
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



i

' OFr, VIP1
RECEIVED

NASA STI FACILITY

ACCESS DEPT.

FEBRUARY 1983

L
jVASA-Td-a49d1)	 ru,^TGLALIAL dkbuUND
(GHSENVcJ b y LAGEUS ANC 1N6 kkkcLTIVE
YISC.USITY uF 1HE. LUME6 t,Ah1Lc (NASA)	 39 p
NC AUJ/Mf AJ l	 cSCL Odk:

MSA
i echnical Memorandum 84982

N84— 1 j705

uucla t
C3; 4b 42678

Postglacial Rebound Observed by
Lageos and the Effective Viscosity
of the Lower Mantle

David Parry Rubincam

National Aeronaijtics and
Space Admir st ► < tion

Goddard Space Flight Center
?	 Greenbelt Maryland 20771

i

J
a

9d



POSTGLACIAL REBOUND OBSERVED BY

LAGEOS AND THE EFFECTIVE VISCOSITY

OF THE LOWER'MANTLE

David Parry Rubincam

Geodynamics Branch, Code 921
Goddard Space Flight Center

Greenbelt, MD 20771

ABSTRACT

Postglacial rebound appears to have been observed gravitationally by the Lageos satellite.

Sixty-four observations of the orbital node made over a five year time interval reveal an acceleration

of (-8.1 ± 1.8) X 10-8
 areseconds day-2 due to a source which is not presently modeled in the

GEODYN orbit determination computer prograin. This acceleration cannot be explained by the

ocean tide with 18.6 year period, assuming it to be an equilibrium tide. Instead it seems to be due

to postglacial rebound, which changes the J2 coefficient in the spherical harmonic expansion of

the earth's gravitational field at the rate of (-8.2 ± 1.8) X 10 -19 g-1  ; this in turn accelerates the

node. This rate does not agree with the -32 X 10-19 s-1  predicted by Wu and Peltier's (1982) L2

model, which has upper and lower mantle effective viscosities of 10 21 and 1022 Pa s, respectively.

It does agree well with their Ll model, which gives about -10 X 10 -19 s'1 . Since the effective

viscosity is 1021 Pa s throughout the entire mantle in the L1 model, the results support the conten-

tions that (1) the effective viscosity is near 10 21 Pa s everywhere in the mantle, and (2) this rel-

atively low value for the effective viscosity may have permitted several degrees of polar wander due

to glaciation during the Quaternary Ice Age.
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POSTGLACIAL REBOUND OBSERVED BY

LAGEOS AND THE EFFECTIVE VISCOSITY

OF THE LOWER MANTLE

INTRODUCTION

During the Quaternary Ice Age the changing distribution of surface loads caused by the growth

and decay of ice sheets deformed the earth. The deformation in turn altered the earth's gravita-

tional field. The remnants of these effects provide information on the earth's rheology. In partic-

ular, ancient shorelines and the present-day free air gravity anomalies associated with the postglacial

rebound of I aurentide Canada and Fennoscandia (see Plates 1 and 2) provide information on the

earth's efective viscosity. Indeed, the relationship between deformation, gravity, and effective

viscosity is a classical subject in geophysics (see, e.g., Cathles, 1975; Peltier, 1981; Peltier et al.,

1978; Wu and Peltier, 1982; and references contained therein.) The value of the effective viscosity

of the mantle leas, of course, im,. .rrtant implications for mantle convection and polar wander (e.g.,

Goldreich and Toomre, 1969; Peltier, 1980; and Lambeck, 1980). If the effective viscosity of the

mantle is too high, then neither mantle convection nor polar wander will occur.

The purpose of the present investigation is to infer the effective viscosity of the mantle usin_

satellite ,data. It involves looking at the rate of change of the earth's gravitational field as deduced

from observations of the Lageos satellite. The basic idea here is that the postglacial rebound pres-

ently occurring changes the earth's gravitational field as well as its geometric shape. The changing

gravitational field in turn affects the orbits of satellites. Since the rate of rebound is controlled in

part by the effective viscpsity of the mantle, observations of satellite orbits can in principle give

information about the effective viscosity (e.g., Rubincam, 1979, pp. 6223-6224, and O'Keefe

et al., 1979; see also Paddack, 1967 and Kozai, 1966.) In particular, postglacial rebound decreases

J2 , the second degree, zeroth order term in the spherical harmonic expansion of the earth's
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gravitational field; the earth is becoming less flattened. The decrease in J2 should manifest itself

as an acceleration SZ in the node SZ of a satellite's orbit as the node progresses along the equator.

Satellite laser ranging data obtained over a 5 year time interval reveals that in fact the node

of Lageos' orbit is undergoing an acceleration due to a source which is not presently modeled in

the orbit determination computer program. The acceleration is presumably due to postglacial

rebound and the ocean tide with 18.6 year period; neither of the€,e are contained in the program.

A detailed analysis of the ocean tide with 18.6 year period, given in the Appendix, indicates that

it contributes little to SE over the time interval considered, assuming the tide to be an equilibrium

one. After removing the tidal signal an acceleration still remains of SZ = (-8.1 ± 1.8) X 10-8

R	 areseconds day-2 which is assumed to be due to postglacial rebound; this means that the rate at
E

which J2 is changing with time is J2 = 0 at = (-8.2 ± 1.8) X 10-19 s-1 .  This value is about half

f	 that found by Yoder et. al. (1983), who also investigate i2 from Lageos observations.

