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Introduction

GAMNAS (Geometric and Material Nonlinear Analysis of Structures) is a

two-dimenslonal finite element stress analysis program. The program was

developed to support fracture mechanics studies of debondlng and delamlnatlon

(refs. 1-3). Options include linear, geometric nonlinear, material nonlinear,

and combined geometric and material nonlinear analysis.

The purpose of this manual is to document the theoretical basis of GAMNAS

and to provide instruction in the use of the program. Details of the program

organization and logic are presented in order to guide the user who needs to

modify the code to meet some special need. Familiarity with linear finite

element analysis is assumed.

First, theoretical aspects of GAMNAS are presented. Then program speci-

fications, such as allowable problem size, are given. Next the program orga-

nization is described. Finally, the required input data is described. Brief

descriptions of the subroutines and major program variables are given in

Appendix A. Appendix B gives input data and results for several sample

problems. Appendix C briefly discusses error messages and possible debug

strategies.

Successful use of any finite element program depends largely on the

ability of the analyst to qualitatively predict the response of a configura-

tion before attempting detailed finite element analysis. This insight will

generally be based on experience and possibly some strength of materials

arguments. Also, very coarse finite element models can be useful. Insight is

particularly important for nonlinear analysis, in which questions of conver-

a

gence, uniqueness of solution, and solution strategy _st be addressed.

Hence, the user should become thoroughly familiar with the theoretical basis

of GAMNAS and then gain experience by analyzing a variety of simple configura-

tions before attempting to analyze a complex configuration.
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Nomenclature

[B] incremental strain-displacement matrix

[D*] elasto-plastic constitutive matrix

E Young's modulus

F yield surface function
t

G total strain-energy-release rate

GI,GII mode I and mode II components of strain-energy-release rate

I moment of inertia

[K] transformed global stiffness matrix

[Ko],[K T] linear and tangential stiffness matrices, respectively

M moment

P-,P- forces transmitted through crack tip in the x and y directions
x y

[R] applied load vector

[R] transformed applied load vector

[T] transformation matrix

u,v displacements in x and y directions, respectively

u,v displacements in x and y directions, respectively

V volume

x,y rectangular Cartesian coordinates

x,y rotated rectangular Cartesian coordinates

fraction of strain increment required to reach yield surface

Aa virtual crack closure length

{A6} increment to nodal displacement vector

{AE} strain increment

{A_} strain increment required to reach yield surface

{A_} strain increment after reaching yield surface

{6} nodal displacement vector

{_} transformed nodal displacement vector



_x'Cy '_xy normal strains in x and y directions and shear strain in xy

plane, respectively

{_} strain vector

• {€}p plastic strain increment

proportionality constant

o2 2
Oef effective stress equal to (2 + + o - o o - o o -' y z xy yz

O O + 3_ )1/2
xz xy

o uniaxial yield stress
ys

{o} stress vector

{Oo} stress vector before strain increment

{oI} stress vector after strain increment

{_} residual force vector

Theory

Governing Equations

This section outlines the theoretical basis for the GAMNAS computer

code. First, geometric and material nonlinearity are discussed in general.

Then application of the displacement based finite element method to nonlinear

problems are discussed. The description given here follows closely that given

in refs. 4 and 5, where details may be found.

Herein, geometric nonlinear analysis refers to an analysis which calcu-

lates strains using the Lagrangian nonlinear strain-displacement relations,

eqns. (i)

_U + 1 [(_u_2 + _v_21

' _x-_x _L\-_/ \_IJ
I

±I/_u_2 /_v_21_ _v + + (1)
gy _y 2 [\_yl _TfI ]

_ _v _v_u + 8v _u _u +
Exy 8y _-x+ _x 8y _x _y



The second-order terms in eqns. (l) account for finite rotations. However,

the strains are still assumed to be infinitesimal.

For material nonlinear analysis, the nonlinear relationship between

stress and strain is defined incrementally, eqn. (2)

d{o} = [D*] d{E} (2) "

The nonlinear elasto-plastic constitutive matrix [D*] is a function of the

assumed yield surface and flow rule and the current stress state. GAMNAS uses

the yon Mises yield surface, eqn. (3) and a flow rule based on the normality

principle, eqn. (4).

2
02 2 302+ + o - o o - o o - o o + l)I/2 (3)

F = (ox Y z x y y z x z xy - °ys

= I _F
d{E}p "_-{o--} (4)

The instantaneous uniaxial yield stress, Oys, in eqn. (3) is a function of the

strain history and the specified uniaxial stress-strain curve. Three types of

uniaxial stress-strain curves can be specified: elasto-plastic, bilinear, and

Ramberg-Osgood. These are shown schematically in fig. I. GAMNAS can only

analyze plastic deformation of isotropic materials.

