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STUMMARY

A theoretical basis has been developed for the design of fasteners which are
free of thermal stress. A fastener can be shaped to eliminate the thermal stress
which would otherwise result from differential thermal expansion between dissimilar
fastener and sheet materials for many combinations of isotropic and orthotropic
materials. The resulting joint remains snug, yet free of thermal stress at any tem-
perature, if the joint is uniform in temperature, if it is frictionless, and if the
coefficients of thermal expansion of the materials do not change with temperature.
In general, such a fastener has curved sides; however, if both materials have iso-
tropic coefficients of thermal expansion, a conical fastener is free of thermal
stress. Equations are presented for thermal-stress-free shapes at both initial and
final temperature, and typical fastener shapes are shown.

INTRODUCTION

A recent effort at the NASA Iangley Research Center has been aimed at the devel-
opment of high-temperature structures of carbon-carbon materials. The largest coef-
ficient of thermal expansion (CTE) of carbon-carbon is approximately an order of
magnitude lower than the CTE of metals typically used for fasteners. This thermal-
expansion mismatch can cause failure of the carbon-carbon material around a standard,
snug-fitting, cylindrical fastener. A clearance left around the fastener to accommo-
date the expansion can make the joint unacceptably loose at low temperatures. Fig-
ure 1 shows a cylindrical stainless-steel fastener which was installed in a piece of
graphite with a close tolerance fit. When this specimen was heated to 1600°F in a
vacuum furnace, the graphite around the fastener failed during the initial thermal
cycle. (See fig. 1.)

A biconic fastener with coincident vertices (ref. 1), shown in figure 2(a), was
proposed for thermal-stress-free joints in materials with isotropic CTE and is the
subject of a patent application. Figure 2(b) shows a specimen which consists of two
pieces of graphite joined by steel biconic fasteners, which provide a tight joint at
room temperature. This specimen was also heated to 1600°F in a vacuum furnace. The
graphite around the conical fastener showed no evidence of damage after four thermal
cycles.

Two-dimensional carbon-carbon material, which consists of layers of carbon-fiber
cloth in a carbon matrix, was found to have a through-the-thickness CTE which is
twice the in-plane CTE. (See ref. 2.) Although the conical fastener, which was
designed for isotropic materials, should reduce the thermal stresses, it would not be
expected to eliminate them. The cone angle in the carbon-carbon, with its unequal
CTE, changes with temperature, but the cone angle in the isotropic metal fastener
remains constant. Consequently, the originally snug-fitting conical mating surfaces
interfere with one another during heating. This interference causes mechanical con-
straints to expansion, and thus causes thermal stresses. The use of curved-sided
fasteners to eliminate thermal stresses around fasteners in materials whose coeffi-
cients of thermal expansion are orthotropic is discussed in reference 3. However,
approximations in the analysis resulted in a solution which reduces, but does not
eliminate, thermal stresses.



This paper contains the solution for an interference-free interface between two
materials with orthotropic coefficients of thermal expansion. The application of
this solution to an axisymmetric fastener for a wide range of material combinations
is also discussed. Within the framework of the simplifying assumptions, this solu-
tion provides a basis for design of thermal-stress-free fasteners in materials with a
wide range of CTE. Equations are presented for the fastener shapes at the initial
temperature and at elevated temperatures.

SYMBOLS
A constant of integration
b axial offset of vertex of cone in conical fastener at initial temperature
C thermal-expansion term in equation (B4)
£ fraction of total thickness
L length
m slope of line
P,q exponents in equation (4)
R radius of fastener shank
R' reference radius of fastener shank
RyrZ, coordinates of specified point on initial boundary
r,0,z cylindrical coordinates
T temperature
t thickness
th location of zero-thermal-expansion mismatch (fig. 12}
t, washer thickness
t; reference washer thickness
Xor¥y specified point on initial boundary
X,y rectangular Cartesian coordinates
a coefficient of thermal expansion (CTE)
a average CTE over a given temperature range
A difference or change
¢ cone angle




Subscripts:

o) initial or reference conditions
1 material 1
2 material 2
ANALYSIS

The objective of this two-dimensional analysis is to find an interface between
two materials with orthotropic CTE along which the two materials will remain in con-
tact, without interference or separation, as temperature changes. This analysis
requires an exact expression for thermal expansion. The basic relation between
expansion and temperature change is given by

dar/L = a 4T (1)

where L = ILength, T = Temperature, and a = Coefficient of thermal expansion.
Integration of equation (1) produces

&(T-To)
L=L e (2)

where a is the average value of g between temperatures To and T and where the

subscript o signifies initial or reference conditions. The Taylor series expansion
for equation (2) is

L=L |1 +oa(T-T) + + + oenn (3)
O (o]

The first two terms of equation (3) give the common engineering approximation for
thermal expansion which was used in reference 3. The more precise expression for
thermal expansion in equation (2) is used in the present analysis.

