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TECHNICAL MEMORANDUM

SOLIDIFICATION RATE INFLUENCE ON ORIENTATION AND MECHANICAL
PROPERTIES OF MAR-M-246+HF

INTRODUCTION

The need for high temperature gas turbines has resulted in the development of superalloys for use
as turbine blades. Greater engine efficiency and power are possible by raising the turbine operating tem-
perature. However, improved life expectancy of the blades requires either cooling the blades or operation
at temperatures which affect the material properties. Conventional methods call for the extraction of
compressed air at different stages, resulting in a loss of power and efficiency. Superalloys, with their
increased mechanical properties, allow gas turbines to operate at higher temperatures without the losses
from extracting cooling air [ 1 ] . How these increased mechanical properties are achieved is the subject of
current investigation.

The control of d irectionally solidified (DS) and single crystal (SC) nickel base superalloys such as
MAR-M-246+Hf allows the determination of the influence of crystallographic orientation on mechanical
properties. DS alloys are highly anisotropic and failure is usually by fracture along grain boundaries.
Hafnium is added to strengthen the grain boundaries and stop cracking during solidification. SC alloys
do not need Hf since secondary grains are avoided by casting at lower solidification rates.

The purpose of this preliminary work was to gain a basic understanding of the anisotropy of DS
and SC MAR-M-246+Hf. The intent was to directionally solidify samples for three reasons: (1) to deter-
mine the preferred growth orientation, (2) to learn how grains grow out and what influences their
growth, and (3) to determine the effects of orientation on mechanical properties.

APPARATUS

MAR-M-246+Hf was directionally solidified (DS) in the platinum wound resistance furnace shown
in Figure 1. The furnace core (platinum wire wound on an alumina tube) was surrounded by insulation,
placed on a copper quench block, and encased in a can. Furnace temperatures were controlled by a
Pt-Rh thermocouple alongside the core.

The high purity alumina crucible had three major sections: (1) upper stage loading and drop pin,
(2) solidification zone, and (3) alumina crucible and stand. Samples of MAR-M-246+Hf were placed on
the drop pin and purged with argon at 2.5 psig. A constant argon purge was necessary to prevent oxida-
tion of the M kR-M-246+Hf due to contamination by the atmosphere, and to reduce the evaporation rate.
The argon flowed past the unmelted sample and out a vent in the alumina mount. Without a vent, gases
could be trapped during solidification and expand, thus cracking the crucible.

The temperature of the furnace was raised in steps to 1512°C to avoid cracking the crucible,
and the samples were dropped onto the alumina mount. In the solidification zone there was an average
temperature gradient of 75°C/cm along the sample length.

It



D'

CON1
THEE

H BLOCK

_ATION

LE STAND

DE ROD

INUM WOUND

M
	 mss..

ORIOWAI PAGE 15
OF POOR QUALITY

Figure 1. D irectional solidification furnace.

2

R.

M(

s,



NOW-	
gT IA

-	 t

The solidification zone temperature was allowed to reach equilibrium and solidification begun by
moving the furnace assembly along the crucible. DS MAR-M-246+Hf was slowly cooled in the furnace to
room temperature and removed from the alumina crucible. The samples had both ends polished, etched,
and photographed, with some samples mounted for transverse examination. Back reflection LAUE
photographs were taken at various orientations: (1) with the X-ray beam normal to the ends, (2) rotated,
and (3) with the beam parallel to the ends. For multigrain samples, selected grains were similarly
analyzed. The orientation of each grain was plotted on a stereographic projection and recorded. Speci-
mens were tested in a tensile test machine at room temperature. Load versus strain was recorded, giving
0.2 percent yield strength, ultimate strength, and modulus of elasticity.

RESULTS

Twenty-two (22) MAR-M-246+Hf samples were directionally solidified in lengths to 5 cm at
growth rates from 3.28 to 13.21 cm/hr. Each sample was polished and photographed to determine
grow, 1 patterns and dendrite arm spacings. Back reflection LAUE X-ray photographs were taken tc
determine growth orientations. The preferred orientation of single crystal DS samples was (001). The
range of deviation from (001) was 45 deg for all samples.

Figure 2 shows the primary dendrites formed in regular arrays. The primary dendrite arm
spacings were found to decrease with increasing solidification rates (Fig. 3, Table 1).

