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In a three-dimensional simulation higher-order derivative correlations, 
including skewness and flatness (or kurtosis) factors, are calculated for 
velocity and passive scalar fields and are compared with structures in the 
flow. Up to 1283 grid points are used with periodic boundary conditions 
in all three directions to achieve R). to 82.9. The equations are forced 
to maintain steady-state turbulence and collect statistics. The scalar­
derivative flatness is found to increase much faster with Reynolds number 
than the velocity derivative flatness, and the velocity- and mixed-derivative 
skewnesses do not increase with Reynolds number. Separate exponents 
are found for the various fourth-order velocity-derivative correlations, with 
the vorticity-flatness exponent the largest. This does not support a major 
assumption of the lognormal and fJ models, but is consistent with some 
aspects of structural models of the small scales. Three-dimensional graphics 
show strong alignment between the vorticity, rate-of-strain, and scalar­
gradient fields. The vorticity is concentrated in tubes with the scalar 
gradient and the largest principal rate of strain aligned perpendicular to 
the tubes. Velocity spectra, in Kolmogorov variables, collapse to a single 
curve and a short -5/3 spectral regime is observed. 

§A. Introduction The classical approach to investigating small-scale intermit­
tency in turbulence is through the higher-order derivative correlations such 
as skewness and flatness factors. Experimentally this has been done for both 
the velocity and temperature, which is a passive scalar when buoyancy is 
negligible. The long-range goal is to improve our understanding of the struc­
ture of the small scales, possibly leading to improved methods for subgrid 
modelling. An intermediate objective has been to relate the derivative cor­
relations to dissipation correlations and corrections to Kolmogorov scaling. It 
is believed that this is possible because the small scales are universal; that is, 
the small scales have a structure that is independent of the large scales and 
can be modeled. So far only single-probe velocity and scalar statistics, such as 
the velocity-derivative flatness and skewness, have been measured with hot­
wire instruments. More complicated statistics have not been measured and 
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alternative approaches, such as flow visualization, are limited because they 
do not have the flexibility necessary to distinguish small-scale structures that 
are intermittent in space and time. 

Another approach to investigating the small scales is numerical simulation. 
In a simulation more detail can be obtained than in experiments and the con­
ditions can be more closely controlled. For example, because all components 
of the velocity are known, one is able to study correlations beyond the deriva­
tive skewness and flatness and computer graphics can display structures not 
accessible t o experiments. The main disadvantage of a simulation is that only 
a limited range of length scales is allowed, which restricts the Reynolds num­
ber to very low values. But in low-Reynolds-number experiments the values 
of most of the derivative correlations are significantly different from their 
uncorrelated or Gaussian values. Therefore, these statistics are accessible t o 
current numerical methods and computers. Siggia (1981a) used a numerical 
simulation to calculate higher-order correlations of the velocity, and discussed 
the relation between small-scale vortex structures and intermittency. Our 
approach will be to use a similiar simulation to look in more detail at the 
velocity-derivative statistics and the statistics of a passive scalar. Graphical 
display of small-scale vorticity, rate-of-strain, and scalar-gradient structures 
is used to interpret these statistics and comparisons with phenomenological 
theories and experiments are made. 

There are two phenomenological approaches to predicting the small-scale 
statistics: either by assuming a form for vortical structures or a form for t he 
energy cascade from large to small scales. Two models that are based on the 
cascade of energy are the lognormal theory of Kolmogorov (1962) and the 
p-model of Frisch, Sulem, and Nelkin (1979). Both theories predict a cor­
rection to the k- 5/ 3 inertial-range kinetic-energy spectrum of Kolmogorov 
(1941). They also predict that as the Reynolds number grows that the 
velocity fluctuations become increasingly localized, or intermittent, distribu­
tions become highly non-Gaussian, and the higher-order correlations, such 
as the derivative skewness and flatness factors, increase with Reynolds num­
ber with a power-law dependence. The power-law exponents depend on the 
details of each model and on j.l , the characteristic exponent of the dissipation­
dissipation correlation function in the inertial subrange, rJ < < r < < L, 

< E{X)E(X + r) > = Ac2(L/ r)'" (1) 

(Monin and Yaglom 1975, p. 618), where A is a constant and L is defined 
by (12). All correlations of a given order are predicted t o have the same 
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power-law dependence. The lognormal model predicts that 

and that 

where 
3 

an = -J1n(n - 1) 
4 

(2) 

(3) 

(4) 

(Frenkiel and Klebanoff 1975). The ,B-model is similiar, but predicts that 

a n = 3j.t (n -1) 
4-fJ 2 

(5) 

(Nelkin and Bell, 1978). The success of these models in predicting the ex­
perimentally observed dependence of derivative skewness and flatness on 
Reynolds number is discussed in detail by Antonia, Satyaprakash, and 
Hussain (1982), who conclude that the lognormal model is superior in this 
respect. Neither of the corrections to the k- 5/ 3 law proposed has been ob­
served, although the lognormal correction is much smaller and probably not 
much above statistical noise. 

The value of J1 can be found either by direct measurements or by using these 
models to calculate back from an. Nelkin (1981) and Antonia, Satyaprakash, 
and Hussain (1982) summarize the current evidence and conclude that most 
previous estimates were too high. They suggest that J1 = 0.2. 

Structural models assume that the small scales are composed of tubes 
or sheets of vorticity. Corrsin (1962) assumed that sheets dominated and 
concluded that a4 = 1.5. Saffman (1968) also assumed that the vorticity 
would be found in sheets whose thickness would be the order of the Taylor 
microscale (9), but that within the sheets, dissipation would be localized in 
regions characterized by the Kolmogorov length scale (lOa). He found that 
a4 = 1 and a3 = 0, that is, the skewness is constant. A variation, proposed 
by Tennekes (1968), assumes that the dominant structures are tubes whose 
thickness is the Kolmogorov length scale, but which are subject only to the 
large-scale strain. His results agree with those of Saffman. Experimentally, 
a3 is observed to be very small, possibly zero, but a4 is much less than the 
predicted value of one. 
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Dissipation of the variance of a passive scalar is observed to be intermit­
tent, much like kinetic-energy dissipation. For example, the scalar-derivative 
flatness scales with Reynolds number in a manner similiar to the velocity­
derivative flatness, but with a larger exponent (Antonia and Chambers 1980). 
Sudden jumps in experimental temperature signals, known as "ramps", are 
also observed (Antonia et al. 1979). The only theoretical attempt to describe 
scalar intermittency was by Van Atta (1974), who used lognormal assump­
tions. Correlations between the velocity and scalar derivatives would also be 
interesting, but because it is difficult to measure two turbulent fields simul­
taneously, there have been almost no experimental measurements of these 
correlations. 

In this paper, a variety of velocity- and scalar-derivative correlations are 
calculated over a range of Reynolds numbers. In an isotropic uncorrelated 
field with Gaussian statistics each of the correlations to be discussed has an 
easily determined value. For the velocity-derivative correlations Faufl (3), 
the skewness (n=3) is zero, the flatness (n=4) is 3, and the sixth order 
correlation is 15. For mixed correlations in which both the velocity derivative 
and the scalar derivative have a power of 2, such as the mixed-derivative 
correlation (40), the uncorrelated value is 1. At high Reynolds numbers the 
statistics are usually highly non-Gaussian, both in experiments and in our 
simulations. We will concentrate on third- and fourth-order correlations, with 
some fifth- and sixth-order correlations presented to allow comparisons with 
the phenomenological models. Since the models discussed predict scaling laws 
and exponents, we will estimate these exponents and make comparisons. 

The governing equations are the incompressible Navier-Stokes equation for 
the velocity and the transport equation for a passive scalar. The N avier­
Stokes equation is 

(6a) 

\7·u=Q (incompressibility) 

The nonlinear term, U . \7 U, can be written in several different forms which 
are computationally convenient: the conservative form, 

\7·(UU) (6b) 

and the rotational form, 
(6c) 
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The scalar equation can also be written two ways in incompressible flow: the 
convective form 

8-e/8t + U· 'V-e = D'V2-e 

and the conservative form 

(7a) 

(7b) 

In the absence of viscosity v and diffusivity D the equations conserve 
two positive-definite quadratic invariants: the kinetic energy of turbulent 
fluctuations, 

and the scalar variance, 

1 
E = - < UiUi > 

2 

Eo=<82 > 
where the domain of integration is over all space. The fundamental dimen­
sionless parameters that we use are the Taylor-microscale Reynolds number, 
R),. = VA/V, and the Prandtl number v/D, where U is the characteristic 
velocity of the turbulence, 

and A is the Taylor microscale, 

A = < U1 2 > 1/2/ < (8ud8xd2 > 1/2 

Also of interest are the kinetic-energy dissipation rate, 

E=-~<~U2> 
dt 

and the scalar-variance dissipation rate, 

d 2 
X = - dt < B > 

(8) 

(9) 

The Kolmogorov length scale, wavenumber cutoff, and velocity scale are 
defined as 

I 
Kk = -, and (EV)1/2 (lOa) 

1J 
and the Oboukov-Corrsin micro cale and wavenumber (Corrsin 1951) are 
defined as 

