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SUMMARY

An improved finite difference procedure for determining the natural fre-
quencies and mode shapes of tapered cantilever beams undergoing uncoupled vi-
brations is presented. Boundary conditions are derived in the form of simple
recursive relations involving the second order central differences. Any ap-i

w proximation error resulting from this process is discussed. Results obtained
by using the conventional first order central differences and the present
second order central differences are compared, and it is observed that the
present second order scheme is more efficient than the conventional approach.
An important advantage offered by the present approach is that the results
converge to exact values rapidly, and thus the extrapolation of the results is
not necessary. Consequently, the basic handicap with the classical finite
difference method of solution that requires the Richardson's extrapolation
procedure is eliminated. Furthermore, for the cases considered herein, the
present approach produces consistent lower bound solutions.

INTRODUCTION

Several methods of solution of beam vibration problems, which can be
broadly classified as either belonging to the continuum model approach or to
the discrete model approach, have been published. Principles of the minimum
potential energy, or complimentary energy, the Reissner mixed method and the
Dean and Plass principle have been used in the continuum model approach. It
has been established that the potential and complimentary energy principles
give an upper bound to the solutions while the Reissner method and Dean and
Plass method may produce upper bound solutions depending on the type of formu-
lation and choice of shape functions. However, bounds for these mixed methods
have not been established theoretically. Each of these methods has its inher-
ent advantages (refs. i to 3). In the discrete model approach, the Holzer,
Stodola, polynomial frequency equation, Myklestad, and finite element methods
are all well known. Solution of the equations of motion in the continuum
model approach is possible under certain conditions by the application of the
Galerkin process, the collocation method, and the finite difference method.
Amongthese techniques, the Galerkin process is known to be equivalent to the
Rayleigh-Ritz methods and generates upper bound solutions identical to those
obtained by the Ritz method, provided that similar shape functions are used in
both techniques. It has been observed that the accuracy of the results ob-
tained by using the collocation method depend on the choice of the collocation
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points and their location (ref. 4). The finite difference method has attrac-
ted considerable attention and several contributions exist which make use of
the first-order forward, backward, or central difference schemes or their com-
binations (refs. 5 to 12). In almost all the works, it has been observed that
the finite difference method is subject to relatively slow convergence with
mesh refinement, although Richardson's extrapolation procedure (ref. 13), when
applied to two or three successive iterations with different mesh sizes, can
produce results which may be close to the exact solutions. However, such an
extrapolation procedure requires that the convergence of the results be mono-
tonic, and the extrapolated result may not necessarily give a bound.

Relatively few works exist which deal with the application of higher or-
der finite differences. Greenwood (ref. 14) used first order and second order
finite d_fference schemes, which produce truncation errors of the order O._hLl.
and O(h_), respectively, for the analysis of uniform beams in flexure and for
another case having uniform breadth but varying depth with fixed-free end con-
ditions. The fourth order differential equation for the uncoupled vibration
was transformed into four first order equations, the slopes and shearing for-
ces were evaluated at half integer stations while the deflections and bending
moments were _valuated at integer stations. Central difference approximation
of order O(h_) with staggered stations was used. One-sided approximations
were used to satisfy the boundary conditions wherein all the stations encoun-
tered were inside the beam and fictitious stations outside the beamwere not
required. As an alternative approach, another complicated, but symmetric,
method of representing the boundary conditions was also illustrated. It was
concluded that one-sided approximation gave better results while the symmetry
assumptions gave _esults of moderate accuracy. It is interesting to note from
Greenwood's resul_s that, for the tapered beamca_e, the O(h_) approximation
yields better accuracy than the higher order O(h") approximation. It was
stated in reference 14 that _he lumping of nonuniform mass caused the largest
loss of accuracy in the O(h_) approximation.

Gawain and Ball (ref. 15) presented finite difference formulae having
consistent errors of O(h2) by representing the function with a truncated
power series at the boundary in such a_manner that the boundary conditions are
satisfied. A consistent error of O(h2) was obtained for the error estimate.
However, higher order central difference expressions having truncation errors
of order O(h4) have not been reported.

In what follows, a second order central difference approach is presented
which eliminates most of the problems discussed above. Clamped free beams are
analyzed for axial, torsional, and flexural vibrations. Boundary conditions
are enforced which eliminate the fictitious stations outside the beam. These
conditions are obtained from the simple and logical extensions of the first
order theory. Any approximation error encountered in this process is dis-
cussed. It will be shown that the present theory produces accurate results
with rapid convergence and, consequently, the extrapolation procedures needed
in the classical first order central difference theory can be successfully ob-
viated with the present improved formulations.

Professor A. W. Leissa provided facilities at Ohio State University from
March to April 1983, during which time the uniform beam cases were solved.
The results of the uniform beam cases are reproduced in this report for
completeness.



SYMBOLS

A area at any section

b breadth of beamo
C torsional rigidity

d( ) derivative with respect to z_z

d2( ) second derivative with respect to n
dn2

E Young's modulus

G modulus of rigidity

h length of each elemental beam segment

I second moment of area about flexible plane

Ip polar moment of inertia about centroid
L length of beam

n number of beam segments

p natural radian frequency

t time

t o depth of beam
w dynamic displacement in longitudinal direction

y dynamic displacement in flexible direction

z coordinate measured along longitudinal direction of beam

B breadth taper parameter

pretwist over length of beam

a depth taper parameter

n axial fractional length

e dynamic torsional displacement

p mass density

Subscripts:

i arbitrary station

-1, -2, n+l,L fictitious stations outside beam domain
n+2, n+3 J

Superscripts:

' differentiation with respect to z or n

• differentiation with respect to ti'me



ANALYSIS

Axial Vibrations of Tapered Cantilever Beams

The governing differential equation for free axial Vibrations of a canti-
lever beam is

ow)A-d._ + pp2w = 0 (I)

For a beamwith breadth taper B and depth taper a, equation (1) reduces
to

aw" + bw' + cp2w = 0 (2)

where

a = (1 - Bn)(1 - an)E/L 2

b = -E[B(I - an) + a(1 - Bn)]/L 2
_" (3)

c = p(1 - Bn)(1 - (Sn)

n = zlL, 0 < n < 1

The boundary conditions for the cantilever beam reduce to

w(o)= w'(1) = o (4)

