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SUMMARY

An improved finite difference procedure for determining the natural fre-
quencies and mode shapes of tapered cantilever beams undergoing uncoupled vi-
brations is presented. Boundary conditions are derived in the form of simple
recursive relations involving the second order central differences. Any ap-
proximation error resulting from this process is discussed. Results obtained
by using the conventional first order central differences and the present
second order central differences are compared, and it is observed that the
present second order scheme is more efficient than the conventional approach.
An important advantage offered by the present approach is that the results
converge to exact values rapidly, and thus the extrapolation of the results is
not necessary. Consequently, the basic handicap with the classical finite
difference method of solution that requires the Richardson's extrapolation
procedure is eliminated. Furthermore, for the cases considered herein, the
present approach produces consistent lower bound solutions.

INTRODUCTION

Several methods of solution of beam vibration problems, which can be
broadly classified as either belonging to the continuum model approach or to
the discrete model approach, have been published. Principles of the minimum
potential energy, or complimentary energy, the Reissner mixed method and the
Dean and Plass principle have been used in the continuum model approach. It
has been established that the potential and complimentary energy principles
give an upper bound to the solutions while the Reissner method and Dean and
Plass method may produce upper bound solutions depending on the type of formu-
lation and choice of shape functions. However, bounds for these mixed methods
have not been established theoretically. Each of these methods has its inher-
ent advantages (refs. 1 to 3). In the discrete model approach, the Holzer,
Stodola, polynomial frequency equation, Myklestad, and finite element methods
are all well known. Solution of the equations of motion in the continuum
model approach is possible under certain conditions by the application of the
Galerkin process, the collocation method, and the finite difference method.
Among these techniques, the Galerkin process is known to be equivalent to the
Rayleigh-Ritz methods and generates upper bound solutions identical to those
obtained by the Ritz method, provided that similar shape functions are used in
both techniques. It has been observed that the accuracy of the results ob-
tained by using the collocation method depend on the choice of the collocation
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points and their location (ref. 4). The finite difference method has attrac-
ted considerable attention and several contributions exist which make use of
the first-order forward, backward, or central difference schemes or their com-
binations (refs. 5 to 12). 1In almost all the works, it has been observed that
the finite difference method is subject to relatively slow convergence with
mesh refinement, although Richardson's extrapolation procedure (ref. 13), when
applied to two or three successive iterations with different mesh sizes, can
produce results which may be close to the exact solutions. However, such an
extrapolation procedure requires that the convergence of the results be mono-
tonic, and the extrapolated result may not necessarily give a bound.

Relatively few works exist which deal with the application of higher or-
der finite differences. Greenwood (ref. 14) used first order and second ordgr
finite dlfference schemes, which produce truncation errors of the order 0(h¢)
and 0(h™), respectively, for the analysis of uniform beams in flexure and for
another case having uniform breadth but varying depth with fixed-free end con-
ditions. The fourth order differential equation for the uncoupled vibration
was transformed into four first order equations, the slopes and shearing for-
ces were evaluated at half integer stations while the deflections and bending
moments were ivaluated at integer stations. Central difference approximation
of order 0(h") with staggered stations was used. One-sided approximations
were used to satisfy the boundary conditions wherein all the stations encoun-
tered were inside the beam and fictitious stations outside the beam were not
required. As an alternative approach, another complicated, but symmetric,
method of representing the boundary conditions was also illustrated. It was
concluded that one-sided approximation gave better results while the symmetry
assumptions gave results of moderate accuracy. It is interes%ing to note from
Greenwood's results that, for the tapered beam caae, the 0(h¢) approximation
yields better accuracy than the higher order O0(h™) approximation. It was
stated in reference 14 that Xhe lumping of nonuniform mass caused the largest
loss of accuracy in the O0(h™) approximation.

Gawain and Ball (ref, 15) presented finite difference formulae having
consistent errors of 0(h2) by representing the function with a truncated
power series at the boundary in such a _manner that the boundary conditions are
satisfied. A consistent error of O(hz) was obtained for the error estimate.
However, higher order central difference expressions having truncation errors
of order 0(h4) have not been reported.

In what follows, a second order central difference approach is presented
which eliminates most of the problems discussed above. Clamped free beams are
analyzed for axial, torsional, and flexural vibrations. Boundary conditions
are enforced which eliminate the fictitious stations outside the beam. These
conditions are obtained from the simple and logical extensions of the first
order theory. Any approximation error encountered in this process is dis-
cussed. It will be shown that the present theory produces accurate results
with rapid convergence and, consequently, the extrapolation procedures needed
in the classical first order central difference theory can be successfully ob-
viated with the present improved formulations.

Professor A. W. Leissa provided facilities at Ohio State University from
March to April 1983, during which time the uniform beam cases were solved.

The results of the uniform beam cases are reproduced in this report for
completeness.