1 
and Kac=--

1Jac 
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§B. Numerical Method 
Two numerical codes were used for the simulations presented. Each is 

a three-dimensional spectral code with periodic boundary conditions. By 
spectral we mean that the fundamental variables that are stored and ad­
vanted in time are the Fourier-transformed velocity and scalar fields, u{k) 
and 8(k). For simple geometries these methods allow more resolution than 
finite-difference methods for the same number of grid points (Orszag 1971). 
To improve the speed of spectral methods fast Fourier transforms are used to 
return to physical space, where the nonlinear terms are calculated by forming 
products. This method is sometimes referred to as pseudospectral because it 
introduces aliasing errors in the high wavenumbers. One way to reduce t hese 
errors, or dealias, is by truncating interactions outside a boundary in Fourier 
space. This does not significantly affect the resolution because only the high­
wavenumber tail of the spectrum, with only a small fraction of the t otal 
energy, is truncated. To completely dealias one should truncate all wavenum­
bers larger than N /3, where N is the number of grid points in a single direc­
tion. To completely dealias a three-dimensional code without truncation re­
quires calculating the nonlinear terms on eight shifted grids. Fortunately, 
Patterson and Orszag (1971) have shown that in two or more dimensions all 
the aliasing errors can be eliminated by using only two shifted grids and a 
spherical truncation with the proper radius. This method was used in their 
original code, known as Superbox. Another approach uses shifted grids on 
alternate evaluations (Rogallo, 1981). The extent to which aliasing errors 
affect a calculation also depends on the algorithm used for the convective 
terms. Superbox uses the aliased rotation algorithm (6c) because it conserves 
kinetic energy, which helps inhibit instabilities and reduces the need for using 
shifted grids. Comparisons between versions of Superbox with and without 
shifted grids show no significant differences in their spectra (Patterson 1980). 

The scalar equations do not allow aliasing to be neglected as easily as 
the Navier-Stokes equations do. For zero diffusivity, the scalar variance 
is conserved by the exact equations. But the aliased versions of both the 
convective and conservative equations (7 a, b) do not conserve scalar variance. 
Instead, their respective aliasing errors are equal in magnitude and opposite 
in sign. We investigated taking advantage of this by averaging the two 
forms of the scalar equation to dealias, but it did not yield any significant 
improvements because our fields were already well resolved. Arakawa (1962) 
used similiar considerations in writing his stable finite-difference scheme for 
the two-dimensional Navier-Stokes equations. 
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The code used for the 323 runs is based on the Superbox code of Siggia 
and Patterson (1978) and Siggia (1981a). The rotational form of the Navier­
Stokes equation (6c) was used for the velocity and the time advancement was 
leapfrog with stabilization done every 40 time-steps by a second-order Runge­
Kutta step. Shifted grids were not used for de aliasing, but the convective and 
conservative forms of the scalar equation (7a,b) were used on alternate time­
steps to partially dealias the scalar. Wavenumbers were truncated outside a 
sphere of radius N /2. This truncation has the advantage of being isotropic, 
but does allow significant one-dimensional aliasing errors. Details of this 
code may be found in Kerr (1981). Simulation of the velocity and one scalar 
required approximately 0.75 second of computer time (cpu) per evaluation on 
a Cray-1S computer and the longest simulation used 40 minutes of computer 
time. 

The code for the 643 and 1283 calculations also used the rotational form of 
the Navier-Stokes equations, with a spherical truncation of N /2 and without 
shifted grids, but only the conservative form of the scalar equation was used. 
The time advancement was third-order Runge-Kutta (Wray 1981) and up to 
three scalars could be calculated simultaneously. Two-to-one word packing 
was used to improve data management (or I/O). For a 643 mesh with three 
scalars, 6.5 seconds of Cray cpu time and 2.0 seconds of I/O wait (time waiting 
for retrieval of data from disks) were required each evaluation, with three 
evaluations per time-step. The code with no scalars required 3.25 seconds of 
cpu time and 1 second of I/O wait per evaluation. Our longest simulation for 
a 643 mesh with three scalars (F19-2I) required 12 hours of computer time 
to simulate seven eddy-turnover times (11). 

We tried to run a 1283 mesh using Fortran I/O on the Cray-1S with disks, 
but due to the large number of files on disk, I/O wait became intolerably large. 
What made possible a 1283 simulation was the installation of a solid-state 
storage device (SSD), which effectively expanded the memory of the Cray-IS 
to 17 million words. For a 1283 mesh with three scalars approximately 55 
seconds of cpu time and a negligible amount of time waiting for I/O between 
the SSD and main memory were required per evaluation. Three eddy-turnover 
times required 70 hours of Cray time. 

§C. Forcing, Simulation Parameters, and Aliasing Limits 
The codes outlined have been used for forced and decaying simulations. 

This paper will concentrate on the higher-order correlations obtained when 
the large scales are forced. The decaying calculations are discussed in detail 
by Herring and Kerr (1982) and Kerr (1981), though some of those results 
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are included here in figure 3 and table 3. 
Why do we force the large scales? Ideally we would like to simulate an 

infinite domain with unlimited resolution of the smallest scales, but in prac­
tice we are limited to a finite box with a finite mesh. There is a minimum 
wavenumber associated with the size of the box and a maximum wavenum­
ber associated with the mesh spacing. If the effects of these limits are to 
minimized, the energy must be restricted to a very small range of wavenum­
bers and the Reynolds number must be small. The calculations discussed 
in Herring and Kerr (1982) simulate decaying flow behind a grid and are 
restricted in this way. 

By forcing the large scales, some of the restrictions imposed by the low­
wavenumber limit can be removed. It is believed that for sufficiently large 
Reynolds number that there is a cascade of energy from large to small scales 
which maintains a statistically-steady state. By forcing we hope to mimic a 
cascade from wavenumbers smaller than the minimum wavenumber t o those 
in our computational box. Forcing would also maintain a steady spectrum at 
moderate Reynolds numbers and allow us to collect statistics of the higher­
order correlations. Since the derivative correlations are representative of the 
small scales or high wavenumbers, it is hoped that they will not be affected by 
the details of the large scales, in our case the details of the artificial forcing 
used. Our approach is opposite to that of many turbulence modelers, who 
are primarily interested in the large scales and model the small scales . 

Both the velocity and scalar were forced by time advancing the lowest 
wavenumber band ( 1 < k/ko < 2, where ko is the lowest wavenumber of 
the code) independently of the high wavenumbers. The modes calculated in 
this manner were included in the full equations and the higher modes were 
advanced as usual. Details of the numerics may be found in Kerr (1981). 
Analysis of single modes in the forced wavenumber band indicates that the 
modes behave chaotically, although a complicated periodic motion cannot be 
ruled out. Our forcing is different than that used by Siggia (1981a), whose 
forcing modes were outside his computational box. 

We present results from 27 forced cases for the Taylor-microscale Reynolds 
number, R).., between 9 and 82.9 and the Prandtl number between 0.1 and 
2.0 (see table 1), but will discuss only a few in detail. All but one of the 
simulations includes a passive scalar. The exception (labeled F12 in table 1) 
uses the original dealiased Superbox code and our forcing to discern t he effect 
of aliasing. 

Each simulation was run until a statistically-steady state was reached, 
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usually at about two eddy-turnover times. An eddy-turnover time is defined 
as 

where 

L 
te =-

U 

L = 31f f k- 1 E(k)dk 
4E 

(11) 

(12) 

is the integral length scale. After reaching a steady state, statistics were 
collected for at least one and a half more eddy-turnover times and the means 
and variances of a variety of velocity and scalar correlations were obtained by 
averaging. These statistics and the errors are discussed in detail in appendix 
A. 

Most earlier 323 spectral simulations (Orszag and Patterson 1972) have 
been limited to R}.. less than 30 based on considerations of the location of the 
peak of the three-dimensional velocity-dissipation spectrum (which is near the 
"bump" discussed in the following section for figure 1). Further restrictions 
come from considerations of trends in the derivative flatnesses. Generally 
the derivative skewnesses (14,15) and flatnesses (32,39) increase, or remain 
constant, with increasing Reynolds number. Failure to do so indicates that 
small-scale truncation and aliasing errors are significant. This behavior was 
observed for a 323 mesh at Reynolds numbers larger than 24. In order to 
demonstrate the magnitude of aliasing errors at this Reynolds number, table 
2A gives derivative flatness factors for 323 and 643 calculations starting with 
identical initial conditions at R).. Rj 29. On the 643 grid there are virtually no 
aliasing or truncation errors at this Reynolds number for any of the Prandtl 
numbers used. Any differences between the 323 and 643 results are due to 
aliasing and high-wavenumber truncation errors in the 323 simulation. In 
run F11 only spherical truncation is used to dealias; while F12 uses the 
original Superbox code to dealias by shifting grids on each evaluation. For 
Fl1( aliased) both the velocity-derivative flatness and scalar-derivative flatness 
for Pr = 0.5 are significantly lower than the 643 results (F14), while in 
F12(dealiased) there is virtually no difference with F14. Therefore, at this 
Reynolds number an aliased 323 calculation does not resolve the small scales, 
whereas a dealiased calculation does. 

To estimate the maximum allowable Reynolds numbers on the 643 and 
1283 grids, the Kolmogorov wavenumber cutoffs of the simulations can be 
compared to the maximum wavenumbers allowed by the grids. For the inertial 
range (E(k) rv Koc2/3k-s/3) R).. r-..J Kk j . But the Reynolds numbers in 
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the 323 and 643 simulations are too low for an inertial range to appear and 
R).. """ K k 1.25 fits our results better . If the maximum allowable Kolmogorov 
wavenumber on a 643 grid is assumed to be twice that permitted on a 323 

grid, then to ensure that the small scales in the 643 simulation are fully 
resolved the maximum R).. is 55.9(~ 24 X 21.25). As shown in figure 1, our 
1283 simulation has a noticeable -5/3 inertial range, so the Kk i law should 
be used and R).. = 82.9(~ 52 X 2°·67). 