Solution by first order central differences. - Substituting the central
differences for the derivatives of w given in the appendix in equation (2)
and simplifying, one can write the following equation for any arbitrary station
i of the beam as follows:

Aiwi_ 1 + Biwi + Ciwi+ 1 = Dip2wi i = O, 1, . .., n (5)

In the preceding equation

Ai = a i - bih/2; Bi = -2ai; Ci = a i + bih/2; Di = -cih2;

ai : (I - Bih)(1 - aih)E/L2; bi : -E[B(I - aih) + a(1 - Bih)]/L2; (6)

ci = p(l - Bih)(1 - aih) J



The boundary conditions in terms of the first order central differences are

wo = O; w' = 0 or (7)n Wn+l : Wn-1

where n represents the station located at the free end of the cantilever•
Equation (5) together with the boundary conditions given by equation (7) leads
to the frequency equation i,n the form of n-equations for i : i, 2, . .., n:

B1 C1 0 0 0 , , , 0 0 0 wI wI • D1

A2 B2 C2 0 0 . • • 0 0 0 w_ w2 • D2

0 A3 B3 C3 0 • • . 0 0 0 w._ w3 • D3

• • • • • • • • • • • • • •

........... : p2 .... (8)

• • • • • • • • • • • • • •

• • • • • • • • • • • • • •

0 0 0 0 0 , , , An_1 Bn_1 Cn.1 n- Wn-I " Dn-I

0 0 0 0 0 , . . 0 A +C B wr w . Dn n n n n

Solution by second order central differences• - The boundary conditions
for the fixed-free case of a beam in axial vibration given by equation (4) in
terms of second order central differences (see appendix) are

wo = O; w' In - 12h (Wn-2 - 8Wn-i + 8Wn+l - Wn+2) = 0 (9)

Assumption of the symmetry condition (ref. 14) at the free end for the func-
tions (Wn_l, Wn+l) and (Wn_2, Wn+2) leads to

Wn_I = Wn+l; Wn_2 = Wn+2 (10)

and the fictitious stations Wn+1 and Wn+2 can thus be eliminated• As can
be seen from equation (7), the physically consistent condition, Wn_l = Wn+l,_ as
given by the first order theory is extended to cover the fictitious station
_.2 also. Another important observation can be made by inspecting equa-

ion (5). If this equation is evaluated for the station i = O, the built in
end, one obtains the condition

AoW_1+ BoW° + CoWI = p2DoW° (11)



which impliesthat

w-1= - _ Wl = - (B+ _)hlWl (12)
2

yielding w_1 = wI for a uniformbeam. Substitutingthe second order fin-
ite differenceexpressionsfor the derivativesgiven in the appendixin equa-
tion (5) and simplifying,one obtainsthe followingequationfor any arbitrary
station i:

Aiwi_2 + Biwi_1 + Ciwi + Diwi+1 + Eiwi+2 = Fip2wi (13)

In the previousequation

Ai = (bih - ai)/12h2; Bi = (16a i - 8bih)/12h2.,

Ci = -30ai/12h2;Di = (16ai + 12bih)/12h2;
(14)

Ei = -(ai + bih)/12h2;Fi = -p(1 - aih)(1- Bih);

ai = E(I - Bih)(1- aih)/L2;bi = -E[B(1 - aih) + a(1 - Bih)]/L2

If equation (13) is evaluatedat n = O, it can be shown that

W_l = -(DolBo)W I = - {[I - h(B + a)12]/[I + h(B + a)/2]} wI

(15)

w_2 : -(EolAo)W 2 : - {[I - h(B + a)]/[Z + h(B + a)]} w2

and it can be seen that the first of equations (15) is identical to the corre-
sponding expression given by the first order central differences.

Making use of equations (I0) and (15) and evaluating equation (13) at each
station i = 1, 2, . .., n results in the following frequency equation:



 ISAI°IEl
I B Wl

B2 C2 D2 E2 w2

A3 B3 C3 D3 E3 w3

• • • • • 0 •

• • • • • •

• " " An-2 Bn-2 Cn-2 Dn-2 En-2 Wn-21

0 • • " An_1 Bn_1 Cn_l+En-1 Dn-1 Wn-11
!

• . . A +E B +D C w

n n n n n n

T

= p2{(FlWl)(F2w2)... (FnWn)} (16)

Torsional Vibrations

Torsional vibrations of tapered cantilever beams: second order finite
differences• - The governing equation for free torsional vibrations of a beam
is glven by

pIpp e = 0 (17)

The boundaryconditionsfor a fixed-freebeam are

e(O) = O; B'(L) = 0 (18)

For a taperedcantileverbeam of rectangularcross sectionwith width taper B
and depth taper a, torsionalrigidity C, and polar moment of inertia Ip
take the form



Obo,,o,3192to} N bo 1-,z@l
- - N=1,3,5 (19)

b°t° )(1- az)[b:(1- Bz)2 + t_(1- az) 2] "Ip = _ (1 Bz

Substituting equations (19) in equation (17), performing the necessary differ-
entiation and writing in nondimensional form, one obtains the following equa-
tion in terms of second order finite differences for any station i:

Aiei_ 2 + Biei_ I + Cie i + Diei+ I + Eiei+ 2 = Fip2e i (20)

and

Ai : SI($2 h - $3); Bi : SI(16 $3 - 8h $2); Ci : -30 $1 $3;

Di = S1(16 S3 + 8h $2); Ei = -$1($3+ h $2); Fi = plp

S1 = 1/12h 2

Gbot3o_F

$2 - 3L--_IL-3a(I - Bih)(l - aih) 2- B(1 - aih) 3]

+768_Tbto_(1_ _ih)3 _ I'_ _es4-,-_-_-4p---L_,,e-s4_l

192 (1 - aih)4 _ 2xbo(a - B) (eS4
I_ (-I - aih)TN4 + e-S4

- _ N= ,5L 0 •

Gb,3S3 - o o - Bih)(1 - aih) 3 192 )4 1 (eS4 - e-S4

3L2 5b (I - aih (es4 + e-_jJo N=1,3,5

N_bo(1 - Bih)$4-
2to(l - aih)



By proceeding on the same lines as presented for the case of axial vibration
and noting that the boundary conditions in terms of the finite differences can
easily be written analogously to those given in equations (i0) and (15), one
can develop the frequency equation which will be identical to the one presented
in equation (16), with Ai, Bi, . .., Fi defined by equation (21).

