Heat Transfer Distributions Around Nominal Ice Accretion Shapes Formed on a Cylinder in the NASA Lewis Icing Research Tunnel

G. J. Van Fossen, R. J. Simoneau, W. A. Olsen, Jr., and K. J. Shaw
Lewis Research Center
Cleveland, Ohio

Prepared for the
Twenty-second Aerospace Sciences Meeting
sponsored by the American Institute of Aeronautics and Astronautics
Reno, Nevada, January 9-12, 1984
HEAT TRANSFER DISTRIBUTIONS AROUND NOMINAL ICE ACCRETION SHAPES FORMED ON A CYLINDER IN THE NASA LEWIS ICING RESEARCH TUNNEL

G. J. Van Fossen, R. J. Simonneau, W. A. Olsen, and R. J. Shaw

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

Abstract

Local heat transfer coefficients were obtained on irregular cylindrical shapes which typify the accretion of ice on circular cylinders in cross flow. The ice shapes were grown on a 5.1 cm (2.0 in.) diameter cylinder in the NASA Lewis Icing Research Tunnel. The shapes were 2-, 5-, and 15-min accumulations of glaze ice and 15 min accumulation of rime ice. These icing shapes were averaged axially to obtain a nominal shape of constant cross section for the heat transfer tests. Heat transfer coefficients were also measured around the cylinder with no ice accretion. The models were run in a 15.2 x 60.6 cm (6 x 2') wind tunnel at several velocities. Background turbulence in the wind tunnel was less than 0.5 percent. The models were also run with a turbulence producing grid which gave about 3.5 percent turbulence. The effect of Reynolds number on local heat transfer distributions was also investigated.

A portion of the NASA Icing Research Program involves development of computer codes that predict the accretion of ice on surfaces. Experiments show that the ice shape changes drastically in shape and roughness for different conditions. 1, 2 Existing codes show that the predicted ice shapes are very sensitive to the assumed heat transfer coefficient distribution. 3 Unfortunately no data for heat transfer coefficients over smooth or rough ice shapes exists in the literature. In an effort to correct this deficiency, heat transfer coefficient distributions were measured on simulated ice accretion shapes. A range of ice shapes were obtained on a circular cylinder in the NASA Lewis Icing Research Tunnel (IRT). These shapes were axially averaged to obtain a representative ice shape with constant cross-section.

Test Specimens

Heat transfer coefficient distributions were measured around models of four ice accretion shapes. The ice shapes were grown on a 5.1 cm (2.0 in.) diameter circular cylinder in the NASA Lewis Icing Research Tunnel (IRT). The shapes were 2-, 5-, and 15-min accumulations of glaze ice and 15-min accumulation of rime ice. These icing shapes were averaged axially to obtain a nominal...
shape of constant cross section for the heat transfer tests. This was accomplished by allowing the ice to accrue for the required time on the 5.1 cm (2.0 in.) cylinder. Figure 1 shows both glaze and rime ice that accrued on a cylinder in the IRT under similar conditions. The ice was then cut perpendicular to the axis of the cylinder at the tunnel centerline and at locations 45.1 cm (1.8 in.) from the centerline. Tracings of these cross sections were then superimposed and an average curve was drawn through them. The four icing shape heat transfer models are shown in Fig. 2. The dimensionless coordinates, as defined on Fig. 3, for each ice shape are given in Table I.

Each model was 15.2 cm (6.0 in.) long. A 5.1 cm (2.0 in.) circular semi-cylinder was attached to the rear of each model shown in Fig. 2 during testing to assure geometric similarity with the ice shapes grown in the IRT. The icing shape heat transfer models were cast of a polyurethane foam. Axially averaged heat transfer models for each model shown in Table I were averaged to give the total or stagnation temperature. The temperatures of theQuad plate were adjusted to the same as that of the heat flux gages thus assuring geometric similarity with the icing shape models. Rear guard heaters were added at the ends of clear lacquer to keep the copper gages from freezing at the rear of each node shown in Fig. 2 during testing to assure geometric similarity with the icing shape models. A rear guard heater was mounted horizontally in the tunnel. Hot wire surveys indicated that the center 7.6 cm (3.0 in.) of the tunnel was free from turbulence generated by the sidewalls. The heat flux gages were 6.6 cm (2.6 in.) long and thus did not extend into the region of turbulence generated by the sidewalls. The heat flux gages were 6.6 cm (2.6 in.) long and thus did not extend into the region of turbulence generated by the sidewalls. The heat flux gages were 6.6 cm (2.6 in.) long and thus did not extend into the region of turbulence generated by the sidewalls.

