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Summary 
A general approach to the construction of convergence acceleration methods for vector sequences 

is proposed. Using this approach, one can generate some known methods, such as the minimal 
polynomial extrapolation, the reduced rank extrapolation, and the topological epsilon algorithm, 
and also some new ones. Some of the new methods are easier to implement than the known methods 
and are observed to have similar numerical properties. The convergence analysis of these new 
methods is carried out, and it is shown that they are especially suitable for accelerating the 
convergence of vector sequences that are obtained when one solves linear systems of equations 
iteratively. A stability analysis is also given, and numerical examples are provided. The convergence 
and stability properties of the topological epsilon algorithm are likewise given. 

1. Introduction 
In a recent work (ref. 1) a survey of convergence acceleration methods for sequences of vectors is 

given, and five of these methods are tested and compared numerically using a process that has been 
termed cycling: the minimal polynomial extrapolation (MPE), the reduced rank extrapolation 
(RRE), the scalar epsilon algorithm (SEA), the vector epsilon algorithm (VEA), and the topological 
epsilon algorithm (TEA). One of the conclusions of this survey is that the MPE and the RRE have 
about the same properties, and in general, have better convergence than others, in the sense that the 
MPE and the RRE achieve a given level of accuracy with fewer vectors than the SEA, VEA, and 
TEA. VEA and SEA are also similar in performance, except that the latter is more prone to 
numerical instability problems. However, TEA, while interesting from a theoretical point of view, 
appears to be not as effective as either VEA or SEA; see reference 1 for further details. 

All of the methods above have the following important properties: 
(1) It is observed numerically that in many instances they accelerate the convergence of a slowly 

converging vector sequence and they make a diverging sequence converge to an “anti-limit” that has 
an immediate interpretation. 

(2) They depend solely on the given vector sequence whose convergence is being accelerated; they 
do not depend on how the vector sequence is generated. 

(3) Their implementation is straightforward. 
For more details and an extensive bibliography see reference 1. 

It turns out that the implementation of the MPE and RRE requires the least-squares solution of an 
overdetermined and in general inconsistent set of linear equations, the number of the equations in 
this set being equal to the dimension of the vectors in the given sequence. For many practical 
problems, the dimension of these vectors may be finite but very large; consequently, one may have to 
store a large rectangular matrix in memory, making the MPE and RRE somewhat expensive in both 
storage and time. Therefore, it would be desirable to have methods as efficient as MPE and RRE but 
less demanding in storage and time. 

In the next section a general framework for deriving convergence acceleration methods for vector 
sequences -vector accelerators for short - is proposed. Within this framework one can derive several 
methods, some old (MPE, RRE, and TEA) and some new. It turns out that one of the new methods is 
very similar to the MPE and RRE, but does not require the use of the least-squares method, requires 
very little storage, and, at least numerically, is as efficient as MPE. The convergence analysis of this 
method, which we shall call the modified MPE, (MMPE), is carried out in Section 3 for a class of 
vector sequences that includes those arising from the iterative solution of systems of linear equations. 
We prove that this method is a bona fide convergence acceleration method, and its rate of 
acceleration is also provided. The stability properties of this method are taken up in Section 4. In 
Section 5 the convergence and stability properties of the TEA are analyzed using the techniques of 
Sections 3 and 4. Finally in Section 6 we test the MMPE on some examples numerically, and compare 
it with the MPE. On the basis of this comparison one could conclude that the MPE and MMPE have 
similar performances, although there is as yet no complete theory to support this empirical 
conclusion. 



2. Development of Vector Accelerators 
In this section we shall develop a general framework within which one can derive vector 

accelerators of different kinds. We shall motivate this development in the way Shanks (ref. 2) 
motivates his development of the ek-transformation for scalar sequences. 

2.1. The Shanks Transformation 

Shanks starts with a scalar sequence X ,  m =0, 1, . . ., that has the property 

OD 

x,-s+ aihy a s m - a ,  
i =  1 

where S, ai, and hi are constants independent of m, X i #  1 ,  i =  1, 2, . . ., X i #  hj, for all i # j ,  and 
IX1121hdi. . . . In (2.1) S is lim Xm if all Ihil< 1; otherwise, S is called the anti-limit of the sequence 

X ,  m = 0, 1 ,  . . .. As one way of approximating S, Shanks proposes to solve the set of 2k+ 1 
nonlinear equations 

m-m 

for Sn,k, which is taken to be an approximation to S, with db x i ,  i =  1 ,  . . ., k, being the rest of the 
unknowns. The solution Sn,k turns out to have the following determinant representation: 

xn x n i l  X n + k  

I 1 1 . .  1 

where A is the forward difference operator defined by Abi=bi, 1 -bi, Mbi=A(M-'bi), p r 2 ,  
provided the determinant in the denominator of (2.3) is nonzero. 

Two equivalent formulations follow from (2.3), independent of any reference to the nonlinear 
equations in (2.2). 