Torsional vibrations of pretwisted-tapered cantilever beams. - When a
beam is pretwisted, an increase in the torsional rigidity takes place due to
the inclination of the blade fibers in addition to the fiber bending effects.
Carnegie (ref. 16) derived a correction factor for fiber bending and pretwist
effects for thin rectangular cross section blades. So far, no rigorous mathe-
matical solutions are available for the fiber bending effects of tapered
blades. Amongthe recent contributions on the torsional vibrations of pre-
twisted blades, at least two works require careful consideration. Duggan and
Slyper (ref. I0) observed that the boundary conditions adopted by Carnegie
(ref. 16) do not yield accurate solutions for low aspect ratio blades. They
drew attention to the boundary condition discussion by Barr (ref. 16) and used
a modified set of boundary conditions to obtain the torsional frequencies for
low aspect ratio blades. Kaza and Kielb (private communication) reported on
the case of rotating pretwisted cantilever blades, allowing for the effects of
warping rigidity. The torsional equation of motion was derived, and the bound-
ary conditions were established through a variational formulation (Hamilton's
principle). They studied the effect of structural warping and of inertial
warping for blades having wide ranges of aspect ratios and rotational speeds.
Results were generated by using the Galerkin method. Closed form exact solu-
tions were obtained for the nonrotating case. These equations were used by
Subrahmanyamand Kaza (unpublished data) with a first order finite difference
method of solution for uniform pretwisted blade cases of small and large aspect
ratios; close agreement between the two approaches was shown.

If warping is included, the torsional equation of motion will be of fourth
order with variable coefficients, and incorporation of the effects of taper
will be more involved. On the other hand, for thin rectangular blades of large
thickness and aspect ratios, Carnegie's formulation, which leads to a second
order equation of motion and to an appropriate set of boundary conditions, will
be adequate, and the equations developed in the preceding section for untwisted
beams in torsion can be used with only slight modifications.

If the additional torsional rigidity due to pretwist is incorporated, the
net torsional rigidity (neglecting structural warping effects) can be written
as

Ct = C + Cs (22)

where C is given by equation (19) and the increase in torsional rigidity due
to pretwist, over and above that of St. Venant, is

9



Etob t
cs :-i_(I - 0z)5(i _ 6z)(_,)2

(23)

= yz/L = Yn

The frequency equation for the case of a pretwisted tapered blade will be ob-
tained by replacing $2 and $3 by $2 and $3, which are defined as

52

s-_: s2 Et°%__(I - Bz)s+_B(I- _z)(1- Bz)4]
M

180L2

(24)

Etobt 5(S-_= S3 +--y2(l - Bz) 1 - az)
180L4

Flexural Vibrations of Tapered Cantilever Beams

The differential equation for flexural vibration of beams neglecting shear
deflection and rotary inertia effects is of the form

-- I - App2y : 0 (25)
dz2 Tz2/

which can be written in the following nondimensional form

I d--_n/ - pAL4p2y = 0 (26)

The boundary conditions for a fixed-free beam can be reduced to

dy
y = 0 and Tn = 0 at n = 0

(27)

d2y 0 and _d3y= 0 at n = I
dn2 - dn3

Equation (26) is rewritten as f.)llows for a tapered beam of rectangular cross
section:

I0



a d4y b d3y + d2y dp2y (28)
dn_ + Tn3 c _dn =

where

a = (1 - Bn)(1 - an)3 I

Lb = -29(1 - an)3 - 6a(1 - Bn)(1 - an)2

(29)

c = 6Ba(1 - an)2 + 6a2(1 - Bn)(1 - an)

d = 12pL4(1 - Bn)(1 - an)/Et_

Solutionby first order centraldifferences.- The boundaryconditions
representedby equation (27)when written in terms of first order centraldif-
ferencesgive

Yo = O; Y-1 = Yl; Yn+l = 2Yn - Yn-1L (30)

JYn+2 = Yn-2 - 4Yn-1 + 4Yn

By using the finitedifferenceexpressionsfor the derivativesfrom the appen-
dix, incorporatingthe relationsgiven by equation(30) and followingon the
lines describedearlier,the frequencyequationfor the flexuralvibrations
can be developedeasily and is identicalto that given by Carnegieand Thomas
(ref. 11).

Solutionby secondorder centraldifferences.- Substitutingthe second
order finite differenceequivalentsfor the derivativesfrom the appendix in
equation (28), one obtainsthe followingequationfor any arbitrarystation i:

AiYi_3 + BiYi_2 + CiYi_I + DiYi + EiYi+I

+ FiYi+2 + GiYi+3 = Hip2yi i = 1, 2, ..., n (31)

where

11



bi ai 2ai bi ci 13bi 39ai 16ci
Ai = _- Bi = _- - ; C = - + _"8,3 h4 12,2i 6-7 12h2,

56ai 30ci 4c i 39ai 13bi 2ai bi c i

• = Ei = - • Fi = hT+'_ 12h2 ;Dl 6h4 12h2 3h2 _ 8h3 ' -

ai bi

Gi = -_+_ ; Hi = 12pL4(1 - Bih)(1 - aih)/Et2 o "(32)

ai : (I - Bih)(1- aih)3

bi : -2B(I - aih)3 - 6a(1 - Bih)(1- aih)2

c i = 6Ba(1 - aih) 2 + 6a2(I - Bih)(l - aih)

In the case of first order central differences, the fictitious stations

Y-l, Yo+l, and yn+2 can directly be eliminated by using the)finite differenceequivalents of the boundary conditions given by equations (30 .