The ice shapes formed in the IRT. The icing shape heat transfer tests were conducted in the wind tunnel shown schematically in Fig. 6. Room air first flowed through a turbulence damping screen with an 18 in. mesh of 0.024 in. (0.0095 in.) diameter wire. Large scale turbulence from the room was then broken up by flowing through approximately 12,000 plastic soda straws which were 0.64 cm (0.25 in.) in diameter by 19.69 cm (7.75 in.) long. The air then passed through a final damping screen identical to the first. A 48.5:1 contraction then accelerated the air entering the test section. The maximum velocity attainable in the test section was about 66 m/sec (150 ft/sec, 102 mph) and the clear tunnel turbulence level was less than 0.5 percent at all flow rates. For the high turbulence cases, a turbulence generating biplane grid of 0.318 cm (0.125 in.) rods spaced 6 rod diameters apart was installed 90 rod diameters upstream of the model leading edge. The test section was 15.2 cm (6.0 in.) wide by 68.6 cm (27.0 in.) high. The models were mounted horizontally in the tunnel. Hot wire surveys indicated that the center 7.6 cm (3.0 in.) of the tunnel was free from turbulence generated by the sidewalls. The heat flux gages were 6.6 cm (2.6 in.) long and thus did not extend into the region of turbulence generated by the sidewalls.

The air was raised to the testing temperature at the test section. The temperature of the air entering the wind tunnel was measured by four exposed ball Chromel-Alumel thermocouples around the perimeter of the inlet. The output of these four thermocouples was averaged to give the total or stagnation temperature.

Turbulence measurements were made with a DISA model 5500 constant temperature hot wire anemometer. Signals were linearized with a DISA model 55055 linearizer. The mean component of the turbulent velocity signal was read on a DISA model 55031 integrating digital voltmeter. The fluctuating component was read on a DISA model 55035 RMS voltmeter. Both these instruments have an adjustable time constant which was adjusted to the minimum value which would give a stable reading. The hot wire probe was a Thermosystems Inc. model 1227-11.5. This is a 4x10⁻⁶ meter tungsten single wire probe. The hot wire was calibrated before each use in a free jet of air at nearly the same temperature (±1°C) as the wind tunnel flow. The hotwire system frequency response was determined to be around 30 kHz by the standard square wave test. All hotwire measurements were made without the models in place and at the location of the cylinder centerLINE.

Turbulence scale was estimated using an autocorrelation of the hot wire signal. The autocorrelation was obtained on a Nicolet model 6604 dual channel spectrum analyzer. The area was found to be 0.0672 cm (0.0225 in.). The average height of the roughness elements above the surface was 0.033 cm (0.013 in.).
under the autocorrelation function gave an integral
time scale. This time scale was then multiplied
by the mean velocity to obtain a measure of the
integral length scale.

During each heat transfer test, power to each
heat flux gage was adjusted to keep the surface of
the model at constant temperature. This was done
manually at first and required about one hour to
attain equilibrium for each data point. An elec-
tronic circuit was designed to accomplish this
task and the time to set each data point fell to
about 5 min. A block diagram of the circuit is
shown in Fig. 7. The voltage from the thermocouple
was amplified and compared to an adjustable refer-
cence voltage which was the same for all heaters on
the model. The difference in these two voltages
was amplified and applied to the base of a power
transistor which then controlled the power to each
heater. Current was measured with the 0.05 ohm
shunt and voltage was measured across each heater
thus allowing the calculation of electric power
dissipated.

Data Reduction

Heat Transfer Coefficient

The heat transfer coefficient for each copper
strip was calculated from the voltage and current
applied to the heater and the temperature measured
by the thermocouple. It was desired to know the
heat transfer due only to convection; therefore,
the heat lost by radiation had to be subtracted
from the electric power input. This contribution
was estimated as

\[Q_{rad} = \varepsilon (t_w^4 - t_a^4) \]

(1)

The surface emissivity, \(\varepsilon \), was estimated as 0.95.
The radiation contribution for most cases was less
than 2 percent of the total heat flow.