Application of the finite element method to nonlinear problems is very

similar to that for linear problems. In both cases a system of equations is

derived which expresses the equilibrium of internally generated forces in a

body with externally applied forces, eqn. (5)

I"

{tp}= J [_]T {o}dV- {R} = 0 (5)
VOL

In eqn. (5) {_}, {o}, and {R} are the residual force, stress, and applied load

vectors, respectively. The integral is the vector of internally generated



forces. The matrix [B] is the incrementalstra|n-dlsplacementmatrix,as

defined by eqn. (6)

d{_} = [B] d{6} (6)

where [6] is the nodal displacementvector,i.e., a llst of u and v

displacementsat the nodes. For linearproblemseqn. (5) is a linear set of

equationswith unknowns {6}.

For geometricallynonlinearproblemseqns. (I) are used with eqn. (6) to

derive [B]. The matrix [B] is found to vary linearlywith {6}, as is expected

from the quadraticform of eqn. (I). The stresses {_} are linearlyrelatedto

the strains,which vary quadraticallywith {6}. Hence, eqn, (5) is a set of

cubic equationsin {6}.

For elasto-plasticproblems,the matrix [B] is independentof {6}, but

the relationshipbetween{6} and {a} is a complicatednonlinearfunction.

Furthermore,the relationshipbetween{6} and {g} is path (i.e.,history)

dependent. Hence, the solutionof eqn. (i) for a desiredload level is

obtainedby dividingthe total load into a series of small load increments.

For each load increment,the relationshipbetweenstress and strain is deter-

mined from eqn. (2).

For combinedgeometricand materialnonlinearity,the nonlinearrelation-

ships for each are simplyused together.

IterativeSolution

The governingequations,eqn. (5), are solved iterativelyusing modified

Newton-Raphsonmethods (ref. 4). The basic Newton-Raphsonmethod for the

first load step is outlinedbelow.

I. Obtain a linearsolutionusing the linearstiffnessmatrix K :o

{6}= [K]-I{R}
o o



2. Calculate residuals {_} with eqn. (5)

3. Check for convergence. Stop if {_} is sufficiently small.

4. Calculate tangential stiffness matrix, [KT]

(The tangential stiffness matrix is defined by the equation

[K,rl CA_} = {A,}.)

5. Solve for correction to displacements

{A6} = - [KT-1] {_}

6. Update displacements: 6 = 6 + A6

7. Go to step 2.

If nmltiple load steps are used, only step 1 changes. After obtaining a

converged solution for load step "i", the linear solution (i.e., the new

step (I)) for the next load step is

{6}i+i = {6}i + [KT]-I CAR}i+1 (7)

where {AR}i+ 1 is the load increment.

Different versions of the Newton-Raphson technique described above were

used for geometric nonlinear, material nonlinear, and combined nonlinear

analysis in GAMNAS. The main differences are in the way the tangential stiff-

ness matrix, [KT], is approximated. For geometric nonlinear analysis [KT] is

updated every "NCYCLE" iterations, where NCYCLE is an input parameter. For

material nonlinear analysis [KT] is approximated by the linear stiffness

matrix [Ko] for all iterations. For combined geometric and material nonlinear

analysis [KT] is updated every "NCYCLE" iterations, but the linear stress-

strain relations are used in calculating [KT]. For combined nonlinear °

analysis the solution for each load increment begins with obtaining a con-

verged solution in which no additional yielding is allowed. After obtaining

this "transition" solution, iterations begin in which both geometric and

6



material nonlinear effects are included. This procedLlre reduces spurious

material yielding which can be an artifact of iterative solution procedures.

This procedure will be discussed further in the discussion of the flowchart

• for the subroutine ITERATE.

Strain Energy Release Rates

GAMNAS has the option to calculate Mode I and Mode II strain energy

release rates. Strain energy release rates are calculated using a virtual

crack extension technique similar to that reported in ref. 6. This technique

uses the forces transmitted across the crack tip and the relative displace-

ments just ahead of the crack tip to determine the energy release rate. For

geometrically nonlinear problems the forces and displacements are transformed

to the local rotated coordinate system, as shown in fig. 2. Figure 2 also

shows the equations used to calculate GI and GII. The strain energy

release rate calculation is valid for linear and geometrically nonlinear

analysis only. The program assumes the 1_sh around the crack tip is rectangu-

lar and that the crack is initially parallel to the x-axls. Near the crack

tip the mesh must be symmetrical about the crack tip.

Boundary Conditions

The following boundary conditions can be prescribed in GAMNAS:

I. Nodal loads

2. Specified displacements

3. Equivalence of two or more displacements, e.g., 6i = 6j

4. Equivalence of one displacement and the negative of another
l

displacement, e.g., 6i = -6.3

• To prescribe a displacement 6. = 6 the diagonal term of the ith equation is
I o

replaced by a large number, 1030, and the "load" term for the ith equation is

set to 1030 6 . To impose a multl-polnt constraint, i.e.,
O



6i = 6.3 or 6i = -6j, the displacement and load vectors and the stiffness

matrix are transformed (ref. I0). The transformation is best explained by

example. Consider the linear system [K] {6} = {R}. Assume there are four

nodal displacements. To impose the condition 61 = 63 a new displacement

vector {3} is defined such that

{6} = [T] {_}

o o
0 I 0 0 62 1

= 0 0 1 0 63 I (8)
0 0 0 1 64

m

The new stiffness matrix [K] and load vector {R} are

[KI = [TIT [KI [TI

{R} = [T] T {R} (9)

The new governing equations are [K] {3} = {R}. Note that 31 = 61 - 63.