In the present case of second order central differences, additional ficti-
tious stations Y-2 and Yn+3 must be eliminated in addition to those men-
tioned earlier. This is accomplished by again using the symmetry conditions

Y-1 = Yl; Y-2 = Y2 (33)

Elimination of the fictitious stations Yn+l, Yn+2, and Yn+3 is accom-
plished by following the conditions obtained from the first order theory in the
following manner:

n

Yn = 0 leads to Yn+l = -Yn-I + 2Yn (34)

Ill

Yn = 0 leads to Yn+2 = Yn-2 - 4Yn-I + 4Yn (35)

These equations can be written in the following alternative forms:

12



(Yn+l - Yn-1) : 2(Yn - Yn-1) (36)

(Yn+2 - Yn-2 ) = 4(Yn - Yn-1 ) (37)

and by recursion,one can eliminate Yn+3 from

(Yn+3 - Yn-3) = 6(Yn - Yn-1) (38)

If Yn+1, Yn+2, and YD+3 from equations (36) to C38) are introduced into the
second order central dlfference equivalent of y_' given in equation (A8), one
can show that y_' m O. By using equations (36) and (37) in the finite differ-
ence equivalent of y_ and setting the result to zero, one obtains the follow-
ing relation:

Yn-2 - 2Yn-i + Yn = 0 (39)

Equation (39) states that the deflection at the (n - 1) th station is the av-
erage of the deflections at the preceding and succeeding stations. Thus, the
deflection curve near the tip of the cantilever beam assumes a straight line
form. Since the bending moment at the free end is zero, the condition of con-
stant slope near the tip is justified and, thus, the boundary conditions repre-
sented by equations (36) to (38) should give accurate results for n suitably
large.

The eigenvalue problem that results by using the second order central dif-
ferences in equation (31) together with equations (36) to (38) is as follows:

[R]{y} = p2 pAL4El [S]{y} (40)

where

13



BI+D1 AI+El F1 G1 0 0 0 0 0

A2+C2 D2 E2 F2 G2 0 0 0 0

B3 C3 D3 E3 F3 G3 0 0 0 0

A4 B4 C4 D4 E4 F4 G4 0 0

0 A5 B5 C5 D5 E5 F5 G5 0

[R] :

0 _ An_3 Bn_3 Cn_3 Dn_3 En_3 Fn. 3 Gn.3

0 0 0 An. 2 Bn_2 Cn_2 Dn_2 En.2-Gn. 2 Fn_2+2Gn.2

0 0 0 An_1 Bn_1 Cn_l+Gn.l Dn.l-Fn.l-4Gn_ 1 En_l+2Fn.l+4Gn_l

0 0 0 0 A +G B +F C -E -4F -6G D +2E +4F +6G
nn nn nn n n n n n n



HI

H2

0

Is] = (41b)

H
n

and

RESULTSANDDISCUSSION

The eigenvalue problems given by equations (8), (16), and (40) for the
representative cases were solved on an IBM 370 computer by using the IMSL rou-
tine EIGZF. The theoretical results obtained thus with the first and second
order central difference theories are compared with the results available in
the literature and these are presented in what follows•

Axial Vibrations

The following numerical data were used to determine the axial vibratory
modes of cantilever beams having a length of 0.1524 m (6 in.), various taper
parameters, a thickness ratio to/b o = 0.20, and an aspect ratio L/b o = 2.4.
Table I shows the relative convergence rates of the first and second order cen-
tral difference theories for the case of a uniform beam and one tapered beam
with B (or a) = 0.6 and a (or B) = 0.8. It can be seen from this table

15



that with n = 5, the second order central difference theory produces the fun-
damental frequency of the uniform beam to within 0.005 percent error and the
second mode frequency to within 0.4 percent error. A solution with at least
n = 15 is required in the case of the first order central differences to at-
tain this accuracy. The convergence of higher modes is, however, not so rapid
in the second order theory with n : 5. Comparing the second order central
difference solution with n : I0 and the first order solution with n : 25,
one can observe that the maximumerror encountered in the fourth mode frequency
is of the order of 0.7 percent using second order theory with n = 10, while
the corresponding error with n : 25 and using first order theory is about 0.8
percent. From these results, it can be seen that the convergence is very rapid
in the case of second order central differences and that the lowest five axial
mode frequencies can be obtained to within 0.027 percent error with a beam di-
vided into 30 segments (n = 30). The first order theory produces results with
errors of the order of 1.0 percent, and Richardson's extrapolation of first
order theory with n = I0, 20, 30 produces accurate results.

Similar trends of convergence are observed for the case of tapered beams
also, as can be seen from table I. It may be noted here that the percentage
error magnitudes are relatively higher than the corresponding values obtained
for the uniform beam. Accurate results up to the fifth mode can be obtained
for all the taper parameters studied here by using a second order theory with
n : 30 for all practical purposes. The frequency ratios presented in table II
can be considered as close lower bound solutions. A further comparison of the
first two axial mode frequencies with those presented in reference 17 indicates
a close agreement.

Torsional Vibrations

In order to study the torsional vibrational characteristics, use is made
of the same numerical data employed in the case of axial vibrations. As is
well known, the torsional equation of motion can be obtained by replacing E
in the equation for axial motion by (C/Ip), and consequently, the convergence
patterns for the torsional vibrational frequencies for the case of uniform beam
are identical to the corresponding values presented in table I for the case of
axial motion. Since the convergence trends have already been established by
the axial vibratory motion study, the torsional frequency parameter ratios (de-
fined as the ratio of the square of the natural torsional frequency of any mode
to the square of the fundamental torsional frequency) were obtained by using
the second order central difference theory with n : 30. The ratios for the
lowest five torsional modes are presented in figures 1 to 5. Comparison of the
present theoretical frequencies with results obtained from the Holzer method
(ref. 18) and the Reissner method (ref. 20) indicates close agreement.

Table III shows a comparison of the fundamental torsional characteristic
function of a uniform beam obtained from the second order central difference
theory with n = 30 and the exact characteristic function. It can be seen
that the theoretical results agree with the exact solution (ref. 19) up to five
significant digits. Further, the higher mode characteristic functions are also
in extremely close agreement with the corresponding exact values.

