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NEW INVESTIGATION OF SHORT WINGS WITH LATERAL JETS 
by 

E. Carafoli and N. Camarasescu 

I.M.F.C.A. 

Studii si Cercetari de Mecanica Aplicata, Vol. 29, No.4, pp. 947-962 (1970) 

The work involves the lift of short wings by means of lateral fluid jets 

fired in the plane of the wing in the direction of the span. 

After some theoretical considerations, the experimental results obtained 

in a wind tunnel on a series of wings of various lengths are presented in 

the form of graphs. 

The efficiency of the lift due to fluid longitudinal jets, that is, of jets fired 

from the edge of the wing in the direction of the flow from infinity (jet-flap), 

is considerably reduced when the length of the wing is decreased. In addition 

to increasing the efficiency of longitudinal jets, the simultaneous firing of some 

lateral fluid jets in the direction of the span possesses also a direct effect 

which is independent of that of longitudinal jets. In our previous stUdies [1, 3], 

we initiated a study of lateral jets, both in combination with longitudinal ones, 

and operating completely independently, examining their favorable effect in the 

latter case on a rectangular wing with a length of 2. However, we observed that 

this favorable effect is very large at short wings. Therefore, we studied lateral 

jets systematically, independently of the study of longitudinal ones, pointing out 

the effiCiency of lateral jets on short wings. The same analytical study covered 

also lateral jets inclined by a certain angle with respect to the plane of the 

wing. The downward inclined jet has the effect of recovering partially its 

reaction in favor of the lift. 

However, the present study involves exclusively lateral jets fired in the plane of 

the wing (in the direction of the span) for which we developed also a "theoretical 

model", in order to explain this interesting phenomenon from the scientific 

viewpoint. 
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1. Theoretical considerations 

-Let us consider a rectangular wing with a span of b and a chord c; at the head 

of the wing, in the direction of the span, let us consider a jet of the same depth 

as the chord, possessing the same incidence with respect to the wing at the exit 

(Figure 1). 

At the beginning, the jet behaves as a plate in a uniform current, on the faces 

of which there is a distribution of pressures which yield the resultant Clx on 

both faces at a certain point x, representing the local lift coefficient and 

causing the twisting of the plate, thereby modifying the incidence. 

Let us consider the jet created from narrow strips dx (Figure 2). Each of the 

strips will have a local lift coefficient as a function of x, corresponding to its 

position on the chord; it can be put in the following form: 

(1) 

where Cly is the mean value of the lift coefficient in a certain section y of the 

span; if we designate with r the circulation around this section, the latter will 

be derived from the equation 

1'17 r = L U~cCIr· 
• 2 

(2) 

The elementary lift dP on an element ds of the arc of the strip dx will be 

dP ~ ~ v;. 0 ,% dx ds = L U~ O,z dx Rd 5, 
2 2 

(3) 

where R is the radius of curvature that the strip will obtain at a certain point 

x on the chord of the jet sheet from section y on the span. 

Let us designate also with 

(4) 
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the value of the pulse on the unit length of the jet whereF j is the density, () j 

is the thickness, and Uj is the speed of the fluid jet. In agreement with the 

pulse theorem, the radius of curvature of this strip is given by the relation 

21 dx d6 =.L U~ a,z dx Rd6, 
2 2 

(5) 

_~ _.- .. 4-..-___ ~ __ -~---..-~---.---------.----- .--

from which we obtain 

I I 
R = ---- - ----- (6) 

Lu~a,.. LU;'f(x)C,. 
2 2 

It results from this that each fluid strip from the jet will be curved in a 

different way along the chord; therefore, it will become uneven, leading to a 

deformation of the jet in each of the sections, whereby the jet will have a 

different profile, with varying incidences along the chord. 

On the jet sheet, we define a "mean linen representing the geometric locus of 

all points of application of the resultant of the pressures in each section y from 

the jet sheet. We designate the radius of curvature of this mean line by Rm. 

It should be noted further that the overall lift on the jet sheet in a given section 

y is related to this radius of curvature by a relationship s~milar to (5): 

'>1 de 0 TT:' 
... C-=-' u:' C cR d6=pU rR de 2 2 Q) '" CI CID,.· (i) 

This situation is illustrated in Figure 4, which represents the photographic 

picture of the jet sheet. This radius of curvature is given by a formula similar 

to (6): 
I Ic 

R ... = ---- - ---
~ U2 a pU""r 
2 co IJI 

(i') 

If we introduce further an adimensional jet coefficient: 

C, = 
Ic I (8) 
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Formulas (6) and (7) above become respectively 

(9) 

(9') 

We can observe from Equation (9) that the transversal profile of the jet sheet 

assumes a complex geometric form; it is twisted and thereby a supplementary 

incidence which varies along the span according to a certain law, is introduced. 

This supplementary incidence is added to the initial incidence 

0<.0 of the real wing, in such a way that if we designate the total incidence 

with ~ , we have on the fluid wing 

IX = lXo + &. (10) 

Actually, the phenomenon is very complex; it is complicated by the fact that on 

the one hand, by the interaction of the jet from infinity and the alteration of 

the flow conditions at the surface of the jet due to the viscosity, and on the 

other hand, to the excessive torsion of the jet sheet which offers a sufficiently 

large frontal surface to be reversed and thrown downstream according to laws 

which are difficult to determine. However, we can observe that at the 

extremity of the fluid wing, the jet sheet makes an approximately circular loop. 