Hence, to impose the condition 61 = 63, we need simply impose the condition

31 : 0.

When nmlti-point constraints are specified, the bandwidth generally

increases. The increase in bandwidth depends on the node numbering scheme.

Hence, the multi-point constraints should be considered when selecting the

node numbering scheme.

4

Elements

GAMNAS uses the four-node isoparametrlc quadrilateral. This element is

well known to perform poorly in modeling bending type deformation when exact



integration is used. But the performance can be dramatically improved by

using selective reduced integration. References 7 and 8 describe the proce-

dure for linear problems. Reference 9 describes the procedure for geometri-

, cally nonlinear problems. The user can specify either full or selective

reduced integration in the program.

Program Specifications

GAMNAS is written in Prime's extended version of FORTRAN 77. Core

requirements are 604,000 16 bit words and compilation time is approximately 2

minutes on the Prime 750. Execution times will vary greatly depending on the

particular finite-element model. The current maximum allowable values of the

major parameters are given in the description of the input data. An in-core

equation solver is used. Hence, the maximum problem size is limited by the

memory of the computer being used.

Most of the core requirements are for holding the global stiffness

matrix, "SN." The matrix SN is dimensioned (1300, 70), which permits 1300

degrees of freedom (650 nodes) and a bandwidth of 70. GAMNAS can be quickly

modified using a text editor to change the maximum bandwidth and number of

nodes. The required changes and the order the changes should be made are

listed below:

I) Change the string "(1300,70" to "(XXX,YYY" everywhere, where XXX and

YYY are the new number of rows and columns, respectively.

2) Change the string "(1300" to "(XXX" everywhere, where XXX is the new

number of rows.

3) In subroutine INITIAL change the following two lines:

MRANK = [300 + change 1300 to XXX

MIBW = 70 + change to 70 to YYY



where XXX and YYY are the new number of rows and columns in SN,

respectively.

Program Organization
w

In this section the flow of GAMNAS is described. Flowcharts are given

for the more complicated routines: the main program, ITERATE, and STRSCAL.

Very brief description of the subroutines and the major program variables are

given in Appendix A.

An annotated flowchart for the main program is shown in Figure 3. Only

one proportional load vector is input. The different load numbers (LOADNUM)

refer to the scale factor by which the load vector is multiplied. For each

new load, a linear incremental solution is obtained in the main program before

calling ITERATE to obtain the nonlinear incremental solutions, the linear

solution for the first load step and all nonlinear solutions are output.

Figure 4 shows a flowchart for the subroutine ITERATE. The subroutine

utilizes the modified Newton-Raphson technique described earlier to solve

eqn. (5). Note that for combined geometric and material nonlinearity (i.e.,

ANALYS = CNONLIN), the routine GITER is called to obtain a transition non-

linear solution for the load increment, assuming no additional yielding

occurs. Then £FERATE proceeds to determine the converged solution which

includes both _eometrlc and material nonlinearity. The tangential stiffness

matrix is updated by calling STIFF. For just material nonlinearity (i.e.,

ANALYS = PNONLIN), STIFF is not called. For geometric or combined nonlinear

analysis, STIFF is called every "NCYCLE" iterations.

Figure 5 shows a flowchart for tilesubro,ltine STRSCAL. STRSCAL calcu- •

lates the incremental stress vector {Ao} corresponding to the calculated

incremental strains {As}. For linear material response, {Ao} is simply the

product of the constitutive matrix [D] and {Ac}. For nonlinear material

i0



behavior the relationship between {AE} and {ho} depends on the current stress

state {o } relative to the yield surface and on the magnitude of the straino

increment. The relative posit[o_Is of the stress state and the yield surface

Is determined from eqn. (3). For convenlence in the flowchart, the first term

[,ieqn. (3) is defined to be the effective stress Oef. For an arbitrary

stress state {o}, the fol[owlng relationships apply:

Oef({o}) < Oys + stress state is inside yield surface

Oef({o}) = Oys + stress state is on yield surface

Oef({o}) > Oys + stress state is outside yield surface

The first step [s to calculate the final stress state {oI} assuming no

additional yielding (block I). Block numbers are indicated at the upper left-

hand corner of the blocks. If Oef({Ol}) < Oys then {oi} is the correct

stress state (block 3A). If not, then {o } relative to the yield surface iso

examined (block 3B). If o = Oef({o }) block 4B is followed. Ifys o '

Oys > °el ({°o})' the initial stress state is i,s[de the yield surface. Hence,

the strain increment must be divided into two parts: that required to reach

the yield surface, A[, and the remainder, A_, which is the strain increment

after reaching the yield surface. These strain increments are calculated by

solving the equations in block 4A. Next the incremental elasto-plastic matrix

[D*] is calculated. The final stress state is obtained by adding the linear

and nonlinear stress increments, [D] {A_} and [D*] {A_}, respectively

(block 6). Note that if {Oo} had been on the yield surface, {A[} = 0 and

{A_} = As. Next the yield stress o is updated for strain-hardening
ys

• materials. Finally, {oi} is scaled back to the new yield surface (block 8).

