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ABSTRACT

Particulate damage and erosion of ductile metals
are today plaguing design and field engineers in
diverse fields of engineering and technology. It has
been found that too many models and theories have been
proposed leading to much speculation from debris
analysis and failure mechanism postulations. Most
theories of solid particle erosion are based on mate-
rial removal models which do not fully represent the
actual pnysical processes of material removal. The
various mechanisms proposed thus far have been: melt-
ing, low-cycle fatigue, extrusion, delamination, shear
localization, adhesive material transfer, etc. This
paper presents the experimental data on different
materials highlighting the observed failure modes of
the deformation and cutting wear processes using opti-
cal and scanning electron microscopy. This paper also
addresses the most important mechanisms proved from
the experimental observations of the specimens exposed
to both spherical and ar.3ular particles, and discusses
the validity of the earlier theories. Both the initial
stages of damage and advanced stages of erosion were
studied to gain a fundamental understanding of the
process.

INTRODUCTION

The solid particulate erosion of ductile metals
has been attributed to different mechanisms such as
hardening and embrittlement [1], extrusion [2], melting

[

3], low cycle fatigue [4], adhesive material transfer
5^ and shear localization [6]. In addition, fracture

of the particles with radial outflow of fragments [7],

delamination of subsurface [8] and ductile fracture [9]

have also been postulated. Several possible mechanisms

of the material debris removal have been explained by

different investigators [10 to 13] using angular and

spherical erodent particles for normal and colique

impingement conditions. Finnie et al., [9] recently

stated that they favor an extrusion process ending in

ductile fracture, but not completely excluding "low

1Cleveland State University, Cleveland, Ohio 44115.

cycle fatigue" or "delamination wear" as potential

mechanisms. Although there exists a substantial amount

of recent literature ) support various mechanisms, it

is rather difficult to interpret a universal mechanism

using both spherical and angular particles at different

angles of impingement. This may be due partly to the
fact that the spherical particle impingement induces

"deformation wear" resulting in "flake-type" debris

and the angular particle impingement induces "cutting
wear" resulting in "angular, cut-faceted" surfaces.

This study reports some recent observations with
regard to material removal mechanisms using both angu-

lar and spherical particles at normal incidence.

EXPERIMENTAL APPARATUS AND PROCEDURE

Materials

Tecimens of 6061-T6 aluminum alloy, copper, 1045

steel, A108 steel, and 4340 steel were used in this

investigation. The specimens were 6 mm thick, 25 mm

wide, and 37.5 mm long. Before exposure to glass bead

and crushed glass impingement, all specimens were

polished with 600-grit emery paper, then with 3 um

diamond paste, cleaned with distilled water, and air
dried.

Experimental Apparatus and Procedure

A sandb asting facility was used to continuously

impact test specimens at normal incidence. Spherical

glass beads of 20 um average diameter and crushed glass

of 30 um average size were used. In the sandblasting

facility the distance between the specimen and nozzle
(1.18 mm diam) was 13 mm. Argon was used as the
driving gas.

The damaged and eroded surfaces were observed

with optical and scanning electron microscopes, and

chemical analyses were obtained by means of energy

dispersive x-ray spectroscopy (EDS).

RESULTS AND DISCUSSION

Damage Durin g Initial Stages
Figure 1 presents photographs of etched 6061-T6

aluminum alloy, OFHC copper and 1045 steel surfaces

exposed for 2 sec to 52 m/s velocity crushed glass
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jet. Photographs in Fig. 1 show the transition from

inception to complete damage of the grain structure.

The particles embedded on the surface indicate pre-

ferential grain boundary attack which was not observed

earlier [14]. The embedment of particles are maximum
at the grain boundary. Ductile tearing appears but

grain boundary opening up was not observed [14] during

crushed glass impingement as iMicated in Fig. 2, even

at an advanced stage of erosion. Strain and strain

hardened layers were observed in this study. The ex-

planation for the strain hardened layer formation by

Salik et al [5] for single and multiple particle impact
and the "extrusion type" model proposed by Hutrhings

and Cousens [13] have some bearing on the observation.

The repeated impacts induce strain hardening of the

material surface before fatigue-type failure takes
place.