SYMBOLS

A area at any section

b0 breadth of beam

C torsional rigidity

Qézl derivative with respect to z

d?( ) o
dn2 second derivative with respect to n

E Young's modulus

G modulus of rigidity

h length of each elemental beam segment

I second moment of area about flexible plane

Ip polar moment of inertia about centroid

L length of beam

n number of beam segments

p natural radian frequency

t time

to depth of beam

W dynamic displacement in longitudinal direction

y dynamic displacement in flexible direction

z coordinate measured along longitudinal direction of beam

8 breadth taper parameter

Y pretwist over length of beam

) depth taper parameter

n axial fractional length

;] dynamic torsional displacement

p mass density

Subscripts:

i arbitrary station

-1, -2, n+1’}.fictitious stations outside beam domain
n+2, n+3

Superscripts:

! differentiation with respect to z or n

differentiation with respect to time



ANALYSIS
Axial Vibrations of Tapered Cantilever Beams

The governing differential equation for free axial vibrations of a canti-
lever beam is

gi-(FA~%¥> + pp2W =0 (1)
For a beam with breadth taper g and depth taper s, equation (1) reduces
to ’
aw" + bw' + cp2w =0 (2)
where

a=(1-8n)(1 - sn)E/L?

b = -E[8(1 - sn) + s(1 - gn)I/L2 f

c =p(l - 8n)(l ~ &n)

n=2z/L,0<n<1 J

The boundary conditions for the cantilever beam reduce to
w(0) =w'(l) =0 (4)

Solution by first order central differences. - Substituting the central
differences for the derivatives of w given in the appendix in equation (2)

and simplifying, one can write the following equation for any arbitrary station
i of the beam as follows:

2 .
A,iw_i_l + B,iw,i + Ciw_i+1 = Dip Wi 1 = 0, 1, s o o9 n (5)

In the preceding equation

. - C. = . D. - 2.

a; = (1= gih)(1 - sih)E/L%; b, = -E[8(1 - sih) + &(1 - gih)I/L%; > (6)

c; = o(1 - gih)(1 - sih) J




The boundary conditions in terms of the first order central differences are
. r_ =
W, = 0; A 0 or Wotl = Wn_1 | (7)
where n represents the station located at the free end of the cantilever.

Equation (5) together with the boundary conditions given by equation (7) leads
to the frequency equation in the form of n-equations for i=1,2, . . ., n:

— = e =
B] C.| 0 0 o . . .« O 0 0 w] w] . D]
A2 82 C2 0 0 e« « O 0 0 w2 w2 . 02
0 A3 B3 C3 o . . . O 0 0 w3 w3 . 03
2
. . . .« . . e . .ﬁ . »>=P 4 . . - > (8)

0 0 0 0 0 . .. A B o C W Wy oe D,
o 0 0 0 0 . .. 0 A+ B W W . D

n n n nJ n n
| 4 \ p,

Solution by second order central differences. - The boundary conditions
for the fixed-free case of a beam in axial vibration given by equation (4) in
terms of second order central differences (see appendix) are

- 1
Wo = 05 Wy = o (Wn_p = 8Wy g * 8wy - Woeg) = 0 (9)

Assumption of the symmetry condition (ref. 14) at the free end for the func-
tions (wp_-1, Wp+1) and (wp_2, wp+2) Teads to

Wo 1 = Woeys Mo = Yoo (10)

and the fictitious stations wp+p and wpip can thus be eliminated. As can
be seen from equation (7), the p%ysica]]y consistent condition, w,_j = Wp+p, as
given by the first order theory is extended to cover the fictitious station
wp+2 also. Another important observation can be made by inspecting equa-

tion (5). If this equation is evaluated for the station i = 0, the built in
end, one obtains the condition

2
AW_q1 *Bwy * Cwy =pDw

00 (11)




which implies that

c 1 - {8 * 8)h |
0 2 .
W == ﬁ; Wy o= - TS (5 Wy (12)
2

yielding w_y =wy for a uniform beam. Substituting the second order fin-
ite difference expressions for the derivatives given in the appendix in equa-

tion (5) and simplifying, one obtains the following equation for any arbitrary
station i:

2
Aiwi_2 + Biwi-l + Ciwi + D].wi+1 + Eiw].+2 = Fjp W (13)

In the previous equation

2, _ 2,
Aj = (bh - a;)/12h% B, = (16a, - 8b.h)/12h";

C, = -30a,/120%; D, = (16a, + 12b.h)/12h’;

% (14)

E. = —(a; + b.h)/12h%; Fo = -o(1 - sih)(1 - gih);

a; = E(1 - gih)(1 - sin) /L% by = -E[8(1 - sih) + &(1 - sih)]/LZ_)

If equation (13) is evaluated at n = 0, it can be shown that

wy = ~(0g/BJuy = = {[1 - (s + 6)/2/[1 + h(s + 5121} wy

(15)
W_g = ~(EglAgy = = {[1 = h(s + 6)1/[1 + h(s + &)1} w,

and it can be seen that the first of equations (15) is identical to the corre-
sponding expression given by the first order central differences.