II



Input Data

The required input data is described in this section. Where applicable,

the maximum allowable values of the input parameters are noted.

b

No. of

Card set Parameters cards Format

I. TITLE(l), I = 1,60 3 20A4

TITLE = TITLE OF PROBLEM

2. OUTPUT, ANALYS, PLANE, OUADRAT, ENERGY 1 5A8

OUTPUT = Output option

= XLONG for long output

= SHORT for output (the nodal coordinates, element

connectivity, and boundary conditions are not in the

output)

ANALYS = Type of analysis

= XLINEAR for linear analysis

= GNONLIN for geometrically nonlinear analysis

= PNONLIN for materially nonlinear analysis

= CNONLIN £or combined geometric and material nonlinear

analysis

PLANE = Option for plane stress/plane strain analysis

= PSTRESS for plane stress

= PSTRAIN for plane strain

QUADRAT = Integration option

= REDUC for reduced integration

= XFULL for full integration
m

ENERGY = Optlon for straln-energy release rate calculations

= DOG for G calculation

= DONOJG for no G calculation

12



No. of
Card set Parameters cards Format

3. ITSTEP, NCYCLE, IMAX 1 315

ITSTEP = Number of steps in the incremental loading
minimum = I, maximum = 30o

NCYCLE = Number of iterations between updates of stiffness matrix

IMAX = Maximum number of iterations allowed before terminating

4. ACCURACY 1 FI0.3

ACCURACY = Maximum residual allowed in converged solution

5. NN, NE, NRN

NN = Number of nodes in the FE model, max. = 650

NE = Number of elementsin the FE model

NRN = Number of podes with a restraineddegree of freedom

6. Nodal Coordinates:

x-coordinate

XX, N(I) = 1,13 * EIO.4, 1315

XX = coordinate

N( ) = list of nodes with coordinateXX

•Input until all x-coordlnatesare
specified. End x-coordinatedata
with a blank card.

y-coordinate

XX, N(1), I = 1,13 * El0.4, 1315
•Similarto input of x-coordinates

7. I, IN(I),JN(1), KN(I),LN(I) NE 515

I,IN,JN,KN,LN= Elementnumber, four node numbers for elementI.
Nodes must be specifiedin a counterclockwise
direction.

J

13



No. of

Card set Parameters cards Format

8. K, NRL (2*K-I), NRL (2*K) NRN 315

K = Node number

NRL (2*K-I), NRL (2*K) = Constraints in X and Y directions,

respectively, at node K.
0 indicates no constraint

1 indicates constraint

Note: Do not include degrees of freedom involved in multipoint

constraints. Do include degrees of freedom with specified

displacements.

SKIP 9-12 IF ENERGY = DONOJG

9. INP I 15

INP = Number of node sets used in virtual crack extension

calculation (maximum = 15)

I0. NEGCAL(1), I = [, (INP+I) (INP+I)/16 t 1615

NEGCAL = Element numbers for elements contributing to the nodal

forces required for virtual crack extension. (See

example in sketch below. Element numbers are circled. )

1 9

® ® © @

16 17 18

_Crack

22

IF INP = 3,

NEGCAL (I to 4) = 2, 3, 4, 5

NFGCAL (I to 3) = 14, 13, 12

NDGCAL (I to 6) = 15, 19, 16, 20, 17, 21

tRound off to next higher integer.

14



No. of

Card set Parameters cards Format

II. NFGCAL(1), I = I, INP INP/16 t 1615

NFGCAL(1) = Node numbers for nodes along which virtual
crack extension forces are calculated.

List according to distance from crack tip,

with the crack tip node as the first one.
• (See sketch above.)

12. NDGCAL(1), I = I, (2*INP) 2*INP/16 t 1615

NDGCAL(1) = Node numbers for the nodes used to calculate

cracking opening and sliding displacements

Repeat card sets 13-16 for each material group.

Maximum number of material groups = I0

End last group with blank card.

13. J, XMATER(J) 1 15, A8

J = Material group number

XMATER = Material type

= ELASTIC for linear stress-strain curve

= ELPLAST for elastic-perfectly plastic stress-strain
curve

= BLINEAR for bilinear stress-strain curve

= RAMOSGO for Ramberg-Osgood stress-strain curve

14. EX, EY, PYX, GXY 1 4EI0.3

Ex, Ey, _yx' Gxy:

Ex Young's modulus in x-direction

Ey Young's modulus in y-direction

= _ x = Poisson's ratio
yx g

Y
= Contraction in x-direction due to unit

applied strain in y-direction

Gxy Shear modulus

tRound off to next highest integer.

