-dlrectlon, as shown in Figure 19.

The modulus of elasticity (E) used is equal to 1.0. This

normalization of E is needed so that the coefficient of tractions

and displacements will be of the same order of magnitude. This

is of importance for mixed boundary value problems where the

coefficient of matrices A and B (in Eq. 4.3) are interchanged to

form a set of linear algebraic equations with all the unknowns on

one side and the knowns on the other. If the coefficients of

matrix A in Eq. (4.4) are not of the same order of magnitude,

large truncation errors are induced in using Gauss Elimination

method.

For the convergence study three meshes having different

number of nodes are used. Mesh 1 shown in Figure 20 has 61 nodes

and 72 boundary segments. Mesh 2 is basically formed by dividing

every surface segment in mesh I into approximately four. Mesh 2

has 221 nodes and 237 boundary segments, and is shown in Figure

21. Finally, mesh 3 has 370 nodes and 420 boundary segments.

Mesh 3 is shown in Figure 22. All meshes have discontinuity

segments at the crack front, and linear segments everywhere else.

Mesh I has one segment along the crack front, while mesh 2 has

two segments and finally, mesh 3 has four.

Calculations were performed for nine different values of

crack front positions ranging from _ = 0.35 to 0.75, on the three

meshes dlscrlbed above. Figure 23 shows the dimensionless

opening displacement EVB/P (see chapter 2) for the three meshes



(At Y = 0.175, Z = 0, X ffi-a/W ) as function of _ • For _ less

than 0.5, values of EVB/P are converging from below while for a

greater than 0.5 the convergence is from above. Figure 24

represents the variation of the normalized displacement for _ ffi

0.4 as function of the number of nodes. Also shown is the

unpublished experimentally measured values obtained from J.L.

Shannon, NASA Lewis Research Center. This curve shows that an

assymptotic value is not yet reached. Even if this analytical

curve is extrapolated it cannot reach the experimental value:

This is partly due to the difference in the finite slot size,

making the analytical model stiffer than the experimental.

Proving this using a mesh with node numbers larger than 370 is

practically impossible without making use of external storage.

Instead, a new mesh was generated using the number of nodes as

mesh 3 (370 nodes), but with different arrangement of the

boundary segments. As seen in Figure 25, the boundary segments

of mesh 4 are increased in the plane of the crack and decreased

everywhere else. This mesh is the same as in Ref.[10]. The

opening displacement of mesh 4 is shown to be 10% less than mesh

3. A complete plot of the normalized opening displacement for

different values of a is shown in Figure 26 for meshes 3 and 4.

Also shown are the unpublished experimental results from J.L.

Shannon, NASA Lewis Research Center. Two observations can be made

I) mesh 4 is stiffer than mesh 3 and 2) mesh 3 is consistently

lower by 4% than the measured values. The crack mouth opening
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Table 2--Crack Mouth Opening Displacement for Different Meshes.

a/W Mesh I Mesh 2 Mesh 3 Mesh 4

61 221 370 370

0.35 79.51 84.28 89.92

0.40 102.60 107.20 110.04 98.96

0.45 131.75 134.90 136.21 122.80

0.50 167.44 168.34 164.31 150.30

0.55 210.20 208.37 200.30 182.90

0.60 261.25 256.81 236.96 218.90

0.65 323.22 316.83 285.89

0.70 404.13 395.47 346.38 335.80

CPU TIME 18.0sec 214.0sec 655.0sec 780.Osec



displacements for all meshes are summarized in Table 2 as

function of a/W, also shown is the running time in seconds (CPU)

required for each mesh on the CRAY-I computer.

Figure 27 shows typical curves for the crack opening

distribution along the centerllne of the short-bar specimen for

different mesh sizes for c= 0.5.

Using the results shown in Figure 26, the stress intensity

factor K I was computed from relation (2.13), a plane stress

condition is assumed. As a first approximation the slope of the

compliance curve was obtained by fitting every three points to a

second degree polynomial in terms of a , since it gives better

results for the derivative than the linear variation.