The numerical data given in references 18 and 21 were used to determine
the torsional frequencies of pretwisted cantilever beams. These frequencies

16



were modified by applying a correction factor given by Carnegie (ref. 16) to
account for the fiber bending effects, and these results are presented in fig-
ure 6. Second order central difference theory was used with n = 15. It can
be seen that the present results agree closely with the experimental results
of Carnegie (ref. 16) and with the theoretical results from the Reissner
method (ref. 20). Figure 7 shows a comparison of the present natural frequen-
cies of pretwisted tapered blading with experimental results (ref. 22) and the
theoretical results obtained by using the Galerkin technique. A correction
factor, applicable to uniform beams (ref. 16), was applied to the torsional
frequencies obtained here by using second order central difference theory with
n : 15. Close agreement between the various methods can be seen here also.

Flexural Vibrations

The following numerical data were used to study the flexural vibrations
of cantilever beams having a length of 0.254 m (i0 in.) and various breadth and
thickness taper ratios: thickness ratio to/b o = 1.0; aspect ratio L/b o = 40.

The shape factor for this uniform beam _/I/AL 2 is 0.00721688 so that the
higher order effects like shear deformation and rotary inertia can safely be
ignored. The breadth and thickness taper parameters were varied from -0.75 to
0.75 in steps of 0.25, and various combinations of these taper parameters were
studied.

A convergence study has been made for the case of a uniform beam with the
beam divided into an odd number of segments (n : 5, 11, 15, 17, 23, 25, 29) and
an even number of segments (n = 6, I0, 12, 18, 20, 24, 30). Both first and
second order central difference theories were used, and the frequency ratios
are shown in table IV. These values are also shown in graphical form in fig-
ure 8; itcan be seen from this figure that the convergence is monotonic from
below for both the first and second order central differences and that the con-
vergence is continuous for even and odd values of n.

The convergence rates of the two methods can be compared from table IV or
figure 8. As has been observed in the earlier cases of axial or torsional vi-
brations, the lowest two flexural mode frequencies given by the second order
theory with n : 5 are better than those given by the first order theory with
n = 10. With n = 30, the second order central difference theory produces the
lowest five flexural frequencies to within 0.2 percent error while the first
order theory shows errors of the order of 2.6 percent. Using the second order
theory with n : 30, the frequency parameter ratios (defined as the ratio of
the square of the natural frequency of any mode of a tapered beamto the
square of the fundamental flexural frequency of a uniform beam of comparable
dimensions at the root) are calculated and presented in figures 9 to 19 for
the lowest five flexural modes. Graphs are drawn showing the effects of
breadth (or depth) taper for a given depth (or breadth) taper. Comparisons
are madewith the theoretical results, obtained earlier by using the Reissner
method (ref. 23) and the Galerkin process (ref. 24), and also with experimen-
tal results (refs. ii and 25). Close agreement of the results obtained by the
various approaches is observed. The characteristic functions obtained by
using the first and second order theories are presented in table V for the case
of a uniform beamwhere further comparisons are madewith the exact character-
istic functions (ref. 19). It has been observed that the second order central
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differencetheory gives characteristicfunctionsclose to the exact ones.
Figures20 to 24 show the mode shapesof taperedcantileverbeams obtainedby
means of the secondorder theory. These mode shapes agree very closelywith
the experimentalmode shapesobtainedby Carnegieand Dawson (ref. 25).

CONCLUDINGREMARKS

The secondorder finite differencemethod has been successfullyapplied
to determinethe uncoupleddynamiccharacteristicsof cantileveredbeams hav-
ing variablemass and elasticityproperties. Simple recursiverelationshave
been used to eliminatethe fictitiousstationsoutsidethe beam domain by mak-
ing logicalextensionsfrom the first order theory. The presentapproachis
shown to produceaccuratenaturalfrequenciesand mode shapes. The present
improvedfinite differencemethod has the followingspecificadvantagescom-
pared to the classicalapproachof using the first order centraldifferences:

1. For the same mesh size (step length h), the second order finitedif-
ferencemethod producesnaturalfrequencieswith greateraccuracythan the
first order theory.

2. The convergenceof the lower mode frequenciesis very rapid in the case
of secondorder centraldifferencescomparedto that of the first order theory.

3. Becauseof the rapid convergenceshown by the presentapproach,accu-
rate naturalfrequenciesand mode shapescan be obtaineddirectlyby using a
suitablenumberof segmentswithout any necessityof the extrapolationsthat
are customarywith the first order centraldifferencetheory.

4. Finally,there are few methodswhich produceclose lower bounds;the
presenttechniquemay be invaluablein obtainingclose lower bound solutions
without requiringextrapolations. It may be noted that even though the finite
differencemethod produceslower bound solutionsin general,an extrapolated
result obtainedby using the Richardsonmethod does not necessarilygive a
bound. Thus, the presentimprovedapproacheliminatesmost of the shortcomings
associatedwith the conventionalapproaches.

The method developedin this report has the potentialfor extensionto complex
blade vibrationproblemsinvolvingcouplingbetweenin-planeand out-of-plane
bendingand torsionalmotions. Furtherextensionto plate theorymay prove
beneficialsince rapid convergencein the two-dimensionalcase may reduce the
computationalspace and time considerably.
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APPENDIX- FINITE-DIFFERENCEEQUATIONSFORDERIVATIVES

First Order Central Differences:

, 1 + ) (A1)mi = 2-2-2-2-2-2-2-2-2-2-_(-mi-i mi+l

,, 1 + i+1) (A2)

,,, 1 (-_i-2 + - 2_ + i+2) (A3)
mi - 2h_ 2_i-1 i+1

iv 1 - 4m + 6m + ) (A4)
i - h4 (_i-2 i-I i - 4_i+i mi+2

Second Order Central Differences:

m_ = (mi-2 - 8mi-1 + 8mi+1 - mi+2 )112h (A5)

m_ = (-_i-2 + 16_i-1 - 30mi + 16_i+1 - mi+2)112h2 (A6)

m'i' = (mi-3- 8mi-2 + 13mi-i - 13mi+l + 8mi+2 - mi+3)18h3 (A7)

miiv = (-_i-3 . 12mi-2 - 39mi-1 + 56mi - 39mi+1 + 12mi+2 - _i+3 )16h4 (A8)

19



REFERENCES

1. Subrahmanyam, K. B.; Kulkarni, S. V.; and Rao, J. S.: Application of the
Reissner Method to Derive the Coupled Bending-Torsion Equations of Dynamic
Motion of Rotating Pretwisted Cantilever Blading with Allowance for Shear
Deflection, Rotary Inertia, Warping and Thermal Effects. J. Sound Vib.,
vol. 84, no. 2, 22 Sep. 1982, pp. 223-240.