15



No. of

Card set Parameters cards Format

15. YIELDS, ET, RO, ANM 1 5EI0.3

YIELDS = Yield stress

ET = Tangent modulus for yielded bilinear material

RO, ANM = Parameters defining Ramberg-Osgood stress-strain
ANM

o o
relation, € : _ + (_-_)

(a) If XMATER = ELASTIC, input YIELDS = ET = RO = 1.0 x 1021 ,
ANM = 10

(b) If XMATER = BLINEAR, input proper YIELDS and ET and
set RO = ANM = 0.0

(c) If XMATER = RAMOSGO, input proper YIELDS, RO and ANM and
set ET = 0.0

16. NELl, NEL2, NELINC * 315

NELl, NEL2, NELINC = Loop parameters used to define
elements in material group

NELl = First element

NEL2 = Last element

NELINC = Loop increment

e.g., I, 50, 20 defines elements I,

21, and 31 to be in material group

•Repeat until all elements in group are defined.

End card set 16 by specifying NELl = NEL2 = NELINC = 0

17. DELLOAD(1) = I, ITSTEP ITSTEP/8 t 8FI0.3

DELLOAD(1) = Scale factor for proportional load

vector for load step I. Always

specify DELLOAD(1) = 1.0

tRound off to next higher integer.

16



No. of

Card set Parameters cards Format

18. NLN, NCD, NED 1 315

NLN = Number of nodes with applied loads

NCD = Number of nmltipoint constraints, max = 15

NED = Number of specified displacements, max = 30

19. K, FX, FY NLN 15, 2FI0.3

K = Node number

FX,FY = Loads in x and y directions, respectively

20. K, KDF, URD NED 215, FIO.3

K = Node number

KDF = Displacement direction, specify 1 for x direction

specify 2 for y direction

URD = Magnitude of displacement

SKIP 21-24 IF NCD = 0

21. NMPR(1), I = I, NCD NCD/16 1615

NMPR(1) = Number of degrees of freedom involved in the

Ith nmltlpoint constraint, max = 20

22. ((ICDN(I,J),J=I,NMPR(1)), I = I, NCD) NCD sets 1615

ICDN(I,J) = Jth degree of freedom involved in the

Ith multipolnt constraint

Start a new card for each n_altlpolnt constraint.

Start with lowest number degree of freedom.

23. NZKV I 15

NZKV = Number of multlpolnt constraints for
which there is an applied load

. 24. NKV, ATOT NZKV 15, FI0.3

NKV, ATOT: ATOT is the non-zero load associated with
• the NKV set of constrained nodes

17
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Stress

Strain

Figure i.- Types of uniaxial stress-strain curves.

19



Y

•

x ?

b_
0

(_2 - _3)
PY _Jl = I/2 P_ Aa

P_
L_Jll : 1/2 PX (U2aaU3)

Figure 2.- Transformed coordinate system for strain-energy-release rate calculation.
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Figure 3.- Flow chart for main program.
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Figure 4.- Flow chart for subroutine Iterate.
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Figure 5.- Flow chart for subroutine STRSCAL.
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APPENDIX A

This appendix gives the names and function of the subroutines and the

major program variables.

Subroutines

NAME FUNCTION .

I. BLKSIGM Calculates submatrlces for element initial stress matrix

2. BLMAT Calculates nonlinear component of strain-displacement matrix

€ 3. BMAXQ4 Calculates linear component of strain-displacement matrix

4. CFILL Fills matrix of element nodal coordinates

5. CONVERG Checks for convergence

6. DATA Reads nodal coordinate data

7. DBAND Performs Cholesky decomposition on global stiffness matrix

8. DEPMAT Calculates elastlc-plastlc matrix, [D*
ep ]

9. ELPROP Reads material properties

10. FORCEP Calculates internally generated nodal forces for an element

II. GCAL Calculates straln-energy release rates

12. GITER Solves nonlinear equations

13. IDVEC Fills vector of element degrees of freedom

14. INCLOAD Scales load vector

t

15. INITIAL Initializes variables

16. ITERATE Solves nonlinear equations

17. KLARGE Calculates element large deflection stiffness matrix

18. KSIGNEW Calculates element initial stress matrix

19. LDATA Reads load data

20. LINSOLN Outputs linear solution

21. MATMUL Performs matrix multiplication
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22. MULPCON Modifies stiffness matrix and displacement vector for multi-point
constraints

23. PROGOPT Reads program options

24. RCADD Adds rows and columns of the stiffness matrix

25. RESID Calculates residual force vector

26. RESUL Calculates strains and stresses

27. SBAND Solves set of linear equations. (Used with DBAND) I
8

28. SDATA Reads structuraldata

29. STAXQ4 Calculates linear element stiffness matrix ¢

30. STIFF Assembles global stiffness matrix

31. STRSCAL Calculates incremental stresses from incremental strain

32. TRANS Generates transpose of a matrix

Program Variables (Arrays are shown with their dimensions.)