The copper strips were separated by a small
gap which contained the polyurethane foam. Some
heat is conducted from the edge of the copper
strip, through the foam and collected from the
surface of the model. An estimate of this heat
loss was obtained from an exact solution for
the heat conduction in a rectangle with two ad-
jacent sides insulated, one other side held at
constant temperature (the temperature of the copper
strip) and the final side convecting to a fluid at
a known temperature. The solution is

\[Q_{gap} = 2h(T_w - T_a) \sum_{n=1}^{\infty} \frac{\tanh n \beta}{(n \beta)^2} \tanh n \beta \]

(2)

where the \(n \)'s are the roots of

\[a_n \tan (a_n \beta) = \frac{h}{k} \]

(3)

A drawing of this area is shown in Fig. 8. A de-
tailed finite difference model of the area between
the dashed lines in the figure showed that vir-
tually no heat was lost from the bottom side of
the copper strip. The finite difference solution
and the exact solution gave the same value for the
heat lost in the gap to within 2 percent. The
exact solution was used in the data reduction to
account for the heat loss thru the gap. The heat
lost thru the gap varied from 10 percent to as
much as 20 percent for large gaps.

The heat transfer coefficient was then cal-
culated as

\[h = \frac{E_l - Q_{rad} - Q_{gap}}{a(t_w - t_a)} \]

(4)

Note that to calculate \(Q_{gap} \), the heat transfer
coefficient, \(h \), must be known. Thus an iterative
solution was necessary. An initial guess was made
for \(h \) from Eq. (4) by assuming \(Q_{gap} \) was zero,
\(Q_{gap} \) was then calculated and Eq. (4) used to
recalculate \(h \). This procedure was repeated until

\[|h_{i+1} - h_i| < 0.001 \]

(5)

Test Section Density-Velocity Product

Test section density was not measured so an estimate was made using Bernoulli's equation
for incompressible flow. Test section density
was calculated as

\[\rho_s = \rho_l - \frac{1}{2} \rho v^2 \]

(6)

The total pressure, \(\rho_L \), was assumed to be the
local barometric pressure. The density-velocity product in the
test section was then correlated to the orifice
flow rate. This correlation was then used to cal-
culate the density-velocity product in all sub-
sequent tests.

Test Section Static Pressure

Test section static pressure was measured with a pilot-static
probe. The density was calculated assuming air to be an ideal gas. The density-velocity product in
the test section was then correlated to the orifice
flow rate. This correlation was then used to cal-
culate the density-velocity product in all sub-
sequent tests.

Test Section Static Temperature

Total temperature was measured at the inlet
to the turbulence control section. Test section
static temperature was calculated for a perfect
gas under adiabatic conditions as

\[T_s = \frac{1}{\gamma} \left(1 + \frac{2C}{\rho L^2} \right) \]

(7)

where

\[C = \frac{x-1}{2} \left(\frac{\rho_v}{\rho_l} \right)^2 \frac{R}{\gamma C} \]

(8)

The ratio of specific heats for air, \(\gamma \), was assumed
to be 1.4 and the gas constant, \(R \), was 286.91
\(\text{J/kg} \cdot ^\circ\text{C} \) (53.35 \(\text{ft} \cdot \text{lbf} / \text{lbm} \cdot ^\circ\text{R} \)).

Adiabatic Wall Temperature

The adiabatic wall temperature was calculated as

\[T_0 = T_s + r(T_t - T_s) \]

(9)
The recovery factor, \(r \), was assumed to be
\[
r = \sqrt{\frac{Tr}{Tr}}
\]
(10)

Heat Transfer Distributions

Circular Cylinder

Smooth Surface-Low Turbulence. Figure 9 shows the Nusselt number as a function of angle from the stagnation point for the four cases mentioned above. All the data on Fig. 9 was taken at a Reynolds number of 175,000.

Also plotted on the figure is an exact solution of the laminar boundary layer equations due to Frössling. The good agreement between the exact solution and the smooth cylinder, low turbulence data confirms the accuracy of the experimental method.

Smooth Surface-High Turbulence. Nusselt number distribution around the cylinder placed downstream of the bi-plane grid is also shown on Fig. 9. The grid produced turbulence of about 3.5 percent with a scale of 1 cm (0.4 in.). Three and one-half percent turbulence was selected because the IRT was originally thought to be a “dirty” tunnel with about this level of turbulence. Recent hot wire measurements by the authors have shown that in fact the turbulence levels are much closer to 0.5 percent. The effect of turbulence is to increase the heat transfer virtually uniformly around the circumference (measurements were only made up to 50° from stagnation) by about 30 percent.

