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ABSTRACT

Several groups have built epoxy-glass Stirling-cycle cryocoo!ers which

utilize the annular gap between the displacer and the stationary outer

sleeve as a regenerator. The cooling power and ultimate cold temperature

achieved wlth cryocoolers of this design are primarly limited by

regeneration inefficiency at the low temperature end of the cryocoo]er.

This is because of the rapid decrease in the specific heat and thermal

conductivity of the epoxy composite at low temperatures.

A test apparatus designed to simulate a section of a cryocooler has

been built. Measurements of regeneration efficiency, shuttle heat loss and

thermal conductivity are reported for several regenerator test sections.

The test composites were epoxy-glass, epoxy-y]ass with lead particles,

epoxy-glass with activated charcoal and epoxy-graphite. Losses measured for

these materials were approximately the same. Losses are in good agreement

with those calculated theoretlc_lly for an epoxy-glass (C-10) composite.

The implications of these results on cryocooler design are discussed.

INTRODUC TION

Stirllng-cycle cryocoolers, In which the annular gap between a

displacer and a stationary outer cyJlnder is used as a regenerator, have

been demonstrated recently. Zimmerman and Sullivan have demonstrated a

five-stage cyrocooler made from a commercial spun glass-epoxy (G-IO) outer

cylinder and a solid nylon displacer [I]. They report reaching 7K. We have

demonstrated operation of a cryocooler at 9K [2]. Our cryocooler was a

single-stage conic21 device with a hollow d_splacer. Both the displacer and

the outer cylinder were made from an epoxy-glass cloth composite.

These research efforts are directed toward tbe development of a

reliable, low-power, closed-cycle cryocooler for operating superconducting

devices, especially SQUIDS. The temperatures achieved are already low

enough to allow operation of some "high temperature" types of SQUIDS [3,4].

Nevertheless, it would be highly desirable to improve the cryocooler design

and reach temperatures below the critical temperature of helium (5.2K).

This would have two major advantages. One is that many other types of

iThis research was funded by the British Columbia Science CouncJl. We are

grateful to Simon Fraser University for a grant to a]low the presentation of

these results at this conference.
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superconducting materials could be used. The second is that the
superconducting apparatus could be immersedJn a bath of liquid helium. A
liquid bath would provide a large heat reservoir which would dampout rapid
temperature fluctuations. If the liquid helium bath wasconnected to a
sealed reservoir of gas at room temperature the b_th temperature would be at
the boiling point of liquid helium. Long term temperature drifts could be
eliminated by monitoring the vapor pressure and using electronic feedback.
The use of a liquid helium bath would therefore result in a large reduction
in the noise, due to thermal fluctuations, observed in SQUIDSmounted
directly on closed cycle cryocoolers [4].

This study of regeneration efficiency is directed toward the problem
of designing a cryocoo]er capable of operation below 10K. The ultimate
temperature of the cold end of a Stir]ing-cycle cryocooler is llmited by
various heat loss mechanisms. The ultimate temperature is reached when the
refrigeration capacity of the volume of gas displaced at tbe cold end is
equal to the heat transferred to the cold end by the loss mechanisms. The
amountof heat lost by various mechanismscan be calculated theoretically
and these calculations are consistent with experimental ultimate cryocooler
temperatures observed [5,7]. Unfortunate]y, it is very difficult to study
the loss mecbanismsst low temperature in an experimentaJ cryocoo]er. This

is because the cryocooler performance depends on a combination of loss

mechanisms over a wide range of temperatures, as well as on tbe

refrigeration. We have built a special test facility to enable direct

measurement of losses under conditions similar to tbose in an actual

cryocooler.

HEAT LOSS MFCHPNISMS

Heat loss mechanisms present in a cryocooler include regeneration

loss, shuttle heat loss, friction, conduction loss, radiation loss and the

entbalpy deficit. Convection loss was also present in this test apparatus.

Regeneration loss is the net heat carried by the cycling of hel_um gas

at constant pressure between the warm end and the cold end. When the

regenerator is operating efficiently the majority of the heat carried by the

helium gas is absorbed and released by the plastic walls of the displacer

and cylinder as the helium flows in the annular gap between them.

Theoretical formulae for regeneration loss are given in the appendix. Note

that, for a fixed pressure and a fixed stroke, the regeneretion loss is a

strong function of temperature. Foth regeneration loss terms are

proportional to the square of the mass of helium yas transferred in one

cycle. One regeneration loss term is inversely proportional to the

conductivity of helium gas and inversely proportional to the gap between the

displacer and the cylinder. The other regeneration loss term is inversely

proportions] to the square root of the product of the heat capacity and

thermal conductivity of the plastic. _T_e tota_regenerstion loss therefore
has a temperature dependence between T ° and T . Regeneration loss is the

dominant loss term for temperatures below 20K.

