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Substantial benefits of a full-authority digital electronic engine control on an
air-breathing engine have been demonstrated repeatedly in simulation studies, ground
engine teats, and engine altitude test facilities. A digital electronic engine con-
trol system has shown improvements in efficiency, performance, and operation. An
additional benefit of full-authority digital controls is the capability of detecting
and correcting failures and providing engine health diagnostics.

INTRODUCTION

A digital electronic engine control (DEEC) system was designed and developed for
the F100-PW-100 turbofan engine and has been flight-tested on an F-15 airplane at the
NASA Ames/Dryden Flight Research Facility (refs. 1 and 2). The objective of the
flight test was to evaluate the DEEC hardware and software over the F-15 flight
envelope, and to compare system performance with predicted ground and altitude per-
formance. A digital simulation (ref. 3) was used to predict engine and DEEC perform-
ance. In this report the flight results are compared with the digital simulation for
several altitudes and for power settings of maximum, intermediate, and idle. Data
comparisons presented consist of engine pressure ratio (EPR), fan rotor speed (N1),
compressor rotor speed (N2), fan turbine inlet temperature (FTIT) jet nozzle area
(AJ), and total fuel flow (WFT).

NOMENCLATURE

AJ	 jet primary nozzle area, m2 (ft2 ) 5

CENC	 convergent exhaust nozzle control

CIW	 compressor inlet variable vane, deg

DEEC	 digital electronic engine control

EPR	 engine pressure ratio, PT6M/PT2

FA-AB	 afterburner fuel/air ratio

FTIT	 fan turbine inlet temperature, °C (°F)

N3	 fan rotor speed, rpm

N2	 core rotor speed, rpm

PAB	 augmentor static pressure, kg/m2 (1b/in2)

PB	 burner pressure, kg/m2 (lb/in2)

PCM	 pulse code modulation



PLA	 power lever angle, deg

PS2	 fan inlet static pressure, kg/m2 (lb/in2)

PTO	 free stream total pressure, kg/m 2 (lb/in2)

PT2	 fan inlet total pressure, kg/m 2 (lb/in2)

PT6M	 turbine discharge total pressure (mixed core and fan stream),

kg/m2 (lb/in2)

PT25	 fan discharge pressure, kg/m2 (lb/in2)

RCW	 rear compressor variable vane, deg

SEC	 secondary engine control

TT2	 fan inlet total temperature, "C (°F)

WF	 fuel flow, kg/hr (lb/hr)

WFGG	 gas generator fuel flow, kg/hr (lb/hr)

WFT	 total fuel flow (gas generator plus augmentor), kg/hr (lb/hr)

TEST HARDWARE

The F-15 Airplane

The F-15 airplane is a high-performance fighter with supersonic capabilities to
Mach 2.5. The twin-engine airplane has a high-mounted sweptback wing, twin vertical
stabilizers, and a horizontal stabilator (fig. 1). The airplane inlets have a two-
dimensional horizontal ramp design mounted at wing level, and use external compres-
sion with three ramps. A variable capture area is created by rotating the inlet
about a transverse hinge point at the lower cowl lip. The ramps and bypass door are
automatically scheduled by the air inlet controller.

The F100-PW-100 Engine

The F100-PW-100 engine (fig. 2) is a low bypass twin-spool afterburning tur-
bofan. The three-stage fan is driven by a two-stage low-pressure turbine, and the
ten-stage, high-pressure compressor is driven by a two-stage, high-pressure turbine.
The engine incorporates variable fan inlet guide vanes and rear-compressor variable
vanes to achieve high performance over a wide range of power settings. Continuous
variable thrust augmentation is provided by a mixed-flow afterburner, which is
exhausted through a variable area convergent-divergent nozzle.

The F100 engine used in the F-15 airplane (serial number P680063) was used for
the DEEC system evaluation. It had been rebuilt from an earler F100(2) engine to a

2

4



^	

4	
i

if

zero-time F100(3) configuration before the DEEC flights. This engine had accumulated
9.8 hr of sea-level testing and 45.4 hr of tasting at an altitude facility. The P100
simulation engine (serial number FX-227) operated at sea-level and altitude con-
ditions. This engine had accumulated a large number of hours and thus had slightly
degraded performance relative to a new engine.