Making use of equations (10) and (15) and evaluating equation (13) at each
station i =1, 2, . . ., n results in the following frequency equation:
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Torsional Vibrations

Torsional vibrations of tapered cantilever beams: second order finite

differences. - The governing equation for free torsional vibrations of a beam
1S given by

d (. d 2
-d;(c fz) + ol p% = 0 (17)
The boundary conditions for a fixed-free beam are
(0) =0;0'(L) =0 (18)

For a tapered cantilever beam of rectangular cross section with width taper 8

and depth taper &, torsional rigidity C, and polar moment of inertia I
take the form




-
3

Gb t t b (1 - gz)

C =,—g—° (1 - 82)(1 - ‘sz)3 _l_gﬁ,t% Z I:—5 tanh T—-(-I—T:I
i N=1,3,5 g (19)

bt
1, = =322 (1 - 82)(1 - s2) (1 - 822 + 301 - 52)?]
o/

Substituting equations (19) in equation (17), performing the necessary differ-
entiation and writing in nondimensional form, one obtains the following equa-
tion in terms of second order finite differences for any station i:

Ao

42 + B.e +Co, *+D +E6.:.,= Fipze- (20)

ivi-1 ivd 191+1 ivi+2 i

and
A Ai = S1(S2 h - S3); Bi = S1(16 S3 - 8h S2); Ci = =30 S1 S3;

D, = S1(16 S3 + 8h S2); E. = -S1(S3 + h S2); Fo = pIp

- 1/12h2

Gb t3

52 = -§%§9 [}35(1 _ gih)(1 - sih)® - B(1 - aih)?]

) N=1,3,5 ~(21)
27b (s - B)
- lgé_ (1 - sin)? [- by w (& + e
T bo lfo(l - &ih)°N
N=1,3,5
3
6b t 4  _s4
$3 = —>=4(1 - gih)(1 - sih)3 - 122 (1 - sin)® [%5 (es4 - e-S4)
3L L N-T,3,5L0 (e *e™7)
N'nb (1 - gih)
>4 = 2t (1 ~57h) 7




By proceeding on the same lines as presented for the case of axial vibration
and noting that the boundary conditions in terms of the finite differences can
easily be written analogously to those given in equations (10) and (15), one
can develop the frequency equation which will be identical to the one presented
in equation (16), with Aj;, Bj, . . ., Fj defined by equation (21).

Torsional vibrations of pretwisted-tapered cantilever beams. - When a
beam is pretwisted, an increase in the torsional rigidity takes place due to
the inclination of the blade fibers in addition to the fiber bending effects.
Carnegie (ref. 16) derived a correction factor for fiber bending and pretwist
effects for thin rectangular cross section blades. So far, no rigorous mathe-
matical solutions are available for the fiber bending effects of tapered
blades. Among the recent contributions on the torsional vibrations of pre-
twisted blades, at least two works require careful consideration. Duggan and
Slyper (ref. 10) observed that the boundary conditions adopted by Carnegie
(ref. 16) do not yield accurate solutions for low aspect ratio blades. They
drew attention to the boundary condition discussion by Barr (ref. 16) and used
a modified set of boundary conditions to obtain the torsional frequencies for
low aspect ratio blades. Kaza and Kielb (private communication) reported on
the case-of rotating pretwisted cantilever blades, allowing for the effects of
warping rigidity. The torsional equation of motion was derived, and the bound-
ary conditions were established through a variational formulation (Hamilton's
principle). They studied the effect of structural warping and of inertial
warping for blades having wide ranges of aspect ratios and rotational speeds.
Results were generated by using the Galerkin method. Closed form exact solu-
tions were obtained for the nonrotating case. These equations were used by
Subrahmanyam and Kaza (unpublished data) with a first order finite difference
method of soluticn for uniform pretwisted blade cases of small and large aspect
ratios; close agreement between the two approaches was shown.

If warping is included, the torsional equation of motion will be of fourth
order with variable coefficients, and incorporation of the effects of taper
will be more involved. On the other hand, for thin rectangular blades of large
thickness and aspect ratios, Carnegie's formulation, which leads to a second
order equation of motion and to an appropriate set of boundary conditions, will
be adequate, and the equations developed in the preceding section for untwisted
beams in torsion can be used with only slight modifications.

If the additional torsional rigidity due to pretwist is incorporated, the

net torsional rigidity (neglecting structural warping effects) can be written
as

C, =C+ CS (22)

t

where C is given by equation (19) and the increase in torsional rigidity due
to pretwist, over and above that of St. Venant, is



5
Etob0

5 12
Cg = —1gp (1 -82)7°(1 - s82)(c") f (23)

£ = yvzZ/L = yn J

The frequency equation for the case of_a pretwisted tapered blade will be ob-
tained by replacing S2 and S3 by S2 and S3, which are defined as

52 ")
— Etoboy 5 4
7 - S2 - —Zl}(l - 82)° + 58(1 - s2)(1 - 82) ]
180L
5 > (24)
Et b
T3 - s3+ —0—272(1 - 82)°(1 - s2)
180L J

Flexural Vibrations of Tapered Cantilever Beams

The differential equation for flexural vibration of beams neglecting shear
deflection and rotary inertia effects is of the form

2 2
9o (e L) - moply = 0 (25)
dz dz
which can be written in the following nondimensional form
2 2
d d 4 2
% [E1 =] - oA"Yy = 0 (26)
dn dn

The boundary conditions for a fixed-free beam can be reduced to

y =0 and g% =0 at n=0 w
e (27)
2 3
-d—%’=0 and d—%’:O at n =1
dn dn J

Equation (26) is rewritten as follows for a tapered beam of rectangular cross
section:

10




4 3 2

a d X +b d % +c d % = dp2y (28)
dn dn dn :
where
3 h
a=(1-28n)(1l-sn)
b = -28(1 - sn)3 - 68(1 - Bn)(1 - sn)2
L (29)
c = 68s(1 - n) + 66°(1 - gn)(1 - &n)
d = 120L%(1 = gn)(1 - an)/Eti
J