In addition to its effect on the calculation of the velocity and scalar fields , 
aliasing can introduce errors in the calculation of the derivative flatness 
factors. To estimate this error the derivative flatnesses for a 643 simulation 
were calculated on a 323 grid for one realization. Table 2B shows that the 
velocity-derivative flatness calculated on a 323 grid yields a slightly smaller 
result. This reinforces our conclusion that R).. rv 29 is slightly too high 
for a 323 grid. The scalar-derivative flatness for Pr = 0.5 shows aliasing 
errors similiar to those in the velocity field, so no further restrictions on 
the Reynolds number are necessary when Pr < 0.5. On the other hand, a 
significant decrease is seen in the scalar-derivative flatness for Pr = 1.0 when 
it is calculated on a 323 grid. 

Naively one would expect that for Prandtl number of 1, where the vis­
cosity and scalar diffusivity are the same, that there would be similiar trun­
cation effects for the velocity and the scalar. Instead, the scalar errors are 
much larger . What does theory tell us? For Prandtl number greater than 
1, Batchelor (1959) predicts a new spectral regime in which scalar variance 
diminishes as k-1 for wavenumbers greater than the Kolmogorov wavenum-
ber. The cutoff for the new spectral regime is kB = (f./ V D2)1/4. This 
spectral regime has been observed (see Monin and Yaglom 1975, p.513). Since 
a higher Prandtl number implies a higher spectral cutoff, for large Prandtl 
numbers truncation effects will appear even at very low Reynolds numbers. 
Consequently for Pr = 2, R).. > 12 was not run on a 323 mesh. But an 
anomalous k- 1 subrange is also observed experimentally for Prandtl number 
as low as 0.7, the atmospheric value (the "bump" , Hill 1978). Therefore, even 
at Pr = 1 truncation, as indicated by the scalar-derivative flatness, becomes 
important for R).. > 18 on a 323 grid. 

Because of these difficulties our simulations are restricted to low Prandtl 
numbers. Some of the simulations for Pr = 1 are included in the plots of 
the correlations, but only for lower Reynolds numbers. Prandtl numbers of 
current experimental interest that we can simulate are 0.7, the atmospheric 
value, and moderately low Prandtl numbers, such as found in liquid metals. 
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Extremely low values cannot be simulated satisfactorily because the relevant 
low-wavenumber cutoff is the Oboukov-Corrsin cutoff, Koc (lOb), and this 
would be below the minimum wavenumber of the simulation.The lowest value 
we use is Pr = 0.1. Analysis of spectra in the next section support these 
conclusions. 

§D. Spectra and Skewnesses 
Since most simulators determine whether there is significant truncation 

error by inspecting high-wavenumber spectra, we have included some spectra 
to demonstrate the validity of our method. Figure 1 shows three-dimensional 
energy spectra, normalized by the Kolmogorov microscales and multiplied 
by k 5 / 3 , for several Reynolds numbers. The turnup at large wavenumbers 
is a numerical effect of the large-wavenumber cutoff. Where the turnup is 
small, the small scales are well resolved. The turnup for R).. = 55.9 in a 
643 simulation and R'A = 82.9 in the 1283 simulation is the most we could 
accept. The three-dimensional kinetic-energy and scalar-variance spectra for 
our largest Reynolds number, 82.9, are plotted in figure 2. The velocity 
spectrum is normalized as in figure 1 and the scalar spectra are normalized by 
the Kolmogorov microscales and the scalar-variance dissipation in a similiar 
manner. When compared with the scalar variance at low wavenumbers, the 
turnup at high wavenumbers for Pr = 1 is unacceptably large. This reinforces 
our conclusion that moderate-to-high Prandtl numbers can be simulated only 
with low-Reynolds-number simulations. 

With the exception of deviations in the lowest Reynolds-number spectrum 
(R'A=18.5), all of the spectra in figure 1 collapse to a single curve in the 
dissipation range. In addition, a short -5/3 regime appears in the 1283 

spectrum (R'A =82.9) at low wavenumbers. For comparison, the dashed line 
in figure 1 fits a spectrum of the form predicted by Pao (1965), 

E(k) = Kot2/3k-5/3exp(-1.5KoIH-l/3k4/3) (l3) 

to the computed spectra with K o, the Kolmogorov constant, equal to 2.45. 
Although experimental values for the Kolmogorov constant as high as 2.1 
have been reported (Gibson et al. 1970), the fitted value is much higher 
than the usual experimental value of 1.4 to 1.7 (Monin and Yaglom 1975, 
p.483-485). To understand the apparent differences between the calculated 
and experimental Kolmogorov constant the velocity-derivative skewness must 
be considered. From this we will conclude that fitting the calculated spectra 
with Pao's form could lead to anomalously high values for the Kolmogorov 
constant. 
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For both the velocity and scalar three classes of the derivative skewnesses 
can be defined. These are the real-space derivative skewnesses, spectral­
transfer skewnesses, and dissipation skewnesses. The real-space derivative 
skewnesses are measurable with hot-wire probes. The spectral and dissipation 
skewnesses are not strictly third-order moments, but in isotropic flow they 
are related to the real-space derivative skewnesses. The measurable real-space 
derivative skewnesses are the velocity-derivative skewness, 

the mixed-derivative skewness 

and the scalar-derivative skewness 

Se = < (1!-;)3 > 
< ( ao )2 > ~ 7fX1 

(l4) 

(15) 

(16) 

In isotropic turbulence the terms in the velocity-derivative skewness and the 
mixed-derivative skewness can be written more generally. That is, 

(Betchov 1956) and 

Furthermore, 

35 < (aUl)3 >= 
2 aXl 
4 - < tr e3 >= 
3 

15 OUl 00 2 - < -(-) >=< O·e ··O· > 
2 ~ ~ ~ ~J J 

UXl UXl 

12 

(17a) 

(17b) 

(18) 

(l9a) 



and 
80 2 X 

« -) >=-
8Xl 6D 

(19b) 

These rotationally-invariant forms are used in all our calculations of the real­
space skewnesses. 

The spectral-transfer skewnesses and the dissipation skewnesses are related 
to the real-space skewnesses through integral equations for the dissipation of 
energy and scalar variance, 

(20) 

and 

1 d ! 2 ! 4 2D dt X = k To(k)dk - D k Eo(k) dk (21 ) 

where Tu(k) and To(k) are the nonlinear energy and scalar-variance t rans­
fers, respectively. For our forced equations another term should be added) 
but this term is negligible except at low Reynolds numbers. The second­
order moments of the transfers are related t o the real-space skewnesses by 
J k2Tu(k)dk =< Wieijwi > and J k2To(k)dk = - < OieiJ·OJ· » identically . 
The integrals of the transfers are zero (J T(k)dk = 0), but because there is a 
net cascade of kinetic energy and scalar variance to higher wavenumbers, their 
second-order moments will in general be positive and nonzero. Therefore, we 
can define two spectral-transfer skewnesses) the velocity spectral skewness 

S _ 2 f k2Tu,(k)dk _ 2 Po, 
u,(k) - 35 (rlv)l - 35 (rlv) l (22) 

and the mixed spectral skewne,ss 

(23) 

where Po, is the rate of enstrophy production and 0, the enstrophy, equals 
& < WiWi >. Because the spectral-transfer skewnesses are nonzero) in 
isotropic flow the velocity- and mixed-derivative skewnesses will also be non­
zero and obey 

Su.O = - SO(k ) 
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These arguments do not apply to the real-space scalar-derivative skewness 
(16), which in an isotropic calculation such as ours is zero. However, it has 
recently been found that in shear flows with a temperature gradient that the 
scalar-derivative skewness is nonzero (Sreenivasan and Tavoularis 1980). 

For our statistically-steady forced simulations -ftE -+ 0 and /tX -+ 0, so 
we expect that as the Reynolds numbers increases that f k2Tu -+ v f k4 Eu 
and f k2TO -+ D f k4EO. Therefore, a third measure of the skewnesses, the 
dissipation skewnesses, can be defined by (Wyngaard 1971) 

(24) 

and 
s = ~DJ k4Eo(k) dk 

x 15 htv)~(rl:J) 
(25) 

where 
dO J 4 En = - Cit = 2v k E(k) dk (26) 

is the enstrophy dissipation rate. 
As discussed in the introduction, all the higher-order correlations are ex­

pected to diverge from their uncorrelat ed values as the Reynolds number in­
creases. Experimentally, the velocity-derivat ive skewness increases from zero, 
the uncorrelated value, to a value greater than 0.3 at very low experimental 
Reynolds numbers and appears to increase indefinitely in very high Reynolds­
numbers atmospheric measurements (Tavoularis et aI. 1978). But at inter­
mediate Reynolds numbers the experiments are less conclusive. Tavoularis, 
Bennett , and Corrsin (1978) cite data which suggests that the skewness 
decreases with Reynolds number between R).. = 10 and 500. Klebanoff(1982) 
finds the velocity-derivative skewness to be constant and equal to 0.43 between 
R).. = 40 and 200 in a boundary layer. This experimental result is plotted in 
figure 3. 