Assumptions made in the present analysis are as follows: the CTE of each
material is independent of temperature (i.e., o = g at any temperature); there are
no thermal gradients in the materials; and there is no friction along the interface
between the materials. Based on these assumptions and on equation (2), the following
expression for a two-dimensional, thermal-stress-free interface between two materials
with different coefficients of thermal expansion (see fig. 3) is derived in
appendix A: ’

q(T-To)

y=2Ae xp

(4)



where

o a o
- x1 y2 ay1 x2

q -
1 %x2
a -
v~ %y2
P=a - a
x1 x2

and A is an arbitrary constant. The x~ and y-axes are parallel to the principal
axes of thermal expansion in both materials, and all thermal expansion is relative to
the origin of the x,y coordinate system (fig. 3). At the initial temperature,

T = T,, equation (4) reduces to

y = axb (5)

Two materials in contact along a boundary which, at a given initial temperature,
is shaped according to equation (5), will be in continuous, interference-free contact
at any temperature if p and q are independent of T. Figure 4 shows the family
of solutions to equation (5) passing through an arbitrary point (X YO), which also
determines the value of A (A =Y /Xp). As explained in appendlx A, the solution
shown in figure 4 can be applied to each of the other three quadrants to produce the

shapes shown in figure 5,

Each of the shapes in figure 5 represents a different relationship between

the CTE of the two materials. For p =1 (£fig. 5(a)), the relationship is

ay2 =0a., - axz. In the first quadrant, this condition results in a boundary
lech i3 a line passing through the origin and the point (x YO). A special case
of p=1 1is an interference-free interface between two 1sotropic materials for
which a o and a = 0y, For 1 <p<w (fig. 5(b)), the relationship
between ¥he coefficients” of thermal expansion is - Qs > gy = O This rela-
tionship results in a curve with increasing slope tKroughout the first quadrant.
similarly, for 0 < p < 1 (fig. 5(c)), the relationship between coefficients of
thermal expansion is o - a < Oyy = Qo which results in a curve with constantly
decreasing slope in the first quadrant. For p < O (fig. 5(d4)), «a 1 — 9%,, and

a %2 are of opposite sign. The resulting boundary has decreasing slope
tﬁroughout the first quadrant and is asymptotic to the x- and y-axes, For the
boundary resulting from p = = (fig., 5(e)), % = O,,, which implies a thermal
expansion mismatch only in the y-direction. Therefore, the interference-free
boundary is a vertical line., Similarly, for p =0 (fig. 5(f)), a 1= %00 and the
interference-free boundary is a horizontal line. As a result of the assumption that
the x- and y-axes are parallel to the principal axes of thermal expansion of both
materials, the x- and y-axes are also interference-free interfaces between any two

materials.



In general the boundary changes shape with temperature, as indicated in equa-
tion (4). However, if the coefficients of thermal expansion of the two materials are
such that ay1/ax1 = ayz/axz, then g = 0, and equation (4) reduces to

y = Ax (6)

Therefore, if the two materials have the same ratio of CTE in the y-direction to CTE
in the x-direction, then equation (6) defines an interference-free boundary which is
independent of temperature.

One other special case is worthy of consideration. If the corresponding coef-
ficients of thermal expansion of one material are much greater than those of the
other (i.e., >> a and o >> o ), then p approaches a /ax1. Thus, for
an isotropic me%al (mazerlal 1) with the CTE roughly an order of magnitude greater
than carbon-carbon (material 2), p 1is close to unity and a portion of the boundary
can be closely approximated by a straight line.