Solution by first order central differences. - The boundary conditions

represented by equation (27) when written in terms of first order central dif-
ferences give

Yo = 05 ¥y 1 =913 Y1 = 2Y = Yn-1
(30)
Yn+2 = Yp2 ~ 4yn-l * 4yn

By using the finite difference expressions for the derivatives from the appen-
dix, incorporating the relations given by equation (30) and following on the
lines described earlier, the frequency equation for the flexural vibrations

%an belgﬁve]oped easily and is identical to that given by Carnegie and Thomas
ref. . '

Solution by second order central differences. - Substituting the second
order finite difference equivalents for the derivatives from the appendix in
equation (28), one obtains the following equation for any arbitrary station i:

Aiz ¥ BiYip ¥ Oy Dy T B

2 .
*FYiep T GiYiag = HiPTYy i=1,2, ..., n (31)

where

11




i i i i i i i
Ap= —mo Ao i T _ + :
LA R i Y w3 12027 T g3 T e 1on2
. 562, 30c; . de; 39 13b, N 2 b oo
i 6h*  12n2 7 T 32 T en? T g3 L ht nd 1n?’
S bi_ H, = 12oL%(1 = gih)(1 - sih)/EL2
i EFI 5;? i 0 r(32)
. 3
a; = (1 - 8ih)(1 ~ sih)
3 . 2
bi = -28(1 - &ih)” - 658(1 - gih)(1 - sih)
c. = 68s(1 - sih)% + 662(1 — gih)(1 - sih) )

In the case of first order central differences, the fictitious stations
¥-1, Yp+1, and yn+E can directly be eliminated by using the finite difference
equivalents of the boundary conditions given by equations (30).

In the present case of second order central differences, additional ficti-
tious stations y_o and yp+3 must be eliminated in addition to those men-
tioned earlier. This is accomplished by again using the symmetry conditions

Y1=Y13 Y 0=Y (33)

Elimination of the fictitious stations yp+q, yn+$, and yp+3 1is accom-

e fir

plished by following the conditions obtained from th st order theory in the
following manner:

Yo =0 Teads to y ., =-y ; + 2y (34)
Yo =0 leads to y ., =y , -4y ; + 4y (35)

These equations can be written in the following alternative forms:

12




(Ypag = Yy) = 200 = % 4) (36)

(Ypeo = Yp2) = 8y, - ¥,1) (37)

and by recursion, one can eliminate yp+3 from

(yn+3 - .yn_3) = 6(.Vn - .Yn_l) (38)

If  yp+1, Yn+2, and_yp+3 from equations (36) to (38) are introduced into the
secong order central d1f¥erence equivalent of y.' given in equation (A8), one
can show that yp' = 0. By using equations (36) and (37) in the finite differ-
ence equivalent of yp and setting the result to zero, one obtains the follow-
ing relation:

Ynog =~ py T =0 (39)

Equation (39) states that the deflection at the (n - 1)th station is the av-

erage of the deflections at the preceding and succeeding stations. Thus, the
deflection curve near the tip of the cantilever beam assumes a straight line
form. Since the bending moment at the free end is zero, the condition of con-
stant slope near the tip is justified and, thus, the boundary conditions repre-
?ented by equations (36) to (38) should give accurate results for n suitably
arge.

The eigenvalue problem that results by using the second order central dif-
ferences in equation (31) together with equations (36) to (38) is as follows:

4
[RI{y} = p° 28 [SI{y} (40)

where

13




[R] =

A2+C2 02 E2 F2 62 0 0 0 0
B3 C3 D3 E3 F3 G3 0 0 0
A4 B4 C4 D4 E4 F4 G4 0 0
0 A B c D E F G V]

0 An-3
() 0 0

0 0

0 0

Nonzero elements

(e1v)

Dn-2

B_+F
nn

Fn--3

En-Z-Gn-Z

C -E -4F -6G
n n n n

Gn-3

Fn-2+ZGn-2

D +2E +4F +6G
n n n n




[s] = (41b)

3

and

{v} = {ylyz C. yn}T (41c)

RESULTS AND DISCUSSION

The eigenvalue problems given by equations (8), (16), and (40) for the
representative cases were solved on an IBM 370 computer by using the IMSL rou-
tine EIGZF. The theoretical results obtained thus with the first and second
order central difference theories are compared with the results available in
the literature and these are presented in what follows.

Axial Vibrations

The following numerical data were used to determine the axial vibratory
modes of cantilever beams having a length of 0.1524 m (6 in.), various taper
parameters, a thickness ratio tg/by = 0.20, and an aspect ratio L/by = 2.4.
Table I shows the relative convergence rates of the first and second order cen-
tral difference theories for the case of a uniform beam and one tapered beam
with 8 (or &) = 0.6 and § (or B) = 0.8. It can be seen from this table
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that with n = 5, the second order central difference theory produces the fun-
damental frequency of the uniform beam to within 0.005 percent error and the
second mode frequency to within 0.4 percent error. A solution with at least

n = 15 1is required in the case of the first order central differences to at-
tain this accuracy. The convergence of higher modes is, however, not so rapid
in the second order theory with n = 5. Comparing the second order central
difference solution with n = 10 and the first order solution with n = 25,
one can observe that the maximum error encountered in the fourth mode frequency
is of the order of 0.7 percent using second order theory with n = 10, while
the corresponding error with n = 25 and using first order theory is about 0.8
percent. From these results, it can be seen that the convergence is very rapid
in the case of second order central differences and that the lowest five axial
mode frequencies can be obtained to within 0.027 percent error with a beam di-
vided into 30 segments (n = 30). The first order theory produces results with
errors of the order of 1.0 percent, and Richardson's extrapolation of first
order theory with n = 10, 20, 30 produces accurate results.