(a) With Sn,k as given in (2.3), there are k parameters pi ,  i=O, 1 ,  . . ., k -  1 ,  which solve the 
system of k +  1 linear equations 
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as can be verified by solving (2.4) for Sn,k by Cramer’s rule. By taking the differences of the 
equations in (2.4), we see that the Pi satisfy 

k -  1 
AXm = PiA2Xm+i, n s m s n + k - l ,  

i = O  

and that, once the Pi have been determined from (2.5), Sn,k can be computed from one of the 
equations in (2.41, say that for which m =n.  

(b) From (2.4) it follows that sn,k,  along with the parameters yi ,  i =  0, 1, ..., k, satisfies the system 
of linear equations 

k 

i = O  
S,,k= Y~x,,,+~, n s m s n + k ,  

subject to 

k 
y i = 1 .  

i = O  

By taking the differences of the equations in (2.6), we see that the yi satisfy 

k 

i=O 
O =  yiAX,,,+i, n s m s n + k - 1 ,  

(2.7) 

subject to (2.7). Once the yi have been determined from (2.7) and (2.Q Sn,k can be computed from 
one of the equations in (2.6). Furthermore, if Y k # O ,  then (2.7) and (2.8) are equivalent to 

where 

j = O  

k 

j = O  
provided c,#O. 

(2.10) 

It has been proved by Wynn (ref. 3) that Sn,k, when computed from a sequence X m ,  m = 0, 1 ,  . . ., 
that is of the form given in (2. l), converges to S as n - 00 (k fixed), under certain conditions on the hi, 
faster than Xn itself. Wynn actually gives rates of convergence for Sn.k for n - Q). 
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2.2. Derivation of Vector Accelerators 

satisfying 
Let us now consider a sequence of vectors, x,, m = 0, 1, . . ., in a general normed vector space B, 

(2.11) 

where s and vi are vectors in B, and Xi are scalars, independent of m, hi # 1, i = 1,2, . . . , X i  # Xi for all 
i#j, and IXl l r lX&.  . . . We also assume that there can be only a finite number of Xi having the same 
modulus. The meaning of (2.11) is that, for any integer N>O, there exist a positive constant Kand a 
positive integer mo that depend only on N, such that for every m z m o  

(2.1 la) 

with (1 (1 being the norm associated with the vector space B. 

the linear system of equations 
A simple example of such a sequence is that produced by a matrix iterative technique for solving 

x = A x + b  (2.12) 

where A is a nondefective MxMmatr ix ,  and b and x are M-dimensional column vectors. If s is the 
solution to (2.12), and for given xo, the vectors x ,  are generated by 

X m + l = A X , + b ,  m=O, 1 , .  . ., (2.13) 

then 

M' 
x , = s +  a i v i ~ ~ ,  m=O, 1 , .  . . (2.14) 

i =  1 

where ai are scalars, hi and vi are the eigenvalues and corresponding eigenvectors of the matrix A, 
and M' I M is the number of the distinct eigenvalues. 

The condition stated in (2.11) is analogous to that stated in (2.1) for scalar sequences. Since the 
Shanks transformation accelerates the convergence of scalar sequences satisfying (2. l), we expect 
that its extensions to vector sequences, through the formulations (a) and (b) following (2.3), may also 
produce acceleration of convergence for vector sequences satisfying (2.11). The extensions of the two 
formulations can be achieved as follows: 

Approach (a) 

general inconsistent) system 
In equations (2.5) replace X, by x,, and "solve" in some sense the resulting overdetermined (and in 

k- 1 
b,,,= p i ~ 2 ~ m + i r  n ~ m i n + k - l ,  

i = O  

for the pi. Once the pi have been determined, compute the approximation Sn,k to s by 

(2.15) 

4 

(2.16) 
i = O  



which is obtained by replacing Sn,k and Xj  in (2.4) by Sn,k and xj, respectively, and considering m =n .  

Approach (b) 

general inconsistent) system 
In equations (2.9) replace X j  by xi. and “solve” in some sense the resulting overdetermined (and in 

for the ci. Once the ci, i = 0,  1 ,  . . ., k - 1, have been determined, set 

k 

j = O  
assuming C ~ Z O .  

O r j s k ,  

Finally compute the approximation s,,k to s by 

(2.17) 

(2.18) 

(2.19) 

which is obtained by replacing Sn,k and Xi in (2.6) by Sn,k and x,, respectively, and considering m =n .  
We see that for both approaches, we need to “solve” an overdetermined and, in general, 

inconsistent system of equations of the form 

(2.20) 
i = O  

where wj and Gjj are vectors in B, and di are unknown scalars. If r, the dimension of B, is greater than 
k, then even one of the equations in (2.20) gives rise to an overdetermined system of r equations. We 
can, however, propose various ways for obtaining a set of di that solves (2.20) in some sense. In what 
follows, we give three such methods, with the understanding that other methods can also be 
proposed. 