Simulations discussed in Herring and Kerr (1982) show that the velocity­
derivative skewness increases from zero to 0.4 by R).. rv 20, in agreement 
with low-Reynolds-number experiments. They find that the mixed-derivative 
skewness increases in a similiar manner. At intermediate Reynolds numbers, 
they suggest that both the velocity- and mixed-derivative skewnesses reach 
maximum values, then remain constant with increasing Reynolds number, 
agreeing with Klebanoff's experiment. With our 643 and 1283 simulations we 
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have determined the skewnesses at higher Reynolds numbers and confirmed 
those results (figure 3). Figures 3 and 4 plot the real-space and dissipation 
skewnesses, respectively, as functions of R).. and in all cases the magnitudes 
of the skewnesses converge to approximately 0.5. The value for the velocity­
derivative skewness for simulations Fll to F27 is -0.505 ± 0.005. 

The statistical models of the small scales and the atmospheric measure­
ments mentioned predict that the velocity-derivative skewness will increase 
very slowly with Reynolds number (4,5). Although the accuracy of our curve 
is not good enough to rule out the existence of such a trend, it appears 
significant that both our simulation and some experiments show no Reynolds­
number dependence over a wide range. The reason the velocity-derivative 
skewness does not increase with Reynolds number is probably related to the 
alignment of small-scale structures. Recall that the model of Tennekes (1968) 
suggested that if the structures are tubes, then the skewness would not in­
crease with Reynolds number. In section G (Graphics) it will be seen that 
our structures are tubes. In addition, fourth-order statistics and our graphics 
find strong alignment between the vorticity and the rate of strain. 

Because of the connection between the skewnesses and the fourth-order 
moment of the spectra, a simple relation between the velocity-derivative 
skewness and the Kolmogorov constant exists. If one assumes Pao's spectral 
form (13) and uses the equation for the velocity-dissipation skewness(24), then 

4 .a 9 3 =~ =.a 
Su = --15~-V7r( -Ko)~ = -2.40Ko ~ 

35 16 2 
(27) 

For Su = -0.5, Ko = 2.85. For a typical experimental Kolmogorov con­
stant, Ko = 1.7, (27) gives Su = -1.08, which disagrees with experimental 
measurements of t he skewness at moderate Reynolds numbers. If the ex­
perimental values for the Kolmogorov constant and the skewness are correct, 
then Pao's spectral form is clearly a poor approximation to the experimental 
spectra. There are also significant differences between the calculated spectra 
of figure 1 and Pao's form near (T}k) rv 0.2. If the calculated Kolmogorov 
constant is to be consistent with the experiments (that is Ko rv 1.7), then 
at wavenumbers below those simulated, the correct spectrum must be below 
Pao's form for Ko = 2.45. The skewness would not change in this case 
because the major contribution to it comes from the wavenumber regime al­
ready simulated. Experimental spectra by Champagne et al. (1977) show 
a high wavenumber bump which is similiar to the computed spectral shape. 
Additional experiments which determine both the Kolmogorov constant and 
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the skewness and make detailed comparisons with Pao's spectral form would 
help answer these questions. 

There are no experiments or phenomenological models with which to com­
pare our results on the dependence of the mixed-derivative skewness with 
Reynolds number. But there are arguments that the mixed-derivative skew­
ness should increase with Prandtl number, possibly with an upper bound at 
high Prandtl number for given Reynolds number (Hill 1978). Hill's arguments 
assume that there are two spectral regimes for the scalar variance at low 
Prandtl numbers, a k~ inertial regime and a k -r inertial-diffusive regime. 
There are strong theoretical arguments in favor of both spectral regimes 
(Corrsin 1951 and Batchelor et al. 1959). Experimentally, a k~ inertial 
range for the scalar variance has been well demonstrated (Monin and Yaglom 
1975, p.511), but the evidence for a kf- inertial-diffusive regime is tenuous. 
This is due in part to the exotic nature of low-Prandtl-number materials, 
such as liquid mercury and sodium. Experimental results on the dependence 
of the mixed-derivative skewness on Prandtl number are also difficult to ob­
tain. With the exception of a few measurements in air (Pr= 0.7 in figure 4) 
the only measurements of the mixed-derivative skewness were taken in waLer 
and liquid mercury by Clay (1973). For air, measurements in the atmosphere 
(Antonia and Van Atta, 1978) give much larger values than those in wind 
tunnels. Our results, Hill's model #4, the test field model (Larcheveque et 
al. 1980), and several experiment al values (taken from Larcheveque et al.) 
are shown in figure 5. Our values are the maximum Suo for a given Prandtl 
number in our simulations (see figure 3). The experiments of Clay (1973) 
suggest that there is virtually no dependence on Prandtl number, which is 
compatible with our results. Figure 3 suggests that for higher Reynolds num­
bers Suo will asymptote to -0.5 for Pr = 0.1, but remain constant for Pr = 
0.5 and 1.0. In this case, simulations at higher Reynolds numbers should show 
that the mixed-derivative skewness is constant over a wide range of Prandtl 

=.ll. =.l1. numbers. A long crossover regime between the k 3 and k 3 spectral ranges 
could explain this result. Gibson (1968) has suggested that this new regime 
should go as k- 3 , but the spectrum for Pr=O.l in figure 2 does not support 
this. 

§E. Fourth- and Higher-Order Velocity Correlations 
Siggia (1981 b) has shown that in isotropic flow all fourth-order velocity­

derivative correlations can be expressed in terms of four rotational invariants 
of the velocity-deformation tensor. These are 
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(28) 

(29) 

(30) 

and 
(31) 

where eiJo = ~(Z:: + ~~!) is the rate of strain, e2 = L: ei/ , e4 = (e2
)2 

, Wi = V' X Ui is the vorticity, and w2 = L W i2 . We will normalize these 
correlations as follows: 

Fl = 15 Ir 
7 < e2 >2 

(32) 

F2 =3 h 
< w2 >< e2 > 

(33) 

(34) 

and 

(35) 

Their uncorrelat ed values are 3, 3, 1, and 3, respectively, and they are plotted 
in figure 6. 

The only fourth-order velocity-derivative correlation that has been ex­
perimentally determined is the velocity-derivative flatness, Fa'U 4 (3), which 
equals Fl if isotropy is assumed. Kuo and Corrsin (1971) find that Fa'u4 in­
creases with Reynolds number as R'A 0'4 with 0'4 = 0.25 for 12 < R'A < 100. 
Our .flatness (Fl or Fo'U 4 , figures 6, 7 and 8) also increases with Reynolds 
number and is in excellent agreement with the experiment of Frenkiel and 
Klebanoff (1975) (upper dotted line, figure 7), but 0'4 = 0.18 ± 0.03. 

If only one scaling exponent is necessary to describe intermittency (as 
suggested by the phenomenological models), all the fourth-order velocity­
derivative correlations should exhibit similiar behavior. Correlations Fl to 
F4 have been calculated for the forced runs and plotted as functions of 
Reynolds number in figure 6. If power laws are fitted to Fl , F2, and F4 
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for R).. greater than 28, the exponents are 0.18 ± 0.03 , 0.29 ± 0.03, and 
0.37 ± 0.03 ,respectively. This suggests that not one, but at least two 

scaling exponents are necessary, one for the rate of strain and the other for 
the vorticity. Furthermore, F3 decreases noticeably with Reynolds number at 
very low Reynolds number and rises only a small amount at higher Reynolds 
numbers. The low value for F3 suggests that the principal component of the 
rate of strain and the vorticity tend to be perpendicular to each other, which 
would always be the case in two dimensions, and implies that there is strong 
alignment in the small-scale turbulent structures. This is demonstrated by the 
graphics discussed in section G. The similiarity between one of the isotropic 
forms of the skewness (17b) and 13 suggests that the low value for F3 is related 
to the invariance of the velocity-derivative skewness. 

Although the computed fourth-order correlations suggest that several scal­
ing exponents are necessary, it is possible that at much higher Reynolds num­
bers one scaling exponent is sufficient. If so, the self-similiar regime described 
by the models has not been reached. The slight rise in F3 might indicate 
that the calculations are approaching this regime. A change in the velocity­
derivative flatness scaling exponent at higher Reynolds numbers would be 
seen as all the exponents approach the asymtotic value. This could be in­
terpreted as a variation in the dissipation-dissipation correlation exponent J-t 
with Reynolds number. Experimentally, the Reynolds-number dependence of 
the velocity-derivative skewness and flatness is different at very high Reynolds 
number, with CY4 rv 0.32 for R).. = 200 to 20,000 (Van Atta and Antonia 
1980). There are two experimental measurements that would help clarify 
this matter. If U2 and Ul can be measured simultaneously, which now seems 
possible with crossed-wire probes, then 

(36) 

and 

(
aU2)4 3 11 3 1 

16 =< - >= -It + -h- -13+ -14 
ax! 140 140 35 80 

(37) 

could be measured. If the trends calculated are correct, 12 should dominate 
in Is, and 14 should dominate in h. This implies that the scaling exponent of 
the normalized correlation of Is should be greater than that of F()'IJ,4, and the 
scaling exponent of the normalized correlation of h should be the largest. 

The fifth- through eighth-order velocity-derivative correlations (3) and Yor-
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ticity moments, 
< Wln > 

Fw n =-----
<W12 >n/2 

(38) 

have also been calculated. Since the statistics deteriorate as the order of 
the correlations increases (appendix A), only the velocity-deri vative skew ne' , 
flatness, and fifth- and sixth-order correlations are plotted in figure 7, even 
though the fifth- and sixth-order statistics are questionable. The exponents 
for the velocity-derivative correlations in figure 7 a.rE' 0.1 ± 0.03, 0.27 ± 
0.03, and 0.55 ± 0.03 respectively. The lognorm al thE'ol'y predicts that 
these exponents should be proportional to n(n-l) (equalion 4) and the (3-
model predicts (n-2) (equation 5). The lognormal theory provides a better 
fit, as in the experiments (Antonia et al. 1982). The associated value of 
the dissipation-dissipation correlation exponent J.t has noL been calculated 
because the simulations are not in the Reynolds number regime where the 
experimental value is usually found. 