APPLICATION TO FASTENERS

Although the solution given by equation (5) was derived for a two-dimensional
boundary, the solution can be applied to a three-dimensional fastener. Consider two
sheets joined by a fastener of a different material. Figure 6 is a cross—-sectional
view of such a fastener. If the coefficients of thermal expansion of the sheets and
the fastener are isotropic in the plane of the sheets but different in the thickness
direction, then the following equation, derived in appendix A, can be used to define

the thermal-stress-free shape of an axisymmetric fastener when T = Tyt

z = art (7)

where

- p
A=2Z /R

In general, as discussed in appendix A, R, can be a function of ©; however, the
simplest shape is an axisymmetric fastener. As in the previous analysis, both
materials must expand relative to the origin of the coordinate system. Because a
practical fastener cannot come to a point at the origin, a shank of arbitrary
radius R must be built into the fastener. A washer of the same material as the
sheets is added, as shown in figure 6, to shift the vertex of the conical fastener
outside the sheets being joined. The boundary between the shank and the washer is
not interference-free; thus, a clearance between shank and washer is required to
accommodate the radial thermal expansion mismatch. Another equally important bound-
ary between the two materials is the interface between the fastener head and the
washer, which lies in the =z = 0 plane, and is therefore interference-free for any
two materials.



The shape of the load-bearing surface is determined from equation (7), where
R and t (the washer thickness) correspond to R, and Zor respectively, The
dimensions R and t can be varied to produce acceptable shear and bearing areas
for the fastener, and, as illustrated in figure 7, these dimensions give a designer
considerable control over the proportions of the thermal-stress~free fastener. A
general thermal-stress-free fastener is shown on the upper left of figure 7.
Doubling the washer thickness and holding the radius constant produces the shape
shown on the lower left, Increasing the minimum radius while holding the washer
thickness constant produces the shape on the upper right. Doubling the washer
thickness while increasing the minimum radius produces the shape shown on the lower

right.

The fastener shown in figures 6 and 7 has a shape corresponding to 1 < p < «,
Figure 8 shows a similar fastener which has a shape corresponding to 0 < p < 1. As
shown in figure 9, for p = 1 the shape reduces to the conical fastener proposed in
reference 1. If the two materials are such that p < 0, which means that either

< a and o > o or > a and a < Qs the thermal-stress-free
sgape does not readily lend 1tse¥f to a practical thermal-stress-free fastener
design, as is evident in figure 5(d). If the two materials have coefficients of
thermal expansion which are equal in one direction but not in the other (see
figs. 5(e) and 5(f)), it is impossible for a snug-fitting fastener to eliminate the
thermal expansion mismatch in the other direction. Also, since the axisymmetric
solution for a metallic fastener in carbon-carbon materials closely approximates a
cone, the exact axisymmetric thermal-stress-free metallic fastener which joins sheets
of carbon-carbon material can be closely approximated by a conical fastener with the
vertex slightly offset from the point about which both materials expand. (See
fig., 10.) This offset is further discussed in appendix B, Although fasteners of the
type discussed herein should not develop thermal stress, further effort is needed to
determine whether excessive stress concentrations can develop in mechanically loaded
joints which employ these unusually shaped fasteners.

CONCLUDING REMARKS

A theoretical basis for the design of thermal~-stress-free fasteners has been
developed in this study. The analysis yields the equation of a two-dimensional
thermal-stress-free interface between two materials with orthotropic coefficients of
thermal expansion. If both materials have coefficients of thermal expansion which
are isotropic in one plane, the two-dimensional analysis can be used to design
thermal-stress-free fasteners, made from one material, which are used to join pieces
of the other material. The two materials remain in contact as the temperature
increases, forming a tight joint without interference and providing effective shear
transfer. The simplest general shape is an axisymmetric, curved-sided fastener. For
two materials with isotropic coefficients of thermal expansion, the shape reduces to
the conical fastener proposed by Jackson and Taylor in Astronautics and Aeronautics,
June 1983. If the exact shape of the thermal-stress-free fastener is nearly conical
it can be approximated by a conical fastener with the vertex slightly offset.