C = EVB = BI + B2 a + B3 c2
P

then, dC at the mid point is
dc

dC = B2 + B3

dc

The results are plotted in Figure 28 for the four meshes,

together with the unpublished experimental values from J.L.

Shannon, NASA Lewis Research Center. Every mesh shows a minimum,

but the position of the minimum point varies from one mesh to

another. From the results it seems that the stress intensity

factor is converging from above. Meshes 3 and 4 are in good
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agreement only for large values of _, but for smaller values mesh

4 gives lower results than mesh 3.

A final check on convergence is applied to the variation of

the stress intensity factor along the crack front. The stress

intensity factor is determined from Eq. (2.16) assuming plane

strain conditions all through the crack front. A plot of the

displacement divided by _ is shown in Figure 29 for a = 0.5. As

Z approaches the Intersectlon of the crack front with the

chevron-notch, V/Yrr diverges. This divergence is due to the

inadequacy of modelling the intersection of the crack front with

the chevron-notch. So only the points greater than 0.I are used

in the stress intensity factor calculations. Using this

assumption the normalized stress intensity factor, Y , was

evaluated along the crack front. Y along the crack front is

shown in Figure 30 for meshes I, 2 and 3, with _ = 0.5. A plot

of Y at the center of the specimen ( Z = 0 ) for _ = 0.5 is

shown as a function of the number of nodes (Figure 31). It is

seen that in going from mesh 2 to mesh 3 a 40Z increase in nodes

caused only a 6% decrease in the stress intensity factor. Figure

31 shows that an extrapolation of the curve would produce a
.

decrease of less than 2% of the Y . Therefore, it is decided,

given the limited memory space available on the computer, that

mesh 3 would be the model discretization for all the other

geometries including the short-rod specimens.
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Figure 18. Chevron-notched bar specimen
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Figure 19. Loading condition for the chevron notched
specimens



_n

Figure20.Mesh 1 with 61 nodesfor a/W = 0.4



Figure 21. Mesh 2 with 221 nodes for a/W = 0.4



Figure 22. Mesh 3 with 370 nodes for a/W = 0.4
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Figure 23. Crack opening displacement as function of a/W
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Figure25.Mesh 4 with370 nodesfor a/W = O.S
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CHAPTERV

RESULTS AND DISCUSSION fly THE SHORT-BAR

AND SHORT-RODSPECIMENS

Normalized stress intensity factors Y and load line

displacements for the Chevron-Notched short-rod and short-bar

specimens are presented in this chapter. Two width-to-specimen

thicknesses, equal to 1.45 and 2.00, where applied to both the

short-rod and short-bar geometries. Therefore, four

configurations are analyzed in this work. Table 3 gives a summary

of the specimens dimensions used.

Table 3-- Summary of specimen dimensions.

specimen W/B a0/W al/W H/B X'/B

Short-bar 1.45 0.332 1.0 0.5 0. I

Short-bar 2.00 0.200 1.0 0.5 0.1

Short-rod 1.45 0.332 1.0 0.5 0.1

Short-rod 2.00 0.200 1.0 0.5 0.I

A uniform traction in the Z-direction, and triangularly

65
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shaped in the X-dlrection was applied on all specimens (See

Figure 19). The load was applied in a squaregroove cut into the

specimens, 0.35 B height and 0.15 B deep (See Figure 18). A

polsson'sratio of 0.333 was used.

Due to symmetry, only a quarter of the specimen was

dlscretlzedinto boundary segments. The number of segments and

their geometries are slmilar to Mesh 3 described earller (370

nodes and 420 boundary segments as shown in Figure 22). The

boundary segments near the crack front have parabolicvariation

and linearvariationeverywhereelse. No singularityelementsare

used in this study.For the short-rodspecimens,the segmentsin

Y = 0.5 plane as well as the segments in Z = 0.5 plane are

combined together to form the cylindricalshape of the rod. The

end view of the bar and rod configurationare shown in Figure 32.

The rest of the planes have boundary segments meshes identical

for both the short-barand short-rodspecimens.