Method (1) 

Assuming r >  k, consider only one of the equations in (2.20), namely that with m =n,  and solve for 

the di that minimize some norm of the vector A = diwn +i - Pn. Depending on the norm being 

used, different acceleration methods will be obtained. For example, if r is finite and the (weighted) $ 
norms are used with p = 1, 2, 00, then the determination of the di becomes relatively easy. For p = 2 
the solution can be achieved by using any one of the least-squares packages available, and for p = 1 
and p = 00 the minimization problems can be solved by using linear programming techniques; see the 
review paper by Rabinowitz (ref. 4). The norm with equal weights gives rise to RRE for Approach 
(a) and MPE for Approach (b). The rest of the acceleration methods have not appeared in the 
literature before. 

k -  1 

i = O  

Method (2) 

the di by solving the system of k equations 
Assuming r>k,  consider only one of the equations in (2.20), namely that with m=n, and obtain 
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(2.21) 
i = O  

where Qj are linearly independent bounded linear functionals on the space B. When B is an inner 
product space, we can take Qi(y) = (q j ,y)  where qj are vectors in B and (-,e) is the inner product 
associated with B. If r is finite, and the vector qj is chosen to be the Gth unit vector, that is, 
(qj, z )  = $th component of z, then the method above is equivalent to demanding that only k out of the 
r equations be satisfied, namely those corresponding to the 4 t h  components,j= 1, . . ., k. Obviously 
such an acceleration method demands less storage and time for its implementation than methods like 
the MPE and RRE. It is not difficult to see that Approaches (a) and (b) both give the same 
acceleration method, which has not been given in the literature before. Due to its similarity to the 
MPE, we shall call this method the modified MPE (MMPE). In Sections 3 and 4 we shall analyze the 
convergence and stability properties of this method in detail. 

Method (3) 

Consider all the equations in (2.20) and obtain the di by solving the system of k equations 

(2.22) 

where Q is a bounded linear functional on the space B. In this case Approaches (a) and (b) give the 
same method, and this method is nothing but the TEA. In Section 5 we shall analyze the convergence 
and stability properties of this method in detail. By comparing (2.21) and (2.22), we see that for k =  1 
the MMPE and the TEA are identical when we choose Q1= Q.  

Finally we note that all of the methods obtained as above are nonlinear in the xi. 

3. Convergence Analysis Of MMPE 
As in Section 2.2, we start with a sequence of vectors xi, i =  0, 1, . . ., in a normed vector space B 

with norm 11 - 1 1 ,  that has a limit or anti-limit s. We write ui=Axi=xi+ 1 -xi, i = O ,  1, . . . . Then the 
MMPE, as obtained from Approach (a) or (b) Zn conjunction with Method (2) (see Section 2.2), can 
be summarized (and reformulated) as follows: By Approach (b), the approximation s,,k to s is given 
as 

where yi are obtained from 

When Yk#O, equations (3.2) are equivalent to (2.18) and (2.21), in which d,=ci, w , + ~ = u , + ~ ,  
0 si s k  - 1, and f i n  = - u, +k ,  as can be verified by inspection. 
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We denote the scalars Qj(u,,,) by um,j for 1 s j s k  and m z 0 ,  and we define D(a0, ai, . . ., ak) to 
be the determinant 

when ai are scalars. Let Ni be the cofactor of ai in the first row expansion of this determinant. Then 

When ui are vectors, we again let D(a0, a l ,  . . ., a k )  be defined by the determinant in (3.3), and take 
(3.4) as the interpretation of this determinant. Thus D(a0, al, . . ., Uk) is a scalar (or vector) if the ui 
are scalars (or vectors). 

Solving the system in (3.2) by Cramer's rule, we obtain 

2 Nj 
D(1, 1, . . ., 1) 

j = O  

provided D(1, 1 ,  . . ., 1) 20; in what follows, we assume that this is so. 
By ( 3 . 9 ,  (3.1), and (3.4), we can finally express Sn,k as 

Lemma 3.1: The error in s,,k can be expressed as 

Proofi (3.7) follows easily from (3.4) to (3.6). 

In the sequel we shall assume that the vectors x,,, satisfy (2.1 1). Without loss of generality we shall 
0 

also assume that Xi# 0 and vi # 0 for all i 2 1. Then 
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where zi= (Ai- l)vi, i= l ,  2, . . .. Since A i # l  and v i fO  for all i r l ,  we have zi#O for all i l l .  In 
addition, by (2.1 l), for any operator T in  the dual space of B, 

F =  

Consequently 

VI,] V2,I * Vk,l I 
v1,2 v2,2 * * vk,2 

. . 20. 

vl ,k  v2,k * - * vk,k 

m 

um,j - z ~ , ~ A ~  as m-m, 
i=  1 

(3.10) 

where Z ~ , ~ = Q ~ ( Z ~ ) ,  i l l ,  1 s j s k .  
Note that when the sequence x,,,, m=O, 1, . . ., is generated by the matrix iterative method 

described in Section 2.2, the summations over i in (3.8), (3.9), and (3.10) extend as far as M', which is 
a finite number; therefore, (3.9) and hence (3.10) hold automatically for this case, and - is replaced 
by =. 