Similar trends of convergence are observed for the case of tapered beams
also, as can be seen from table I. It may be noted here that the percentage
error magnitudes are relatively higher than the corresponding values obtained
for the uniform beam. Accurate results up to the fifth mode can be obtained
for all the taper parameters studied here by using a second order theory with
n =30 for all practical purposes. The frequency ratios presented in table II
can be considered as close lower bound solutions. A further comparison of the
first two axial mode frequencies with those presented in reference 17 indicates
a close agreement.

Torsional Vibrations

In order to study the torsional vibrational characteristics, use is made
of the same numerical data employed in the case of axial vibrations. As is

well known, the torsional equation of motion can be obtained by replacing E

in the equation for axial motion by (C/Ip), and consequently, the convergence
patterns for the torsional vibrational frequencies for the case of uniform beam
are identical to the corresponding values presented in table I for the case of
axial motion. Since the convergence trends have already been established by
the axial vibratory motion study, the torsional frequency parameter ratios (de-
fined as the ratio of the square of the natural torsional frequency of any mode
to the square of the fundamental torsional frequency) were obtained by using
the second order central difference theory with n = 30. The ratios for the
Towest five torsional modes are presented in figures 1 to 5. Comparison of the
present theoretical frequencies with results obtained from the Holzer method
(ref. 18) and the Reissner method (ref. 20) indicates close agreement.

Table III shows a comparison of the fundamental torsional characteristic
function of a uniform beam obtained from the second order central difference
theory with n = 30 and the exact characteristic function. It can be seen
that the theoretical results agree with the exact solution (ref. 19) up to five
significant digits. Further, the higher mode characteristic functions are also
in extremely close agreement with the corresponding exact values.

The numerical data given in references 18 and 21 were used to determine
the torsional frequencies of pretwisted cantilever beams. These frequencies
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were modified by applying a correction factor given by Carnegie (ref. 16) to
account for the fiber bending effects, and these results are presented in fig-
ure 6. Second order central difference theory was used with n = 15. It can
be seen that the present results agree closely with the experimental results
of Carnegie (ref. 16) and with the theoretical results from the Reissner
method (ref. 20). Figure 7 shows a comparison of the present natural frequen-
cies of pretwisted tapered blading with experimental results (ref. 22) and the
theoretical results obtained by using the Galerkin technique. A correction
factor, applicable to uniform beams (ref. 16), was applied to the torsional
frequencies obtained here by using second order central difference theory with
n = 15. Close agreement between the various methods can be seen here also.

Flexural Vibrations

The following numerical data were used to study the flexural vibrations
of cantilever beams having a length of 0.254 m (10 in.) and various breadth and
thickness taper ratios: thickness ratio tO/bO = 1.0; aspect ratio L/bo = 40.

The shape factor for this uniform beam VI/AL2 is 0.00721688 so that the
higher order effects 1ike shear deformation and rotary inertia can safely be
ignored. The breadth and thickness taper parameters were varied from -0.75 to

0.73 12 steps of 0.25, and various combinations of these taper parameters were
studied.

A convergence study has been made for the case of a uniform beam with the
beam divided into an odd number of segments (n = 5, 11, 15, 17, 23, 25, 29) and
an even number of segments (n = 6, 10, 12, 18, 20, 24, 30). Both first and
second order central difference theories were used, and the frequency ratios
are shown in table IV. These values are also shown in graphical form in fig-
ure 8; it -can be seen from this figure that the convergence is monotonic from
below for both the first and second order central differences and that the con-
vergence is continuous for even and odd values of n.

The convergence rates of the two methods can be compared from table IV or
figure 8. As has been observed in the earlier cases of axial or torsional vi-
brations, the lowest two flexural mode frequencies given by the second order
theory with n = 5 are better than those given by the first order theory with
n = 10. With n = 30, the second order central difference theory produces the
lowest five flexural frequencies to within 0.2 percent error while the first
order theory shows errors of the order of 2.6 percent. Using the second order
theory with n = 30, the frequency parameter ratios (defined as the ratio of
the square of the natural frequency of any mode of a tapered beam to the
square of the fundamental flexural frequency of a uniform beam of comparable
dimensions at the root) are calculated and presented in figures 9 to 19 for
the lowest five flexural modes. Graphs are drawn showing the effects of
breadth (or depth) taper for a given depth (or breadth) taper. Comparisons
are made with the theoretical results, obtained earlier by using the Reissner
method (ref. 23) and the Galerkin process (ref. 24), and also with experimen-
tal results (refs. 11 and 25). Close agreement of the results obtained by the
various approaches is observed. The characteristic functions obtained by
using the first and second order theories are presented in table V for the case
of a uniform beam where further comparisons are made with the exact character-
istic functions (ref. 19). It has been observed that the second order central
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difference theory gives characteristic functions close to the exact ones.
Figures 20 to 24 show the mode shapes of tapered cantilever beams obtained by
means of the second order theory. These mode shapes agree very closely with
the experimental mode shapes obtained by Carnegie and Dawson (ref. 25).

