
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



tD+

NASA Technical Memorandum 83503

p`►̂  !

On Some Flow Characteristics of
Conventional and Excited Jets

(NkSA-T fl- 83503) Gb SOME FLOW
CAAtiACTE&ISTICS OF COMbTIUNAL AND EXCITED

}	 JETS (NASA) 22 p HC A02/MF A01 	 CSCL 20A

Uwe H. von Glahn

Lewis Research Center
Cleveland, Ohio

Prepared for the
Twenty-second Aerospace Sciences Meeting
sponsored by the American Institute of

z	 Aeronautics and Astronautics
Reno, Nevada, January 9-12, 1984

N84-139"22

Dnclas
G3/71 42b04



OF POOR QUA I`-Y

ON SOME FLOW CHARACTERISTICS OF CONVENTIONAL AND EXCITED JETS

Uwe H. von Glahn

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

M

W

;l

Abstract

Improved correlations of jet centerline

velocity and static temperature decay data for
convergent circular nozzles are developed. From
these empirical correlations, a relationship was

devised by which the static temperature decay for
a nonisothermal jet plume can be determine from
cold-flow jet centerline velocity decay data for
prediction. This relationship is shown to apply

as well to jet plumes for various nozzle shapes.
It is assumed, by analogy, that this relationship
also applies to acoustically excited jet plumes.
Jet plume spreading with and without excitation is
discussed. Finally, the radial velocity and tem-
perature profiles for conventional and enhanced

mixing jet flows are shown and their implication
for excited flows is discussed.

Introduction

Serious consideration of means to alter or

control fluid flow by sound had its beginnings in
the 1930-50 period when the research was oriented
to the control of flames during combustion. After

1950, the research in flow control, i.e., shear
layer effects, began to be accelerated and the

method of the flow alteration was primarily ac-
complished by sound. Since the 1970's the motiva-
tion in the field of floe: control has been, in
large part, the result of research directed at jet

noise generation mechanisms and reduction in which
the objective has been to gain an expanded and im-

p-oved understanding of the flow characteristics
(velocity, turbulence, and temperature) in the jet
field. As part of this work, means of rapidly
mixing out the jet in the surrounding air has been

studied for a variety of practical applications.
Initially, the common procedure was to utilize

mixer-type nozzles to reduce the jet centerline
velocity. However, jet noise research also showed
that enhanced jet mixing can also be achieved by
flow excitation using acoustic or mechanical means.

The effect of flow excitation on a jet plume

is shown schematically in Fig. 1. With excitation
the jet potential core length is decreased while
the plume spread is increased compared w i th a non-
excited jet.

It should be noted that turbofan/turbojet

engine jets operate in an acoustically excited
environment that can cause their jet aerodynamic

characteristics to be significantly different from
an unexcited or model jet l . Furthermore, it has
been shown that the jet mixing enchancement by
mechanical means is analogous to that by an acous-

tic source2 . Very briefly and with gross sim-

plification, the phenomena may be expressed as the
following: A wave generated by a mechanical or

acoustic source interacts with the existing
instability waves in the shear layer of a steady-
state flowing jet producing effects on the spread-
ing rate of the jet plume, jet velocity and
temperature profiles, and its turbulence charac-

teristics. The effect on the jet plume charac-
teristics depe+ids on the frequency and strength or
magnitude of the waves produced by the excitation
source.

This paper considers the mixing enhancement

of the jet plume velocity and static temperature
characteristics by some acoustic excitation any

mechanical perturbation devices. Enhancement of
jet mixing by means of flow excitation can be

achieved by any of the following devices:

1. Acoustic drivers or loud speakers

2. Whistler nozzle

3. Elliptical focusing radiator
4. Oscillating vane

A general description of some of these flow ex-

citation devices will be summarized briefly later
in the paper.

Initially, the present paper considers the

nean-flow characteristics associated with conver-
int circular nozzle jet exhaust flows under static

conditions. An improved correlation of the center-
line velocity decay, based on previous work on

cold-flow jet decay experiments is presented. The
ethod is then extended to heated jets. The range

of conditions considered includes subsonic and log}
supersonic jet flows. A centerline jet static tem-
perature decay correlation for convergent circular
jets is then presented. From these correlations,

it is then possible to obtain the centerline jet
static temperature decay from cold-flow velocity
decay data. The centerline velocity/static tem-
perature decay correlation based on convergent
circular nozzle data is shown to apply to several
nonsymmetric jets and external mixer nozzles.