The following theorem is the main result of this section. 
Theorem 3.2: Define Qj( v i )  = vi,,, i l l ,  1 sjsk, and let 

(3.11) 

Assume that the vi are linearly independent, and that the A i  satisfy 

Then, for all sufficiently large n, D(1, 1, . . ., 1)fO;  hence, Sn,k, as given in (3.6), exists. 
Furthermore, 

s ,&-s=r(n)h;+l[l  +o(l)] as n-w,  (3.13) 

where the vector r ( n )  is nonzero and bounded for all sufficiently large n. If, in addition, 
Ibk+ ll>hk+21, then 

I v2 . . .  
vk+l  I 

(3.14) 
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Pro08 For simplicity of notation we shall sometimes denote G,=D(x,-s, . . ., x,+k-s) and 

By (3.3) and (3.10) we have 
N,=D(l ,  . . ., l ) ,  and we shall shorten “a,-& as n--oo” to “an-&.” 

1 

Ek 

E: 

I 1  

. 

1 . . .  

I 

(3.15) 

We are allowed to write (3.15) since D(1, 1 ,  . . ., l ) ,  being a determinant, the sum of a lite 
number ( k ! )  of products of ui,p and its asymptotic expansion as n - 00 is the sum of the products of 
the asymptotic expansions of the respective ui,j. By the multilinearity property of determinants, 
(3.15) is equivalent to 

where ?‘(EO, E l ,  . . ., Ek) is the Vandermonde determinant defined by 

1 1 . . .  

Eo 41 - 
E; E ;  * . . 

E; 5: . . . 

. .  

. .  

. .  

(3.16) 

(3.17) 

Since V ( t 0 ,  . . ., f ‘k)  is odd under an interchange of the indices 0, 1 ,  . . ., k, by Lemma A.1 given in 
the appendix to this work, (3.16) can be expressed as 

”’ 

ff, - E (3.18) 
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By (3.12), the most dominant term in the summation on the right side of (3.18) as n-00 is that for 
which i l  = 1 ,  i2=2, . . ., ik=k, provided that the determinant 

E= 

Zl , l  Z2,l - * - zk, 1 

21,2 z2,2 - * * zk,2 

. 

Zl ,k  Z2,k * - - zk, k 

is nonzero. But since zi= ( X i -  l ) q ,  iz  1, we have 

(3.19) 

(3.20) 

where F is as defined in (3.11). Since FZO by assumption, EZO too; hence the first part of the 
theorem follows, with 

(3.21) 

For the proof of the second part we proceed similarly. By (2.11), (3.3), and (3.10), we have 

n from the multilinearity property of determinants 

(3.22) 

(3.23) 

By Lemma A. 1 given in the appendix to  this work, (3.23) can be expressed as 

10 



i 

(3.24) 

By the assumptions made following (2.1 l), there is a finite number of hi with moduli equal to Ihk+ 11. 
Let jAk+ll=. . .=Ihk+d>(Ak+r+l( .  From this and (3.12), it follows that the dominant term on the 
rightsideof(3.24)isthesumofthoseterms withindicesio=l, i l = 2 , .  . ., i k - l = k ,  i k = k + P , P = 1 , 2 ,  
. . ., r, that is, 

X 

V I  . . .  vk uk+P 

[I +0(1)] as n-m.  
(3.25) 

Now the cofactor of Uk+p in the determinant in (3.25) is E which is nonzero since FZO.  Therefore, 
for n suficiently large, the coefficients of uk+ . . ., Uk+r are nonzero. Since we also assumed that 
the vi are linearly independent, the summation in (3.25) is never zero. Combining (3.21) and (3.25) in 
(3.7) results in (3.13). If (hk+II>P\k+2(, then r =  1. In this case (3.14) follows from (3.21), (3.25), and 
the fact that 

v(E0, 51, - 4'k) = n ( t j - t i ) .  (3.26) 

I3 
Note: The condition on the determinant given in (3.11) has some interesting implications when the 

normed vector space B is a complete inner product space. In this case, for each Q,- in the dual space of 
B, there exists a unique vector q, in B, such that Qj(z) = (q,-,z) for every z in B, where (*;) is the 
inner product associated with B.  Then (3.1 1) becomes 

O s i < j i k  

(3.27) 
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One of the consequences of (3.27) is that both sets of vectors Q k =  (41, . . ., qk) and V-= ( V I ,  . . ., 
uk) have to be linearly independent. Another consequence is that the intersection of the subspace 
span Q k  with that orthogonal to span Vk must be (0) .  