CONCLUDING REMARKS

The second order finite difference method has been successfully applied
to determine the uncoupled dynamic characteristics of cantilevered beams hav-
ing variable mass and elasticity properties. Simple recursive relations have
been used to eliminate the fictitious stations outside the beam domain by mak
ing logical extensions from the first order theory. The present approach is
shown to produce accurate natural frequencies and mode shapes. The present
improved finite difference method has the following specific advantages com-
pared to the classical approach of using the first order central differences:

1. For the same mesh size (step length h), the second order finite dif-
ference method produces natural frequencies with greater accuracy than the
first order theory.

2. The convergence of the lower mode frequencies is very rapid in the case
of second order central differences compared to that of the first order theory.

3. Because of the rapid convergence shown by the present approach, accu-
rate natural frequencies and mode shapes can be obtained directly by using a
suitable number of segments without any necessity of the extrapolations that
are customary with the first order central difference theory.

4. Finally, there are few methods which produce close lower bounds; the
present technique may be invaluable in obtaining close lower bound solutions
without requiring extrapoliations. It may be noted that even though the finite
difference method produces lower bound solutions in general, an extrapolated
result obtained by using the Richardson method does not necessarily give a
bound. Thus, the present improved approach eliminates most of the shortcomings
associated with the conventional approaches.

The method developed in this report has the potential for extension to complex
blade vibration problems involving coupling between in-plane and out-of-plane
bending and torsional motions. Further extension to plate theory may prove
beneficial since rapid convergence in the two-dimensional case may reduce the
computational space and time considerably.
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APPENDIX - FINITE-DIFFERENCE EQUATIONS FOR DERIVATIVES

First Order Central Differences:

1
o5 =7k (i1 " 240 (AL)
ot =L (es g - 205 * 0i4q) : (A2)
of =17 (041 ~ % i
|||_1
| (=050 * 2045_1 ~ 20441 * 944p) (A3)
1
o =7 (egp = Yoi1 * By~ Beqay o) (A4)

Second Order Central Differences:

iv
<P-i =

of = (055 = Boj_g * Bejuy —vjep)/120 (RS)
ot = (=p;_p + 1605 1 = 3005 * 160, = 044p)/120° (A6)

m 3
of = (v53 - 8ojp * 1305_1 = Beguy * Bojup — vy43) /8N (A7)

4
(=i 3% 1205 » = 3% * 5605 = 3% 41 * 1205,5 -~ 0443)/6"  (A8)
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TABLE I. - RELATIVE CONVERGENCE RATES OF FREQUENCY RATIOS* OF AXIAL VIBRATION FOR TYPICAL TAPER PARAMETERS

n First mode Second mode Third mode Fourth mode Fifth mode
First Second First Second First Second First Second First Second
order order order order order order order order order order

Breadth taper B = 0O; depth taper § =0

5 0.99589 | 0.99994644 | 2.89019 | 2.98783 | 4.50158 | 4.86226 | 5.67232 6.37886 | 6.28782 | 7.23831

10 .99897 199999702 | 2.97232 | 2.99920 | 4.87248 | 4.98999 | 6.65266 | 6.94877 8.26903 | 8.83121

15 .99954 .99999941 | 2,98768 | 2.99984 | 4.93408 | 4.99796 | 6.84432 6.98929 | 8.67058 | 8.96348

20 .99974 99999987 | 2.99307 | 2.99995 | 4.96794 | 4.99935 | 6.91218 6.99654 | 8.81380 | 8.98805
25 .99984 ,99999996 | 2,99556 | 2.99998 | 4,97946 | 4.99973 6.94372 | 6.99857-| 8.88056 | 8.99503
30 .99989 | 1.00000000 | 2.99692 | 2.99999 | 4.95873 | 4.99987 6.96089 | 6.99931 | 8.91696 | 8.99758
Exact 1.0 3.0 5.0
solution
(ref. 19)
Breadth taper B = 0.6, depth taper § = 0.8 or breadth taper B = 0.8, depth taper § = 0.6

5 1.47717 | 1.49710 3.06602 | 3.20418 | 4.50158 | 4.88551 | 5.57925 | 6.26438 6.19245 | 7.10365

10 1.50305 | 1.50851 3.23515 | 3.27744 | 5.01479 | 5.15540 [ 6.72215 | 7.04261 8.28857 | 8.86965

15 1.50785 | 1.51035 3.26716 | 3.28681 | 5.11520 | 5.18261 | 6.95531 | 7.11627 | 8.74112 9.05151

20 1.50955 | 1.51097 3.27840 | 3.28966 | 5.15069 | 5.18970 | 7.03833 | 7.13296 | 8.90366 9.09013

25 1.51032 | 1.51124 3.28362 | 3.29089 | 5.16718 | 5.19249 | 7.07701 | 7.13885 8.97962 | 9.10270

30 1.51074 | 1.51139 3.28645 | 3.29154 | 5.17615| 5.19387 | 7.09808 | 7.14153 | 8.02107 9.10801