Rough Surface-Low Turbulence. As seen on Fig. 9, the addition of sand roughness to the surface does not change the heat transfer rate near the stagnation point from the smooth surface case. As the angle from stagnation increases however, the heat transfer rate also increases. This is most likely due to boundary layer transition.

Rough Surface - High Turbulence. The final set of symbols on Fig. 9 is for the sand roughened surface with 3.5 percent free stream turbulence. The effect of free stream turbulence is seen to be greatest nearest the stagnation point where the heat transfer rate is again increased by about 30 percent over the low turbulence case. As the angle from stagnation becomes larger, the effect of free stream turbulence diminishes as the boundary layer becomes more turbulent.

Two Minute Glaze Ice

Figure 10 shows the Nusselt number distribution for a two minute accumulation of glaze ice. The data on this figure was taken at a Reynolds number of 136,000. Also shown on the figure is the exact solution due to Frössling.

Smooth Surface-Low Turbulence. For the smooth surface, low turbulence case, the heat transfer distribution is not changed much from the circular cylinder. There is no ice at the stagnation point but gage number 5 shows that the heat transfer in the stagnation region is only slightly below that for the cylinder. Gages 2, 3, and 4 show only slightly higher heat transfer than the circular cylinder. Gage number 1 is in a region of separated flow and has a somewhat higher heat transfer rate. This region is of relatively low importance because the water drop collection efficiency in this region is near zero and ice does not grow from this location.
Rough Surface-Low Turbulence. As with the circular cylinder, the addition of surface roughness drastically changes the heat transfer distribution. The heat transfer in the stagnation region remains nearly the same as for the smooth surface but boundary layer transition causes the heat transfer to nearly triple at gage number 2. The collection efficiency is high in this region and the large heat transfer promotes rapid ice growth.

Rough Surface-High Turbulence. The addition of free stream turbulence increases the heat transfer in the stagnation region. Heat transfer in the region of fastest ice growth is not significantly affected by turbulence however. Turbulence has no effect on heat transfer in the separated region (gage 1).

Five Minute Glaze Ice

The heat transfer distribution for five minutes accumulation of glaze ice is shown on Fig. 11. The exact solution is again shown for reference. Reynolds number for these data was 140,000.

Smooth Surface-Low Turbulence. For this case near the stagnation region (gage 8), the heat transfer is 23 percent lower than for the circular cylinder. As the angle from stagnation increases, the heat transfer increases slightly then decreases to a minimum at gage 6. Heat transfer is a maximum at gage 4.

Rough Surface-Low Turbulence. In the stagnation region, heat transfer is the same as the smooth surface case. As with the cylinder, roughness has the effect of reducing the heat transfer to the wedge surface. The heat transfer rate decreases dramatically with distance from the stagnation point. The maximum heat transfer rate occurs at gage 4 and is nearly double that of the smooth surface case. It is obvious from examination of the ice shape that the region near gage 4 is the region of fastest ice growth. Roughness does not affect the heat transfer rate in the separated region (gages 1, 2, and 3).

Rough Surface-High Turbulence. Turbulence has the same effect on heat transfer as in the previous examples. Heat transfer is increased in the stagnation region and the increase is not as great in the region of fastest ice growth away from the stagnation region. Turbulence has virtually no effect in the separated region.

Fifteen Minute Glaze Ice

Figure 12 shows the heat transfer distribution for 15-min accumulation of glaze ice. The Reynolds number for all the data on this figure was 136,000. Frossling's exact solution for the cylinder is again plotted for reference.

Smooth Surface-Low Turbulence. Smooth surface results are similar to the previous glaze ice shapes. Heat transfer is lower for the cylinder near the stagnation region and increases to a maximum at gage 9 which is the location of fastest ice growth.

Smooth Surface-High Turbulence. The effect of higher turbulence with the smooth surface is again to increase heat transfer nearly uniformly except in the separated flow region where there is no effect.

Rough Surface-Low Turbulence. Roughness has almost no effect until gage 9 where the heat transfer rate is doubled compared to the smooth surface low turbulence case.