Variable Definition

AN (1300) Incremental load vector

ANALYS Type of analysis

ANM Exponent in Ramberg-Osgood equation for unlaxlal stress-
strain curve

ANTOTAL (1300) Total load vector

AR (1300) Nodal restraint force vector

ATOT Load associated with mmltipoint constraint

DELLOAD (30) Scale factor for incremental loads

DISP (1300) Incremental displacement vector

DN (1300) Total displacement vector

Q

DPS (30) Vector of specified non-zero displacements

ENERGY Option for strain-energy release rate calculation
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FF (1300,4) Effective stresses at the end of an increment

FI (1300,4) Effective stresses at the beginning of an increment

FXX (10) X-direction forces used in strain-energy-release rate
calculation

FYY (I0) Y-direction forces used in strain-energy-release rate
calculation

m

IBW Bandwidth of global stiffness matrix

ICDN (20,15) Degrees of freedom involved in multi-point constraints

IN (1300)

JN (1300) Element connectivity arrays. Connectivity for element
number I is IN(I), JN(I), KN(1), LN(I)KN (13oo)

LN (1300)

INP Number of node sets used in virtual crack closure calculation

of strain-energy release rates

IPE (1300) List of yielded elements (only used for output)

ITSTEP Number of incremental load steps

LOADNUM Incremental load step number

MATER (1300) Element material group numbers

MIBW Number of columns in global stiffness matrix, SN.
Currently MIBW = 70

MRANK Number of rows in global stiffness matrix, SN. Currently
MRANK = 1300

NCD Number of mmltipoint constraints

NDPS (30) Vector of degrees of freedom with specified non-zero values

NE Number of elements in finite element model

NED Number of specified displacements

NLN Number of nodes with applied forces

NMPR Number of degrees of freedom involved in a set of multipoint
constraints

NN Number of nodes in finite element model
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NND Number of degrees of freedom in finite element model before

applying boundary conditions

NRL (1300) Degree of freedom restraint list

NRN Number of nodes with a restrained degree of freedom

OUTPUT Output option

PLANE Plane stress/plane strain option

PSI (1300) Residual force vector

QUADRAT Integration option

RO Parameter in Ramberg-Osgood equation. See definition for
.ANMoo

SGYBAR (1300,4) Current yield stress

SN (1300,70) Global stiffness matrix

STRESS (1300,12) Stresses

T3 (10,3,3) Elasticity matrices for the material groups

UX (I0) Tangential displacements vector for strain-energy-release
rate calculation

UY (10) Opening displacements vector for strain-energy-release rate
calculation

X (1300) Nodal x-coordinates

Y (1300) Nodal y-coordinates
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APPENDIX B

This appendix gives input data and results for three samples problems.

The first problem (fig. B-la) involves transverse displacement of a long

thin rod. The finite element mesh is shown with node and element numbers and

boundary conditions. The left end is pinned; the right end can move only in

the "y" direction. The transverse displacement, v, at node 9 was specified

because the initial transverse stiffness is zero, which would have caused a

singular stiffness matrix if a transverse load had been specified. Although

the rod initially has zero transverse stiffness, geometrically nonlinear

effects stiffen the system as the transverse displacement increases.

Figure B-ib shows the calculated axial stress in the rod (element 2) as a

function of lateral displacement. The finite element results are shown as

symbols. The two curves are exact solutions, derived using simple trigonom-

etry, for a rod under axial load. One curve is for a linear elastic material

and the other is for a elasto-perfectly plastic material with a yield stress

of 50 KSI. The finite element analysis predicts the nonlinear response very

well. The differences between the exact results and the finite element

results are due to the very coarse mesh and the end restraints not being along

the rod's longitudinal axis. Table B-I lists the numerical values at the

element centroids calculated by GAMNAS.

Figure B-2 shows the input data for the linear elastic rod. Required

changes to this data for the elasto-perfectly plastic rod are shown in

parenthesis.

The second problem involves transverse loading of a double cantilever

beam. Figure B-3 shows the finite element model, which has 50 nodes and 32

elements. Two versions of the finite element analysis were used: one version

used full integration and one used reduced integration. The input data for
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analysis with reduced integration are shown in fig. B-4. The change required

for full integration is shown in parenthesis.

The strain energy release rate (using strength of materials) is given by

M2

G - E1 (BI)4

A transverse load of 20 lb. was used, resulting in a moment of 40 in./ib.

From eqn. (BI), G is calculated to be 1.92 Ib/in. The full and reduced

integration yielded 1.45 ib/in, and 1.97 ib/in., respectively. Even with a

coarse mesh, the reduced integration version yielded an accurate result. The

full integration version illustrates the well-known poor performance of

isoparametric quadrilaterals in modeling bending deformation.