The asymptotic error analysis of the MMPE as given in Theorem 3.2 leads one to the following 
important conclusions: 

(1) Under the conditions stated in the theorem, the MMPE is a bona fide vector accelerator in the 
sense that 

(3.28) 
L -I 

This means that if x,-s, as n-m, that is, [XI[< 1 ,  then s,,k's as n-m, and more quickly. Also if 
lim xm does not exist, that is, [A112 1 ,  then s,,k-s as n-m, provided that I&+ I/< 1 .  The reason that 
m--oD 

we write x , + k + l  in (3.28) is that Sn,k in the MMPE makes use of the k + 2  vectors x,, x,+l ,  . . ., 

(2) The result in (3.13) shows that when the MMPE is applied to a vector sequence generated by 
using the matrix iterative method described in Section 2.2, with the notation therein, it will be 
especially effective when the iteration matrix A has a small number of large eigenvalues (k-many 
when s,,k is being used) that are well separated from the small eigenvalues. 

(3) By inspection of r (n) in (3.13) and (3.14), it follows that a loss of accuracy will take place in 
sn,k when XI,  . . ., Xk are close to 1,  since IlI'(n) ))becomes large in this case. When the vector 
sequence is obtained by solving the linear system of equations given in (2.12) by the iterative 
technique in (2.13), this means that if A has large eigenvalues near 1, there will be a loss of accuracy 
in s,,k. In fact eigenvalues near 1 would cause the system in (2.12) to be nearly singular. 

xn + k +  1- 

4. Stability of MMPE 
Let us denote the yj of the previous section by yi(n9k). Then the propagation of errors introduced in 

iy,?Jk) 1; the larger this quantity, the worse the error 
k 

thex, will be controlled, to some extent, by 
j = O  

propagation is expected to be. With this in mind, we say that s,,k is asymptotically stable if 

k k 
yj('pk) = 1 by (3.2), then 

j = O  j = O  
Since lyj(Rk) 12 I ,  so that the most ideal situation is that in which 

y i ( " . k ) 5 0 ,  O s j s k ,  for n sufficiently large. The following theorem shows that for the type of 
sequences considered in Theorem 3.2, s,,k as obtained from MMPE is asymptotically stable, and that 
Y!".~) 20, 0 s j s k ,  for sufficiently large n, whenever Xi, 1 s i l k ,  are real and negative. 

J Theorem 4.1: Under the conditions stated in Theorem 3.2, s,,k is asymptotically stable. 
Proof: By (3 .9 ,  it is sufficient to show that yj(n.k), O l j s k ,  stay bounded for n-m, which in turn 

guarantees (4.1), Now 

I 

P 
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Substituting the asymptotic expansions of u m , j  as given in (3.10) and using the multilinearity property 
of determinants, we obtain 

where 

(4.3) 

(4.4) 

Since Cj(E1, , . ., [ k )  is odd under an interchange of the indices 1, . . ., k, Lemma A. l  in the 
appendix again applies, and we have 

By (3.11), (3.19), (3.20), and (3.12) 
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Combining (4.6) and (3.21) in (3.9,  and using (3.20), we obtain 

Obviously, (4.7) also implies that Iyj(n.k) I < 00 for sufficiently large n. This then proves (4.1). 
U 

Inspection of (4.4) reveals that Cj(h1, . . ., A,) is the cofactor of Ajin the first row of 

V(A, Ai ,  . . ., A,)= 

that is. 

k 

j = O  
V(A, A,, . . ., Ak) = Cj(h1,.  . ., Ak)Aj. 

Combining (4.7) and (4.9), we obtain the following interesting result: 

Invoking (3.26), (4.10) finally becomes 

c 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

Since V (  A, A I ,  . . . , Ak) is a polynominal of degree k and A and vanishes when A = Ai, 1 5 i 5 k, we 
have 

Upon expanding the product on the right side of (4.12), and comparing with (4.9), we get 

(4.12) 

(4.13) 
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It is obvious from (4.13) that if Xi, 1 s i s k ,  are real and negative, then sgn c k - j ( h ! ,  . . ., 
h k )  =sgn Ck(h1, . . ., h k )  for O s j s k ,  and this implies that y W k )  20, O i j s k ,  for n sufficiently 
large. If hi, 1 s i l k ,  are real and positive, then (4.13) implies t ia t  yjn2k)yj$) <O, O s j s k -  1. 

5. Convergence and Stability of TEA 
In this section we shall consider the convergence and stability properties of the TEA, which is 

obtained from Approach (a) or (b) in conjunction with Method (3) of Section 2.2. The TEA can be 
summarized as follows: The approximation sn,k to s is given by 

where yi are obtained from the equations 

k 

i = O  
Y i = l  1 

J k 

i = O  
YiQ(u,+;)=O, n s m s n + k - 1 ,  

with u,=Ax,=x,+~ -x,, m r ~ ,  as before. When Y k f O ,  equations (5.2) are equivalent to (2.18) 
and (2.22), in which di=ci, w,+i=u,+i,  O s i s k - 1 ,  and @ , = - ~ , + k ,  as can be verified by 
inspection. 