The paper then summarizes and discusses the

results from various experimenters on the effect
of excitation on jet plume characteristics.
Centerline velocity decay curves for a number of

excitation methods are included. Th3se methods
are not optimized. Further work directed at under-
standing the mechanism involved in flow excitation
is needed before optimization is achieved. The
variation of centerline static temperature decay
is shown for non-excited data. in addition, the

centerline temperature decay for an excited jet
with a composite velocity decay characteristic
(measured velocity decay independent of the plume
decay enhancement means) is illustrated and dis-
cussed. A discussion of the effect of excitation
on the jet spread and mean radial velocity pro-
files follows this portion of the paper. Finally,
flight effects on the centerline velocity and tem-

perature decay and jet spread are discussed briefly
for both excited and unexcited jets.

Representative Jet Excitation Methods

In order to excite the jet flow structure,
researchers have used many different devices. A

brief description of some of the devices follows.
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Acoustic excitation. - The acoustic source

section used for the jet excitation experiments of
Ref. 3 is centered around a 10-cm diameter duct
and utilizes four electro-acoustic 100 watt Altec
drivers (Fig. 2(a)). Each driver is enclosed 'n a

pressure vessel to equalize the pressure across
the driver diaphragm. To protect the diaphrams

during high temperature tests, tubes connecting
the drivers to the source section have provisions
to provide cooling air. The source section is
located in the constant 10-cm diameter pipe sec-

tion, six meters upstream of the nozzle exit plane.
The most critical feature of the source section is

the requirement to generate modes in isolation.
To achieve this, the input signal for each driver
is passed through individual power amplifiers with
provision for input (amplitude and phase) control
in order to ensure generation of the plane-wave
(azimuthal) mode, (0,0) mode, or helical (1,0)

mode. Maximum excitation of the jet plume was ob-
tained with the (0,0) mode; consequently only these
data are included herein.

Whistler nozzle. - The Whistler nozzle4.5 is
a passive device consisting .f a constant-diameter

tail pipe, attached to the downstream and of a jet
nozzle, and a constant-diameter collar which can

slide over the pipe (Fig. 2(0)). Depending on the
step height (i.e., the difference between the
inside radii of the pipe nozzle and the collar),
the jet speed, and the pipe length Lp, as the
collar is gradually pulled out (i.e., moved down-
stream), the jet produces a loud pure-tone sound;
this is the first stage. With increasing collar
length (i.e., the streamwise projection of the
collar beyond the pipe exit), the frequency of the
tone decreases monotonically and the sound strength

increases, reaches a peak and then decreases unti'
it disappears. With further increase of the Collor

length, the sound quite abruptly reappears at a
slightly lower frequency; this is the second stage.
The sound is the result of resonance of the pipe
nozzle as an open-opera organ pipe in either the

full-wave mode or the half-wave mode. Note that
"mode" refers to half-wave or full-wave organ-pipe

resonance of the pipe nozzle while "stage," as
explained above, denotes the same as that in any
edge-tone system. According to Ref. 5, the pipe
length, LP , has the greatest effect on the aero-
dynamic characteristics of the jet plume for a
Whistler nozzle.

Elliptical focusing radiator. - A sketch of

the experimental arrangement is shown in Fig. 2(c)6.
The generator (1), which is driven by compressed air
from a compressor, is situated at one focus (fl)
of the elliptical focusing radiator (2), which is
truncated in the plane of the second focus (f?).
An air nozzle is placed at the latter, through
which air is forced under a pressure. The spent

air is completely exhausted from the focusing radi-
ator through special ports (the generator operated
in the air backwash regime) and does not affect
the jet plume.

In addition to the preceding excitation de-

vices, jet exhaust mixing can be enhanced by other
devices such as: (1) Rotating turbulence genera-
tion disk 7 , (2) inserting an oscillating vane or
ribbon8 , (3) by swirling the exhaust flow upstream
of the nozzle exit planeg , and (4) spark generation
and fluid generation (see Ref. 5).