Rough Surface-High Turbulence. Turbulence as in all the other cases, causes a nearly uniform increase in the heat transfer except in the separated flow region.

Fifteen Minute Rime Ice

Figure 13 shows the heat transfer distribution for 15-min accumulation of rime ice. All data points were taken at a Reynolds number of 138,000.

Smooth Surface-Low Turbulence. Heat transfer levels for the rime ice shape are similar to those for the plane cylinder except near gage 8 where they are slightly higher. It was impractical to locate a gage at the critical region between gages 8 and 9; it is possible that the maximum heat transfer rate occurs at this location.

Smooth Surface-High Turbulence. A nearly uniform increase can be seen in the stagnation region. In the wedge shaped region (gages 1 to 7) there is no effect of turbulence.

Rough Surface-Low Turbulence. The largest increase in heat transfer due to roughness occurs at gage 8. Roughness also increases the heat transfer in the wedge flow region considerably and has less of an effect in the stagnation region.

Rough Surface-High Turbulence. As in all the previous cases, turbulence increases heat transfer in the stagnation region by the largest amount. Heat transfer is increased in other regions by turbulence but to a lesser degree.

Reynolds Number Effects

Data for all models was taken for various flow rates which gave a range of Reynolds numbers from about 50,000 to 180,000. Space limitations prevent us from showing Reynolds number effects for every gage of every model; however, results from gages in critical ice growth areas and at interesting locations will be shown. For each gage, a least squares fit of the equation

\[Nu = AR^n \]

was obtained, the constants A and R for each gage are shown in Table III.

Circular Cylinder

Figure 14 shows Nusselt number as a function of Reynolds number for the gage located at 50° from the stagnation point for the circular cylinder. This is near the location of most rapid ice accumulation. Also shown on the figure is a least squares fit of Eq. (14) for each case. The constants A and R, are shown on the legend of the figure as well as in Table III.

For the smooth surface cases of low and high free stream turbulence, the slope of the curves is seen to be near 0.5 which is indicative of a laminar boundary layer. The addition of surface roughness causes a departure from the power law behavior which is indicative of a transitional boundary layer. In the latter two cases, the least squares fits were computed only for data points with Reynolds numbers greater than 100,000.

Glaze Ice

The effect of Reynolds number on Nusselt number for 2-min accumulation of glaze ice for gage
two is shown on Fig. 15. The behavior is similar to that shown previously for the cylinder. The smooth surface case has a 0.5 slope indicating a laminar boundary layer. The addition of surface roughness causes boundary layer transition and a departure from the power law curve fit.

The remaining two glaze ice shapes tested, 5- and 15-min accumulation, show similar trends with Reynolds number and will not be shown here.

Rime Ice

The effect of Reynolds number on heat transfer at gage 9, which is near the location of fastest ice growth, is shown on Fig. 16. The two smooth surface cases have slopes near 0.5 which indicates a laminar boundary layer. The two cases with surface roughness show an increased slope but, unlike the glaze ice, follow the power law curve fit.

Figure 17 shows the data from gage 4. In this region the ice shape appears wedge-like, i.e., a nearly flat surface at an angle to the free stream. The smooth surface data appears to go thru a rapid transition to a turbulent boundary layer as Reynolds number increases beyond about 70,000. In all cases where this transition takes place, the constants in Table III are valid only for the high Reynolds number portion of the data. The addition of surface roughness or free stream turbulence, however, eliminates this phenomenon.

Summary of Results

Heat transfer measurements have been made on a circular cylinder and on four simulated ice accretion shapes. The ice shapes had a constant cross section perpendicular to the flow and were obtained by averaging cross sections of ice grown on a cylinder in the NASA Lewis Icing Research Tunnel. Heat transfer distributions around the circumference of the ice shapes and circular cylinder were obtained over a range of flow velocities. The effect of surface roughness and free stream turbulence was investigated for each icing shape model. The heat transfer distribution around each model is presented as well as selected Reynolds number effects. Power law curve fits of Nusselt number as a function of Reynolds number are presented in tabular form. Major conclusions were:

1. Surface roughness changes the character of the boundary layer from laminar to transitional. This causes heat transfer to increase in the region of fastest ice growth.
2. Free stream turbulence changes heat transfer most in the stagnation region. The stagnation region is not the region of most rapid ice growth.
3. As glaze ice shapes grow, the difference between heat transfer at the stagnation point and the point of the most rapid growth increases thus promoting even faster growth away from the stagnation region.