2. Subrahmanyam, K. B.; and Rao, J. S.: Coupled Bending-Bending Vibrations
of Pretwisted Tapered Cantilever Beams Treated by the Reissner Method. J.
Sound Vib., vol. 82, no. 4, 22 June 1982, pp. 577-592.

3. Subrahmanyam, K. B.; Kulkarni, S. V.; and Rao, P. M.: Dean and Plass
Method Calculations of the Flexural Frequencies of Timoshenko Beams. J.
Sound Vib., vol. 81, no. I, 8 Mar. 1982, pp. 141-146.

4. Rao, J. S.: Application of Collocation Method in Solving Blade Vibration
Problems. Proceedings of the Indian Society of Theoretical and Applied
Mechanics, 17th Congress, 1972, pp. 211-227.

5. Salvaderi, M. G.: Numerical Computation of Buckling Loads by Finite
Differences. Proc. Am. Soc. Civ. Eng., paper no. 2441, Dec. 1949,
pp. 590-636.

6. Srinivasan, A. V.: Buckling Load of Bars with Variable Stiffness: A
Simple Numerical Method. AIAA J., vol. 2, no. 1, Jan. 1964, pp. 139-140.

7. Cyrus, N. J.: An Accuracy Study of Central Finite Difference Methods in
Second Order Boundary Value Problems. M. S. Thesis, Virginia Polytechnic
Institute, Blacksburg, Virginia, June 1966.

8. Saravanos, B.: The Elastic Stability of a Thin Cantilever BeamUnder an
Articulated Tip Force - I. Statics Analysis. Int. J. Mech. Sci., vol. 16,
no. 8, 1974, pp. 573-584; and II. Kinetic Analysis. Int. J. Mech. Sci.,
vol. 16, no. 8, 1974, pp. 585-591.

9. Iremonger, M. J.: Finite Difference Buckling Analysis of Non-Uniform Col-
umns. Comput. Struct., vol. 12, Nov. 1980, pp. 741-748.

I0. Duggan, A. P.; and Slyper, H. A.: Torsional Vibrations of Pretwisted Can-
tilever Beams. Int. J. Mech. Sci., vol. 11, no. II, 1969, pp. 871-883.

ii. Carnegie, W.; and Thomas, J.: Natural Frequencies of Long Tapered Can-
tilevers. The Aeronautical Quarterly, vol. XVIII, Pt. 4, Nov. 1967,
pp. 309-320.

12. Carnegie, W.; and Thomas, J.: The Coupled Bending-Bending Vibration of
Pre-Twisted Tapered Blading. J. Eng. Ind., vol. 94, no. I Feb 1972, pp.255-266. ' "

13. Richardson, L. F.: The Approximate Arithmetical Solution by Finite Dif-
ferences of Physical Problems involving Differential Equations, with an
Application to the Stresses in a Masonry Dam. Philos. Trans. R. Soc.
London, Ser. A, vol. 210, no. IX, 1911, pp. 307-357.

2O



14. Greenwood, Donald T.: The Use of Higher order Difference Methods in Beam
Vibration Analysis. NASATN D-964, 1961.

15. Gawain, T. H.; and Ball, R. E.: Improved Finite Difference Formulas for
Boundary Value Problems. International Journal for Numerical Methods in
Engineering, vol. 12, no. 7, 1978, pp. 1151-1160.

16. Carnegie, William: Vibrations of Pre-Twisted Cantilever Blading. Proc.
Inst. Mech. Eng., London, vol. 173, no. 12, 1959, pp. 343-362; discussion,
pp. 362-374.

17. Kumar, D.; Kulkarni, S. V.; and Subrahmanyam, K. B.: Uncoupled Vibrations
of Tapered Cantilever BeamsTreated by the Dean and Plass Dynamic Varia-
tional Principle. J. Sound Vib., vol. 79, no. 4, 22 Dec. 1981,
pp. 609-615.

18. Rao, J. S.: Correction Factors for the Effect of Taper on the Torsional
Oscillation of Cantilever Beams. Proceedings of the Indian Society of
Theoretical and Applied Mechanics, 11th Congress, 1966, p. 189.

19. Bishop, R. E. D.; and Johnson, D. C.: Vibration Analysis Tables.
Cambridge University Press, 1956.

20. Kulkarni, S. V.; and Subrahmanyam, K. B.: Reissner Method Calculations of
Natural Frequencies of Torsional Vibrations of Tapered Cantilever Beams.
J. Sound Vib., vol. 75,. no. 4, 22 Apr. 1981, pp. 589-592.

21. Subrahmanyam_K. B.; and Kulkarni, S. V.: Torsional Vibrations of Pre-
Twisted Tapered Cantilever BeamsTreated by the Reissner Method. J. Sound
Vib., vol. 77, no. i, 8 July 1981, pp. 141-146.

22. Rao, J. S.: Vibrations of Pre-Twisted Tapered Cantilever Beams in Torsion.
Arch. Budowy Masz., vol. 18, no. 3, 1971, pp. 443-448.

23. Subrahmanyam, K. B.; and Kulkarni, S. V.: Reissner Method Analysis of Tap-
ered Cantilever Beams Vibrating in Flexure. J. Sound Vib., vol. 77, no. 4,
22 Aug. 1981, pp. 578-582.

24. Rao, J. S.; and Carniegie, W.: Determination of the Frequencies of Lateral
Vibrations of Tapered Cantilever Beams by Use of the Ritz-Galerkin Process.
Bulletin Mechanical Engineering Education, vol. I0, 1971, pp. 239-245.

25. Carnegie, W.; Dawson, B.; and Thomas, J.: Vibration Characteristics of
Cantilever Blading. Proc. Inst. Mech. Eng., London, Part 31, vol. 180,
1966, pp. 71-89.