Symmetricboundaryconditionsare appliedin the Z = 0 plane,

where the dlsplacementin Z-dlrectlonis zero. For Y = 0 plane,

the plane of the crack_ all the segments are free except those

that lle in the trapezoidalregion where the displacementin the

Y-dlrectlonis fixed.In order to preventrlgld-body-motlon,only

one node is fixed in the X-dlrectlon.For the short-barspecimen_

node 1 is fixed but for the short-barspecimennode 5 is fixed

(Figure32).

The stress intensityfactor from complianceand displacement
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Figure 32. End-view of the short-bar and short-rod specimens
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Table 4--NORMALIZED CRACK OPENING DISPLCEMENT FOR CHEVRON NOTCHED

SPECIMENS AS FUNCTION OF a/W

a) EVB/P at center (Z - 0, Y - 0.175, X = -a/W)

Type W/B a/W

0.35 O.40 O.50 O.55 O.60 O. 70 O.75

bar 1.45 60.73 67.72 92.68 110.26 129.37 197.37 261.28

bar 2.00 89.92 110.04 164.31 200.30 236.96 346.38 445.86

rod 1.45 82.29 94.92 129.27 153.93 186.91 274.99 348.52

rod 2.00 126.38 157.93 239.83 294.65 366.63 520.07 652.92

b) EVB/F at center (Z = 0,Y - 0.5, X ffi-a/W)

Type W/B a/W

0.35 0.40 0.50 0.55 0.60 0.70 0.75

bar 1.45 57.91 64.83 89.98 107.64 126.68 194.69 238.59

bar 2.00 87.12 107.31 161.70 197.73 234.29 343.62 443.07

rod 1.45 79.17 91.75 126.20 150.97 183.87 271.95 345.44

rod 2.00 123.22 154.85 236.86 291.73 363.84 516.87 649.66
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fields are determined for five different crack-length positions.

Since experimental results showed that a minimum stress intensity

factor occured between 0.5 and 0.6, the crack-length to specimen

width ratios ( a/W ) used are a/W ffi0.40, 0.50, 0.55, 0.60 ,

0.70. The mesh for a/W of 0.4 is given in Figure 22. The meshes

for different a/W values are essentially the same except for the

Y boundary condition in the plane of the crack, where one new

layer is freed for each step increase in a/W.

5.1 STRESS INTENSITY FACTOR FROM COMPLIANCE

To determine the stress intensity factor from compliance, the

displacement under the load llne was determined for different

crack-length positions using the BIE program. Table 4 gives the

normalized displacements, C* ffiEVB/P , at the mldplane of the

specimens, at Y ffi0.35 H and Y = H, assuming plane stress

condition.

The displacement computed at Y ffiH, is always less than that

at Y - 0.35 H. This variation has a maximum of 4.3% at a/W ffi0.4

and a minimum of 1.4% at a/W = 0.7. Also note that this variation

decreases with increasing W/B.

Since the analysis is performed under uniform loading

conditions, a variation in the normalized displacement with Z

along the loading llne is computed. Table 5 shows some typical

"" variations in the displacement between the center and the surface

of the specimen.
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Table 5--Typical variation of the displacement at the center

of the specimen to its outer surface along the loading line.

Type W/B a/W

0.40 0.55 0.70

Short-bar 1.45 -1.0% -1.1% -0.7%

Short-bar 2.00 -1.1% -0.6% -0.4%

Short-rod 1.45 7.3% 4.6% 3.3%

Short-rod 2.00 4.1% 2.3% 1.7%

Table 6--Normalized average displacement along the loading line,

EVB/P at Y - 0.175, X _ -a/W

Type W/B a/W

0.35 0.40 0.50 0.55 0.60 0.70 0.75

Bar 1.45 60.28 67.08 92.09 109.76 128.61 196.83 261.07

Bar 2.00 89.35 109.41 163.76 199,88 236.14 345.86 445.53

Rod 1.45 83.82 96.40 130.91 157.94 188.79 277.29 350.91

Rod 2.00 127.67 159.34 241.36 296.16 368.36 522.14 655.26
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As given in table 5, the displacement is not constant along the

loading line. The displacements increase going from the center to

the surface of the specimen for the short-rod and decrease for

the short-bar. The percent variation is higher for the rod

specimens. The variation decreases with increasing crack-length.