Natural frequency of tapered beam in any mode

*Frequency‘ratio =

Natural frequency of uniform beam in fundamental mode




TABLE II. - COMPARISON OF FREQUENCY RATIOS* FOR TAPERED BLADING IN AXIAL VIBRATIONS:
FINITE DIFFERENCE SOLUTIONS; n = 30

Breadth Eepth First mode Second mode Third mode Fourth mode Fifth mode
taper, aper,
B3 g First Second First Second First Second First Second First Second
order order order order order order order order order order
0 0 0.99989 | 1.00000 | 2.99692 | 2.99999 | 4.98573 | 4.99987 | 6.96089 | 6.99931 | 8.91696 | 8.99758
0 .2 1.04543 | 1.04557 | 3.01268 | 3,01502 | 4.99504 | 5.00916 | 6.96733 | 7.00518 | 8.92176 | 9.00002
0 4 1.01460 | 1.10481 | 3.03616 | 3.03950 | 5.00911 | 5.02368 | 6.97713 | 7.01614 | 8.92908 | 9.01044
0 .6 1.18625 | 1.18653 | 3.07709 | 3.08070 | 5.03462 | 5.04963 | 6.99510 { 7.03472 | 8.94257 | 9.02467
0 .8 1.31006 | 1.31047 | 3.16917 | 3.17333 | 5.09932 | 5.11536 | 7.04296 | 7.08405 | 8.97936 [ 9.06332
.2 o2 1.09189 | 1.09208 | 3.02991 | 3.03322 | 5.00528 | 5.01980 | 6.97444 | 7,01340 | 8.92707 | 9.00835
.2 .4 1.15215 | 1.15240 | 3.05523 | 3.05872 | 5.02055 | 5.03537 | 6.98509 | 7.02445 | 8,93508 | 9.01680
2 .6 1.23511 | 1.23545 | 3.09858 | 3.10236 | 5.04772 { 5.06303 | 7.00427 | 7.04430 | 8.94943 | 9.03204
.2 .8 1.36046 | 1.36093 { 3.19405 | 3.19843 | 5.11506 | 5.13147 | 7.05413 | 7.09573 | 8.89777 | 9.07238
4 .4 1.21366 | 1.21397 | 3.08289 | 3.08659 | 5.03739 | 5.05256 | 6.99687 | 7.03700 | 8.94384 | 9.02620
4 «6 1.29802 | 1.,29843 | 3.12938 | 3.13340 | 5.06679 | 5.08251 | 7.01768 | 7.05827 | 8.95949 | 9.04280
.4 .8 1.42465 | 1.42521 | 3.22938 | 3.23404 | 5.13781 | 5.15474 | 7.07036 | 7.11269 [ 9.00003 | 9.08554
.6 .6 1.38368 | 1.38418 | 3.18019 | 3.18459 | 5.09947 | 5.11584 | 7.04094 | 7.08243 | 8.97702 | 9.06146
.6 .8 1.51074 | 1.,51139 | 3.28645 | 3.29154 | 5.17615 | 5.19387 | 7.09808 | 7.14153 | 9,02107 | 9.10801
.8 .8 1.63529 | 1.63605 | 3.40099 | 3.40678 | 5.26289 | 5.28214 | 7.16392 | 7.20971 | 9,07223 | 9.16222

*Frequency ratio =

Natural frequency of tapered beam in any mode

Natural frequency of uniform beam in fundamental mode °




CENTRAL DIFFERENCE THEORY; n = 30

TABLE III. - COMPARISON OF CHARACTERISTIC FUNCTIONS OF AXIAL OR TORSIONAL

VIBRATIONS OF UNIFORM CANTILEVER BEAM: SECOND ORDER

Axial First mode Second mode; Third mode; Fourth mode; | Fifth mode;
fractional theoretical theoretical theoretical theoretical
length, Exact Theoretical
n = z/L solution
(ref. 19) ) )
0.0 0.00000 0.00000 -0.00000 0.00000 0.00000 0.00000
.1 .15643 .15643 -.45399 -.70711 -.89101 -.98769
o2 .30902 .30902 -.80902 -1.00000 -.80902 -.30902
.3 .45399 .45399 -.98769 -.70711 .15643 .89101
.4 .58779 .58779 -.95106 0.45157x10~13 .95106 .58779
.5 70711 .70711 -.70711 .70711 70711 -.70711
.6 .80902 .80902 -.30902 1.00000 -.30902 -.80902
.7 .89101 .89101 .15643 70711 -.98769 .45399
.8 .95106 .95106 58779 -.47591x10-14 -.58779 95106
.9 .98769 .98769 .89101 -.70711 .45399 -.15643
1.0 1.00000 1.00000 1.00000 -1.00000 1.00000 -1.00000




TABLE IV. - CONVERGENCE PATTERN OF FLEXURAL FREQUENCIES OF UNIFORM CANTILEVER BEAM USING FIRST

AND SECOND ORDER CENTRAL DIFFERENCE THEORIES: NONDIMENSIONAL FREQUENCIES p/ pAL4/E]

n First mode Second mode Third mode Fourth mode Fifth mode
First Second | First Second | First Second First Second First Second
order order order order order order order order order order

5 3.4021 1 3.5062 | 18.870 | 21.204 | 45.334 | 54.421 72.469 91.02 92.603 | 118.85

6 3.4359 | 3.5104 | 19.107 | 21.553 | 49.370 | 57.320 83.386 | 101.85 114,54 144,60