The observed value for i2 is compared to the values predicted by the L1 and L2 earth models

of Wu and Peltier (1982). Both of these realistic models are based on the Maxwell rheology and

fit the Laurentide gravity anomaly and ancient shoreline data fairly well. The L1 model has an

effective viscosity for the lower mantle of 10 21 Pa s (1022 P), while the L2 model has a 10 22 Pa s

lower mantle. An upper limit on J 2 for Ll and L2 is estimated from modeling the postglacial

rebound of Laurentide Canada, which is where the major ice sheet of the Quaternary Ice Age rested.

The Laurentide ice sheet is assumed to be a surface mass layer in the shape of a spherical cap whose
k

mass waxes and wanes according to the ramp functions shown in Fig. 3. A lower limit on J 2 for

the l_,1 and L2 models is obtained from assuming that glaciation in other parts of the world,

especially Antarctica, can reasonably be expected to give a total effect on J2 which is 3 times

larger than that due to the Laurentide ice sheet alone. A (weakly) preferred value for J 2 between

the upper and lower limits is 5/3 that of the Laurentide ice sheet.

r<	
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These considerations lead to tha following results. For model L1, —17.9 X 10-19 s-1 <12 <

—5.9 X 10"19 s-1 , with a preferred value of —9.8 X 10 -19 s-1 . These values agree quite well with

the observed value of (-8.2 t 1.8) X 10-19 s-1 .  For model L2, —58.4 X 10 -19 6-1 < J2 < — 19.2 X

10-19 s-1 , with a preferred value of —32.0 X 10-19 s-1 . This model makes J2 decrease much too

fast in comparison to the observed value. Hence of the two, the Ll model with its 10 21 Pa s lower

mantle effective viscosity is preferred to the L2 model with its 10 22 Pa s lower mantle. "'his

indicates that there is little difference in the effective viscosities of the upper and lower nantle,

a result supported by the recent studies of Yuen et. al. (1982) and Peltier and Wu (1983).

Also, a 1021 Pa s mantle allows a significant amount of polar wander due to glaciation — perhaps

several degrees worth over the last few million years (Nakiboglu and Lambeck, 1980, 1981;

Sabadini and Peltier, 1981; and Sabadini et al., 1982a, 1982b).

LAGEOS NODAL ACCELERATION

Lageos was launched into orbit on 4 May 1976 for the purpose of measuring crustal move-

ments, plate motion, polar motion, and earth rotation (Smith and Dunn, 1980; Rubincam, 1982).

The semimajor axis of Lageos' orbit is 1.227 X 107 m (about 2 earth radii) and its eccentricity

is 0.004 (a ,nearly circular orbit). The orbital inclination with respect to the earth's equator is

109.9 degrees, while the rate at which the node of the orbit progresses along the equator is

SZ = +0.343 degrees day-1.

The data consist of 64 observations of nodal residuals spread over a 5 year time interval from

1976 to 1981 (Fig. 1). These values are what remain to be explained after running the laser range

data through the GEODYN orbit determination computer program and after empirically determin-

ing and removing the K 1 , K" , P 	 S2 tides (solid earth plus ocean) from the remaining signal

(Peter J. Dunn, private communication, 1982). These tides have periods (from the satellites's

point of view) of 1051, 521, 221, and 280 days, respectively. The data points of Fig. 1 show a

lintar trend plus a slight curvature. Part of the slope can be explained by assuming that the value

3
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for J2 used in the GEODYN program needs a slight adjustment, The remaining part of the linear

trend plus the curvature are presumably due to postgltwial rebound and the 18.6 year period ocean

tide, since neither of these are modeled in GEODYN. The 18.6 year tide is the only one which can

contribute significantly to the curvature. It is accordingly investigated next, before proceeding to

postglacial rebound.

This tide is due to the precession of the lunar orbit about the ecliptic. It is probably an

equilibrium tide because of its long period (Proudman, 1960). Analysis of tidal records indicates

that its amplitude is in fact close to its equilibrium value ( Currie, 1976; Rossiter, 1967). Moreover,

Agnew and Farrell (1978) find that the amplitude of the equilibrium tide on an earth with conti-

nents is about the same for an earth with a global ocean. Hence on the basis of these studies it

appears that the most reasonable way to handle the data is to assume that the 18.6 year tide is an

equilibrium one with an amplitude equal to that for the global ocean tide and subtraa^ its effect

from the data. In this case the perturbation in the node of Lageos' orbit is (see the Appendix)

Ann = 0.224 sin S2* areseconds	 (1)

:	 n
where n is the node of the moon's orbit measured with respect to the ecliptic and the superscript

"0" stands for "Ocean." A plot of (1) (Fig. 1, solid curve) shows that A 20 varies almost linearly

with time over the time interval of the data points. This is due to the fact that during this time

AE20 is rising from a trough to a peak and to the long period of the tide. Hence the ocean tide

contributes mostly to the slope of the data points a A only a little to the curvature.