For the same configuration the variation is lower for longer W/B.

Taking into consideration this variation along the loading

line,an average displacement along the loading llne was computed,

and presented in Table 6. This average displacement was used in

the determination of the stress intensity factor from compliance.

In determining the stress intensity factor, the average

normalized compliance, C* = EVB/P , is fitted in a polynomial.

Since plots of compliance showed the appearance of exponentials,

the polynomial used in the least square fit has the form:

In C* : In EVBp- dI + d2 a + d3 a2 + d4 3

Table 7--Coefficients of the least square fit of the compliance.

Type W/B dI d2 d3 d4

Short-bar 1.45 2.8362 5.147 -6.641 6.153

Short-bar 2.00 1.6743 12.518 -16.313 9.965

Short-rod 1.45 3.6014 2.064 0.484 1.029

Short-rod 2.00 2.7978 7.447 - 5.554 2.884
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Thecoefficlents of the least square fits of the normalized

compliance are given in Table 7. Using these coefficients, the

compliance's derivative for use in eq. (2.13) is found to be

dC
= ( d2 + 2 d3 _+ 3 d4 c2).C*dc

Having the values of the compllance's derivative, the

normalized stress intensity factor was computed and plotted in

Figure 33 as a function of a, assuming plane stress conditions.

The values of the minimum normalized stress intensity factor Y*

and its position are given in Table 8.

Table 8--Critical stress intensity factor for the chevron

notched specimens.

Type W/B (a/W) Y* A
m m

Short-bar 1.45 0.529 23.675 19.661

Short-bar 2.00 0.516 28.328 20.031

Short-rod 1.45 0.543 29.097 24.164

Short-rod 2.00 0.492 36.246 25.630

A comparison between these minimum values and those presented

at the ASTM Symposium on Chevron-Notched Specimens: Testing and

Stress Analysis, with experimental results, is given in Table 9,
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Figure 33. Stress intensity factor from compliance for the chevron-
notched specimens as function of a/W
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Table 9--Comparison between the mlnmum stress intensity factor

assuming plane stress condition

Type a/w BIE FEM EXP. OTHER BIE

Ref. [9] Ref. [8]

Bar 1.45 23.67 24.43 24.85

Bar 2.00 28.33 29.13 29.91 27.81Ref[lO]

Rod 1.45 29.10 28.43 29.11 28.30 Refill]

Rod 2.00 36.25 35.40 36.36

As seen in table 9, Using BIE, the critical Y for the

short-bar specimens are 5% below experimental results compared

with only 0.3% for the short-rod. On the other hand, the FEM

results Ref.[9] are consistently 2.5% below experimental results.

5.2 Stress Intensity Factor Along The Crack Front.

Normalized stress intensity factors Y are computed point

wise along the five crack fronts using the displacements obtained

from BIE solutions. Plane strain condition is assumed along the

entire crack front. The displacements divided by the square root

of r, where r is the distance of the nodal point to the crack

front, are plotted (Figure 29). As seen earlier these plots

diverge as Z approaches the intersection of the crack front with

the chevron notch, Z - b/2. This divergence is most severe for
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Table 10--Stress Intensity Factor, Y*,along the crack front

for the Short-Bar Specimens

a) W/B = 1.45

a/W 2Z/b Av. Y_

0.000 0.500 0.750 0.875 1.000

0.40 30.97 31.03 31.13 31.20 31.29 31.07

0.50 28.69 28.94 29.22 29.41 29.65 29.03

0.55 29.02 29.30 29.59 29.78 30.02 29.39

0.60 29.79 30.22 30.69 31.01 31.43 30.38

0.70 36.73 37.15 37.49 37.75 38.05 37.24

b) W/B = 2.00

a/W 2Z/b Av. Y*

0.000 0.500 0.750 0.875 1.000

0.40 29.79 30.35 30.94 31.32 31.79 30.53

0.50 29.28 29.76 30.22 30.53 30.93 29.90

0.55 29.88 30.29 30.62 30.84 31.01 30.36

0.60 30.10 30.54 30.85 31.15 31.57 30.63

o
0.70 34.29 34.78 34.94 35.23 35.79 34.81
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Table ll--Stress Intensity Factor, Y*,along the crack front