Centerline Jet Velocity Decay

Without Flow Excitation

in Ref. 10, the cold-flow jet plume decay

along the nozzle centerline was correlated in
terms of M/Mj as a function of an axial distance
parameter giOn by X/(De ^). In the pre-
sent work the velocity decay term is changed, for

convenience, from M /M • to U/Uj. In add Tp, a
static temperature ratio parameter, (t-It 0)
is included in the axial distance parameter to ac-

count for static temperature variations in the jet

as well as with heat addition (heated jets). The
exponent for this static temperature ratio is sim-
ilar to that suggested in Refs. 11 and 12; differ-
ing only slightly in the magnitude of the exponent

because of a difference in the formulation of the
axial distance parameter used in these references.

Cold-flow. - In Fig. 3 is shown the conver-
gent circular nozzle jet centerline velocity decay

for jet Mach numbers from 0.28 to 1.37 (data from
Ref. 13). It is apparent that the axial distance

parameter used including the static temperature

ratio parameter correlates the data extremely well
about the curve drawn through `he data. It should
be noted that the temperature term contributes a

variation of only about 8-percent in the abscissa;
consequently, the most significant conclusion to

be drawn from this data correlation is that the
j/T - j term, which contributes a variation
of 35-percent inthe data shown, correlates the

centerline velocity decay over a wide range of jet
Mach numbers (see also Ref. 10).

Additional cold-flow jet centerlire velocity

decay data for convergent circular nr.4zles, together
with that from Fig. 3, are shown in Fig. 4. In
general, the data are well correlated by the para-

meters shown. The curve shown in Fig. 4 is given
by the following relationship:

8	
2 -0.125

t.

U j	
6 De ^+ 1 3̂	0

and is seen to fit the data well. The data pre-

sented starting in Figs. 4 and 5 from Refs. 15 and
16 represent supe rcritical non-isentropic data.
The form of these data presented here is different
than presented in Refs. 15 and 16 where it is in

the form of dynamic pressure. The dynamic pres-
sures were transformed to the dimensionless veloc-
ity U/Uj using isentropic relationships. These

relationships introduced effects of compressibility
into the results, but those are believed minim' zed

by the low supercritical conditions at which the
data were obtained.

Heated flow. - The jet centerline velocity

decay data for convergent circular nozzles with
heated flow is shown in Fig. 5 using the same para-

meters as those for the cold-flow data of Fig. 4.
The curve shown in the figure is that previously

shown in Fig. 4 and given by Eq. (1). Again, the
data are well correlated by the parameters shown
in the figure and by the correlation equation.

_^ _L'
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As discussed earlier, jet flow excitation can

be achieved by the use of several techniques in-
volving flow phenomena (Whistler nozzle), mech-
anical means (oscillating devices), and acoustic.

curve given by Eq. (1), with the excited flow data
adjusted by the corresponding normalization factor.

It is presumed that this data normalization is the
result of flow losses in the Whistler nozzle which

cause a more rapid velocity decay than that ob-
tained with a conventional conical nozzle.

In the next several figures, the excited jet

centerline velocity decay data for convergent cir-
cular nozzles are shown. All of the data sources
included data without excitation as reference
values. However, not all of the reference values

fell on the velocity decay correlation curves of
Figs. 4 or 5. Such data were arbitrarily normal-
ized to coincide with the velocity decay correla-
tion curve (Eq. (1)) and the excited data were
adjusted similarly by the same factor i.e. a
(	 5	 J0-percgntadjustment in the X/(Oe 	 +Mi)
t•/t )UU ZZ	 parameter for the unexcited ett daLa

rell ul^ed in the same adjustment for the excited

jet data). Data so adjusted are identified as
"normalized" in the figures. In all figures, the
centerline velocity decay curve for unexcited flow
(Eq. (1)) is shown for comparison.

Acoustic-tone excitation. - Centerline jet

velocity decay data obtained with a tone-excited
jet are shown in Fig. 6. The data shown are for
jet Mach numbers of 0.58 and 0.78, an acoustic

excitation source at the nozzle exit of 141 dB, and
a constant Strouhal excitation number, Ste of 0.5.
Reductions in the local velocity ratio were ob-
tained in the jet core flow region (especially for
M • . 0.58) and in the mixed flow region. For
tie conditions of the experiment, the effectiveness

of acoustic excitation, on the velocity decay de-
creased with increasing jet Mach number. Also, a
decrease in the acoustic-tone level decreased the
change in the velocity decay from the unexcited
values.