Assuming isotropy, FW4 = F4 . The most important point that can be 
made about the sixth-order vorticity correlation (Ji'w 6 .. figure 9) is that its 
scaling exponent (1.1 ± 0.1) is much larger than the corresponding sixth-order 
velocity-derivative scaling exponent, just as was true for the fourth-order 
correlations. 

§F. Scalar and Mixed Scalar-Velocity Fourth-Order Derivative Correlations 
There are three fourth-order derivative correla.tions which have been 

measured experimentally, the velocity-derivat ive flatness, Fi)n~ (3). the scalar­
derivative flatness 

< ( aU )n > 
F ~ 

aU" = < ( au )2 > n/2 ' 
~ 

and the mixed-derivative correlation 

n=4 (39) 

( 40) 

The uncorrelated value for the velocity- and scalar-derivative flatnesses, as­
suming Gaussian statistics, is 3, and the uncorrelated value for the mixed­
derivative correlation is 1. The rotationally-invariant form of the scalar-
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derivative flatness in isotropic flow is 

( 41) 

In the experiment of Antonia and Chambers (1980), the atmospheric 
temperature-derivative flatness increases much faster with Reynolds num­
ber than the velocity-derivative flatness. Specifically, if Fao4 r-..J R).. Oi', then 
ao = 0.5 for 100 < R). < 10,000. In our simulations (figure 8), the scalar­
derivative flatness also has a stronger dependence on Reynolds number than 
the velocity-derivative flatness. In addition, the scalar-derivative flatness in­
creases with Prandtl number for given Reynolds number, while the scaling 
exponents decrease. For Prandtl numbers 0.1, 0.5, and 1.0 we found ao = 
0.48 , 0.44, and 0.36. The trend for the flatness factors at low Prandtl num­
bers to increase faster with Reynolds number than at larger Prandtl numbers 
suggests that the large exponents for Pr = 0.1 and 0.5 might be transient, 
and that at higher Reynolds numbers they will have a exponent similiar to 
that for Pr = 1.0. That is, ao = 0.36, which is the same order as the ex­
ponent for the vorticity flatness (F4 ), might be an upper bound for the scaling 
exponent at large Reynolds numbers for all Prandtl numbers. 

Although the sc alar-derivative flatness increases with R). at similiar rates in 
experiment and in our simulations, the Reynolds numbers are very different. 
Sreenivasan et al. (1980) have measured the scalar-derivative flatness in a 
wind tunnel with temperature fluctuations produced by a heated screen and 
find Fao4 = 5.5. The Prandtl number is 0.7 and we believe R). R:j 24. (R). 
was computed from their u2 data and is consistent with similiar wind-tunnel 
experiments by Warhaft and Lumley (1978).) For R).. R:j 24, their result is 
consistent with our calculations and lies on our curve for Pr = 0.5 in figure 
8. 

The sixth-order scalar-derivative correlations, Fao6, are plotted in figure 9. 
The scaling exponents for Prandtl numbers 0.1, 0.5, and 1.0 are 1.48, 1.30, 
and 0.92 respectively, showing the same trends with Prandtl number as the 
fourth-order correlations. 

Before disscussing the one experimentally-measurable mixed correlation we 
will consider some rotationally-invariant correlations between the velocity and 
scalar derivatives where both are second order. These are 

< ('VBfw2 > 
F'\lOwl = 2 < 'VB2 > < w > (42) 
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and 

F -3 «\l8'W)2> 
v Ow2 - < \l 82 > < w2 > 

< (\l8)2e2 > 
Fv Oe 1 = ---'-:--'----:--

< \l82 > < e2 > 

3 < 08joxieijejko8joXk > 
FVOe2 = < \l82 > < e2 > 

(43) 

(44) 

(45) 

They have been normalized so that their uncorrelated values are 1. 
Correlation FVowI is plotted in figure 10 and is nearly I, showing that there is 
little correlation between the magnitudes of the vorticity and scalar deriva­
tive. Correlation Fv Ow2 is plotted in figure 11 and shows a strong anti­
correlation between the direction of vorticity and the direction of the scalar 
gradient, which would be consistent with the scalar is being wound around 
vortex tubes. Batchelor (1952) predicts this result for the stretching of a 
volume element of fluid. 

Both correlations between the strain rate and the scalar derivative are 
greater than one and show a tendency to increase with Reynolds number for 
R). < 30, then remain constant or increase slowly, much like the skewnesses 
do. The experimentally-measurable mixed correlation is related to FVOel and 
FVOe2 by 

< (~)2( it)2 > 3 4 
Fuo = < (OU 1 )2 >< (..QL)2 > = '7FVoel + '7FVOe2 (46) 

OXI OXI 

and is plotted in figure 12(a). Fuo has been measured by Park (1976) and is 
greater than one. Correlations Fv Oel and Fv Oe2 are plotted in figures 12(b) 
and 12( c) respectively. 

We have calculated a wide assortment of other correlation factors, none of 
which show a significant divergence from their uncorrelated values. This is 
especially true for those with the scalar variance, such as 

< 84 > 
< 82 >2 

For both our simulation and experiment (Sreenivasan et a1. 1980) the scalar­
variance flatness is 3, the Gaussian value. This is expected because, except for 
mixing, the scalar level is not affected by the dynamics although its derivatives 
are. 
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§G. Graphics In Siggia (1981a) three-dimensional perspective plots of the 
vorticity field indicated the presence of vortex tubes. We have produced 
similiar graphics for the vorticity, scalar gradient, and principal rates of 
strain for a single time from run F19. These are shown in figures 13 to 18. 
These figures are two-dimensional, black-and-white projections of what can 
be seen using colored graphics or a three-dimensional graphics terminal. In 
figures 13( a-c) short lines are used to show the direction of vorticity, with 
the length of the lines proportional to the magnitude of the vorticity. The 
vorticity is plotted at a grid point only if it was above a threshold, which is 
picked such that only 0.25%, or about 500, of the grid points of a 643 mesh 
are plotted. The 0.25% value was picked so as to allow an assortment of 
structures to appear, but not so many that the pictures would be cluttered. 
Figure 13(b) represents the same flow field as figure 13( a), but rotated 90° 
about the vertical axis. A strong concentration of vorticity extends most of 
the way across our computational box in both projections. Rotation shows 
that this structure is a tube~ The vorticity in the gap indicated by the circle 
in figure 13( a) is just below the threshold picked. In figure 13( c) the threshold 
is lowered such that 1 % of the grid points are plotted and this gap is filled. 
The circled area in figure 13( c) indicates where two tubes might be merging 
into one. 

In figures 14( a, b) the lines represent the direction of the scalar gradient. 
The projections are the same as in figures 13( a, b) and 0.25% of the grid points 
are plotted. The scalar gradient field appears to have well-defined structures, 
and although it is not very clear in figures 14(a,b), rotation shows that t hese 
structures are sheets. By comparing figures 13(a) and 14(a) we can see that in 
the vicinity of the largest vortex tube that the scalar gradient is perpendicular 
to the vorticity. This is consistent with our calculation of F'V8w2 (43), which 
suggested that the scalar gradient and vorticity are orthogonal. 

To better visualize the correlation between vorticity and scalar gradient, 
two-dimensional slices of the vorticity and scalar gradient are plotted in 
figures 15 and 16. The location of the slices is indicated by the arrow in figure 
13(a). In these pictures, the scalar gradient (figure 16) appears wound around 
the vortex core (figure 15). Two-dimensional vortex simulations which include 
scalar markers (Aref and Siggia 1980) and flow-visualization experiments 
(Winant and Browand 1974; Brown and Roshko 1974) also show the scalar 
marker winding around what are believed to be vortex cores. 

In figures 17(a,b) the rate of strain is plotted for the same flow field and 
projections as in figures 13(a,b). Since the rate of strain is a tensor, it cannot 
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be described with a single line segment. However, by plotting only one of 
the principal rates of strain at a time, graphics can be produced that show 
t he structure of the strain field. In figures 17( a,b) we conditionally sample 
based on the trace of the square of the rate-of-strain tensor (e2 ), then plot 
t he principal rate of strain with the largest absolute value; 0.5% of t he grid 
points are used and in every case the largest principal rate of strain was 
negative, or compressive, with stretching in the two directions perpendicular 
t o this component to maintain incompressibility. We might expect the largest 
principal rate of strain to be compressive because the velocity-derivative 
skewness (14) is negative. That is, by comparing the skewness with one of 
its isotropic forms (the trace of the rate of strain cubed, (17a), we see t hat 
a negative skewness implies a negative value for the largest principal rate of 
strain. 