for Short-Rod Specimens.
i

a) W/B ffi1.45

a/W 2Z/b Av. Y*

0.000 0.500 0.750 0.875 1.000

0.40 37.39 37.47 37.59 37.65 37.76 37.51

0.50 33.35 33.56 33.75 33.89 34.05 33.62

0.55 33.29 33.44 33.52 33.58 33.67 33.45

0.60 34.95 35.15 35.23 35.32 35.49 35.16

0.70 40.96 40.72 40.09 39.73 39.35 40.45

b) W/B = 2.00

a/W 2Z/b Av. Y*

0.000 0.500 0.750 0.875 1.000

0.40 38.60 39.21 39.79 40.17 40.67 39.38

0.50 37.96 38.29 38.48 38.61 38.82 38.32

0.55 38.84 38.95 38.80 38.71 38.65 38.85

0.60 40.81 40.79 40.35 40.14 40.06 40.59

0.70 44.67 44.19 42.76 42.01 41.38 43.51
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very short crack widths, b. This is due to the inadequacy of

. modelling the intersection of the two cracks. For this reason,

only the nodes greater than 0.I are fitted in a linear equation

to determine the intercept of that curve at r ffi0.0, as discussed

in section 2.5.

#t

The distribution of the Y along the crack front for the bar

and rod configurations are given in Tables I0 and II. Figures 34

and 35 represent the variation of the short bar along the crack

front, for various a/W ratios. All those distributions show that

#t
the minimum Y occurs at the center and that the highest values

are at Z = b/2. For the short-bar with W/B = 2.00, the highest

difference of Y between Z = 0.0 and Z = b/2, is for small values

of a/W . For the short-rod configuration the variation along the

crack front is similar to the bar with the lowest Y at the

center for low a/W values. But as a/W increases the reverse is

true. This reverse effect occurs at a/W = 0.7 for the the rod

with W/B ffi1.45, while for W/B ffi2.00 this reverse effect occurs

at a/W ffi0.55 but still at the same crack width ( b/B ffi0.55 ),

as seen in Figures 36 and 37. This effect was also observe by

Ingraffea et al. in Ref. [II]. A sequence of his photographs,

which are reproduced here in Figure 38, show that for small crack

lengths the propagation at the centerline is relatively retarded

since Y is lowest at that position. The crack front gradually

straightens and ultimately, thumbnails. Figures 36 and 37 of Y*

of the short-rod specimens predict the same effect. In contrast,
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the FEM solutions [9] and the BIE solutions [II], both using _-

singularity elements near the crack front did not predict this

thumbnailing effect.

A comparison between Y from compliance and the average Y
,

along the crack front, shows that the compliance Y is always

lower than the average Y ( see Tables I0 and II). For specimens

with W/B = 2.00, show about 5% difference. But for W/B = 1.45

the difference is much higher, about 20% . This difference is

partly due to the divergence of V/_-r-forsmall crack widths.
,

Eventhough the magnitudes of Y are different, the positions of
,

the minimum Y are in good agreement for both methods.
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Figure 38. Propagation of the crack front for the short-rod specimen
Ref. [11]



CHAPTERVI

CONCLUSIONS

An analysis was performed on the Chevron-Notched Short-Bar and

Short-Rod specimens using Boundary Integral Equations Method. This

solution assumes a linear variation of the tractions and

displacements everywhere except at the crack front, where a

parabolic variation is used. The solutions of crack mouth opening

displacements using 370 nodes are in good agreement with the Finite

Element solutions using 2,960 nodes Ref. [9]. In comparison with

exper_ental results, the difference is 4% lower than the reported

experimental values Ref. [8]. Part of this discrepancy is due to

the finite slot ommltted in the analytical model.