Control System

The DEEC is a full-authority digital electronic control system which replaces
the bill-of-material F100 supervisory-engine electronic control and hydromechanical
unified fuel control. The DEEC system, shown in figures 3 and 4, receives inputs
from:

1. The airframe, through throttle position (PLA) and Mach number.

2. The engine, through pressure sensors (PS2, PB, and PM), temperature sen-
sors (FTIT, and TT2), and speed sensors (N1 and N2).

3. The control system, through feedback resolvers indicating variable vane
position (RCW and CIVV) metering valve positions for gas-generator fuel
flow (WFGG) and augmentor fuel flow, and the jet primary nozzle area (AJ).

this information is used by the DEEC to:

1. Schedule the variable vanes and position the start bleeds by sending electri-
cal signals to the servoactuators in the open-loop systems.

2. Control gas-generator and augmentor fuel flows by sending electrical signals
to torque motors, which position fuel-metering valves in the closed-loop system.

3. Control the exhaust nozzle area in closed-loop systems.

The basic DEEC control logic is shown in figure 5. The WFGG logic is shown
above the engine diagram and the EPR control-loop logic is shown below the engine
diagram. The WFGG logic is used to maintain the desired N1, whereas the EPR control-
loop logic compares the requested EPR with the measured EPR, based on fan inlet static
pressure (PS2) and turbine discharge total pressure (PT6M). Proportional and integral
controls are used to ensure that the limits of N1, N2, turbine inlet temperature
(FTIT), and burner pressure (PB) are maintained, and that the nozzle is modulated to
achieve the requested EPR. The EPR control mode is only active for intermediate
power and augmentation, whereas the N1 control is active for part power and augmen-
tation and the nozzle area is fixed for part power.

The secondary engine control ( SEC) in the DEEC sysV3m is a hydromechanical fuel
control h-used within the same hardware as the DEEC gas-generator control valves. A
hydraulically operated transfer valve may be positioned such that the SEC components
will: ( 1) control WFGG; ( 2) position start bleeds; and (3) schedule core compressor
variable vanes ( RCW). The SEC receives PS2 and TT2 data from the engine, power-
lever angle (PLA) data from the airframe, and engine feedback data from an RCW
cable.

Additional DEEC information may be found in references 1 and 2.
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The computer simulation program (ref. 3) is a steady-state status deck that pre-
dicts engine- and control-system performance and is representative of a nominal F100-
PW-100 turbofan engine incorporating a DEEC system. The simulation was modified to
incorporate an inlet total-pressure recovery representative of an F-15 airplane
(fig. 6). The engine and control system were mathematically defined by aerodynamic
and thermodynamic equations in terms of individual component characteristics. Inputs
to the simulation were Mach number, ambient pressure and temperature, PLA, and PT2
recovery ratio. The outputs included pressures and temperatures throughout the
engine, air and fuel flows, DEEC parameters, and performance data.

An F100 engine (serial number FX-227) was used for the mathematical model in the
simulation. This engine had accumulated many more hours at sea-level and altitude
conditions than the engine used in the F-15 airplane; therefore, the simulation
results reflected a slightly degraded performance relative to the F -15 engine.

DATA ACQUISITION AND RECORDING

The instrumentation installed on the DEEC test engine is shown in figure 7.
Pressures, temperatures, rotor speeds, fuel flows, and positions are measured at the
locations shown. In addition, a 50-word serial digital data stream from the DEEC
computer is available. Other parameters were also measured, such as angle of attack
and sideslip, and total and static pressure taken from the noseboom.

Data were entered on a pulse-code modulation (PCM) system. The DEEC data were
recorded at 8 samples/sec. High-frequency response parameters such as PB, augmentor
static pressure (PAB), fan discharge pressures (PT25), and augmentor-zone fuel
pressures were recorded at 200 samples/sec whereas the other engine and aircraft
parameters were recorded at 20 samples/sec. The various parameters were filtered
prior to digitation by the PCM system to prevent aliasing errors. The data were
recorded on a tape recorder installed in the F-15 airplane and telemetered to the
ground for recording and real-time analysis and display. The air data parameter.
were converted into true Mach number ar4 altitude by using the position-error correc-
tions for the nose boom. Corrected rotor speeds and EPR were also calculated.