Assumptions made in this analysis are as follows: the coefficients of thermal
expansion of both materials are independent of temperature, both materials are uni-
form in temperature, and the interface between the materials is frictionless, In an
actual joint, these requirements are unlikely to be fully satisfied. However, the
resulting thermal interferences using a fastener shape defined by the analysis given
herein should be significantly smaller than those of a snug-fitting cylindrical fas-
tener., Further research is needed to predict thermal stresses resulting from viola-
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tions of the basic assumptions of this analysis. Also, since these fasteners are
shaped much differently from conventional fasteners, further work is necessary to
determine stress concentration factors in the joint under mechanical loading.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

October 14, 1983



APPENDIX A

ANALYSIS OF THERMAL-INTERFERENCE-FREE BOUNDARY

Consider a plane which contains two orthotropic materials separated by a bound-
ary along which the materials are in continuous contact. Choose a point in that
plane such that all motion of both materials due to thermal expansion is relative to
that point. Make that point the origin of an x,y coordinate system which is aligned
with the principal axes of thermal expansion of both materials. (See fig. 11.)
Consequently, any particle which is initially on the x~ or y-axis moves only along
that axis during thermal expansion, and any thermal expansion in the first quadrant
is independent of the expansion in any other gquadrant. Considering each of the other
quadrants separately, it can be seen that a solution which is valid for the first
quadrant can be individually applied to each of the other quadrants,

Assume that the coefficients of thermal expansion (CTE) for both materials are
independent of temperature and location within each material., Also assume that the
temperatures are uniform throughout the materials and that there are no frictional
forces acting along the boundary.

The objective is to find an initial boundary shape, vy = £(x), such that when
the two materials reach a new uniform temperature, the material boundaries will still
coincide. Let (x,y) be a point on the boundary at T = T,. At each point (x,vy),
there are adjacent particles of materials 1 and 2. The appropriate coefficients of
thermal expansion are defined as follows:

% CTE of material 1 in the x-direction
ay1 CTE of material 1 in the y-direction
% 0 CTE of material 2 in the x-direction
ay2 CTE of material 2 in the y-direction

Using equation (2), the locations of the particles after a temperature change of AT
can be found as follows:

For material 1,

(a1)



APPENDIX A

For material 2,

(n2)

It is required that the original shape of the boundary, y = f(x), be such that
(x1,y1) and (x ,y2) are on coincident boundaries after a temperature increase of
AT. The slope of this boundary at T = T, + AT can be approximated by

Ay Y2 T ¥ y(e 2 _ e

Ax X -xX ( o _AT a AT)
x1
X\e

o AT P AT)
v
(a3)

2 1 x2
- e

Now as AT » 0, the boundary approaches y = f(x), and the approximate slope of the

boundary at T = T + AT becomes the exact slope of the initial boundary at T = Tq e

As AT > 0, Ay > 0 and Ax > 0; therefore,

lim Ay _ dy

AT>0 Bx - dx (nd)
Taking the limit of equation (A3) as AT + 0 yields

dy (ay2 o‘y1)y

(a5)
dax (a - a )X
X2 x1

Integration of equation (A5) gives the initial boundary shape

y = AxP (a6)

where

p_ﬁw_'_"‘Lz
o‘x1 - ax2



APPENDIX A

and A is the constant of integration. At any other temperature, T = T_ + AT, and
the boundary of each material undergoes thermal expansion governed by equations (A1)
and (A2) to the shape given by

q(T—To)
y=Ace X (a7)

where

_ o":~:1my2 " 0Ly1°‘x2

a
x1 x2

and where equation (A7) is obtained by direct substitution of either equation (A1)

or (A2) into equation (A6)., Thus, any point on the boundary given by equation (RA6)
at T =T, , for material 1 or material 2, will be located on the boundary given by
equation (A7) after a temperature change. Consequently, although boundary particles
of the two materials move along the interface by generally unequal amounts, the
boundaries remain coincident during the thermal expansion. Thus, motion of one
material does not constrain motion of the neighboring material or cause separation of
the two materials. That is, the expansion is stress-free, yet the two materials are
in continuous contact.

The preceding two~dimensional solution can be extended to a special case of a
three-dimensional solution, Let x and y become r and =z, respectively, in a
cylindrical coordinate system, and assume that the coefficients of thermal expansion
of both materials are isotropic in all r-9 planes. (An example of this type of
material is an idealized quasi-isotropic filamentary composite. 1In the plane of a
sheet, the thermal expansion is primarily controlled by the fibers; however, through
the thickness, the thermal expansion is controlled by the matrix material,)

As a result of this assumption, the two-dimensional solution is valid at any
angle 0, The thermal-stress-free interface is therefore given as follows for

T = TO:
z = ArY (a8)
where
p = 0Lz1 B 0Lz2
oLr1 - O‘r2

and A 1is defined by some specified point (ZO,RO) on the initial interface as

- p
A = ZO/Ro

10



APPENDIX A

The interface is given as follows for T = T, + AT:

q(T-T )
z=1Ae © P (n9)

where

C%1%2 T %1%

o
r1 0‘r2

In general, R, can be any single-valued function of 6. For example, the shape of
a cross section of the fastener parallel to the r-6 plane could be a square or any
other polygon. However, the simplest shape for a fastener is axisymmetric (circular
cross section); that is, R, 1s independent of 0.