21





TABLE I. - RELATIVE CONVERGENCERATES OF FREQUENCYRATIOS*OF AXIALVIBRATIONFOR TYPICALTAPER PARAMETERS

n First mode Secondmode Third mode Fourthmode Fifthmode

First Second First I Second First Second First Second First Second

order order order I order order order order order order order

Breadthtaper 6 = O; depth taper 6 = 0

5 0.99589 0.99994644 2.89019 2.98783 4.50158 4.86226 5.67232 6.37886 6.28782 7.23831
lO .99897 .99999702 2.97232 2,99920 4.87248 4.98999 6.65266 6.94877 8.26903 8.83121
15 .99954 .99999941 2.98768 2.99984 4.93408 4.99796 6.84432 6.98929 8.67058 8.96348
20 .99974 .99999987 2.99307 2.99995 4.96794 4.99935 6.91218 6.99654 8.81380 8,98805
25 ,99984 .99999996 2,99556 2.99998 4,97946 4,99973 6.94372 6,99857 8.88056 8.99503
30 .99989 l.O0000000 2.99692 2.99999 4.95873 4.99987 6.96089 6.99931 8.91696 8.99758

Exact l.O 3.0 5.0 7.0 9.0
solution
(ref.19)

Breadthtaper 6 = 0.6, depth taper 6 = 0.8 or breadthtaper B = 0.8, depth taper 6 = 0.6

5 1.47717 1,49710 3.06602 3.20418 4.50158 4.88551 5.57925 6.26438 6.19245 7.10365
lO 1.50305 1.50851 3.23515 3.27744 5.01479 5.15540 6.72215 7,04261 8,28857 8.86965
15 1.50785 1.51035 3.26716 3.28681 5.11520 5.18261 6.95531 7.11627 8.74112 9,05151
20 1.50955 1.51097 3.27840 3.28966 5.15069 5.18970 7.03833 7.13296 8.90366 9.09013
25 1.51032 1.51124 3.28362 3,29089 5.16718 5.19249 7.07701 7.13885 8.97962 9,10270
30 1.51074 1.51139 3.28645 3.29154 5.17615 5.19387 7.09808 7.14153 8.02107 9.10801

• Naturalfrequencyof taperedbeam in any mode
*Frequencyratio = Naturalfrequencyof uniformbeam in fundamentalmode "



TABLE II. - COMPARISONOF FREQUENCYRATIOS*FOR TAPEREDBLADINGIN AXIAL VIBRATIONS:

FINITEDIFFERENCESOLUTIONS;n = 30

Breadth Depth Firstmode Secondmode Thirdmode Fourthmode Fifth mode
taper, taper,
B 6 First Second First Second First Second First Second First Second

order order order order order order order order order order

0 0 0.99989 l.O0000 2.99692 2.99999 4.98571 4.99987 6.96089 6.99931 8.91696 8.99758
0 .2 1.04543 1.04557 3.01268 3.01502 4.9950.F 5.00916 6.96733 7.00518 8.92176 9.00002
0 .4 1.01460 I.I0481 3.03616 3.03950 5.0091r 5.02368 6.97713 7.01614 8.92908 9.01044
0 .6 1.18625 1.18653 3.07709 3.08070 5.03462 5.04963 6.99510 7.03472 8.94257 9.02467
0 .8 1.31006 1.31047 3.16917 3.17333 5.09932 5.11536 7.04296 7.08405 8.97936 9.06332
.2 .2 1.09189 1.09208 3.02991 3.03322 5.00528 5.01980 6.97444 7.01340 8.92707 9.00835
.2 .4 1.15215 1.15240 3.05523 3.05872 5.02055 5.03537 6.98509 7.02445 8.93508 9.01680
.2 .6 1.23511 1.23545 3.09858 3.10236 5.04772 5.06303 7.00427 7.04430 8.94943 9.03204
.2 .8 1.36046 1.36093 3.19405 3.19843 5.11506 5.13147 7.05413 7.09573 8.89777 9.07238
.4 .4 1.21366 1.21397 3.08289 3.08659 5.03739 5.05256 6.99687 7.03700 8.94384 9.02620
.4 .6 1.29802 1.29843 3.12938 3.13340 5.06679 5.08251 7.01768 7.05827 8.95949 9.04280
.4 .8 1.42465 1.42521 3.22938 3.23404 5.13781 5.15474 7.07036 7.11269 9.00003 9.08554
.6 .6 1.38368 1.38418 3.18019 3.18459 5.09947 5.11584 7.04094 7.08243 8.97702 9.06146
.6 .8 1.51074 1.51139 3.28645 3.29154 5.17615 5.19387 7.09808 7.14153 9.02107 9.10801
.8 .8 1.63529 1.63605 3.40099 3.40678 5.26289 5.28214 7.16392 7.20971 9.07223 9.16222

*Frequencyratio = Naturalfrequencyof taperedbeam in any mode .
Naturalfrequencyof uniformbeam in fundamentalmode



TABLE Ill. - COMPARISONOF CHARACTERISTICFUNCTIONSOF AXIAL OR TORSIONAL

VIBRATIONSOF UNIFORMCANTILEVERBEAM: SECONDORDER

CENTRALDIFFERENCETHEORY;n = 30

Axial First mode Secondmode; Thirdmode; Fourthmode; Fifth mode;
fractional theoretical theoretical theoretical theoretical
length, Exact Theoretical
n = z/L solution

(ref. 19)

0.0 0.00000 O.OOOO0 -O.O00OO 0.00000 O.O00OO 0.00000
.l .15643 .15643 -.45399 -.70711 -.89101 -.98769
.2 .30902 .30902 -.80902 -l.O0000 -.80902 -.30902
.3 .45399 .45399 -.98769 -.70711 .15643 .89101
.4 .58779 .58779 -.95106 0.45157xi0-13 .95106 .58779
.5 .70711 .70711 -.70711 .70711 .70711 -.70711
.6 .80902 .80902 -.30902 l.O0000 -.30902 -.80902
.7 .89101 .89101 .15643 .70711 -.98769 .45399
.8 .95106 .95106 .58779 -.47591xi0-14 -.58779 .95106
.9 .98769 .98769 .89101 -.70711 .45399 -.15643

l.O l.O0000 l.O0000 l.O0000 -l.O00OO l.O0000 -l.O0000



TABLE IV. - CONVERGENCEPATTERNOF FLEXURALFREQUENCIESOF UNIFORMCANTILEVERBEAM USING FIRST

AND SECONDORDER CENTRALDIFFERENCETHEORIES: NONDIMENSIONALFREQUENCIES pq/pAL4/EI

n Firstmode Secondmode Thirdmode Fourthmode Fifthmode

First Second First Second First Second First Second First Second
order order order order order order order order order order