The above physical scheme indicates that the increased torsion of the jet results 

in a new increase of the incidence, and thus a new increase of the circulation 

on the wing. However, when the deformation on the jet sheet becomes 

excessive, the aerodynamic laws around the jet become complex and the 

concept of !!incidence" does not have any sense. 

The viscosity-induced thickening of the jet causes some of the particles from the 

. jet to be carried by the current, thereby complicating the motion and 

transforming it into a chaotic one. 
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As far as the suction caused by the jet on the external curvature of the wing 

is concerned, it delays the phenomenon of the detachment of the air current on 

-the profile, ensuring that the lift will follow the law of growth also for very 

large incidences. 

This scheme of the solid and fluid wing can be integrated in Prandtl's theory of 

wings with finite span, and consists in the assimilation of the real wing extended 

by a fluid jet sheet with a solid fictive wing. However, this analogy is valid only 

up to a certain point of the span, after which the torsion becomes excessive, 

while the motion becomes complicated without reducing the circulation thereby. 

It is maintained further as an effect of the intensity of the fluid jet; the latter 

is twisted and wraps itself into a helicoidal form, being thrown downstream. 

On the basis of the above considerations which attempt to clarify the complex 

phenomena involved in this problem, a theoretical model allowing to calculate 

the lift coefficient and the resistance of the solid wing can be developed. 

We will consider these problems in other studies. In this article we present the 

remarkable experimental results that we obtained. 

2. Experimental results 

The experiments carried out in the wind tunnel of the Institute of Fluid 

Mechanics in 1968 are a continuation of tests undertaken many years previously 

[1, 2] in the same wind tunnel, on wings with a length of A.=2. The new 

experiments were carried out on short wings, specifically having a length of 

A = ~ = 2; 1,5; 1; 0,6 
c 

which showed indeed that the effect of the lateral jets on short wings is simply. 

spectacular . 

The profile of the tested wings was symmetrically biconvex. 



- 6 -

At the head of the wing, a narrow slit along the chord (Figure 5) in the direction 

of the axis of the profile is connected by means of a duct to a compressor which 

ensures the air supply of the jet sheet. 

The jet sheet is created in the plane of the wing in the direction of the span 

throughout the whole length of the chord. In order to obtain uniform distribution 

of the speed in the jet sheet, a series of baffles were. displayed inside the wing 

on the air supply circuit from the compressor. The intensity of the jet and that 

of the pulse coefficient were varied by varying the air supply fi'om the 

compressor. 

The model was mounted in· a vertical position on a disk attached to an 

aerodynamic balance which could be rotated around an axis parallel with the 

span in order to change the incidence with respect to the air current from the 

wind tunnel. 

In order to avoid a rigid connection between the wing mounted on the balance 

and the air supply duct from the compressor, a flexible connection through a 

mercury container was provided, in order to ensure good leak tightness and to 

avoid introducing the action of external forces on the model. A vertical glass 

tube communicating with this mercury container was used as a manometer in 

order to determine the air pressure in the supply duct from the compressor. 

The aerodynamic forces acting on the model were determined by tensometric 

methods, measuring the deformations which appear in an elastic element 

mounted in such a way that it was stressed by a single component of the 

aerodynamic force. 

The deformation-sensitive electric transducers were connected with the plastic 

element to form a measurement circuit. Preliminary calibration helped to 

establish the proportional relationship between force and deformation. 
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The interior of the metalic model was provided with air supply ducts for the jet. 

In view of the large number of parameters which must be taken into account in 

-the experiments, the following method was adopted: the incidence of the wing 

was kept constant, changing the jet coefficient from 0 to a maximum value 

limited by the functional characteristics of the installation in question. The 

variation of the lift coefficient as a function of the jet coefficient Cj for a 

given value of the incidence was thus obtained. These experiments were repeated 

for various wing incidence values, obtaining a diagram for each of the 

incidences. These diagrams are shown in Figures 7-10 for wing lengths of l\. =2, 

1.5, and 0.6. 

With the help of these diagrams, we determined the values of the lift 

coefficients of the wing, i.e. CI, for a given value of the jet coefficient Cj as 

a function of the incidence ~o which made it possible to plot the curves· CI as 

a function of the incidence 0(0 of the wing. 

These curves were plotted in Figures 11-14 for the same length values and for jet 

coefficient values of Cj = 0.25, 0.50, 0.75, and 1. Study of these diagrams 

revealed that for short lengths, lateral jets increase considerably the lift 

coefficient. 

In order to illustrate this, we determined the ratio of the lift coefficient of the 

wing with a lateral jet, designated as Clj, and the Yft coefficient of the wing 

without jet, designated as Clo; i.e. 

The diagrams shown in Figures 15 to 18 represent this ratio as a function of the 

incidence 0 for each of the four lengths and for the same jet coefficient. 

These diagrams indicate the considerable effect of fluid jets on short wings. 

Received at the editorial office on October 16, 1969. 
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