We now write the equations in (5.2) in the form 

k 
yj=1 

i = O  

l s j s k ,  I (5.3) 

where this time u m , j = Q ( u m + , - l ) ,  m r O ,  1 s j s k .  Defining D(u0, ul, . . ., U k )  as in (3.3) but with 
the umJ of Section 3 replaced by the new u m j ,  we see that Sn,k for TEA is given exactly by (3.6), as 
can be verified by Cramer's rule. Let us also define zj , j=Q(zj)h$-'=Q(Uj)  (Aj-l)h$-', i l l ,  
1 ~j I k, where the zi are as defined in Section 3. Then under the assumptions preceding (3. lo), (3.10) 
holds with the zi,j of Section 3 replaced by the new z i j .  

If one follows the proof of Theorem 3.2, one realizes that (3.18) and (3.24), which form the most 
important parts of it, are consequences of (2.11) and (3.10). Consequently (3.18) and (3.24) remain 
true for the TEA provided the zi,j of Section 3 are replaced by those of the present section. Starting 
with these observations, we now prove the following theorem: 

Theorem 5. I :  Assume that 

Q(q)  f O ,  1 s i l k ,  (5.4) 

and that all the conditions of Theorem 3.2 (with the exception of (3.11)) are satisfied. Then, for all 
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k 

j = O  
sufficiently large n, N,#O, hence Sn,k as given in (3.6) exists. Furthermore, 

where the vector A ( n )  is nonzero and bounded for all sufficiently large n. If, in addition, 
Ibk+ ll>lhk+21, then 

A ( n )  = 

V I  v2  . . . v k +  1 

Z l , l  Z2,l z k +  1,1 

z1,2 2,2 . . . 

c 

Zl,k Z2,k * z k +  1,k - 

Proof: The proof of this theorem proceeds along the same line as that of Theorem 3 .2 ,  using the 
additional relation 

(5 .7)  

0 

Note: When the normed vector space B is a Hilbert space, the condition (5.4) has the following 
implication: Let q be the unique vector in B for which Q ( z )  = (q,z) for every z in B.  Then (5.4) 
implies that q cannot be orthogonal to any of the vectors vi,  1 s i s k .  

As a result of the asymptotic error analysis of the TEA given in Theorem 5.1, we can draw 
conclusions that are identical to those about the MMPE given at the end of Section 3 .  We find that 
(3 .27)  is replaced by 

since S,,k for TEA is formed by taking into account the 2 k +  1 vectors x,, xn+ 1, . . ., x,+2k,  instead 
of the k+ 2 vectors x,, x,+ 1, . . ., x , + k +  1 used to form Sn,k for the MMPE. This in turn implies that 
the MMPE is a more economical vector accelerator than the TEA, since it attains the same rate of 
acceleration as the TEA while using approximately half the number of vectors. 

Finally the stability properties of the TEA are very similar to those of the MMPE as is stated in the 
following theorem. 
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Theorem 5.2: Under the conditions stated in Theorem 5.1 Sn,k is asymptotically stable. 

Proof: Similar to that of Theorem 4.1. 
Furthermore, (4.7) and (4.11) hold too. 

U 

The conclusions that were drawn from the stability analysis of the MMPE in Section 4, are true for 
the TEA too, as some analysis reveals. 

6. Numerical Examples 
In Section 3 we analyzed the convergence properties of Sn,k for the MMPE as n - 00, and derived an 

asymptotic error estimate for it, obtaining at the same time its rate of convergence. In this section we 
apply the MMPE and the MPE to three vector sequences obtained as iterative approximations to 
linear systems of equations. The numerical results verify the conclusions of the asymptotic error 
analysis of Section 3. They also indicate that the MMPE and the MPE have very similar 
performances. 

In all the examples below the MPE is implemented by solving the generally overdetermined system 

k- 1 

ci un+i = - u n + k  
i = O  

k 

j = O  
for the ci using the method of least squares and then setting yi=cj/ cj, 0 s i l k ,  with c k =  1, in 

(2.17). As before uj=xj+l -x,, j = O ,  1, . . .. The MMPE, on the other hand, is implemented by 
solving the linear system of k equations 

i = O  

where u,,j denotes the j t h  component of the vector u,. That is to say, we pick the linear functional 
Qi in (2.17) to be the projection operator onto the subspace spanned by thejth unit vector, j =  1, . . ., 
k .  