The stress intensity factor for the short-bar is lowest at the

center of the specimen and highest at the intersection of the crack

front with the chevron notch. This effect starts out to be the same

for the short-rod but at high crack lengths this effect is reversed.

This reversal effect occurs at the same crack width, b/B = 0.55 ,

for both values of W/B. This effect is consistent with experimental

results shown by Ingraffea et al. in Ref. [II].

The stress intensity factor obtained from the compliance method

assuming plane stress condition is about 5% lower than the reported

84
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experimental values from Ref. [8], for the short-barspecimens.For

the short-rod specimens the agreement is much better, having less

O.3Z difference.

There is some differencefor both the rod and bar specimenswith

N/B = 1.45 between the compliance Y and the average Y along the

crack front. For W/B = 1.45 the difference for large a/W is around

20% . For N/B = 2.00 the differenceis less than 5% between the twe

methods.

The minimum stress intensity factors are reported in Table 8.

The minimum position is between O.49 and 0.55 for all

chevron-notchedconfigurationsanalysed. These positions agree well

wlth the minimum stress intensity factor along the crack-front

eventhough the magnitudes of Y* are different.

As a conclusion, the Boundary Integral Equations method has a

great potential in solving fracture mechanics problems.

Improvements could he incorporatedby using higher order variation

of the tractions and displacements in each surface segment instead

of the linear variation currently used. Also a _-singularity near

the crack front could improve the solution of the stress intensity

factors along the crack front. As for the Chevron-NotchedSpecimens,

the effect of the intersectionof the crack front with the chevron

notch should be analysed in greater detail to determine the exact

singularity in this region.
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APPENDIX A

Derivation of the Singular Iutegral

Because of the singular nature of Kelvin's solution a surface

cut is made in the body to exclude the point P from the region

(whereUij and Tij . _ ).

The surface integral going from the surface boundary to the

singularity point P is cancelled by the integral coming back

since it can be considered that the same path is being integrated

over but in opposite direction, therefore Betti's theorem (3.7)

will have the form:

,_S _S ds =Suj T ds +_s uj. ds
tj Uij ds + tj Uij = ij Tij (A.I)

€ E

where s is the boundary surface of the body and sE is the

surface of a sphere of radius € which excludes the singularity
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point of Uij and Tij .

Considering the value of the integral at point P as the

radius of s€ goes to zero (€ . O) , and noting that :

ds= E2sinOde de x3

x,
-sinocos¢1

n= -sinSsin¢_

-cosO ,_

dr

d-_= l , r,inj - r,jni = 0

The values of the integrals around s can be evaluated as

follows :

Substituting the value of Uij from equation (3.2)

tj Uij ds€ 4_G €
€

3-4u . + l tj sinedod¢
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PuttingE outside the integral:

fT: ] (3-4u) tj sine de do
#0 J0 16 G(l-u) ij+ninj

and taking the limit as E . 0,

lim I-# tj Uij ds : 0 (A.2)

_-,.ojjs
€

by substituting equation (3.6) for Tij , the second integral

5ecomes: uj Tij ds =_2__ -(l-2u)
8:T(I-u)

€

ujldI 3 i12--2"_ aij + €,i €,j _ sineded@
E dn 1-2u

21T IT

% I }8_(l-u) 6iJ + T_u ninj sineded¢

Evaluating the function in matrix form:

+_u in2ecos2¢sin2ecoscsin¢ sinecosecos(

3 =Isin2ecos@sin¢ l+_u in2esin2¢sinecosesin,

6iJ+l--:2-_uninj_sine cosecos@ sinecosesin¢ l+l_-_CuOS2,
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Integrating each ten of the matrix, the above equation gives:
27

-8_(l-u) 6ij+ 13.__ninj sinedBd@= aij uj (A.3)

By substituting relation (A.2) and (A.3) in equation (A. 1) one

gets the boundary integral equations :

f tj Uij ds =f uj Tij ds - 6ij uj (A.4)