10 3.4866 | 3.5148 | 21.134 | 21.934 | 56.603 | 60.774 | 104.52 116.59 160.58 185.93

n 3.4916 | 3.5152 | 21.284 | 21.960 | 57.423 | 61.014 | 107.06 17.71 166.45 189.46

12 3.4955| 3.5163 | 21.340 | 21.977 | 58.063 | 61.179 | 109.07 118.48 171.13 191.94

15 3.5029 | 3.5158 | 21.623 | 22.006 | 59.318 | 61.443 | 113,07 119.72 180.62 195.99

17 3.5057 | 3.5158 | 21.713 | 22.015 | 59.827 | 61.526 | 114,72 120.12 184.59. 197.30

18 3.5069 | 3.5158 | 21.750 | 22.018 | 60.024 | 61.555 | 115.35 120.25 186.14 197.74

20 3.5086 | 3.5159 | 21.801 | 22.023 | 60.334 | 61.595 | 116.37 120.44 188.62 198.36
23 3.5104 | 3.5159 | 21.857 | 22.027 | 60.660 | 61.632 | 117.44 120.61 191.25 198.92
24 3.5108 | 3.5159 | 21.872 | 22.028 | 60.744 | 61.640 | 117.72 120.65 191.93 199.04
25 3.5113 | 3.5159 | 21.884 | 22.029 | 60.817 | 61.647 { 117.96 120.68 192.53 199.15
29 3.5125| 3.,5160 | 21.923 | 22.031 | 61.041 | 61.666 | 118,70 120.76 194,37 199.42
30 3.5127 | 3.5160 | 21,930 | 22.031 | 61.083 | 61.669 | 118.85 120.78 194,72 199.47

Exact 3.5160 22,0345 61.69073 120.9010 199.8604

solution

(ref. 19)

Percent -0.094 0.000 -0.474 | -0.016 | -0,996 | -0.046 -1.696 -0.100 -2.572 -0.195

error

based on

n=30




TABLE V. - COMPARISON OF CHARACTERISTIC FUNCTIONS OF FLEXURAL
VIBRATION OF UNIFORM CANTILEVER BEAM: n = 30

Axial fractional Exact First order | Second order
length, solution central central
n=z/L (ref. 19) |differences | differences

First mode
0.0 0.000000 0.0 0.0
.l 016775 .016848 .016783
.2 .063870 063992 .063887
.3 . 136485 . 136629 . 136508
.4 .229885 .230038 .229919
o5 339525 .339671 «339565
.6 461135 461267 .461181
o7 .590875 .590985 .590922
.8 .725480 725557 .725517
.9 .86240 .862443 .862424
1.0 1.000000 1.000000 1.000000

Second mode

0.0 0.0 0.0 0.0
o1 .092630 .094109 .092979
.2 301056 +303290 .301818
o3 526135 528641 .527350
.4 .683470 .685965 .685029
5 ’ .713665 .715997 .715351
.6 .589475 591552 .591031
o7 317050 .318772 .318252
.8 -.070035 -.068810 -.069318
.9 -.523750 -.523154 -.523497
1.0 -1.000000 -1.000000 -1.000000

Third mode

0.0 0.0 0.0 0.0
o1 .228070 .234307 .230020
2 .604505 .612659 .608300
.3 .756240 763252 .760600
.4 525925 .530052 .528838
5 .019685 .020298 019714
.6 -.473765 -.476490 -.476608
o7 -.657425 -.662509 -.661663
.8 -.394875 -.400383 -.398434
.9 .228510 225100 .226988
1.0 1.000000 1.000000 1.000000

Fourth mode

0.0 0.0 0.0 0.0
.1 .385010 .400286 .390900
2 .753790 .768408 .762570
.3 .433870 .437896 .438329
.4 -.315560 -.322786 -.319340
5 -.707120 -.719090 -.715030
.6 -.326495 -.334367 -.330318
o7 397390 .399734 .401725
.8 .643040 .654228 .651489
.9 052035 .062183 .057070

1.0 1.000000 1.000000 1.000000

Fifth mode

0.0 0.0 0.0 0.0
1 .537245 .565373 .560025
4 .659625 .673812 671266
.3 ~.211285 -.224220 -.216402
.4 -.696550 -.715362 -.709451
.5 .000850 .000992 .000859
. .700255 .719567 .713189
o7 .225730 .240056 .230950
.8 -.600450 -.610899 -.611704
.9 -.294005 -.314576 -.305421

1.0 1.000000 1.000000 1.000000
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Figure 1& - Frequency parameter ratios of tapered canti-
levered beams vibrating in flexure, Fifth mode - effect
of breadth taper.
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Figure 19. - Frequency parameter ratios of tapered cantilevered
beams vibrating in flexure, Fifth mode - effect of depth
taper.
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Figure 20, - Mode shapes of tapered cantilevered beams vi-
brating in flexure, First mode, Breadth taper p= 0.
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Figure 21. - Mode shapes of tapered cantilevered beams vi-
brating in flexure, Second mode. Breadth taper p =0,
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Figure 22, - Mode shapes of tapered cantilevered beams vi-
brating in flexure. Third mode. Breadth taper g = 0.
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Figure 23. - Mode shapes of tapered cantilevered beams vi-
brating in flexure, Fourth mode, Breadth taper B =0,
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Figure 24. - Mode shapes of tapered cantilevered beams vi-
brating in flexure, Fifth mode. Breadth taper p= 0.
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