Elliptical focusing radiator. - The elliptical

focusing radiator used for the jet excitation
experiments in nef. 6 is also an acoustic device.
Acoustic levels of 170 dB were obtained with this
device. The centerline jet velocity decay with
and without excitation is shown in Fig. 7. For
the data shown, only the higher jet Mach number

data were normalized (factor of 1.1). For these
data, a more rapid decay was obtained with the
higher jet Mach number than that with the lower

one, contrary to the trend noted for the previous
figure. However, this effect may be due to a
change in excitation Strouhal number between the

data in Fig. 7. Reference 6 indicates that the
maximum velocity decay produced by excitation
occurred at an excitation Strouhal number, Ste,
of 0.25 while a minimum occurred at a Ste of 0.5.
The jet core flow region was significantly shortened
with the excitation level of 170 dB and large

velocity decay values were measured downstream of
the shortened core as shown in Fig. 7. The jet
core flow region was significantly shortened with
the excitation level of 170 dB and large velocity

decay values were measured downstream of the short-
ened core as shown in Fig. 7.

Whistler nozzle. - The centerline jet velocity
decayofaWh stler njzle depends greatly on the

geometry of the nozzle for both unexcited and
excited mode of operation. As in the case of the
elliptical focusing radiator flow excitation tech-

nique, the measured centerline jet velocity decay
data for unexcited flow were normalized to the

The maximum normalized centerline velocity

decay at Mj - 0.11 obtained in the experiments
reported in Ref. 5 is shown in Fig. 8. (Similar

unpublished results, made available by Professor

Hussain to the author, were obtained at a M•
value of 0.37). The normalization factor fol) the

data in Fig. 8 was 1.11; i.e., the axial distance

parameter was adjusted by this factor. It is
apparent that the velocity decay was significantly
more rapid with excitation than without. In fact,
almost the entire jet core flow velocity rar.io was
reduced by up to 25-percent. These U/Uj reduc-
tions are the same order of magnitude as those
obtained with the elliptical focusing radiator.

Centerline Jet Temperature Decay

Without Flow Excitation

The jet centerline static temperature decay

(t - to)/(tj - to), for convergent circular nozzles
is shown in Fig. 9 as a function of the same axial

distance parameter used in the correlation of the
velocity decay data. Also shown is a curve faired
through the data and given by:

1-0.125

o	 1 +	 X	 -io
	

(2)

5D e	1 + M
J. \ to/

The right hand side of Eq. (2) is similar to Eq. (1)
except that the constant is 5 instead of 6. This

means that the static temperature core length at
the jet centerline is less than that for the

velocity. The data shown are correlated well by
Eq. (2) over the wide range of flow and tempera-
ture conditions included in the figure.

It should be noted that Eq. (2) does not

apply to isothermal jets; i.e., t/to must be
greater than 1.0.

With Flow Excitation

At this time the jet centerline static tem-

perature dec% data for heated excited jets are
not available . However, a method for estimating

this decay, based on the assumption of similarity
between unexcited and excited jet flow character-
istics, will be discussed later.

Plume Velocity/Temperature Relation

Without Flow Excitation

From the correlation equations for U/U• and
(t - to)/(t	 t ) as functions of the axialJdis-
tance parameter 9Egs. (1) and (2)), the relation of

U/Uj to (t - to)/(tj - to) can be established.

aSee appendix for recently obtained (unpublished)

limited excited jet static temperature decay data.
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Conver gent circular nozzles. - This relation-
ship is shown in Fig. 10 for convergent circular
nozzles. The curve for convergent circular nozzles
is given by the following:

t -t o 	U`8
tj	to

 -  1*4.3 
C^ 

-1	

-0.125	

(3)

The convergent circular nozzle data scatter about

this curve, shown by the shaded region in the fig-
ure, and is the same as that shown by the data in

Figs. 5 and 9. A sitoiiar relationship, with re-
spect to data trends, is given in Ref. 16 in which
the temperature ratio is plotted as a function of

dynamic pressure ratio.

Nons=tric nozzles. - In Fig. 11, non-

symmetrical nozzle centerline velocity/temperature
plume data are shown in terms of the same parame-
ters as in Fig. 10, togcEher with the convergent

circular nozzle curve (Eq. (3)). In general, good
agreement is observed between the different nozzle
shapes. The deviation of the nonsymmetric nozzle
data from the curve (Eq. (3)) is of the same order
of magnitude - the deviation of the convergent
circular nozzle velocity decay data (taken from

the sane reference) from the correlation curve
shown in Fig. 5. Thus, the data deviation from
the curve appear; to be re'3ted to the particular
experiment rather than a shortfall of the correla-

tion procedure. The TF-34 engine data show some
deviation from the model scale data; however, this

is believed due to a severe exit flow separation
problem for the engine nozzle configuration.