1



APPENDIX B

CALCULATION OF OFFSET OF VERTEX OF CONICAL FASTENER TO ADJUST
THERMAL-EXPANSION MISMATCH

If a conical fastener is used in a joint in which the coefficient of thermal
expansion (CTE) of the fastener and the material being joined are such that p is
not equal to 1, the initially mated surfaces will attempt to translate and rotate by
different amounts if there is a temperature change. Some adjustment to this thermal-
expansion mismatch can be effected by specifying the new location of the hypothetical
intersection of the surfaces after unrestrained thermal expansion. The location of
the intersection can be adjusted by offsetting the vertex of the cone from the origin
along the z-axis. A representative arrangement in the r-z plane before and after
free thermal expansion is illustrated in figure 12. Extension to an axisymmetric
configuration is effected by revolving the graph about the z-axis.

Before expansion, the two material boundaries have the common equation

z =mr + b {B1)

where b is the offset of the vertex of the cone (see sketch A).

Material 2
boundary

z 1 Material 1

Intersection
(zero mismatch)

Material 1
boundary

Material 2

Sketch A

12



APPENDIX B

After a change in temperature AT, the boundaries of the freely expanding mate~
rials have the following equations, which result from combining equation (B1) with
equations (A1) and (A2), as follows:

(o - )AT a AT
Z =me z1 r . +e z1 b (B2)

and

(a__—-a_, )AT a AT
Z_=m e z2 r2 r. + e z2 b (B3)

Sketch A shows the boundaries before and after a temperature increase,

In figure 12, the dashed line represents the initial interface, and the solid
lines represent the boundaries of the two materials at the final temperature. The
shaded region between the boundaries represents the thermal-expansion mismatch which
results when the coefficients of thermal expansion of the materials are such that
P = 1. The intersection of the two boundaries can be controlled by adjusting the
value of b. This has the effect of adjusting the amount of interference present
in the joint at the final temperature T, + AT. At the point of intersection
Zq1 = 2z, and rq = rp. If the point of intersection in material 2 is initially at
z = b + R cot(¢/2) + tf, then by simultaneous solution of equations (B2) and (B3),

b = [R cot(¢/2) + tflcC (B4)
where
- - A
[ (az1 0"r1)AT (az2 arz)Af] o"r2 T
c = e - e e
aZ2AT aZ1AT
e - e

A conical fastener with the vertex offset by the amount given in equation (B4)
is essentially a linear approximation of the exact thermal-stress-free shape given by
equation (5), The nearer the exact shape is to a cone, the lower the thermal mis-
match between the conical fastener and the material being joined. Although equa-
tion (B4) provides a means of adjusting the thermal-expansion mismatch between the
two materials, the thermal stresses which result from this mismatch depend on the
stiffnesses of the materials. Therefore, additional analysis, which accounts for
material stiffness, is necessary to calculate the vertex offset, which minimizes
thermal stress.

13
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Graphite

Stainless stee]—J//

Figure 1.~ Cylindrical stainless-steel fastener in graphite
which failed during first thermal cycle.
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\\\\\\k Biconic fastener

Snug-fitting cones, siide
without interference
when heated

I-83-114

(a) Schematic of biconic fastener. (b) Test specimen after four cycles to 1600°F.
Figure 2.- Biconic steel fastener in graphite.
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Figure 3.- Thermal-stress-free boundary.

Figure 4.- Solutions to equation y = axP.
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Figure 5.- Thermal-stress-free shapes in x-y plane,
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Figure 6.- Thermal-stress-free fastener for 1 < p < =.
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Figure 7.- Illustrations of effect of design parameters ty and R on
fastener proportions.

R e

Figure 8.- Thermal-stress-free fastener for 0 < p < 1.
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Figure 9.- Thermal-stress—-free fastener for p = 1.
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Offset of vertex, b

Figqure 10.- Metallic fastener in carbon-carbon material (p = 1).
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Figure 11.- Thermal-stress-free boundary between two materials in a plane.
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Figure 12.- Thermal expansion of conical fastener with offset vertex.
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