The signal remaining after the ocean tide contribution (1) is subtracted out is presumably due

to postglacial rebound and the slight error in the value of J2 . Thus its functional form should be

A92 = SZo + kT + (1 /2) SZ T2
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where T is the elapsed time since MJD (Modified Julian Date) 42904, S2 0 is a constant, S2o is the

slope, and d is the desl7ed acceleration of the r:ode Niue to postglacial rebound. A standard least

squares fit to the modified data yields 920 = 0.10 ± 0.02 areseconds, 62 0 = (5.7 t 0.2) X 10`4

areseconds day 1, and

St = (-8.1 ± 1.8) X 10`8 arese.conds day'2

_ (-5.3 ± 1.2) X 10'23 rad s-2	 (2)

Fig. 2 shows the curvature in the data with the constant, slope, and ocean tide removed.

It remains to find J2 from (2). This is easily done, since the rate 92 at which the node of a

near-earth satellite's orbit progresses along the equator is proportional to T 2 (e.g., Kaula, 1965,
i~

p. 174). Hence it follows by differentiation that J^ /J, = 2/92, so that

J2 = (-8.2 ± 1.8) X 10-19 s-
	

(3)

after using (2) and the numerical values J 2 = 1.0826 X 10-3 (Stacey, 1977, p. 332) and e2 = +0.343

degrees day-1 , This is the value for J 2 which is assumed to be due to postglacial rebound.

EARTH MODELS

What must be done now is to estimate J 2 for Wu and Peltier's (1982) earth models L1 and L2

to see whether they agree with the observed value given by (3). This will be done by first consider-

ing the effect ofpostglacial rebound hi Laurentide Canada on the gravitational field. This will

provide an upper bound on J 2 (remembering that it is a negative number), since Laurentide Canada

is only a partial (though probably the major) contributor to J 2 . Past glaciations in other regions
^x

of the earth, such as Fennoscandia, Siberia, and Antarctica also contribute to J 2 . CoAsiderations

of these other regions, based mostly on the maximum drop in global sea level, then lead to a lower
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limit on J2 . Finally, a (weakly) preferred value for J 2 between the upper and lower limits for each

of the models will be found.

The Laurentide gravity anomaly near Hudson Bay is quite apparent on the GEM l OB free air

gravity anomaly map (Plates 1 and 2). The GEM 10B field is based on satellite ranging, satellite

altimetry, and surface gravity data (Lerch et ak, 1981); "GEM" stands for "Goddard Earth Model."

The gravity anomalies were computed from the standa.rd equation (e.g., Rapp, 1975, p. 198)

Ag = y E (Q-1) E (CQm cos mA + S Qm sin mX) Pkm (cos ©)
2=2	 m=0

(written here in normalized form) using the GEM IOB gravitational field coefficients AM, `Qm^

given by Lerch et al. (1981) up to and including degree and order 36, except for the Q = 2, 4,

in 0 terms. For these terms the hydrostatic values C A = —480.516 X 10-6 and C F-+1.212 X
ko

10-6 derived from Nakiboglu (1979, p. 645) were subtrac^ed from the corresponding GEM 1 OB

values. Hence the anomalies shown in Plates 1 and 2 are basically referred to the earth's hydro-

static figure. The underlying maps shown in the plates are the tectonic activity maps of Lowman

(1981, 1982).

Note that the gravity low in Laurentide Canada reaches a minimum value of about —50 X 10-5

M S-2  (-50 mgal) when referred to the hydrostatic flattening. This is in contrast to the usual

—40 X 10-5 m C2 when referred to the reference flattening f = 1/298.255 (e.g., Wu and Peltier,

1982; Peltier and Wu, 1982; Rapp, 1975, p. 210).

The ancient Laurentide ice sheet is modeled here as a surface mass layer QICE of constant

density and in the shape of a spherical cap. The angular radius of the cap is a and its center is

located at colatitude a. The mass M of the ice sheet •,aries with time t according to the equation

M = MO f(t), where MO is a constant and equal to the maximum mass of the ice sheet and f(t) is

shown in Fig. 3. The function f(t) represents a simplified version of the glaciation-deglaciation

6

^0



t (r4

F

history of Laurentide Canada (Sabadini and Peltier, 1981). The ramp functions of Fig. 3 are

characterized by the constants T l and T2 . The accretion time T l is — 100 000 years and the

disintegration time T2 is — 10 000 years. The time T3 a-, 5000 years is the elapsed time since the

disappearance of the last ice sheet. Also, the cycles extend about 2 million years into the past

(e.g., Wu and Peltier, 1982, p. 480.)

The water composing the ice sheet comes from the oceans, assuming a closed hydrologic cycle

Hence the oceans must also be represented as a surface mass layer a oC which varies with time.

Sabadini and Peltier (1981, p. 558) give the equations for aICE and aoC . Adding them together

to obtain the total mass layer a = aICE + aoC yields

or =	 U2(0 t)

where

a (0',t) —
MAO (2Q+1) aPQO (cos a)^	

(4)R	 2rr R^	 Q(Q+1)	 a(cos a)	
F',^ 0 (Cos 0').

Here PQO (cos 0') is the associated Legendre polynomial of degree Q and order 0, 0' is the angle

measured from the center of the cap, and R E is the radius of the earth.

The effect of this ice sheet on the present-day exterior gravitational field must now be found.