References

Table I. - Ice Shape Coordinates

<table>
<thead>
<tr>
<th>Two minute glaze</th>
<th>Five minute glaze</th>
<th>Fifteen minute glaze</th>
<th>Fifteen minute rime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gage no.</td>
<td>2r/d</td>
<td>Gage no.</td>
<td>2r/d</td>
</tr>
<tr>
<td>0.43</td>
<td>1.172</td>
<td>0.00</td>
<td>1.314</td>
</tr>
<tr>
<td>0.45</td>
<td>1.167</td>
<td>5.04</td>
<td>1.379</td>
</tr>
<tr>
<td>16.13</td>
<td>1.204</td>
<td>9.42</td>
<td>1.445</td>
</tr>
<tr>
<td>23.03</td>
<td>1.215</td>
<td>11.74</td>
<td>1.461</td>
</tr>
<tr>
<td>30.55</td>
<td>1.231</td>
<td>14.92</td>
<td>1.463</td>
</tr>
<tr>
<td>37.91</td>
<td>1.244</td>
<td>18.27</td>
<td>1.451</td>
</tr>
<tr>
<td>46.62</td>
<td>1.269</td>
<td>22.55</td>
<td>1.439</td>
</tr>
<tr>
<td>51.52</td>
<td>1.264</td>
<td>25.97</td>
<td>1.438</td>
</tr>
<tr>
<td>55.06</td>
<td>1.237</td>
<td>29.78</td>
<td>1.462</td>
</tr>
<tr>
<td>59.50</td>
<td>1.184</td>
<td>33.71</td>
<td>1.532</td>
</tr>
<tr>
<td>61.35</td>
<td>1.148</td>
<td>36.08</td>
<td>1.587</td>
</tr>
<tr>
<td>63.51</td>
<td>1.100</td>
<td>38.60</td>
<td>1.639</td>
</tr>
<tr>
<td>66.11</td>
<td>1.052</td>
<td>41.89</td>
<td>1.704</td>
</tr>
<tr>
<td>69.65</td>
<td>1.032</td>
<td>43.91</td>
<td>1.717</td>
</tr>
<tr>
<td>72.17</td>
<td>1.035</td>
<td>46.03</td>
<td>1.705</td>
</tr>
<tr>
<td>74.86</td>
<td>1.041</td>
<td>47.90</td>
<td>1.660</td>
</tr>
<tr>
<td>90.00</td>
<td>1.000</td>
<td>50.14</td>
<td>1.566</td>
</tr>
<tr>
<td>90.44</td>
<td>1.004</td>
<td>52.43</td>
<td>1.454</td>
</tr>
<tr>
<td>90.76</td>
<td>1.002</td>
<td>55.76</td>
<td>1.332</td>
</tr>
<tr>
<td>90.93</td>
<td>1.001</td>
<td>60.93</td>
<td>1.199</td>
</tr>
<tr>
<td>90.97</td>
<td>1.001</td>
<td>65.97</td>
<td>1.113</td>
</tr>
<tr>
<td>91.21</td>
<td>1.004</td>
<td>71.21</td>
<td>1.068</td>
</tr>
<tr>
<td>91.12</td>
<td>1.025</td>
<td>75.12</td>
<td>1.025</td>
</tr>
<tr>
<td>89.43</td>
<td>1.001</td>
<td>89.43</td>
<td>1.001</td>
</tr>
<tr>
<td>90.00</td>
<td>1.000</td>
<td>75.40</td>
<td>1.028</td>
</tr>
<tr>
<td>90.00</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Parameters defined in Fig. 3.