Shuttle heat loss is the net heat carried by the specific heat of the

displacer and transferred to the cylinder by the movement of the displacer.

It varies approximately as T and is the dominant loss term above 20K. Over

a wide range of pressures the shuttle heat loss is independent of the
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pressure of the working gas, since the thermal conductivity of the gas does
not depend on pressure. Losses measuredat low pressures in the test
apparatus were therefore pr_marl]y shuttle heat loss.

Friction was a significant source of heat in our test facility. It
was approximately independent of pressure and temperature and was usually in
the neighbourhood of I milliWatt. Friction is also very significant in a
cryocooler. A commonfailure modeof cryocoolers is heating due to an
increase in friction caused by solidification of impurities in the gap at
the low temperature end.

Conduction loss and radiation loss are _nslgnJficant at the cold end
(<20K) of a properly designed cryocooler. Conduction loss wasalso measured
with this test apparatus.

The enthalpy deficit occurs in a non-ldeal gas because the total
enthalpy flow from the high temperature to the low temperature is greater
than the enthalpy flow in the reverse direction due to pressure variations
[5]. This is due to changes in the specific beat with pressure. It can be
calculated from the physical properties of helium [6]. _s our measurements
were done at constant pressure they do not include the enthalpy deficit.

Convection of belium gas is a heat loss mechanismin our test
apparatus which is not normally present in a cryocooler (unless the
cryocooler is operated upside down). Unfortunately, our test apparatus was
"upside do_nn",with the cold end above the warm end. At high pressures
convection losses were significant in our tests. The heat loss
measurements, reported in Figs. 2 and 4, have been corrected for convection
losses, as explained in the section on experimental results.

FXPER IMFNTAL APPARATUS

A diagram of the beat loss test apparatus is shown as Fig. i. The

apparatus simulates a section of an actual cryocooler. A displacer (C) is

moved up and down w_th a sinusoida] cycle by means of a stainless steel rod

going to room temperature. When the displacer is moved, helium gas in the

working space (5) is forced to slide past the displacer, in the gap between

the displacer and the outer cylinder (B). The upper working volume is

maintained at a fixed temperature by means of an electronic temperature

controller. The controller is connected to a heater and a carbon glass

thermometer in the copper plate (A). A known amount of heat is applied to

tbe lower working volume by means of a heater in the copper end cap of the

cylinder (E). In operation, the lower end of the cylinder (E), is hotter

than the upper end (D). We define the "effective thermal conduction" or

"heat loss" of the test section as the heat input at (E) divided by the

temperature difference between (E) and (A). This "heat loss" is a function

of the pressure of helium in the working space (5), the frequency and stroke

of the displacer, the mean gap between the displacer and the outer cylinder

and the mean temperature of the test section.

The test section is surrounded by a pumped evacuated space (3) and a

copper radiation shield at the temperature of the upper (cold) end of the

test section. Tests may be made over a wide temperature range by using

either liquid nitrogen or liquid helium as a low temperature bath (i).

Depending on the temperature desired, different pressures of exchange gas

(2) were used to facilitate the electronic temperature regulation.
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This design has the special feature that the test section is attached
to the flange (A) with bolts and an indium O-ring to facilitate changing
test sections. The displacer Is fitted with copper end caps (F) and (G)
which are always within the copper sections, (D) and (E) respectively, of
the cylinder. This feature ensures that the temperature of the ends of the
displacer remain fixed st the same values as the ends of the cylinder.

5
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I 2

i

B

Fig. 1: Regenerator test apparatus.

A Upper copper mounting flange. It is held at a fixed

temperature by heater (H) and thermometer (T).

B Conical glass-epoxy cylinder under test. (The taper of

the cone is too slight to be noticahle in the figure.)

C Conical glass-epoxy displacer under test.

D Copper cylinder flange mounted with an indium seal.

E Copper cylinder end with heater (H) to generate a

temperature gradient and a thermometer (T).

F,G Copper displacer end plugs.

The volumes are filled as follows: 1 - Liquid helium,

2 - Exchange gas (helium), 3 - Hard vacuum,

4 - Vacuum (air frozen out) and 5 - Helium working gas.
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The impedanceof the regenerator to the flow of gas is low.
Therefore, the difference in gas pressure between one end of the regenerator
and the other is always negligible. The working gas (5) is connected to s
large room temperature volume of helium gas. The pressure of the working
gas is, therefore, to a good approximation, constant.