If the point P is at the surface of the body s€ would be a

surface of half a sphere. The above equations integrated over

half the sphere are equ_ to

limE_ f tj Uij ds = 0
€

/-

lim I uj T ds = I uj_+0 ij _ aij
Js

so Bettl's theorem will be equal to

f _s 1 uj (A.5)
tj Uij ds = uj Tij ds -_ 6ij

or in general

f tj Uij ds =f uj Tij ds - Cij uj

] for surface
whet Cij = 51] for internal points, and Ci] = _ 51]

points.
r



APPENDIX B

Numerical Solution of the Integral Equations

General analytical solutions to the integralequatlons are

not available and it is therefore necessary to solve the

equations numerically. The integral equations have the form:

Cij(P)uj(P)-fTij(P,Q) uj(Q)ds(Q)

fUij(P,Q) tj(Q)ds(Q)

where uj and tj are the displacement and the stress vectors

respectively, P is the source point indicating the location at

which the force acts, and Q is the field point denoting the

actual boundary point.

The integrals are Cauchy Principal Value Integrals where Cij

(P) is a field of constants depending on the smoothness of

boundary in P. Cij (P) is equal I/2 6ij if P is at a smooth

surface. For the case where P is at an edge or a corner [18],

Cij(p) = -_E]fTij(P,Q)ds(Q) . for P _ Q

The numerical solution for the integral equations are found

by dlscretlzing the boundary into segments. In the computer

92



93

program used in the present work, the surface is represented by

triangular and rectangular elements. The traction and

displacement inside each element are linear functions of the

traction and displacement at each corner.

For triangular element

k
ti(()= ck(()ti

k
ui(()=ck(()ui

where from Ref.[18]

ck(()= 1+ ( Fk2 (lm- Fkl(2m)/2S- (Fk2(1 -Fkl (2)/2s

_I ' _2 are local in-plane coordinates of the field point Q, _Im'

_2m are local In-plane coordinates of the centroid of the m th

element. FKI , FK2 are the projections of the distance between

two adjacent nodes in local coordinates and K = I, 2, 3.

For rectangular elements

i

k
,- ti(()= Nk(4)ti

k
ui(()= Nk(()ui
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where

NI = (I -{i) (I-{2) N2 = (I +{1) (1 -{2)
4 4

N3 = (1 +{1) (1 +{2) N4 = (1- {1) (1 +{2)
4 4

If the surface is represented by m triangular elements and n

rectangular elements the equations become:

m 3

CIj(P) uj(P) + b_l K__Iuj(QbK)._S TIJ(P'Q) cK({) J(_) d_

+ Y. 7. uj (QbK) (P'Q) NK(_) d_b=l K=I Tij J(_)

m

" E 3 tj(QbK)_S (P'
b=l Z=l UIJ Q) cK(_) J(_) d_

n 4

+ £ fb-l K-_I tj(QbK) UiJ(P'Q) NK(_) J(_) d_
_As

where J (_) is the well known Jacobi function. The terms u4
J

(Qbk) or tj(Qbk), respectlvely, are the corner values of

displacements and tractions of the kth node within the bth

element.

For Qbk_ p , a 4 x 4 Gaussian quadrature formula is used to

evaluate numerically the integration.

bk
For Q = P, in a triangular element the integrals are

evaluated in closed form by a change to cylindrical coordinates

(r,e),[I8].
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L°f02€_O 1 TiJ(P'Q) cK(_) J(_) d_

-" €_oLim_2_1 UiJ(P'Q) cK(_) J(_) d_

But, for rectangular elements a special singular Gauss

quadrature is used derived in reference [19] for an integral with

I/r singularity.

When the integrals are calculated for P at a node, then Cij

(P) is obtained by summing the JTij ds terms.

Then the integral equations result in a system of 3 x (m + n)

linear algebraic equations to be solved for the unknown boundary

tractions or displacements.

The use of both triangular and rectangular elements is

necessitated due to the use of a fine mesh near the crack front

and a coarse mesh further away. The triangular elements are thus

used as transition elements.
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