The final problem (see fig. B-5a) involves polar symmetric loading of a

rectangular region. By imposing appropriate boundary conditions along x = 0,

only half of the region needed to be modeled. The polar symmetric conditions

are imposed using multi-point constraints to specify u(o,y) = -u(o,-y) and

v(o,y)= -v(o,-y).

Figure B-5 shows the finite element model before and after loading.

Table B-2 gives the numerical values of the nodal displacements. The

required input data are shown in fig. B-6.
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TABLE B-I AXIAL STRESS IN LONG THIN ROD

LATERAL AXIAL STRESS, KSI
DEFLECTION ELEMENT MATERIAL

INCHES 1 2 3 4 TYPE

1 8.868 8.874 8.874 8.868 LINEAR

2 43.48 43.52 43.52 43.48 o

3 104.8 104.9 104.9 104.8

4 191.7 191.9 191.9 191.7

5 303.7 303.9 303.9 303.7

1 8.868 8.874 8.874 8.868 NONLINEAR

2 40.03 40.09 40.09 40.03

3 48.61 48.68 48.68 48.61
4 49.53 49.60 49.60 49.53

5 49.84 49.91 49.91 49.84 '_
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TABLE B-2 NODAL DISPLACEMENTS (INCHES) FOR RECTANGULAR

REGION WITH POLAR SYMMETRIC LOADS

NODE u × 104 v × 104 NODE u x 104 v x 104

1 -1.095 .08053 14 1.291 -.4773

2 -.6526 .02078 15 2.146 -.6216

3 .2 × 10-23 .2 × 10-23 16 -.4933 -1.063

4 .6526 -.02078 17 -.4438 -1.028

5 1.095 -.08053 18 .2080 -1.140

6 -.9096 -.2388 19 1.574 -I.I00

7 -.4577 -.2521 20 3.415 -1.268

8 .1880 -.2250 21 -.1146 -.5 x 10-23

9 .9405 -.2243 22 -.3693 -1.195

I0 1.462 -.3232 23 .3345 -2.047

ii -.7632 -.6573 24 1.532 -2.900

12 -.3817 -.6648 25 5.721 -3.731

13 .2632 -.5427
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I IV
2 4 6 8 I0

1 .

I _b- 3 s 7 ------_x
_" 20"

a) FINITE ELEMENTMODELFORA LONGTHIN ROD

400 -

-{- Elastic

A Elasto-plastic

300 - Exact solution

Axial
stress, 200 --

ksi

i00 --

I I I J
0 1 2 3 4 5

Lateral deflection, in.

b) AXIAL STRESSVS. SPECIFIEDTRANSVERSEDISPLACEMENT

Figure B-I.- Transverse displacement of a long thin rod.
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LONg SLENDER BEAM-COLUMN COSMI¢-I

SHORT GNONLIN PSTRESS REDUC DONDJG {CHANGEGNONLINTO CNONLIN)5 _ _0
O.010

10 4 2
OlO 1
50 3 4
10. " 5 6
15. 7 8

20. 9 10
0000000000000000000000000000
0.0 I 3 5 7 9
._ 2 4 6 8 I0
0000000000000000000000000000

I 1 3 4 2
3 5 6 4

3 5 7 8 6
4 7 9 10 8
I I I
9 1 1

1ELASTIC (CHANGE ELASTIC TO ELPLAST)O. IOOE+OS O. 100E+08 0.300E+O0 0.385E+07
0.500E+05 O. O00E+O00. O00E+O00. O00E+O0

1 4 1
0 0 0

1.000 2.000 3.000 4.000 5000
0 0 1
9 2 1.000

Figure B-2.- Input file for linear elastic rod. Changes required for elasto-plastic
rod are shown in parentheses.
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Crack tip detail

I Y I 20 I bsf Crack tip

/
.1"4 /

3 -----------t_X

®
.1" 2

-,_--. 4" 2" _

Figure B-3.- Finite-element model for double-cantilever beam. Crack extends from
X = 0.0 to 2.0 along the line Y = 0.0.
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DOUBLE CANTILEVERED BEAM COSMIC-3

SHORT XLINEAR PSTRESS REDUC DOg (CHANGEREDUCTO XFULL)
1 1 I

" 1.000
50 32 2

-.4000E+O0 I 2 3 4 5
-.2000E+O0 b 7 8 9 10

-. IO00E+O0 11 12 13 14 15
O. O000E+O0 16 17 18 19 20
O. IO00E+O0 21 22 23 24 25 26
0.2000E+O0 27 28 29 30 31 32
0.4000E+O0 33 34 35 36 37 38
O. 8000E+O0 39 40 41 42 43 44
0.2000E+OI 45 46 47 4B 49 50