We then set yi=c,/ c,, O s i s k ,  with ck= 1, in (2.17). 

matrix associated with the Gauss-Seidel method for the system of linear equations Cx=d, where 

k 

j = O  

Example 1. The vectors xi are obtained by setting xo = 0 and xi+ 1 =Axi+ b, where A is the iteration 

and d and/or b are determined by requiring that the solution s to Cx=d be the vector with all its 
entries equal to 1. The eigenvalues of A are approximately XI =&= -2.3500*i2.0506, 
X3 = - 0.0228, and h=O. Therefore, lim xi does not exist. In Table I we give the errors (Isn,k-S llw 

computed in the POD norm for k=2 and O s n  ~ 5 ,  both for the MMPE and the MPE. 
i- w 
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TABLE I. - f& NORMS OF THE 
ERRORS S,,Z --s FOR 

EXAMPLE 1, COMPUTED 
USING MMPE AND MPE, FOR 

k=2 AND 0 5 0 ~ 5  

n 

0 

1 

2 

3 

4 

5 

MMPE MPE 

Ilsn,~ --s ll- 
6x10-1 l X l @  

8x10-3 7 x 10-3 

Ilsn,~ --s Ilm -- ~ 

2x10-4 z x  10-4 

4x10-6 4 x  

1x10-7 9 x  10-8 

9xIO-lo 9xlO-'O 

Example 2. The vectors xi are obtained by setting xo = 0 and xi+ 1 = Axi+ b, i = 0, 1 ,  . . ., where 

A=0.06x 

p 2 1 1  
~ : : : : : l  

1 1 3 6 3 1 1  

1 1 3 6 3 1 1  

1 1 3 6 3 1 1  

1 1 3 6 3 1 1  

1 1 3 6 3 1 1  

1 1 3 6 3 1  

1 1 3 6 2  

- 1 1 2 %  

and b is determined by requiring that the solution s of the system x = A x + b  be the vector with all its 
entries equal to 1. The eigenvalues of A are all real and in (O,l), and are approximately AI= 0.8965, 
X2=0.7318, h3=0.5297, A.,=0.3600, . . ., Xll=0.0313, in decreasing order. Since h l < l ,  the 
sequence xi, i = O ,  1, 2, . . ., converges. 

In Figures 1 and 2 we give the results of the computations for I[sn,k-S lloD using both the MMPE 
and the MPE with k =  1 and k=2, respectively. The figures also include Ilxn+k+ 1 -s [IoD. 
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10 

- 
5 
L m 
L 0 

VI 

E 
0 c 

8 
2 
z 4 -  
8 - 

0 

0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

- 

9 -  

8 -  

7 -  

6 -  

5 -  

3 -  

2 I- 0 0 ,+ -.. 
0 :,=+ .> .. 

a" n a 0 

0 a n n  

0 4 6 8 10 1 2 1 4 1 6 1 8 2 0  22 2 4 2 6 2 8 3 0  

n t k + l  

Figure 1. - Results for Example 2 taking k = 1. 
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7t ' e 6 1  

2 'r 

0 

0 

0 

0 

0 

13 

0 

0 

0 

0 

A 0 
0 A A  

A A A  
I I I U' g l q A (  

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

n t k t l  

Figure 2. - Results for Example 2 taking k= 2. 

Example 3. The vectors xi are obtained by setting xo = 0 and xi+ 1 =Axi+ b, i = 0, 1, . . ., where 1;: 10 10 10 10 9 

. .  

. .  A=0.04x . 

. .  
2 2 2 2 . . . 2 1  

1 1 1 l . . .  l i  

and b is determined by requiring that the solution s of the system x=Ax+b be the vector with all its 
entries equal to 1. The eigenvalues of A are all real and are approximately AI = 1.2892, A2 = 0.8080, 
A3 = 0.4924, b = 0.2785, . . ., A12 = 0.0012, in decreasing order. Since A1 > 1, the sequence Xi,  i = 0, 1, 
2, . . ., diverges. In figures 3 and 4 we give the results of the computations for JIsn,k-s [IoD using both 
the MMPE and the MPE, with k = 2  and k =  3 ,  respectively. 

20 



1 lo r 

7 
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VI 

VI 
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E 

E 5  

3L 2 

1 c 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 

El 
0 

0 0  
0 0 0  

-1 l l l l l l l l l l l ~  
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

n + k + l  

O I  
Figure 3.  -Results for Example 3 taking k =  2. The base iterations x, diverge. 