Table II. - Heat Flux Gage Locations

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>62.4</td>
<td>1</td>
<td>67.0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>45.0</td>
<td>2</td>
<td>57.8</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>33.0</td>
<td>3</td>
<td>52.5</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>19.6</td>
<td>4</td>
<td>46.3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>7.0</td>
<td>5</td>
<td>36.0</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>-5.4</td>
<td>6</td>
<td>28.0</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>19.0</td>
<td>7</td>
<td>40.6</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>5.3</td>
<td>8</td>
<td>38.6</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>-5.3</td>
<td>9</td>
<td>33.3</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>29.1</td>
<td>10</td>
<td>29.1</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>27.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>24.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>20.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>15.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>9.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>2.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>-2.8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Parameters defined in Fig. 3.
TABLE III. COEFFICIENTS FOR POWER LAW CURVE FIT OF Nu = ARe^n FOR EACH CASE

<table>
<thead>
<tr>
<th>Gage no.</th>
<th>Smooth surface 0.5% turbulence</th>
<th>Rough surface 0.5% turbulence</th>
<th>Smooth surface 3.5% turbulence</th>
<th>Rough surface 3.5% turbulence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A = 0.0757, B = 0.7400</td>
<td>A = 0.0276, B = 0.8056</td>
<td>A = 0.0278, B = 0.8100</td>
<td>A = 0.0281, B = 0.8081</td>
</tr>
<tr>
<td>2</td>
<td>A = 0.0575, B = 0.7490</td>
<td>A = 0.0475, B = 0.7490</td>
<td>A = 0.0475, B = 0.7490</td>
<td>A = 0.0475, B = 0.7490</td>
</tr>
<tr>
<td>3</td>
<td>A = 0.0496, B = 0.7463</td>
<td>A = 0.0387, B = 0.7483</td>
<td>A = 0.0387, B = 0.7483</td>
<td>A = 0.0387, B = 0.7483</td>
</tr>
<tr>
<td>4</td>
<td>A = 0.0484, B = 0.7403</td>
<td>A = 0.0393, B = 0.7434</td>
<td>A = 0.0393, B = 0.7434</td>
<td>A = 0.0393, B = 0.7434</td>
</tr>
<tr>
<td>5</td>
<td>A = 0.0214, B = 0.7199</td>
<td>A = 0.0139, B = 0.7199</td>
<td>A = 0.0139, B = 0.7199</td>
<td>A = 0.0139, B = 0.7199</td>
</tr>
<tr>
<td>6</td>
<td>A = 0.0496, B = 0.7463</td>
<td>A = 0.0387, B = 0.7483</td>
<td>A = 0.0387, B = 0.7483</td>
<td>A = 0.0387, B = 0.7483</td>
</tr>
<tr>
<td>7</td>
<td>A = 0.0484, B = 0.7403</td>
<td>A = 0.0393, B = 0.7434</td>
<td>A = 0.0393, B = 0.7434</td>
<td>A = 0.0393, B = 0.7434</td>
</tr>
<tr>
<td>8</td>
<td>A = 0.0214, B = 0.7199</td>
<td>A = 0.0139, B = 0.7199</td>
<td>A = 0.0139, B = 0.7199</td>
<td>A = 0.0139, B = 0.7199</td>
</tr>
<tr>
<td>9</td>
<td>A = 0.0496, B = 0.7463</td>
<td>A = 0.0387, B = 0.7483</td>
<td>A = 0.0387, B = 0.7483</td>
<td>A = 0.0387, B = 0.7483</td>
</tr>
</tbody>
</table>

Note: The table continues with similar data entries for different conditions.
Figure 1. - Plaster casts of 15-min accumulation of both rime and glaze ice on a 5.1 cm (2.0 in.) diameter cylinder.
Figure 2. - Photograph of icing shape heat transfer models.

Figure 3. - Ice shape cross sections showing profile coordinates and heat flux gage locations.
Figure 4. - Photograph of heat flux gauge.

Figure 5. - Cylinder heat transfer model.
Figure 6. – Wind tunnel schematic.

Figure 7. – Schematic of automatic heat flux gage temperature controller.
Figure 10. - Heat transfer distribution for two minutes accumulation of glaze ice.

Figure 11. - Heat transfer distribution for five minutes accumulation of glaze ice.
Figure 12. - Heat transfer distribution for fifteen minutes accumulation of glaze ice.

Figure 13. - Heat transfer distribution for fifteen minutes accumulation of rime ice.
Figure 14: The effect of Reynolds number on Nusselt number for the circular cylinder at \(\theta = 50^\circ \).

Figure 15: The effect of Reynolds number on heat transfer for two minutes accumulation of glaze ice at gage 2.
Figure 16. - The effect of Reynolds number on heat transfer for fifteen minutes accumulation of rime ice at gage 9.

Figure 17. - The effect of Reynolds number on heat transfer for fifteen minutes accumulation of rime ice at gage 4.