It will be given by

yt
V2,	

R
=	 E	 aQ(0",t') GR (^J—t') dA" dt'	 (5)

r

where VR' is the term of degree Q in the spherical harmonic expansion of the gravitational potential

about the axis of the cap, r is the radial distance, dA" is the element of area, and vR(^i,t—t') is the

Green function (Wu and Peltier, 1982, pp. 468-469)

GQ (O,t—t) = GQ (0,t—t') + GQ (V,J—t')

7
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where

GR ( J—t') = R kR5 (t—t') PRO(cos ^i)	 (6)

and

GR ( ► J—t') _	 r^ eel 
0-0 

PRO (COS ^)	 (7)

Here G is the universal constant of gravitation, GQ is the clry stic part of the Green function, kQ is

the elastic Love number, 6(t—t') is the Dirac delta function, G R is the viscous part of the Green

function, ^ is the angle from the load point to the point of observation, K is the number of

relaxation modes, and the rF and sRa re numbers which characterize the particular earth model

and are discussed below. The associated Legendre polynomial P RO (cos 0) can be written

?^ (2-6Oin) (k—m)!	 ^,PRO(cos 0) _ ^^,	 - --. PRI1I (cos 0 ") PRM (cos B) • [cos mA cos 1ttA
nro	 (u`I'in)!

+ sin mA" sin mA' J 	 (8)

using the addition theorem for spherical harmonics (e.g., Kaula, 1968, p. 67). Here 8" and B' are

colatitudes and A" and A' are east longitudes measured with respect to the axis of the cap.

The elastic part (5) of the Green function is of no interest here and will not be considered

further. Also, it proves to be slightly more convenient to use k^ = 1/rf and rf = 1/sf rather than

r^ and sR ; the numbers which characterize the earth are now measured in years rather than inverse

years. .Further, only the R = 2 parts of (4), (5), (7), and (8) need be found since this investigation

is concerned only with the second degree term in the potential. Hence setting 2 = 2 in these equa-

tions, using (8) in (7), (4) and (7) in (5), and carrying out the integration over area gives

GM (R s	 x	 t^^	 t	 _t^/T2
V2 = R ° 

r cos a Z e r 2 i
	

f(t') e	 i dt'	 PQ O (cos 6`)
E	 J-1 fed 

If.
where aP20 (cos a)/a(cos a) = 3 cos a has been used.
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Applying the addition theorem (8) once again to express the pota—iWal in tears of spherical

harmonics about the rotation axis of the earth rather than the axis of the cap and evaluating the

time integral using the function shown in Fig, 3 yields

GME 	RE 3
V2 = RJ 2 r P2 a(cos 0)

E

where

t

J2 ^•	 cos a 
2 

cost a—

^()2 	 1 ^. 
e-N(T1+T2)/rj 	

1+ 1	 1 —e 
T1

/rl + e l-
N(Ti +T2)+T 1 J /rj — e-(N-1)(T1+T2)/T1

1	 _

	

9	 T2	 T1	 T1 T2	 e(T1+T2)/rj
 — 1

fy	 „
6e- r3/rl	 (9)

Here V2 is the desired second degree coefficient in the potential, 0 is colatitude measured from
r
^ 	 the North Pole, ME is the mass of the earth, N is the number of glacial cycles, and the superscript

"L" on V2 and J2s tands for "Laurrentide." Use has been made of the expression S = (1— X N)/(I — X),

where S = 1 + X + X2 + ... + XN - 1 , in evaluating the time integral. Taking the derivative of (9)

with respect to time T3 finally gives

J2 = — ° cos a 2 cost R — a
E

V	 TJ 	 1	 e-N(T1+T2)/rj	
1	 1	 1—e T1/rf + e I-N(T 1 +TZ)+T1 1/r! _ e-(N-1)(T1+T2)/rf

	

2	 T2 +	 Ti	 + Ti + T2	 e(T1+T2)/ri — 1	
.1II

J

2
e 

T3/ri

	
(10)

as the rate of change of J 2 due only to the Laurentide ice sheet.

9
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The question now aria :s as to wta-i values to use for the parameters appearing in (10). The

values for M., R, and ce are taken from Sabadin; et al. (1982x, p. 2897) and are given in Table 1.

The values for T 1 , T2 , and TV also given in Table 1, are estimated from Fig. 2 of Andrews and Berry

(1978), which shows the last glaciation-deglaciation cycle of the Quaternary Ice Age. The times

Ti = 112 000 and Tz = 13 000 years are somewhat longer than those used by Sabadini and Peltier

(1981), whose values of 90 000 and 10 000 years are more in accord with the period of the

eccentricity cycle of the earth's orbit which apparently drives the glaciation (Hays et al. 1976).

The longer times are used here since the last accretion-disintegration cycle is the most important;

the earth will not "remember" much of the previous cycles for the relatively low effective viscos-

ities considered here (Sabadini and Peltier, 1981, p. 568). The implications of using the shorter

astronomical times will be discussed below. The Ice Age extends about 2 million years into the

past, so N °C 20 (e.g., Wu and Peltier, 1982, p. 480). The values for ME and RE come from Stacey

(1977, pp. 331-332).