Enhanced Jet Mixing with Heated Flow

The static temperature/velocity relationship

for an excited heated jet is currently not avail-

able. However, in Ref. 7, one case of heated
("warm") flow is presented for which a rotating

turbulence generator disk was used to pulsate the
flow on and off thus enhancing jet mixing. The
term enhanced jet mixing is used here when dis-
cussing the data from Ref. 7. Unfortunately, the

absolute jet temperature level is not stated in
the reference. In order to assess the effect of

mixing enhancement on the static temperature/
velocity relationship for this device, a t•/t
value of 1.05 was assumed. The resultant silat?c

temperature/velocity variation is shown in Fig.

12, toether with the correlation curve given by
Eq. ( 33 and the data without mixing enhancement.
It is apparent that both sets of data are in good
agreement with the correlation curve. It should

be noted that larger values of t • /to than 1.05
would not significantly change thi results because

both (6 .25 to)/(tj - to) and U/Uj are functions of

(ti/to)

Excited Jet Flow

As stated in the preceding section, the jet

static temperature decay data for excited, heated
conditions is not presently available. However,

bAs previously cited, see appendix for recently
obtained (unpublished) limited excited jet static
temperature decay data.

it does not appear unreasonable that by simple

analogy the static temperature/velocity decay
relationship existing for unexcited jets (Eq. (3))
also applies to excited jets. Thus, the response
of the jet plume static temperature decay to acous-
tic excitation should be analogous to the response
of the velocity decay to acoustic excitation.

With this premise, use of Eq. (3) with cold-flow
acoustically excited jet centerline velocity decay

data should yield the excited jet centerline static
temperature decay for heated jets.

In order to illustrate this procedure, an

envelope curve of the cold-flow excited jet veloc-
ity decay data was constructed. This curve was
based on the measured data shown by the velocity
decay curves in Fig. 13(a). The data used for
these curves include Mj values from 0.08 to 0.9.

The resultant composite velocity decay curve is
shown in Fig. 13(b). From the relationship given
in Fig. 13(b), and Eq. (3), the centerline static
temperature decay curves for the excited jet plume,

can be determined. This static temperature decay
curve together with the composite velocity decay

curve from Fig. 13(b) represent the effect of
excitation and are shown in Fig. 14. The static
temperature and velocity decay curves for the un-

excited jet (represented by Eqs. (1) and (2),

respectively) are also shown in this figure. As
in the case of the velocity decay, the rate of

static temperature decay with axial distance is
significantly enhanced by the assumed effect of
excitation.

The preceding example illustrates the signifi-

cant changes in jet plume characteristics that
appear to be achievable with acoustic excitation.

While the example is concerned with a convergent
circular nozzle, similar benefits can be expected

with nonsymmetric nozzle plumes.

In terms of a practical application, as for
example a STOL aircraft, jet excitation could

reduce significantly the aerodynamic forces on the
flap system. In addition, the flap skin and struc-

tural temperatures would be greatly reduced by the
use of jet excitation. The reduction in both aero-
dynamic forces and metal temperatures would result
in a lower structural weight for the .flap as well

as reducing vibrational fatigue that can cause
cracking of flap skin.

Jet Spr_ading Rate

Unexcited Jet Flow

The variation of the jet spread at a constant

value of U/Uj - 0.5 is shown in Fig. 15 as a func-
tion of axial distance ratio, X/D, for both the
velocity and temperature . In general, the spread
rate for both velocity and temperature increases
with X/D. The temperature spreading rate for
these data is about 12-percent greater than the
velocity spreading rate.

Enhanced MixinS Jet Flow

The variation of jet velocity and temperature

spread at a constant value of U/Uj - 0.5 using a
,rotating disk device ? for enhanced mixing of the
flow is shown in Fig. 16 as a function of axial
distance ratio, X/D. Also shown in the figure are

the conventional unexcited jet flow curves from
Fig. 15. It is apparent that with enhanced jet
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mixing, the velocity and temperature spreading

parameters, r0 5v /R and r0.5t/R, respectively,
have larger values than those with conventional
flow at the same X/0 locations. The enhanced
flow r 5v /R curve is higher by an average of
about 3S:-percent than the conventional flow curve
over the range of X/D values shown. Similarly,
the enhanced flow r0.5t/R curve is higher by an
average of about 40-percent than the conventional
flow curve.