In figures 17(a,b) there are obvious structures in the rate-of-strain field, but 
it is not clear from rotation whether these are tubes or sheets. However, there 
is definite alignment with respect to the vort icity and scalar gradient which is 
consistent with the calculated statistics. First, because F2 (33), the correla­
tion between the magnitudes of the rate of st rain and vorticity, is large, we 
expect the rate of strain to be concentrated near the vortex tubes. In figure 
17( a) the largest strain structure is located near the strong vortex t ube in 
figure 13( a). Next, since there will , on the average, be vortex stretching along 
the tubes, any compressive components should be perpendicular to the tubes. 
By comparing figures 13( a) and 17( a) it appears that the compressive com­
ponent of the rate of strain is aligned perpendicular to the vortex tube. This 
is further illustrated by comparing figure 18, which plots a two-dimensional 
slice of the strain, with figure 15, the slice of the vorticity. The slice in figure 
18 is the same as in figures 15 and 16. Finally, how do the stretching, or ex­
pansive, components of the rate of strain align with the vorticity? A linearized 
model due to Viellefosse (1982) shows the larger expansive component aligned 
perpendicular to the vorticity, and the smaller expansive component aligned 
along the vorticity. Since one of the rotationally-invariant forms of the skew­
ness (17b) is related to vortex stretching, and both the skewness and F3 are 
small, our statistics also suggest that the smaller expansive principal rate of 
strain is aligned with the vorticity. Unfortunately, we have no graphics that 
show the expansive components of the rate of strain clearly. 

How would we expect the scalar gradient to be aligned with respect to 
the rate of strain? First, the scalar-gradient sheets and rate-of-strain struc­
tures should be located near one another because the fourth-order correla-
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tions between the rate of strain and scalar gradient (44,45) are greater than 
one. Second, the scalar gradient should be aligned along the compressive 
component of the rate of strain because the mixed-derivative skewness is 
negative. That is, just as we predicted that the largest component of the rate 
of strain is compressive by comparing the velocity-derivative skewness with 
one of its isotropic forms, by comparing the mixed-derivative skewness with 
its isotropic form (18) we predict that the compressive component of the rate 
of strain is aligned with the scalar gradient. Comparisons between figures 
14a,b and 16 to 17a,b and 18 show that both of these predictions are borne 
out. 

§B. Discussion We have studied the derivative correlations of an idealized 
turbulent flow because they are a quantitative means of probing the small 
scales of that flow. Numerically, the derivative correlations helped establish 
the resolution of our simulations. Once the resolution was established, they 
were compared with experiments and phenomenological models and were used 
in the interpretation of three-dimensional graphics. Because the small scales 
of turbulence are believed to be decoupled from the large scales, what is 
learned about the small scales in this idealized flow should be applicable to 
turbulent flows in general. 

The most important result for the velocity-derivative correlations is that 
they do not obey the scaling laws predicted by statistical models of intermit­
tency, such as the lognormal model and the ,B-model. These models predict 
that the skewness will depend on Reynolds number and that all the fourth­
order velocity-derivative correlations will have the same Reynolds-number 
dependence. In the simulations the skewness does not depend on the Reynolds 
number and each of the rotationally-invariant fourth-order correlations has 
a different exponent. It is possible that at very high Reynolds numbers the 
velocity-derivative correlations do behave as these models predict and there 
are high-Reynolds-number experiments (Tavoularis et al. 1978) that show 
the skewness increasing and a different power law for the velocity-derivative 
flatness (Van Atta and Antonia 1980). Alternatively, models that include the 
structure of the small scales, such as the model of Tennekes (1968), might be 
necessary. The skewness is consistent with the suggestion of Tennekes that 
vortex stretching is caused by large eddies the size of the Taylor microscale. 
Tennekes's model also suggests that the velocity-derivative flatness increases 
with Reynolds number with a4 = 1.0. Both our simulation and experiments 
find a much smaller value for a4' In appendix B it is shown how simple 
modifications of Tennekes's model can give smaller values of a4, while a3 
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remains zero. This might provide a basis for a more complete model of small­
scale turbulence. A simple experiment which might resolve this issue is to 
find the exponents of more of the fourth-order correlations. 

The most important result for the derivative correlations of a passive scalar 
is that the scalar-derivative flatness is larger than the velocity-derivative 
flatness. This suggests that the scalar derivative is more intermittent than 
the velocity derivative and might be related to several other anomalous scalar 
effects seen experimentally, for example the "bump" in the scalar spectrum 
described by Hill (1978) and sharp gradients, or interfaces, called "ramps" 
(Antonia et al. 1979). What allows sharp structures to form in the scalar 
field, but not the velocity field? First, they do appear in the velocity field, but 
as vorticity, which cannot be measured directly, and not as simple velocity 
gradients, which are easy to measure. These structures are much more likely 
to be observed in the OU2/0Xl field, than in oudoxl, if our conclusions about 
the relative strengths of Is and h (36,37) are correct. 

Graphical display has been used to demonstrate the alignment indicated 
by the statistics. This shows that the vorticity is concentrated in tubes, not 
sheets, with large concentrations of the rate of strain and scalar gradient 
nearby. The statistics and graphics show that the largest principal rate 
of strain is compressive and aligned perpendicular to the tube. The larger 
stretching, or expansive, component of the rate of strain also appears to be 
perpendicular to the vortex tubes, w hUe the stretching along the tubes is small 
and is probably not caused by the immediate vortex tube. This structure and 
the statistics are consistent with the linearized model of Viellefosse (1982) 
and the structure model of Tennekes (1968), who predicted that the velocity­
derivative skewness is independent of Reynolds number. Graphical display 
also shows that large values of the scalar gradient are wound in sheets around 
the tube and that the gradient is aligned perpendicular to the vorticity and 
along the compressive component of the rate of strain. This is consistent with 
correlations between the scalar gradient and both the rate of strain and the 
vorticity. 

Although flow visualization has shown the existence of extended "coherent" 
structures on the large scales, most theoretical models of the small scales of 
turbulence have neglected alignment. They assume that small-scale struc­
tures in fully-developed turbulence are distributed with random orientation 
and that statistical mechanics is applicable. Our results suggest that tur­
bulence is characterized by extended vortex tubes and strong alignment bet­
ween the vorticity and rate of strain. It is possible that as the Reynolds 
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number increases these tubes become more tightly wound and the alignment 
becomes stronger. There would still be statistics, but the statistics would 
have to include structures. Strong alignment is not inconsistent with the best 
known characteristic of turbulence, the k- 5/ 3 spectrum. Lundgren (1983) has 
shown how fluctuations about a Burger's vortex can give a k-5/ 3 spectrum. 
Our highest Reynolds number simulation also shows a short -5/3 regime. 
Even if the correlations behave as the statistical phenomenological models 
predict at higher Reynolds numbers, there should still be a tendency for the 
vorticity to form tubes and for there to be alignment between the vorticity 
and rate of strain. The vortex tubes might show more random orientation 
than in our current graphics, but there would still be strong alignment at the 
smallest scales. 

Often, subgrid modelling is used with a three-dimensional code (Moin and 
Kim 1982) to achieve higher Reynolds numbers. This might be useful for 
studying scalar t ransport, but would be inappropriate in our work. Subgrid 
modelling would smooth the flow and result in lower, and incorrect, skewness 
and flatness factors. 

The next step in studying small-scale statistics with numerical codes will 
be the influence of large-scale shear, strain and temperature gradients. For 
example, it is known that in the presence of a shear and temperature gradient 
that the scalar-derivative skewness (16) is nonzero. We also want to learn 
more about the universality of the isotropic statistics in anisotropic flows and 
study "band-averaged" statistics. By band-averaged we mean calculating 
flatnesses based on only part of the velocity spectrum. This has been done 
experimentally (Tavoularis and Corrsin 1981) and comparisons will be made. 
After that we will experiment with different subgrid models and see how well 
they preserve the band-averaged statistics. We hope that once a clear picture 
of the small-scale structures is developed that improved methods of subgrid 
modelling can be found. 

Future areas of work with passive scalars are the return to isotropy of 
an anisotropic scalar distribution, the dispersion of an interface, the correla­
tion between two independent scalars, and, eventually, chemical reactions. 
Turbulent chemical reactions are believed to occur primarily along the sharp 
interfaces that develop in the scalar field. Intermittency will have a significant 
effect on the development of these interfaces. 
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§Appendix A: Errors Many of the trends calculated in this paper, in particular 
the dependencies on Reynolds and Prandtl numbers, could be sensitive to 
moderate to large errors in our statistical sample. Therefore, in tables 3-6 
the correlations and their statistical variances are given. Where possible, 
isotropic forms of the correlations have been used to effectively triple the 
sample size and reduce the errors. For one case, F7b, errors are given based 
on comparisons with a much longer simulation. By comparing the variances 
and errors in F7b we can determine a characteristic sample size for each 
statistic, N s , which we define by 

(per centage ) 
(variance)s 

error s = . 
J(Ns - 1) 

To calculate the errors for the other forced simulations, first estimate the 
sample size by comparing the number of eddy-turnover times with the number 
in F7b. Then calculate the error by 

where NF7 is the number of eddy-turnover times in F7b, Ne is the number 
in F13, and Ns is the sample size for the flatness in F7b. As an example, we 
find the error for the velocity-derivative flatness for F13 (table 3), 

5.2% 
2.0% = -------

J14(2.6/4.5) - 1 

Detailed tables of the errors for the 32.3 simulations are given in Kerr (1981). 
All the third- and fourth-order correlations have error bars which are less than 
10%. Fitth- and higher-order correlations and variances were not calculated 
for F7, but based on the large variances for these statistics in the other 
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simulations (tables 5 and 6), we expect that their errors are very large. Fifth­
and higher-order correlations are included only to allow a rough comparison 
with the phenomenological models. Third- and fourth-order statistics in 
tables 5 and 6 were calculated without the isotropic forms discussed and as 
a result their errors are much higher than those shown in tables 3 and 4. 