The values for r? = 1/s,2 andr^ /x 2 = r2 /s2	 for the L1 and L2 models are derived from

Wu and Peltier (1982, pp. 465-466) and are shown in Table 2. Both models have the same density

and elastic properties as model 1066B of Gilbert and Dziewonski (1975). Model L1 has a 120 km

thick lithosphere, a mantle with effective viscosity of 10 21 Pa s, and an inviscid core. Model L2

is the same as Ll except that the effective viscosity of the mantle below the density discontinuity

at 671 km depth is 1022 Pa s. The. multiple relaxation modes are due to the discontinuities present

in the models: MO is the fundamental mantle mode, M 1 and M2 are due to the density discon-

tinuities at 671 kin and 420 kin depth, respectively, and LO and CO are due to the presence of the

lithosphere and the core, respectively. Both the L1 and L2 models fit the Laurentide gravity

anomaly referred to the nonhydrostatic figure and bracket the relative sea level data, leading

Wu and Peltier (1982) and Peltier and. Wu (1982) to conclude that the effective viscosity of the

lower mantle is between 10 21 and 1022 Pa s.

MAC.!
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Using the numerical values given in Tables 1 and 2 in (10) yield the following results, For

model L1

J2 = —5.9 X 10" 19 s 1	 (11)

while for model L2

Jz=-19.2X10-19s 1 	 (12)

for postglacial rebound due to Laurentide Canada alone. Note that model L2 already predicts a

rate of decrease in J2 wluch is over twice the observed value given in (3), while model Ll predicts

a rate which is slightly less than the observed value.

The rates given by (11) and (12) must be considered upper bounds on j2 , since Laurentide

Canada is not 0- —only region to have had an ice sheet. Other parts of the globe underwent glacia-

tion D^- woll	 Nvii! also contribute to J2 . A rough estimate of their contributions will be considered

next,

The maximum drop in global sea level was probably about 80 in may have been as high as

120 m (e.g., Andrews and Berry, 1978, p. 210). It can easily be shown that the Laurentide ice sheet

accounts for only 48 in so of this drop, assuming that the ice sheet had the mass given in Table 1;

other ice sheets must account for the remaining 32 to 72 in. Certainly a lower limit on 1 2 can be

obtained by assuming that 72 in 	 due to an ice sheet comparable to the Laurentide ice sheet

situated in Antarctica over the South Pole. (There are in fact large Antarctic anomalies which may

be at least partially explained by glaciation; see Plate 2). This maximizes the effect oni 2 not only

by maximizing the allowable mass but also by placing it at the pole (the angle A in (1.0) is ;low 180

d-vgrees rather than 25 degrees). Use of (10) gives this hypothetical ice sheet an effect on J 2 which

is about twice that of the Laurentide ice sheet; thus the total effect on J 2 is about 3J2s o that

—17.9X10"19 s' 1 <4	 (13)
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for model L1 and

	

—58.4 X 10' 19 s`1 < 1 2	 (14)

for model L2. These calculations are rough since they assume an Antarctic ice sheet with the same

radius as the Laurentide ice sheet (but with 1.5 times the mass) and the same history; they also

assume that the effect of each ice sheet may be calculated independently of the other, i.e. there

is no coupiing between the two. However, only rough estimates are desired because the uncertain-

ties of the sea level data make further refinements not worthwhile.

Preferred values for J2 for models L1 and L^ will now be found. The Fennoscandian,

Siberian, and ether ice sheets (excluding Antarctica) had a combined mass which was about 42 per

cent that of the Laurentide ice sheet (O'Connell, 1971, p. 308) and accounted for about 20 m of

	

w:

	

	 the global drop in sea level. Hence by adding in the 48 m or	 so due to the Laurentide ice sheet

about 48 + 20 = 68 m of the probable 80 m drop in global sea level can be explained. Thus by

assuming that these other ice sheets in fact account for 32 m of an assumed 80 m total drop and

by lumping them together into one ice sheet with the same radius and colatitude as the Laurentide

ice sheet but with 2/3 the mass yields J2 = (5/3) J2.S o for model L1

	

J2 ='-9.8 X 10`19 s-' 	 (15)

and for model L2

	

J2 = —32.0 X 1.0`19 s'1	 (16)

These values are only weakly preferred due to the limitations of the calculations as discussed

above and because a possibly substantial amount of deglaciation in Antarctica has been ignored

(Sabadini et al., 1982a, pp. 2897-2898). Even so, the value (15) agrees well with the observed

value (3), while (16) is a factor of 4 too large. Hence of the two models, L1 is Dreferred to L2.

I VI-
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DISCUSSION

It has been, assumed here that the curvature evident in the nodal residuals is due mainly to

postglacial rebound. There may of course be alternative ways of explaining the data. One such

alternative which immediately comes to mind is the 18.6 year ocean tide; perhaps it is not an

equilibrium tide as assurned here. In fact, Sanchez (1979) speculated that this tide may have an

amplitude several times that of its equilibrium value in order to explain a polar motion component

with the same period found by Markowitz (1979) from polar motion data.

The data shown in Fig. 1 went: accordingly reanalyzed to investigate this possibility by assum-

ing that the functional form of the nodal residuals is now given by

A52 = 520 + noT + 2 nT2 + Al sin 52*.