-, IO00E+O0 I 6 11 16 21 27 33 39 45
-.5000E-01 2 7 12 17 22 28 34 40 46
O. O000E+O0 3 8. 13 18 _3 _9 _5 41 47

O, O000E+O0 24 30 36 4_ 48
0.5000E-01 4 9 14 19 25 31 37 43 49
O, IO00E+O0 5 10 15 20 26 32 38 44 50

1 1 6 7 2
2 6 11 12 7
3 II 16 17 12
4 16 _I _ 17
5 21 27 28 22
6 27 33 34 28

7 33 39 40 34
8 39 45 46 40
9 2 7 8 3
10 7 1_ 13 8
11 12 17 18 13
I_ 17 _2 _3 18

13 22 _8 29 _3
14 28 34 35 29
15 34 40 41 35
16 40 46 47 41
17 3 8 9 4
18 8 13 14 9
19 13 18 19 14

20 18 24 25 19
21 24 30 31 25
22 30 3b 37 31
23 36 42 43 37

24 42 48 49 43
25 4 9 I0 5
26 9 _4 15 10
27 14 19 20 15
_8 19 25 2b 20

29 25 31 32 26
30 31 37 38 32
31 37 43 44 38
32 43 49 50 44
45 1 1

50 1 0
!

19 20
_8
23 24
1ELASTIC

O. I00E+08 O. I00E+08 0.300E+O0 0.385E+07

O. O00E+O00. O00E+O00. O00E+O00. O00E+O0
I 32 1
0 0 0

1.000
1 0 0

50 0.000 20.000

Figure B-4.- Input file for reduced integration analysis of double-cantilever beam.
The change required for full integration is shown in parenthesis.
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a) RECTANGULARREGIONWITH POLARSYMMETRICLOADS

Y
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I I I I /
I I I I //

4 I -- 'l ..l. ..... /... /I I I "" "" ---~ /i 1
I I I I E

I I I II

® ® ®
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b) ORIGINALAND DEFORMEDCONFIGURATIONS

Figure B-5.- Polar symmetric loading of a rectangular region.
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POLAR-SYMMETRIC LOADINg OF RECTANGULAR REGION
********************************************** FILE=COSMIC-5

..... XLONg XLINEAR PSTRESS XFULL DONOJg
1 1 1

1.000
• 25 16 2

O. O000E+O0 1 2 3 4 5
O. IO00E+OI 6 7 8 9 10
0.2000E+01 II 12 13 14 15
0.3000E+01 16 17 18 19 20
0.4000E+01 21 22 23 24 25

0.0000E+00 1 6 11 16 21
0. I000E+01 _ 7 12 17 22
0.2000E+01 3 8 13 18 23
0.3000E+01 4 9 14 19 24

0.4000E+01 5 10 15 20 25

I 1 _ 7 2
2 6 II 12 7
3 II 16 17 12
4 16 21 22 17

5 2 7 8 3
6 7 12 13 8
7 12 17 18 13
8 17 22 23 18
9 3 8 9 4
10 8 13 14 9
11 13 18 19 14

I_ 18 _3 24 19
13 4 9 10 5
14 q 14 15 10
15 14 19 20 15
16 19 24 25 20
3 I 1

21 0 1
1ELASTIC

0. I00E+08 0.100E+08 0.300E+00 0,385E+07
O. O00E+O00. O00E+O00. O00E.O00, O00E+O0

1 16 I
0 0 0

1,000
1 4 0

25 I000.000 0.000
2 2 2 2

-3 -7
-2 -I0
-4 -8

0

= Figure B-6.- Input file for polar symmetric loading of rectangular region.
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APPENDIX C

This appendix discusses error messages and potential debug strategies.

A self-explanatory diagnostic message is output and execution terminated

under the followingconditions:

I) A node has an unspecifiedcoordinate

2) An elementhas an unspecifiedmaterialgroup number

3) The plane stress or plane strain option is spelled incorrectly

4) An elementhas a linear stiffnessmatrixwith a diagonalelementless
than or equal to zero.

5) The rank or bandwidthof the globalstiffnessmatrix exceeds the
maximumallowed.

If the global stiffnessmatrix is singular,the decompositionroutine,

DBAND, prints 'matrixis singular"and halts execution. Failureto specify

sufficientrestraintsto preventrigid body motion is a frequentcause for a

singularstiffnessmatrix. A singularstiffnessmatrix is often encountered

in geometricallynonlinearanalysisbecausethe load incrementsare too large

(which causes the iteratlvesolutionprocessto diverge)or becausebuckling

occurs. The maximumallowableload incrementcan only be determinedthrough

experience. However, frequentupdatingof the tangentialstiffnessmatrix

(i.e.,a small value is input for NCYCLE)does permit larger load increments.

The internallygeneratedforcesat all nodes are calculatedand output.

These forces should be numericallyzero except at nodes where loads are

appliedor displacementsare specified,or at nodes involvedin a multl-polnt

constraint. Errors in modelingwill often cause spuriousnodal forces,which

can be used to help isolatethe modelingerrors.
4

Plotting all finiteelementmodels is highly recommended,since the plot

will quicklyreveal many input errors. To track down errors not diagnosedby

GAMNAS, host computerdebug utilitiesare recommended.
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