Results of mechanical properties tests are given in Table 1 and a representative sample after
testing is shown in Figure 4. Catastrophic failure occurred at 13 times the 0.2 percent yield strain for
polycrystals and 21 times the 0.2 percent strain for single crystals.

DISCUSSION

Table 1 gives representative data for three solidification rates. The primary arm spacing is shown
to increase as the growth rate decreases. Work is continuing to obtain an accurate profile of strength
change with growth rate for DS versus SC samples.

The anisotropy of DS MAR-M-246+Hf is demonstrated by the change in shape of samples after
tensile tests (Fig. 5). The samples distorted before fracture, resulting in an oval shape. Attempts to
obtain LAUE X-ray photographs of failed specimens were unsuccessful due to the extreme deformation.
SC tensile specimens did not distort as much as the DS samples, In Figure 4, a failed tensile specimen
is shown with one section to reveal the progression of slip lines (not L'uders lines) along the section.
Udders lines are caused by areas of stress concentration, and form bands due to constant stress [4] .
Slip lines are elliptical steps revealing deformation on parallel planes.

The usual stress-strain curve for a polycrystalline metal shows a region just after yielding begins
where strain hardening occurs. Further yielding requires more stress due to the interference to further
slip from grain boundaries and adjacent crystals [2]. This strengthening is found in most engineering
metals, however, the stress-strain curves obtained during tensile tests for SC and polycrystal MAR-M-
246+Hf showed no distinct strain hardening region. The lack of this strain hardening region on the
stress-strain curve demonstrates the constant stress concentration which causes formation of 11ders lines.

3
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Figure 3. Primary arm spacing trend.

TABLE 1. SAMPLE DATA

Growth Primary Elastic Yield Ultimate
Sample Rate Spacing Modulus Strength Strength

* (cm/hr) (cm @ 50X) (GPa) (MPa) (MPa)

DS 12.36 0.0237 167 743 863
SC 6.48 0.0272 294 853 920
SC 3,28 0.0291 205 703 786

*DS — Dir, ,:tionally Solidified
SC — Single Crystal.
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The least squared line fit for data points in Figure 3 is represented by:
	 OF POOR QUALITY

d = 0.02625 - 0.00072 (R)

d - 0.03350 - 0.00081 (R)

where d is the arm spacing and R is the solidification rate.

It has been shown that for DS superalloys, the relationship controlling dendrite arm spacings

follows the relation log d - -4.705 - 0 . 2393 log R, and also the general equation d « (R)-0.24 . Thin

also agrees with the relationship predicted by Hunt, d - AR-0.25 G-0.5 [5). A log-log plot (Fig. 6) of
the data from Figure 3 resulted in two equations:

log d - -4 .688 - 0 .2381 log R

log d - -4 . 592 - 0 . 1868 log R

These equations agree with those of previous work on dendrite s pacing in DS superalloys.
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Dendrite arm spacing is a good indication of how solidification affects structure and mechanical
properties. Crystal growth (i.e., dendrite arm spacing) is controlled by thermal gradients where new
crystals nucleate as a result of extracting latent heat without supercooling the melt [3].  T -se thermal
gradients are affec.ed by the following factors:

1) Mechanical stresses in the base material

2) Thermal stresses due to withdrawal and cooling rates

3) Non-homogeneous solute

4) Conta°nination by external substances

5) Inclusions found in metalb..

This work attempted to gain insight into how factors within the metal influenced crystal growth
and thus, mechanical properties. Mechanical and thennal stresses were controlled by consistent prepara-
tion and withdrawal of all samples. Contamination was reduced by use of high purity alumina crucibles.
Inclusions within the material and the alloy homogeneity were determined by the source material.

The major factors influencing mechanical properties in DS and SC MAR-M-246+Hf were found to
be the preferred orientation (001) and the solidification rates, with the greatest strength occurring at
slower rates. The slower rates allowed the dendrites to form in uniform patterns, and facilitated crystal
growth near the (00'.) with some samples forming single crystals.

It should be possible to obtain specific mechanical properties by control of the factors that
influence crystal growth. To obtain a complete picture of how each of the solidification factors affects
the mechanical properties of superalloys, further testing is required, including seeding to produce single
crystal samples.

9
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