Excited Jet Flow

In Ref. 3, limited data for cold-flow acousti-

cally excited jets are shown in terms of the jet
half-width velocity spreading parameter, b/R.

These data are shown in Fig. 17. In general, the
spreading of the velocity field in a radial direc-
tion diverges similarly to that shown in Fig. 16
for the enhanced jet mixing rotating disk device.

On the basis of overall similarity of the flow

r*locity spreading characteristics it is reason-
aole to assume that the static temperature spread-

ing characteristics of a heated excited jet plume
wtu l d behave in a like manner to that of the
rot.i. ing disk enhanced jet mixing plume shown in
Fig. 16

Radial Velocity/Temperature Profiles

Unexcited Jet Flow

In the literature, radial velocity profiles

of the jet plume are generally divided into regions
as those in the shear layer surrounding the core

flow and those downstream of the core.

In the core region, the radial velocity ratio,

U/Uc, is generally shown to vary with an nv param-
eter defined as (r - r0.5v/X) (Refs. 21 and 22);
however, at the end of the core and downstream U/Uc

is represented simply as a function of r/ro.P*

A typical variation of U/Uc as a function of n

for data taken from Refs. 1 and 22, is shown in
Fig. 18. It is apparent that the data are well
represented by this relationship for both cold and
heated flows. Furthermore, although this parame-

tric representation was developed only for cope
flow, the data shown also includes some radial

velocity measurements downstream of the core region
(X/D - 8) which are correlated equally well.

The radial temperature profiles of a jet

plume are simiarly treated in the literature;
i.e . , (t - to)/(tc - to) as a function f
gtt - (r - r0.5t)/x for the core regiong2 and
( t -• to )/(t C - to ) as a function of r/r0.5t down-
stream of the core.

Excited Jet Flow

Radial velocity profiles for excited jet

plumes are currently not available. However, in
general, acoustic excitation tends to increase the
jet mixing; i.e., shortens the core and increases
the jet velocity and temperature spread as dis-
cussed previously. This is analogous to the
effects of mechanical mixing devices on the plume

velocity/temperature characteristics. It is not
inappropriate then to assume that the radial

velocity and temperature characteristics of a jet
plume subjected to the actions of a rotating disk)
are analogous of the effects of acoustic excitation
on the plume characteristics.

Based on this assumption, the data of Ref.

can serve to illustrate the possible effect of

enhanced plume mixing associated with acoustic
excitation.

In Fig. 19, the radial velocity profiles ob-

tained with a rotating disk device ) are shown for
X/D - 4 to 12. Also shown is a correlation curve
for conventional jet plumes from Ref. 23 given by

1.5 2.0U . [I _	

r
(T.-Mr-0-.5v)

It is evident that the enhanced jet mixing flow
profile data are represented by the same correla-
tion curve as the conventional flow radial velocity
profiles. Similarly, the radial temperature pro-

files in terms of (t - to)/(tc - t ) as a function
of r/r0.5t are shown in Fig. 20 ?q)r both conven-

tional and enhanced jet mixing flow . Also shown
in the figure is a curve given by:

].5 2.0
t - t

t =FO 
	((5)

c	 St

The preceding equation is similar to that for the

radial velocity profile (Eq. (4)) differing only
in that r0.5t is used in place of r0.5v• It is
apparent from Fig. 20 that, as in the case of the

radial velocity profiles, there are no significant
differences between the conventional and enhanced
mixed flow radial temperature profiles in terms of

the ^,arameters -hown in the figure. Also Eq. (5)
appears to be a good representation of the data.

On the basis of the preceding radial velocity and
temperature profile characteristics (Figs. 19 and
20), it appears reasonable to assume that excited
jet flows follow similar trends and can be re-

presented by Eqs. (4) and (5); however, experi-
mental verification for this assumption is ne_Jed.

Flight Effects

The flight effect on a conventional jet plume

is to extend the core length and decrease the local
rate of plume spreading. This causes a reduction
in the centerline velocity decay, which is asso-
ciated with a similar trend in the static tempera-
ture decay.