RESULTS AND DISCUSSION

Comparisons between flight and simulation data were made for EPR, N1, N2, FTIT,

AJ, and WFT. In most cases, results are shown for level accelerations and decelera
tions (fig. 8) and for climbs at maximum afterburning, intermediate, and idle power
at altitudes of 12,200 m, 9150 m, and 6100 m (40,000 ft, 30,000 ft, and 20,000 ft,
respectively). During these maneuvers, conditions were changing slowly enough to
allow the engine to operate in an essentially steady-state condition.

Engine Pressure Ratios

Engine pressure ratios were compared and the results are given in figure 9. Idle-
power data (fig. 9(c)) show very good agreement between flight data and simulation at
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all three altitudes. At intermediate power (fig. 9(b)), all of the flight data show
lower EPRs than the simulation data. Finally, for maximum afterburning power

(fig. 9(a)), excellent agreement is shown at 40,000 ft, but the flight data show

lower EPR results than the simulation data at 30,000 ft. Since the DEEC provides
closed-loop control of EPR at intermediate and maximum power, good agreement would be
expected. However, the EPR schedules flown in the DEEC test engine P063 were
slightly lower than the schedules for engine FX-227, used to generate the simulation.

There was a max.lmum difference of 0.2 in EPR1 this a reasonable difference, consider-
ing the schedule differences.

Fan Rotor Speed

Figure 10 shows the comparison between the flight and simulation data for N1.
Like the EPR, the DEEC provides closed-loop control of NI and good agreement would be
expected. For maximum power, (fig. 10(a)) agreement is excellent at 12,200 m
(40,000 ft) and good at the other two altitudes, with a maximum difference of

1.3 percent. At intermediate and idle power (figs. 10(a) and 10(b), respectively)
results are again very good, with a maximum difference of less than one percent.

Compressor Rotor Speed

Comparison of simulation and flight results for N2 are shown in figure '11.
Maximum- and intermediate-power data (figs. 11(a) and 11(b), respectively) show that
the flight data are two to three percent lower over the Mach number range for all
three altitudes. The explanation for this discrepancy lies in the method of DEEC

control, in which WFGG is varied to give the desired N1. For a low-time engine such
as P063, the desired N1 can be achieved at a lower N2 than for an older, degraded
engine such as FX-227. At idle power (fig. 11(c)) these degradation effects are not
so significant, and good agreement is shown.

Fan Turbine Inlet Temperature

Comparisons of flight and simulation data for FTIT are shown in figure 12.

Maximum-power data show very good agreement (fig. 12(a)). Above Mach 1.2, the DEEC
operates the engine on the FTIT limit, which was 950" C (1742 0 F) for P063 and 940° C
(1724 0 F) for FX-227. Intermediate-power data also show good agreement (fig. 12(b)).

At idle power (fig. 12(c)), the flight data are approximately 30 0 to 40° C, (54 0 to
72 0 F) above the simulation results.

Nozzle Area

Comparison of flight and simulation results for AJ are presented in figure 13.

Data for maximum power (fig. 13(a)) show excellent agreement at all three altitudes.
For these conditions, the nozzle is relatively wide open and modulates to control
EPR. Similar data are shown for intermediate power (fig. 13(b)) and again very good
agreement is shown, with some differences apparent at Mach numbers above 1.6. Idle-
power data (fig. 13(c)) show a small but consistent difference between simulation and

flight data.
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Total Fuel Flow

The WFT for a maximum nower level acceleration at 12,200 m (40,000 ft) is com-
pared with simulation data in figure 14. Excellent agreement is shown at Mach num-
bers up to 1.51 at higher Mach numbers the flight data is slightly lower.

CONCLUDING REMARKS

A comparison of measured flight data with results of a digital simulation was
made for a digitally controlled F100 engine in an F-15 airplane. In general, good to
excellent agreement was found between the flight and simulation data. A significant

difference between flight and simulation results for N2 was due to the difference
between the almost new flight engine and the degraded engine represented in the simu-

lation. Other minor differences were due to slightly different control schedules
between the simulation and the test engine. Overall, the simulation was found to be a

very useful tool in predicting the flight performance of the test engine.

Ames Research Center
Dryden Flight Research Facility
National Aeronautics and Space Administration

Edwards, California, June 1, 1983
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Figure 1. The F-15 airplane.

DFRC 81-174b

Figure 2. The DEEC test engine.
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Figure 14. Comparison of flight and simulation of
WFT for maximum afterburning power at 12,200 m
(40,000 ft).
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