Here the last term represents an 18.6 year ocean tide which is unconstrained in amplitude but

constrained to having the equilibrium phase. In this case solving for 520 , 6202 62, and Al gives

A, = 0.42 t 0.15 areseconds and 6 = (-5.9 ± 2.5) X 10..8 areseconds day-2 , which would indicate

that the tide has about twice its equilibrium amplitude given by (1). But this still does not explain

the quadratic behavior of the residuals; the new value for 6 is not significantly changed from (2)

and still agrees fairly well with Wu and Peltier's (1982) L1 model. Of course the ocean tide could
A

be unconstrained in both amplitude and phase by adding a term, of the form A 2 cos SZ * to the

above equation and solving for all of the coefficients, including: A 2 . In this case S2 = (4 t 100) X 10-8

areseconds day-2 , Ar = 0.44 t 0.23 areseconds and A2 = —0.,12 f 1.3 areseconds, so that 6 is not

significantly different from zero and no relaxation of the earth has been observed. However, it is

unreasonable to solve for the amplitude and phase of a tide with an 18.6 year period with only 5

years worth of data. In any case the ocean tide would have to depart drastically from its equilib-

rium value in order to explain the Lageos observations.

13



A different ocean tide might appear to be another way of accounting for the T 2 behavior of

the points in Fig. 1; but (A3) ndic4tes that there is no tide of suitable period and amplitude to

do so.

The deceleration of the earth's spin by tidal friction does not account for it either, as may be

seen from the following considerations. For a homogeneous, liquid earth the hydrostatic flattening

factor 0 is proportional to co t to a first approximation, where co is the angular speed of the earth

(e.g., Lyttleton, 1953, p. 38). Further, elementary considerations show that also to a first approx-

imation J2 is proportional to 0 (e.g., Kaula, 1968, pp. 68-69). Hence by differentiation J2 /J2 =

26/w, where w is the acceleration of the rotation speed due to tidal friction. Using the values

w -25 —6 X 10'22 rad S-2  (Stacey, 1977, p. 99) and co = 7.29 X 10 -5 rad s' 1 (Stacey, 1977, p. 332),x
r
is	 in this equation give J2 = —2 X 10-11  s-1 , which is a factor of 40 smaller than the observed rate

IV , 	 given by (3). Thus even if the earth were completely fluid, the observed relaxation of the earth

could not be due to the slowdown of its rotation rate by tidal friction.

There may be some other alternative, as yet unthought of, which will explain the data; but

thus far postglacial rebound does quite well. Moreover, postglacial rebound predicts the continued

quadratic behavior of the residuals in the future; its parabolic nature should become more and more

evident as data is taken :. future years. Hence the relaxation of the earth is an hypothesis which

is easily tested.

The data show good agreement with Wu and Peltier's (1982) L1 model for the parameter

values adopted here. It has been mentioned that the values of the accretion time T l = 112 000

years and disintegration time T2 = 13 000 years are longer than the 90 000 years and 10 000 years

used by Sabadini et al. (1982a, 1982b) and Sabadini and Peltier (1981). Use of these shorter times

give a preferred J2 =— 12.5  X 10-19 s-1  for the L1 model and —36.7 X 10-19 s'1 for the L2 model,

as compared to the observed (-8.2 ± 1.8) X 10` 19 s'1 . Thus the shorter times, which appear to be

14
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more in accord with the deep-sea sediment core data (e.g., Hays et al., 19'?6; Sabadini and Peltier,

1981, p. 566), worsen the agreement slightly, but not seriously, between the LI and observed

values.

The results given here can be compared to other recent studies. Yoder et al. (1983) have

independently analyzed observations of Lageos' node and have concluded that J2 is about

F	 (- 16 t 3) X 10-19 s-1 .  Thus figure is twice as large as that found here, and falls between the

preferred values (15) and (16) for the L1 and L2 models, arguing for a lower mantle effective

viscosity between 1021 Pa s and 1022 Pa s. Also, Yuen et al. (1982) inferred the effective viscosity

of the lower mantle from the observed nontidal acceleration of the earth's rotation. They find the

effective viscosity to be between 1 and 4 X 10 21 Pa , in good agreement with the results .Iven here.

Finally, Peltier and Wu ( 198 3) also calculate from rotational acceleration that it should be between

1.6 and 6 1021 Pa s. On the whole it appears that the effective viscosity of the lower mantle is

indeed between 1021 Pa s and 1022 Pa s, with the present investigation supporting the lower value.

a

	

	 It is interesting to note that the L2 model has J 2 decay more rapidly than the L1 model, even

though its effective mantle viscosity is a factor of 10 higher than that of the L1 model. This seem-

ingly paradoxical behavior is due to the discontinuities present in these realistic models (Wu and

Peltier, 1982, p. 475-476). This behavior also s,h.ows that previous attempts by Rubincam (1979)

and O'Keefe et al. (1979) to derive the effective viscosity of the lower mantle from satellite data

using an incompressible, homogeneous, viscous earth in the manner of Darwin (1879) are too sim-

plistic. It can be shown that the classical Darwinian model applied to the Lageos data give an effeo-

five viscosity of about 1023 Pa s — far from the more reasonable value of 10 21 Pas. Hence the data

cannot be inverted to give a unique effective viscosity. Instead realistic models must be constructed

and then tested against observation.