Because of their significance, the time-dependence of the velocity-derivative 
skewness (14) and one of the fourth-order velocity-derivative correlations, 
F3 (34), are shown for several Reynolds numbers in figures 3( a) and 6( a), 
respectively. The time-scale has been normalized by the large-scale eddy­
turnover time, te, for each Reynolds number. These figures demonstrate that 
the trends discussed in two earlier sections (Spectra and Skewness; Fourth­
and Higher Order Velocity Correlations) are not statistical errors. Typical 
times over which samples were taken are indicated by the dashed lines in 
figures 3(b) and 6(a). 

§Appendix B: Extension of Tennekes model Let us first review the assump­
tions made by Tennekes (1968) to find the Reynolds-number dependence of 
the velocity-derivative skewness and flatness. His first assumption was that 
the small-scale vortices are strained by vortices whose scale is the Taylor 
microscale, >--. This is equivalent to assuming that the small-scale vortices 
feel only the average rate of strain, 

u/>--. (Bl) 

Next, he assumed that the small-scale vortices have a characteristic width, 
which we will call ~. He assumed that ~ = 17 , the Kolmogorov microscale, but 
we will only assume that >-- > ~ > 17 . This is equivalent to assuming that it is 
some sort of average vortex tube that is significant. To find the higher-order 
correlations, Tennekes assumed that only the vorticity within the small-scale 
structures matters. This is the average vorticity squared, (U />--)2 , divided by 
the volume occupied by the small-scale structures, which if t hey are tubes of 
width ~ and bend over a distance >--, is 

(B2) 

Therefore, within the tubes the vorticity is 

(B3) 
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To find the skewness, Tennekes used (17b) and multiplied the vorticity within 
the tubes (B3), the average rate of strain (Bl), and the volume of the vortices 
(B2), then normalized by (U /'A)3. This gives 

Su "-' < wew > "-' {U/~)2{U/'A)(~/'A)2 "-' 1 
{f/v)3/2 (U /'A)3 

Notice that all factors of ~ and 'A drop out, so it is not critical that the size 
of the small-scale structures be assumed to be the Kolmogorov microscale. 

To find the flatness, one simply squares the vorticity within the small-scale 
structures, multiplies by their volume, and normalizes by (U /'A)4. This gives 

If ~ = 1], then as Tennekes showed, F07J,4 

simulations, with a4 < < 1, we require that 
1. In our 

It also follows that when n is even that an = a4 X y. This is the 
same equation) (5)) as found by the fi-model of Frisch) Sulem) and Nelkin 
(1978). When n is odd our model suggests that an = a(n-l). As pointed 
out, our simulations and experiments do not support the fi-model. Nor does 
this simple model explain why the velocity-derivative flatness and vorticity 
flatness have different scaling exponents. But a simple model such as this 
might be the starting point of a more complete model of the small scales. 
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TABLE 1. - CHARACTERISTICS OF FORCED SIMULATIONS 

Fu n Mesh RA Pr t. t a N b f Kk KOC te 

Fl 32 3 9.0 2 .0 19.0 20 9.4 15.8 4.7 
F2 32 3 9 . 0 · 5 19.0 20 9.4 5.6 4.7 

F3 32 3 12 . 3 2.0 13.6 35 11. 9 20.0 3.55 
F4 32 3 12.3 1.0 13.6 35 11.9 11. 9 3.55 
F5 32 3 12.3 · 5 13.6 35 11. 9 7.8 3.55 

F6 32 3 18.5 1.0 9.6 25 16.5 16.5 1. 97 
F7a 32 3 18.5 · 5 39.0 40 16.4 9.8 1. 98 
F7b 32 3 18.5 .5 9.0 10 16.5 9. 8 1. 97 
F8 32 3 18.5 · 1 9.6 25 16.5 2.9 1. 97 

F9 32 3 24 . 0 · 5 9.5 20 21. 4 12.7 1. 26 
FlO 32 3 24.0 · 1 9.5 20 21. 4 3. 8 1. 26 

Fll 32 3 28.9 · 5 29.5 60 25.7 15.3 .91 
F12 32 3 28.9 -- 29.5 60 25.8 -- .91 
F13 64 3 28.5 1.0 10.0 11 12.3 12.3 3.83 
F14 64 3 28.5 · 5 10.0 11 12.3 7.3 3.83 
F15 64 3 28.5 .1 10.0 11 12.3 2.2 3.83 

F16 64 3 37.5 1.0 4.5 10 16.0 16.0 2.51 
F17 64 3 37 . 5 · 5 4.5 10 16.0 9.5 2.51 
F18 64 3 37.5 · 1 4.5 10 16.0 2.8 2.51 

F19 64 3 48.2 1.0 6.75 28 22.4 22.4 1. 41 
F20 64 3 48.2 · 5 6 . 75 28 22.4 13.3 1. 41 
F21 64 3 48.2 .1 6.75 28 22.4 4.0 1. 41 

F22 64 3 55.9 1.0 4.00 17 27 . 2 27.2 1. 05 
F23 64 3 55.9 · 5 4.00 17 27.2 16.2 1. 05 
F24 64 3 55.9 .1 4.00 17 27.2 4.8 1. 05 

F25 128 3 82.9 1.0 1. 35 27 45.7 45.7 .85 
F26 128 3 82.9 .5 1. 35 27 45.7 27.2 .85 
F27 128 3 82.9 · 1 1. 35 27 45.7 8.1 . 85 

a . 
bT1me span of statistical sample . 

Number of files averaged. 
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TABLE 2.- VELOCITY AND SCALAR FLATNESS FACTORS USED TO 
DETERMINE ALIASING ERRORS 

Run Grid size Pr F au 4 (64) F as 4 (64) F au 4 (32) F as 4 (32) 

Averages of many realizations 

Fll 32 0.5 -- -- 3.94 5.73 
F12 32 -- -- -- 4.17 --
F13 64 1.0 4.18 6.88 -- --
F14 64 · 5 4.18 5.82 -- --
F15 64 · 1 4.18 3.61 -- --

One realization 

F13 64 1.0 2.99 7.30 3.93 5.62 
F14 64 · 5 3.99 5.95 3.93 5.08 
F15 64 · 1 3.99 3.55 3.93 3.57 

Note: Fll is 32 3 aliased. F12 is 32 3 de-aliased. The size 
of the grid used to calculate the flatness is in parentheses. 

TABLE 3.- VELOCITY DERIVATIVE SKEWNESS AND FLATNESS FACTORS 
AND VARIANCES 

Run R" Su S F I F 4 F 2 F 3 E 

Decaying 2.33 -0.32 
Decaying 4.07 -.40 
Decaying 6.20 -.44 
FI -F2 9.0 -.502 0.868 3.39 3.17 2.26 0.693 

6.7 % 1. 6% 5.3 % 4.9 % 6.5 % 5.3 % 
F3-F5 12.3 -.523 .748 3.51 3.35 2.51 .642 

6.9 % 1. 5% 4.6 % 6.5 % 6.5 % 4.6 % 
F7a 18.5 -.506 .621 3.6 9 3.82 3.72 .612 

3.8 % 2 9-• 0 5.4 % 7.9 % 7.7 % 7.7 % 
F7b Real error .7 % 1. 5% 1. 8 % 1. 7 % .6 % 
F9-FIO 24.0 -.507 .578 3.92 4.36 4.14 .621 

2.2 % 3.7 % 8.1 % 6.0 % 5.9 % 
F13-F15 28.5 -.507 .553 4.18 4.53 4.40 .658 

0 9-• 0 5.2 % 8.3 % 7.7 % 5.7 % 
F16-F18 37.2 -.504 .530 4.26 4.86 4.53 .652 

2.4 % 4.3 % 7.8 % 5.6 % 6.4 % 
F19-F21 48.2 -.501 .521 4.38 5.42 4.88 .675 

1. 7 % 3.5 % 5.2% 4.9 % 4.5 % 
F22-F24 55.9 -.497 .520 4.54 5.77 5.08 .712 

1. 6% 4.4 % 6.1 % 4.9 % 4.9 % 
F25-F27 82.9 -.511 .523 5.11 7.09 6.00 .779 

.9 % 3.8 % 5.9 % 4.6 % 3.6 % 

35 



Run 

Fl 

F2 

F3 

F4 

F5 

F6 

F7a 

F7b 
F8 

F9 

FlO 

F13 

F14 

F15 

F16 

F17 

F18 

F19 

F20 

F21 

F22 

F23 

F24 

F25 

F26 

F27 

TABLE 4. - SCALAR- AND MIXED-DERIVAT IVE SKEWNESS AND 
FLATNESS FACTORS AND VARIANCES 

R" Pr S u 8 S F 'V8 X 
F 'V8Wl F 'V8el F 'V8W2 

9.0 2.0 -0.523 0.585 5.18 0.94 1.16 0.663 
3.8 % 14.3% 5.1 % 6.1% 10.4 % 

9.0 .5 -.420 .749 3.74 .97 1. 07 .768 
3.3 % 5.8 % 4.6% 4.4% 11. 7% 

12.3 2.0 -.520 .554 5.83 .93 1.18 .636 
3.8 % 11. 4 % 5.6% 6.4% 8.8 % 

12.3 1.0 - . 510 .608 5.11 .93 1.16 .657 
3.9 % 11. 2% 6.5% 6.8% 8.0 % 

12.3 .5 -.465 .673 4 .25 .95 1.12 .708 
4.3% 6.9 % 5.7% 5.8% 8.3% 

1 8.5 1.0 -.506 .551 5.87 .92 1.19 .624 
4.9% 9.4% 5.3% 6.0% 7.5 % 

18.5 · 5 -.479 .579 4.93 .94 1.12 .690 
3.1 % 7. 2% 8.3% 4.0% 8.8% 

Real errors ±. 6 % -2.7% +2.0% +2.8% ±.9% 
18.5 .1 - . 286 .813 3.37 .98 1. 03 .843 