Although extensive slip band formation was noticed
for copper specimens at higher magnifications (Fig.

1(b)), the glide band structures as reported by Ives

and Ruff [10] were not observed. Both fine lamellar
peariite (dark) and ferrite (white) areas on the 1045

steel surface (Fig. 1(c)) were attacked equally. In

some instances, however, ferrites appear to be attacked

more.

Figure 3 shows SEM micrographs of 4340 steel sur-

faces at the inception stages during glass bead and

crushed glass impingement. The grain boundary damage

and tilting are seen in both cases; the structure,

however, was completely damaged as indicated in Fig.

3(b) during crushed glass impingement. The debris

found on both surfaces was photographed to observe the

form (size and shape) and type of particle removal pro-

cess. The initial debris appears to be as dust (for

glass bead impingement) and cut, faceted and angular

particles (for crushed glass impingement). Different

sizes and shapes of particles have been reported in

the literature during solid particle impingement [15].

Brown and Edington [16] observed that copper at the

surface was lost by (1) melting, (2) dusting, and (3)

sheet formation processes. The surface melting is,

however, not observed on aluminum alloy, copper and

steel. Further, studies with Pb and In indicated that

both flow of material and melting are possible with

both forms of glass [17]. This supports the earlier

postulation that melting of surfaces takes place [3,

16 and 18]. There appears to be a threshold energy

(size of particle or velocity of impac	 necessary to

cause melting during solid particle erosion.

Further, it may be stated that in order to observe

melting it appears necessary to (1) increase the impact

velocity, (2) increase the particle size, (3) keep the

angle of impact at maximum erosion conditions, or (4)

adopt a low melting point metal.

It is generally believed that high repetitive im-

pact forces between a surface and an abrasive particle

lead to plastic deformation and fracture. When ero-

dent particles strike a surface at an oblique or normal

angle under a sufficient contact stress (or force) they
"plow" or "cut" the surface depending on the shape of

particles. Figure 4 shows individual craters on alumi-

num alloy surfaces during the very early -.tages of

glass bead impingement. There is sufficient evidence

to support, plastic deformation, repeated impact, final

"fatigue-type" and "extrustion-type" failures. How-
ever, if the phenomenon is observed with respect to

time or the intensity of erosion, different mechanisms

(melting, fatigue, extrusion, shear localization, adhe-

sive material transfer 2 , delamination, and so on) may

be seen as individual processes dominating erosion.

Despite the fact that individual flakes are being re-

moved by repeated impact and final "fatigue-type"

failure, the typical striations during conventional

fatigue failure are, however, not observed.

Erosion During Advanced Stages

Figure 5 presents cross-sectional views of an

aluminum alloy, copper and 1045 steel specimen surfaces
after 10 min exposure to 100 m/s velocity glass bead

jet impingement. The advanced stages of erosion have

been specifically chosen in order to understand some

specifics of erosion mechanism at the subsurface which

is not seen at the inception stages of damage. In

Fie. 5(a), (aluminum alloy), origin of subsurface

damage is observed and cracking extends approximately

up to 120 um deep. Cracking appears not to occur in

any preferential direction in a majority of cases.

This mechanism may be anticipated due to the maximum

shear stress occurring at subsurface during impinge-

ment. The initiated crack beneath the surface radiates

to the surface or joins with the adjacent cracks to

remove material. In light of high-stress incident on

the surface, this type of subsurface cracking and sur-

face fatigue damage are anticipated. In this partic-
ular case, the "delamination theory" proposed by Suh

[8] and "shear localization theory" proposed by

Shewmon [6] appear to be significant. It is rather

strange that Figs. 5(b) (copper) and 5(c) (1045 steel)

do not show any subsurface damage. One may anticipate

at this juncture that copper and 1045 steel may still

require higher particle sizes and velocities in order

to cause observed subsurface damage. Further, photo-

graphic observations indicate that surface cracks ini-

tiate at grain boundaries for copper which is not a
general damage feature.