The effect of flight on an excited jet plume
is similar to that observed with an unexcited jet.

In Ref. 3, the effect of flight speed on an acous-
tically excited model-scale jet for limited condi-
tions is documented. The data of Ref. 3 are
grossly correlated in terms of a simple acoustic
level parameter and a flight speed parameter in
Ref. 24.

Concluding Remarks

Significantly more fundamental and applied

research needs to be conducted to understand local
velocity decay characteristics associated with

acoustically excited jets. This research must
include:

)



now-

Fundamental Research

a. Studies of the large-scale turbulence

structures in shear layers.
b. Mechanisms associated with the acoustic

control of shear layers.
c. Effects of shear layer modification on

turbulence levels.
d. Shock interaction effects with conven-

tional and excited shear layers.
e. Flight effects on the conventional and

exc i ted large-scale structures in shear
1 ay .-srs ,

f. (urelopment of computational fluid mech-
anics codes for excited flows.

Applied Research

a. Plume radial and axial velocity and tem-

perature measurements for both subsonic
and supersonic heated jets for various
shaped nozzles.

b. Establish the effect of scaling on the

excited plume characteristics.
c. Evaluate the importance of ,hock/shear

layer interaction in excited heated jet
plumes.

d. Determine the effect of altitude on
excited heated jet plumes.

e. Performance/benefit trade-off studies.

Conclusions

The following conclusions may be drawn from

the present study on the jet plume characteristics

with and without flow excitation.

1. Improved methods for correlating the jet

centerline velocity and static temperature decay
for convergent circular nozzles were devclnped.

2. On the basis of the preceding improved
methods, a technique has been established from

which the static temperature decay can be esti-
mated for various nozzle shapes, from col;-flow
jet velocity decay data for predictions. The
technique is believed to be applicable to acous-
tically excited jets.

3. The effect of excitation on jet centerline
velocity decay is essentially independent of the
excitation method. Furthermore, as shown in the
literature, the rate of jet centerline velocity
decay is increased with an increase in the acous-
tic excitation level.

4. Similarity of the jet radial flow field is
maintained for conventional (unexcited) and en-
hanced mixed plumes downstream of the jet core.

Symbols

h	 half width of local jet

D	 diameter of nozzle

h	 step height (Whistler nozzle)

Lp	 Whistler nozzle pipe length

M	 Mach number
r	 jet plume radius
R	 nozzle radius

Ste	 Strouhal excitation number
t	 static temperature

U	 jet velocity
X	 jet axial centerline distance

radial profile parameter, n * - r - 
x0.5.

X

Subscripts:

0.5 jet plume at	 U - 0.5Uc

c local	 centerline
j jet exit

o ambient
t temperature

v velocity

Appendix - Excited Jet Centerline
Static Temperature a _y

Over a period of several years, the Lewis

Research Center has been supporting contractual

resea rch with the Lockheed-Georgia Corporation on
the effect of acoustic excitation on jet noise and

on the jet plume velocity and temperature decay.
Recent jet centerline static temperature decay
data with and without acoustic excitation obtained
under NASA contract NAS3-23708 are shown in

Fig. A-1 as a function of velocity decay. Also
shown is a curve based on Eq. (3), herein, that

relates the velocity and stat i c temperature decay.
It is apparent that the ui,exc ted and excited
decay data follow similar relationships and are
represented quite well 5y Eq. (3).

From these limited results and those shown in

Fig. 12 in the text, Eq. (3) appears to correlate
the jet centerline velocity and static temperature
decay for both mechanically turbulated jet plisme

and one in which mixing is enhanced by acoustic.
means.
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Figure 1. - Schematic sketch of acoustic excitation
effects on jet velocity decay.
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(b) Composite velocity curve of measured data
shown in figure 13(a).

Figure 13. - Cold-flow jet centerline velocity decay
measured with various excitation methods.
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Figure 14 - Calculated jet center-
line velocity and static tempera-
ture decay with and without flow
excitation.	 Convergent circular
nozzle.
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Figure 15. - Variation of jet spread at which UIUc
and t - t01tc t equal 0.5 without excitation as
a function of A. Reference 7 data.
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(b) Enhanced mixing flow.

Figure 20. - Radial static temperature profiles.
Convergent circular nozzle.
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