1
J
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It is also of some interest to compare the glacial flattening to the total nonhydrostatic tlatten-

ing of the earth, Wu and Peltier (1982) do not give quite enough information in their Table 8 to

compla^ _J2 for the L1 model, but do in their Table 9 far the L2 model, which gives JZ = 1.1 	 X 10-61.

by (10). (Both the L1 and L2 models agree with the gravity anomaly data referred the reference

flattening and should give about the same value.) The preferred value is J Z = 1.8 X 10-6 with a

maximum possible value of 3.3 X 10-6. The total nonhydrostatic value OJ 2 for the earth is about
3	

8,174 X 10-6 , as may be derived from Table 3 of Nakiboglu (1979). So the squashing of the earth

by the glaciers of the Quarternary Ice Age accounts for between 13 per cent and 40 per cent of

the present-day nonhydrostatic part of J 2 , with a preferred value of 22 per cent. Wang (1966) had

a	 suggested that glaciation might account for all of ^J 2 , but McKenzie (1966), Kaula (1967), and

O'Connell (1971) indicated that glaciation accounts for an amount closer to the percentages given

here. (For further discussion of AJ 2) see Goldreich and Toomre, 1969).

The support for the L1 model indicates that there is little, if any, jump in the effective viscosity

across the density discontinuity at 671 km depth ( Wu and Peltier, 1982; Peltier and Wu, 1982). Also,

an effective viscosity of 10 21 Pa s for the whole mantle has important implications for polar wander.

Sabadini et al. (1982a, 1982b), Sabadini and Peltier, (1981), and Nakiboglu and Lambec k (1980,

1981) find that glaciation on an earth with this value for the effective viscosity of the mantle could

have caused several degrees of polar wander over the last few million years, and can explain the

current movement of the pole towards Canada. This supposes, of course, that the linear Maxwell

rheology assumed here applies to tectonic stresses and time scales, which may not be the case

(e.g., Weertman, 1978; but see Wu and Peltier, 1982, p. 476). McAdoo (1982), for instance, finds

that non-Newtonian flow best explains the geoid over subducting slabs.

16
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SUMMARY

The node of Lageos' orbit is undergoing an acceleration not presently modeled in the orbit

determination computer program. It appears to be caused by the postglacial rebound of the earth.

An effective viscosity of 1021 Pa s for the whole mantle is consistent with the observed acceleration.

This value for the effective viscosity allows rapid polar wander due to glaciation.
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APPENDIX

The problem addressed here is to find the effect of the 18.6 year global equilibrium ocean tide 	 -

on the node 2 of Lageos' orbit as given by (1).

The amplitude of the global equilibrium ocean tide is (Agnew and Farrell, 1978, equation 2.5)

	

1 +k _h 	 U2

1 — 3pw (1+k2—h2) g
5 pE

where U2 is the tide-raising potential at the earth's surface, pw = 1022 kg m 3 is the density of sea

r"	 water, and k2 , h2 , k2, h2 are the usual Love numbers. The ocean tide will produce a disturbing

potential (Hendershott, 1972, equation 5)

R

	

(1+1c2) gat ^2	
E

r

^•	 while the solid earth tidal disturbing potential is

.'

	

	 R 3

k2 U2 (
j

where a2 = 3pw /5FE . Hence the ratio between the two is

3(1+k2)(1+k2-112)pw — 0.22	 (Al)

tF
5k 2  1 — 5 (PW) (1+k2 —h2) PE

i'	 E
to

for the values k2 = 0.30, k2 = —0.31, h2 = 0.61, and h2 = —1.00 ( Lambeck, 1980, pp. 13-14).

Thus the ocean tide effect is 22 percent that of the solid earth tide. Hence once the effect of the

solid earth tide on the node of Lageos' orbit is found, the ocean tide effect immediately follows.

t
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URIG►i"L PAGE 13
OF POM QIUALfTY

The solid earth tide is found next. Goad (1977) argues that for the sake of easy integration

the solid earth tidal disturbing potential should be expressed in terms of the satellite's Keplerian

elements (a, e, I, co, 92, M) referred to the earth's equator and the moon's Keplerian elements
ĵ ; n

(a* , a* , I* , W * , SZ * , M * ) referred to the ecliptic. (See also Musen and Estes, 1972.) This will be

done here. However, Goad 's (1977, equation 1.7) expression will not be used here since it contains

some errors, as Goad himself realized; instead a slightly different derivation is sketched below.

Kaula (1964) shows how to obtain the solid earth tidal disturbing potential USE expressed in

terms of the satellites's and moon's equatorial Keplerian elements from the tide-raising potentir'

	

U= GMM 	
* a

Q 
2(Q

m) !
 (2-6 0m ) YRmi(©IX) YRmi(©* ►X*)	 (A2)

•	 r	 a-2 r	 m=o i= 1 ( — m)

expressed in terms of the spherical harmonics YRmt (O,A) = PRm (cos 0) cos mA, YRm2 (O,A)

PRm (cos 0) sin mA which refer to the earth's equatorial system. The lunar equatorial spherical

harmonics Y2mi(0 * ,A * ) may be expressed in terms of the ecliptic colatitude B * and longitude A*

using (Messiah, 1963, pp. 1073-1074)