Debris Analysis

Figure 6 presents debris collected after glass

bead impingement on A108 steel surface observed in
ferrographic analysis. The shapes vary from dust,

"needle type," flakes to spherical particles. The size

generally varies from 0.1 to 5 um. Ruff [15] reported

a size range from 1 to 5 um for 1015 steel during Al203
angular particle impingement. Brown and Edington [16]

mentioned 0.1 to 1 um for irregular globular particles

and 0.1 to 5 um (and about 0.02 um thick) for thin

sheets (not platelets) during spherical SiC particle

impingement on polycrystalline aluminum specimens.

Spherical debris formation was also reported by Andrews

and Field [19] during steel sphere impact on the sur-

face of copper specimens. Dust observed on the surface

of 4340 steel (Fig. 3(a)) also support the present

observation. Flakes [12] and angular particles [14]

have been reported by the present investigators earlier
using 6061-T6 aluminum alloy.

The formation of different shapes of particles may

be attributed to the following different mechanisms:

Dust - (1) fracture of top layers during repeated im-

2 It was observed during the erosion process that

at near lancing angles to maximum erosion conditions

(<25 deg the erodents changed color from white to dark

brown and then to black indicating adhesive material

transfer and chemical activity similar to that observed

on the material surfaces earlier [12].
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pact, (2) adhesive material transfer during rebound
phase of particles, and (3) extrusion (splashing as
well as possible melting) of the metal. Spherical
particles - (1) splashing and possible loci melting,
an	 extrusion of the metal during cutting and re-
moval processes. Flake type articles - (1) repeated
impact and final " at gue-type' failure, and (2) "shear
localization" and "delamination."

The different sizes and shapes of particles are
believed to provide clues to assess the mechanisms in-
volved during the erosion process and also to furnish
guidance for the theoretical modeling efforts. Hence,
it is necessary to collect the debris in a systematic
way in order to further understand the mechanism
inherent in different stages of erosion. It is also
necessary, from a fundamental erosion point of view,
to fully understand the observed good correlations of
surface energy strain energy and atomic volume with
erosion rates t17].

CONCLUSION

In conclusion, ductile metal erosion appears to
be dominated with "extrusion," "fatigue-type failure,"
"delamination," and "shear localization." Melting,
adhesive material transfer and cutting also play
important roles depending upon individual parameters of
particles such as the velocity of impact and the size,
shape and concentration of the erodent. At present it
appears that all mechanisms may not be observed at a
given individual experimetal condition. It is now
clear that two or three different mechanisms can fully
explain the erosion process at any experimental stage
with angular and spherical particles. The inter-
relation between different mechanisms is essential
for future assessment. It is further necessary, from
a fundamental erosion point of view, to fully under-
stand the observed good correlation of surface energy,
strain energy and atomic volume with erosion rates.
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(a) 6061-T6 aluminum alloy, (etchant, 2% HF + H20),
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Ibl OFHC copper (etchant, K 2 Cr 2 07 +H 2 SO4 +HCl + H20).

Figure 1. - Photographs depicting grain damage after crushed glass i mpin-
gement. Average particle velocity, 52 m/s; Crushed glass flow, 0.34 gls.
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Figure 2. - SEM micrographs of aluminum alloy surfaces during cutting
(cut, faceted appearance) wear p rocess depicting false grain boundary
opening up. Average particle velocity, 68 m/s; Crushed glass flow,
0.25 gls; Ex posure time, 10 min.
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Figure 3. - SEM micrographs of arain damage on 4340 steel surfaces dur-
ing glass bead and crushed glass impingement. Average particle velocity,
52 m/s; Exposure time, 2 sec; Etchant, 4% Nital.

J



11
I	 J

5um

0,41

OF POOR QUALITY

Wirt

Ok =t-

1	 10 Wm

(a) Individual impacts with lips of plastically displaced metal and dis-
torted as well as deformed surface layers.

tbl Extrusion of particles.

Figure 4. - SEM micrographs of individual dents on aluminum alloy sur-
face. Average particle velocity, 100 mis; Exposure ti me, 2 s; Glass
bead flow, 0.75 gls.
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(a) 6061-T6 aluminum alloy
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Figure 5. - Photograph; of cross sections of eroded specimens during
glass bead i mpingement. Average particle velocity, 100 m/s: Expo-
sure ti me, 10 min; Glass bead flow, 0.75 gls.
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Figure 6. - Different shapes and sizes of particles observed in ferro-
graphic analysis.
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