I 
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0 
0 

1 1 -  1 I I I I I 1  I 1  1 I I 
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

n + k + l  
-1 

Figure 4. -Results for Example 3 taking &= 3. The base iterations x, diverge. 
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Appendix 
LemmaA.1: Let io, il, . . ., ik be integers greater than or equal to  1, and assume that the scalars uio, 

. . ., ik are odd under an interchange of any two indices io, . . . , ik .  Let ai. i 2 1, be scalars (or vectors), 
and let t i j ,  i 2 1, 1 rj I k, be scalars. Define 

N 
Ik,N= * 2 aio ( fi fip,p) uio,. . ., ik 

io=l ik=l p =  1 

and 

where the determinant in (A.2) is to be interpreted in the same way as D(a0, . . ., a k )  in (3.3). Then 

Proof: Let Ck be the set of all permutations of (0, 1, . . ., k). Then by the definition of 
determinants 

Now i f -  l i f ( p )  =p, 0 I p  I k, and sgn i f -  1 = sgn i f  for any permutation i f € & .  Hence 

By the oddness of uil ,  . . ., ik, we have 
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Substituting (A.6) in (A.9 ,  we obtain 

Since uio, . . ., ik is odd under interchange of the indices io, . . ., ik, it vanishes when any two of these 
indices are equal. Using this fact in (A. I) ,  we see that Ik,NiS just the sum over all permutations of the 
distinct indices io, . . ., ik. The result now follows by comparison with (A.7). 

0 

Note that when the ai are scalars, (A.3) remains true also for the case in which the vio, . . ., ik are 
. . ., ik is interpreted as vectors. When the ai and vio, . . ., ik are vectors, (A.3) still holds provided 

a direct (tensor) product. 

References 
1. D. A. Smith, W. F. Ford, A. Sidi, Extrapolation Methods for Vector Sequences. Duke University Preprint. (Under 

2. Shanks, D.: Non-linear Transformations of Divergent and Slowly Convergent Sequences. J. Math.&Phys., vol. 34, no. 1, 

3.  Wynn, P.: On the Convergence and Stability of the Epsilon Algorithm. SIAM J .  Numer. Anal., vol. 3, no. 1, Mar. 1966, 

4. Rabinowitz, P.: Applications of Linear Programming to Numerical Analysis. SIAM Rev., vol. 10, no. 2, Apr. 1968, 

preparation.) 

1955, pp. 1-42. 

pp. 91-122. 

pp. 121-159. 

24 

I 

l 



2. Government Accession No. I 1. Report No. 

NASA TP-2193 
4. Title and Subtitle 

ACCELERATION OF CONVERGENCE OF VECTOR SEQUENCES 

Acceleration of convergence; Vector se- 
quences; Shanks' transformation; Minimal 
polynomial extrapolation; Reduced rank ex- 
trapol at ion; Topol ogical epsi 1 on a1 gori thm 

7. Author($ 

Avram Sidi, William F. Ford, and David A. Smith 

Unclassified - unlimited 
STAR Category 64 

3. Recipient's Catalog No. 

5. Report Date 

December 1983 
6. Performing Organization Code 

None 
8. Performing Organization Report No. 1 E-1719 

10. Work Unit No. t--- 
9. Performing Organization Name and Address 

Nationa1,Aeronautics and Space Administration 
Lewis Research Center 
Cleveland, Ohio 44135 

. .  

TSponsoring Agency Name and Address 

National Aeronautics and Space Administration 
Washington, D.C. 20546 

11. Contract or Grant 
~ 

No. 

113. Type of Report and Period Covered 

I Technical Paper 
14. Sponsoring Agency Code 

J 
15. Supplementary Notes 

Avram Sidi, Technion - Israel Institute of Technology, Haifa, Israel (work done 
partly as a National Research Council - NASA Research Associate and partly under 
NASA contract NAS3-23636); William F. Ford, Lewis Research Center; David A. Smith, 
Duke University, Durham, North . .._ Carolina (work supported by NASA grant NSG-3160). 

A general approach to the construction of convergence acceleration methods for 
vector sequences is proposed. Using this approach, one can generate some known 
methods, such as the minimal polynomial extrapolation , the reduced rank extrap- 
olation, and the topological epsilon algorithm, and also some new ones. Some 
of the new methods are easier to implement than the known methods and are ob- 
served to have similar numerical properties. The convergence analysis of these 
new methods is carried out, and it is shown that they are especially suitable for 
accelerating the convergence of vector sequences that are obtained when one solves 
linear systems of equations iteratively. A stability analysis is also given, and 
numerical examples are provided. The convergence and stability properties of the 
topological epsilon algorithm are likewise given. 

~ 

16. Abstract 

7. Key W o r d s g e s t e d  by Autho&)) 118. Distribution Statement 

9. Security Classif. (of this report) 

Unclassified 
20. Security Classif. (of this page) 

Uncl assif ied I 21. No. of pages 22. Price' 1 A03 I 
"For sale by the National Technical Information Service, Springfield, Virginia 22161 

NASA-Lano1 eY, 1983 



National Aeronautics and 
Space Administration 

Washington, D.C. 
20546 
Official Business 

Penalty for Private Use, $300 

THIRD-CLASS BULK R A T E  Postage and Fees Paid 
National Aeronautics and 
Space Administration , 
NASA451  

4 1 I U , G ,  8 3  1 20 1 SOOY03i)S 
DEP'i' OF 'I'ijE A 12 FOkC'E 

NA§A 

I 

POSTMASTER: I f  Undeliverable (Section 1 5 8  
Postal Manual) Do Not Return 