8.7 % 2.9 % 4.9% 4.9% 5.4 % 
2 4.0 .5 - .486 .549 5.63 .94 1.18 .663 

4.1 % 12.2% 5.1 % 5.3% 7 .9% 
24.0 · 1 -.344 .657 3.58 . 98 1. 05 .801 

7 . 3% 6.0 % 3.9% 4.0% 5.6 % 
28.5 1.0 -.517 .527 6.88 1. 03 1. 38 .217 

3.6% 8.4 % 7.2 % 5.8 % 9.6 % 
28.5 .5 -. 506 .544 5.82 1. 02 1. 33 .281 

3.9 % 10.9 % 6.9% 4.6% 9.9% 
28.5 .1 -.361 .596 3.6 1 1. 00 1.13 .557 

5.7 % 10.2 % 7.3 % 4.2% 6.7 % 
37.2 1.0 -.521 .523 7.57 1. 06 1. 41 .154 

2.5 % 7.5 % 6.6% 5.6% 8.9 % 
37.2 · 5 -.517 .535 6.49 1. 06 1. 39 .205 

2.7 % 6.3 % 6.1 % 4.9% 8.8% 
37.2 · 1 -.408 .549 3.90 1. 06 1. 20 .464 

3.7 % 7.1 % 5 .0% 4.0% 6.6% 
48.5 1.0 -. 497 .511 8.12 1. 02 1. 36 .117 

2 . 6% 9.2 % 3.7% 3.9% 5.2% 
48.5 .5 - .515 .532 7.73 1. 02 1. 38 .139 

3.1 % 10.7 % 3.8% 4.2% 7.1% 
48.5 .1 -.446 .519 5.00 1. 03 1. 26 .352 

4.3 % 13.5% 3.6% 4.1% 7.2% 
55.9 1.0 -. 463 .493 7.98 1. 02 1. 33 .146 

3.1 % 11. 0 % 3.5% 4.3% 7.4% 
55.9 . 5 -.506 . 526 8.29 1. 01 1. 38 .127 

3.2 % 12.7 % 3.7% 4.5% 5.0% 
55.9 .1 -. 457 .507 5.59 1. 03 1. 28 .292 

3.9 % 12.2 % 4.0% 3.7% 6.0% 
82.9 1.0 -. 493 .507 10.76 1. 04 1. 43 .076 

2.5 % 10.0 % 4.3% 3.9% 3.6% 
82.9 · 5 -.516 .522 10.75 1. 04 1. 47 .073 

2.4 % 10.7 % 4.7% 4.2% 2.9% 
82.9 .1 -.473 .490 7.44 1. 08 1. 38 .192 

2.6 % 13.2 % 3.9% 4.4% 5.6% 

3G 

F 'V8e2 

1. 77 
7.9% 
1. 49 
6.4% 
1. 82 
8.0% 
1. 76 
8.5% 
1. 64 
7.5% 
1. 82 
7.1% 
1. 69 
4.0% 

+2.8 % 
1. 3l 
5.3% 
1. 81 
5.8% 
1. 43 
4.6% 
2.14 
6 . 2% 
2.05 
4.9% 
1. 56 
4.6% 
2.21 
5.7% 
2.17 
4.9% 
1. 73 
3.8 % 
2.11 
4.3% 
2.15 
4.6% 
1. 89 
4.8% 
2.03 
4.6% 
2.14 
4.9% 
1. 93 
4.4% 
2.23 
4 .2 % 
2.31 
4.3% 
2.11 
4.8% 
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TABLE 5.- HIGHER-ORDER VELOCITY DERIVATIVE AND VORTICITY CORRELATIONS 
AND VARIANCES 

Run R" S F au'+ Fau s F au 6 F au 7 F au 8 F '+ F 6 F 8 
U W W w 

F13-15 28.5 0.527 4.12 -6.86 39.5 -118 701 4.69 51. 8 988 
24% 11% 40 % 41 % 82% 93% 13.4% 40% 70% 

F16-18 37.2 .531 4.22 -6.98 40.1 -117 638 5.00 61.2 1302 
21% 7.8% 28% 24% 45% 55% 9.1% 24% 39% 

F19-21 48.5 .525 4.38 -7.61 47.2 -159 1003 5.49 82.3 2620 
20% 7.7% 32% 30% 83% , 76% 7.7% 35% 88% 

F22-24 55.9 .528 4.63 -8.07 53.8 -179 1206 5.85 96.7 3284 
17% 7.4% 25% 25% 50% 62% 8.7% 33% 76% 

F25-27 82.9 .526 5.11 -9.38 73.3 -281 2326 7.12 185.0 15613 
10% 5.2 % 20% 48% 47 % 56% 6.9% 48% 142% 
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Run 

F1 5 

F18 

F21 

F24 

F27 

F14 

F17 

F20 

F 23 

F26 

F13 

F16 

F19 

F 22 

F 25 

TABLE 6.- HIGHER-ORDER SCALAR­
DERIVATIVE CORRELATIONS AND 
VARI ANCES 

RA Pr Fae 4 F ae 6 F ae B 

28. 5 0 .1 3 . 71 30 457 
25 % 67% 103 % 

37 .2 . 1 3 . 87 31 379 
13 % 33 % 55 % 

48. 5 · 1 4 . 50 46 784 
22 % 70 % 140 % 

55.9 · 1 5.68 89 2696 
25 % 75 % 1 27 % 

82 . 9 . 1 7 . 32 161 69 32 
17 % 48 % 87 % 

28 .5 · 5 5 . 87 89 2323 
20 % 51 % 82 % 

37 . 2 . 5 6.54 112 3222 
13 % 33 % 56 % 

48.5 · 5 7.29 144 4928 
16 % 47 % 84 % 

55.9 . 5 8.34 204 9300 
18 % 55 % 1 00 % 

82 . 9 . 5 10 . 8 371 24385 
14 % 39 % 66 % 

28 . 5 1.0 6.94 130 4139 
17 % 43 % 72 % 

37.2 1.0 7 . 68 160 5669 
15 % 37 % 62 % 

48.5 1.0 7 . 95 174 6772 
14 % 41 % 74 % 

55 . 9 1.0 8 . 02 183 7586 
15 % 45 % 85 % 

82.9 1.0 10 . 8 368 23398 
13 % 38 % 67 % 
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Figure 12.- Scalar-velocity derivative correlations. 
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Figure 12.- Continued. 
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Figure 13.- Three-dimensional perspective plots of the vorticity field from run F 19 (Rt-... = 48.5) . Short lines 
two mesh spacings long in the direction of the vorticity are plotted at the points of a 643 mesh if the 
vorticity is above a threshold. 
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Figure 13.- Concluded. 
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(a) The same perspective as in figure l3(a) . The scalar-gradient structure in the top center is aligned along 
with the vortex structure in figure 13 with the scalar gradient perpendicular to the vorticity. This scalar­
gradient structure is a sheet seen edge on. Two scalar structures in the upper-left comer are sheets seen 
from the top down . 

Figure 14. - Three-dimensional perspective plots of the scalar-gradient field for the same time and run (F 19) 
as figure 13 . Short lines two mesh spacings long in the direction of the scalar gradient are plotted at the 
points of a 64 3 mesh if the scalar gradient is above a threshold. 500 lines are plotted . 
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(b) The same field as (a), but rotated 90° about the vertical axis . It has the same perspective as figure 13(b). 
The scalar-gradient structure in (a) which is aligned with the vorticity in figure 13(a) is the fan-like struc­
ture in the upper center. The structures to the right and above the fan-like structure are the sheets in the 
upper-left corner in (a) , but now seen edge on . 

Figure 14.- Concluded. 
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Figure 15.- Two-dimensional slice of vorticity as indicated by the arrow in figure 13(a) . The structure in the 
center might be associated wi~h vortex merging. 
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scalar gradient aligned perpendicular to the vorticity. 
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(a) The same perspective as in figures 13(a) and 14(a). The rate-of-strain structure in the top center is aligned 
along the vortex structure in figure 13 and the scalar-gradien t structure in figure 14 with the com pressive 
component of the rate of strain perpendicular to the vorticity and parallel to the scalar gradient. 

Figure 17. - Three-dimensional perspective plots of the compressive component of the rate-of-strain field for 
the same time and run (F 19) as figures 13 and 14. Short lines two mesh-spacings long in the direction of 
the compressive component are plotted at the points of a 643 mesh if the total rate of strain is above a 
threshold. 1000 lines are plotted. 
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(b) The same field as (a) , but rotated 90° about the vertical axis , It has the same perspective as figures 13(b) 
and 14(b). The rate-of-strain structure in (a) which is aligned with the vorticity and scalar gradient is the 
fan-like structure in the upper center. 

Figure 17.- Concluded. 
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Figure 18.- Two-dimensional slice of the compressive component of the rate of strain (fig. 17) indicated by 
the arrow in figure 13(a). The structure in the center shows the compressive component aligned perpen­
dicular to the vorticity in figure 15 and parallel to the scalar gradient in figure 16. 
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