Y°mi(0*,X*) — s^t ARmist YRst(P,'X'*),

where the coefficients ARmist depend on the elements of the rotation matrix between the equa-

torial and ecliptic coordinate systems. After substituting this expression in (A2) and thereafter

following Kaula's (1964) treatment gives USE _	 U2mspghj) where

	

2 GM M	(2-60m ) (R—m)! (RE)2 +1^ RE 2 +1

UQmspghi = L	 R 
kR	

2	 (R+m)! a	 *	 FRmh(I) FQsp (1 ) G2hj(e)
i=1 t=1	 E

A*GRpq(e ) ARmist

i
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— cos C v Qm}1j + vQspq — (t+i) 	 + cos C v Qmhj — v Qspq + (t—i) 	 R—m even, R—s even

— sin I v kmlij + VRspq — ( t+i) 2, — sin C v Qmhj — v Qspq + (t—i) 2 J / R—m even, R—s odd

— sin I vRmlij + vQspq ` (t+i) 211 ] + sin I vRmhj — vQspq + (t—i) 2, R—m odd, R-s even
 t

+ cosv Rmlij + v Qspq — (t+i) 2Ir 
J + cos C v Rmnj — vQspq + (t—i) 11 R-m odd, R—s odd

(A3)

where

:.mhj = (9-2h) Co + (R-211+j) M + mn,

	

v Qspq	 (R-2p) c o * + (Q-2p+q) M *=	 + sSZ*.

Here kQ is the solid earth Love number of degree R, M M the mass of the moon, R E the equatorial

radius of the earth, and G the universal constant of gravitation,

For the 18.6 year tide R = 2 1 m = 0, s = 1, p = 1, q = 0, h = 1, and j = 0, so that (A3) becomes

GM
( R

E 3 (RE
3

U2011010 — R M k2 a	 a*	 F201 (1) F211 (1*) G210 (e) G210(e*)

A.20111 sin S2 * — A20112 cos St * i	 (A4)

The coefficients A20111 and A20112 can easily be found from the addition theorem for spherical

harmonics (e.g., Kaula, 1964, p. 67), since m = 0 in the above equation. They are 
A20111 = 0 and

A 20112 = sin c cos c, where e is the obliquity of the ecliptic. Using these values in (A4) and noting

that G 210 (e) = G210 (e* ) = 1 because of the nearly circular orbits of the moon and Lageos give

GM	 R 3 R 3	 r

U2011010 — — R M k2 a	 F201(1) F21111 *) sin c cos c cos SZ*
>3
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=:

whi, li varies sinusoidally with time with a period of 18.6 years. Substituting this expression in

the Lagrange planetary equation for d92/dt (e.g., Kaula, 1968, p. 166) and integrating with respect

to time yields

—9 GMM k2	Rr 3 Rr s (	
cos I sin I cos I * sin a cos c sin S2"

4 -^/ GM..a R  St	 a

for the effect of the 18.6 year solid earth tide on the node of Lageos' orbit. Multiplying this by

0 22 as dictated by (AI) and using the numerical values e = 23.44 degrees, I * = 5.15 degrees, etc.

(e.g., Kaula, 1968, p. 186) yields tho effect of the 18.6 year global equilibrium ocean tide as

given by (1).
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FIGURE CAPTIONS

Plate 1. The GEM 10B free air gravity anomalies referred to the earth's hydrostatic figure.

Van der Grinten projection,

Plate 2, The GEM 10B free air gravity anomalies referred to the earth's hydrostatic figure. Polar

orthographic projection.

Figure 1, Plot of the residuals in the node of Lageos' orbit after modeling the orbit with the

GEODYN program; also the 18,6 year global equilibrium ocean tide (solid curve), MJD = Modified

Julian Date.

Figure 2, Plot of the residuals in the node after removing the 18.6 year ocean tide perturbation,

the constant, and the slope, leaving only the curvature presumably due to postglacial rebound,

Figure 3. Assumed ice sheet history for Laurentide Canada. T i is the characteristic accretion time

and Tz is the characteristic disintegration time, while T 3 is the elapsed time from the end of disin-

tegration to the present.
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Table 1

Preferred Values for the Laurentide Ice Sheet Parameters

Parameter Symbol Value

Radius of Ice Sheet a 15 Degrees

Colatitude of Center
of Ice Sheet a 25 Degrees

Maximum Mass of
Ice Sheet Mn 1,8 X 1019 kg

Characteristic
Accretion Time Ti 112 000 Years

Characteristic
Disintegration Time Tl 13 000 Years

Elapsed Time Since
the End of Disintegration
to the Present 13 5000 Years
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Table 2

Values for K 
2 	 and r2 = lisj for Models L1 and L2

Model Mode (9 (Y)
L1 Co —3592 2670

MO —4737 3890

L2 CO —72808 40 984

LO —103 171 13 123

k	 Derived from Tables 8 and 9 of Wu and Peltier (1982). Only those values which contribute

significantly to J2 are shown here,

l
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TABLE CAPTIONS

Table 1, Preferred values for the Laurentide ice sheet parameters,

Table 2, Values for icy n 1/rj and rj n  sj for models L1 and L2, Derived from Tables 8 and 9

of Wu and Peltier (1982), Only those values which contribute significantly to J 2 are shown here,
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