5 3,4021 3.5062 18.870 21,204 45.334 54.421 72.469 91,02 92.603 I18.85
6 3,4359 3,5104 19,107 21.553 49,370 57,320 83.386 I01,85 I14.54 144,60
lO 3,4866 3.5148 21.134 21.934 56,603 60.774 I04.52 I16.59 160.58 185.93
II 3.4916 3,5152 21.284 21.960 57,423 61.014 I07,06 I17.71 166,45 189,46
12 3.4955 3.5153 21.340 21.977 58.063 61.179 I09.07 I18.48 171.13 191.94
15 3,5029 3.5158 21.623 22.006 59.318 61.443 I13.07 I19.72 180.62 195.99
17 3.5057 3.5158 21.713 22.015 59.827 61.526 I14.72 120,12 184.59 197.30
18 3.5069 3.5158 21.750 22.018 60.024 61.555 I15.35 120.25 186.14 197.74
20 3.5086 3.5159 21.801 22.023 60.334 61.595 I16.37 120.44 188.62 198.36
23 3.5104 3.5159 21.857 22.027 60,660 61.632 I17.44 120.61 191.25 198.92
24 3.5108 3.5159 21.872 22.028 60.744 61.640 I17.72 120.65 191.93 199.04
25 3.5113 3.5159 21.884 22.029 60.817 61.647 I17.96 120.68 192.53 199.15
29 3.5125 3.5160 21.923 22.031 61.041 61.666 I18.70 120.76 194.37 199.42
30 3.5127 3.5160 21.930 22.031 61.083 61.669 I18.85 120.78 194.72 199,47

Exact 3.5160 22.0345 61.69073 120.9010 199.8604
solution
(ref,19)

Percent -0,094 O.O00 -0.474 -0.016 -0.996 -0.046 -I.696 -O.lO0 -2.572 -0,195
error
based on
n = 30



TABLE V. - COMPARISONOF CHARACTERISTICFUNCTIONSOF FLEXURAL

VIBRATIONOF UNIFORMCANTILEVERBEAM: n = 30

Axial fractiohal Exact First order Secondorder
length, solution central central
n = z/L (ref. 19) differences differences

Firstmode

0.0 0.000000 0.0 0.0
.I .016775 .016848 .016783
.2 .063870 .063992 .063887
.3 .136485 .136629 .136508
.4 .229885 .230038 .229919
.5 .339525 .339671 .339565
.6 .461135 .461267 .461181
.7 .590875 .590985 .590922
.8 .725480 .725557 .725517
.9 .86240 .862443 .862424

1,0 1.000000 1.000000 1.000000

Second mode

0,0 0.0 0.0 0.0
.1 .092630 .094109 .092979
.2 .301056 .303290 .301818
.3 .526135 .528641 .527350
.4 .683470 .685965 .685029
.5 .713665 .715997 .715351
.6 .589475 .591552 .591031
.7 .317050 .318772 .318252
.8 -.070035 -.068810 -.069318
.9 -.523750 -.523154 -.523497
l.O -l.O00000 -l.O00000 -l.O00000

Third mode

0.0 0.0 0.0 0.0
.l .228070 .234307 .230020
.2 .604505 .612659 .608300
.3 .756240 .763252 .760600
.4 .525925 .530052 .528838
.5 .019685 .020298 .019714
.6 -.473765 -.476490 -.476608
.7 -.657425 -.662509 -.661663
.8 -.394875 -.400383 -.398434
.9 .228510 .225100 .226988
l.O l.O00000 l.O00000 l.O00000

Fourthmode

0.0 0.0 0.0 0.0
.l .385010 .400286 .390900
.2 .753790 .768408 .762570
.3 .433870 .437896 .438329
.4 -.315560 -.322786 -.319340
.5 -.707120 -.719090 -.715030
.6 -.326495 -.334367 -.330318
.7 .397390 .399734 .401725
.8 .643040 .654228 .651489
.g .052035 .062183 .057070
l.O l.O00000 l.O00000 l.O00000

Fifth mode

0.0 0.0 0.0 0.0
.1 .537245 .565373 .550025
.2 .659625 .673812 .671266
.3 -.211285 -.224220 -.216402
.4 -.696550 -.715362 -.709451
.5 .000850 .000992 .000859
.6 .700255 .719567 .713189
.7 .225730 .240056 .230950
.8 -.600450 -.610899 -.611704
.9 -.294005 -.314576 -.305421

l.O l.O00000 l.O00000 1.000000
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Figure17. - Frequencyparameterratiosof taperedcanti- Figure18. - Frequencyparameterratiosof taperedcanti-
leveredbeamsvibratingin flexure. Fourthmode- effect leveredbeamsvibratingin flexure. Fifth mode- effect
of depthtaper, of breadthtaper.
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Figure19. - Frequencyparameterratiosoftaperedcantilevered
beamsvibratingin flexure• Fifth mode- effectof depth
taper.

Depth A Exactsolution
1.0 taper, (ref. lg)

, j,'.9-- -0.50_..

,-
B .6-- , ,= .75_, .,..:/'//
E .5

.4

3
2

I

0 .2 .4 .6 .8 1.0
Axialfractionallength, rl

Figure20. - Medeshapesoftaperedcantileveredbeamsvi-
bratingin flexure. First mode.Breadthtaper[B-0.
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Figure21. - Modeshapesof taperedcantileveredbeamsvi-
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Figure22, - ModeshapesoftaperedcantileveredbeamsVi-
bratingin flexure. Third mode.Breadthtaperp - O.
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Figure23.-Modeshapesoftaperedcantileveredbeamsvi-
bratinginflexure.Fourthmode.Breadthtaper{3-0.
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