This design imposed some ]imitations. The gas line for tbe working

volume goes through the liquid helium bath. This limited the pressure of

the working gas to less than one atmosphere.

MATERIALS TESTED

The test displacer and cylinder sections were made by laying up the

epoxy-composlte material on a tapered mandril. The wall thicknesses of both

the displacers and the cylinders were 1.3 ram. The inside d_ameter of the

cyllnd_r varied Erom 2.03 cm to 1.7_ cm along its 7.6 cm length. Four

materials were tested: epoxy-glass, epoxy-glass with ]Owt% activated

charcoal, epoxy-glass with 60wt% powdered lead _nd epoxy-graphlte cloth. In

all cases the displacer was sealed full of air, hence would be evacuated at

temperatures below the freezi[ig point of air. The epoxy-graphite displacer

was fl]led with air but w_s stuffed with glass woo] and layers of a]uminlze_

mylar to eliminate any convection of gas _nside the d_splacer.
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Fig. 2.

Temperature difference between the upper and lower ends of the

cylinder, as a function of helium gas pressure, with the upper

end held at a temperature of 6. OK.

O Displacer stationary, heater on (0.65 roW), _T I.

+ Displacer moving 0.625Hz ].3cm stroke, heater off, AI2.

A Displacer moving 0.625Hz 1.3cm stroke, heater on (0.65mW),AI a.
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EYPER IMFNT_L RFS LrLTS

Typical experimental measurements are shown in Fig. 2 for an

epoxy-glass displacer and an epoxy-glass cylinder. The temperature of the

upper end of the cylinder was 6K for all of the data points shown. At each

pressure three data points were taken. First, 0.65row was applied to the

lower heater, with the displacer held stationGry The temperature

difference ATI. between the two ends of the cylinder is plotted in the
figure. This is rel_ted to the sum of thermal conductivity in the

glass-epoxy and to the convection of helium gas in the working space.

Measurements at low pressures have negligible convection, and allow

c_iculation of the thermal conductivity of the glass-epoxy.

A second set of data points was taken with the beater turned off, but

with the displacer moving up and down at 0.63 Hz, with a stroke of 1.3 cm.

As a result of the s]igbt taper of the displacer and cylinder the annular

gap varied from 0.2 to 0.4 mm throughout the stroke. The temperature

difference AT_ between the upper and lower ends of tbe cylinder was again
measured. Thls measurement is utilized to determine the amount of

frictional heatJn_ which resulted from the movement of the displacer.

A third set of data points were taken with the beater turned on

(0.65mW) and with the displacer moving giving the temperature

differences AT 3.
These measurements allow us to estimate the sizes of the various heat

loss mechanisms. First, the effective thermal conductivity of the cylinder

and displacer (plus convection losses significant at blgber pressures) is

Qc/ATI = 0.65mW/AT 1. The values of thermal conductivity measured for the
four materials are in close agreement with the published values for

epoxy-glass G-10 [i]. The amount of frictional heating may be determined

from the ratio of the temperature rise caused by friction, to that caused by

electrical heating. The frictional beat is therefore:

H.=O.65mW ATp/(AT_-AT2). The effective conductivity between the upper and
lower ends of-the-cyllnder due to regenerator inefficiency and shuttle heat

transfer is:

Qrs 0.65mW + Hf - Qc 0.65mW 0.65mW (i)

AT 3 AT 3 (AT 3-AT 2 ) AT I

The term on the right corrects for conduction and convection losses. It is

also possible to determine the shuttle and regeneration losses separately

from this data. The regeneration loss is proportions] to the pressure

(helium mess flow) squared, whereas the shuttle beat loss is almost

independent of pressure for pressures above ]0 pasca]s (0. I torr). Fig. 3

shows the measured pressure dependence of the sum of regeneration and

shuttle heat losses, for a fixed temperature.

The temperature dependence of th_se tw_ losses is shown plotted In

Fig. 4 for a fixed pressure (0.65 x I0 _ Nt/m ). Experimental data points

are shown for the four types of materials tested. The theoretical shuttle

heat loss and regeneration loss, calculated with the equations given in the

appendix, are also shown plotted in the figure. The theory is in good

agreement with the experimental data points. The four materials tested gave

approximately the same losses in spite of their compositional differences.
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This is because the thermal properties of tbe four materials were al]
dominated by the properties of their major constituent, epoxy. It should be
noted that for a meangap of 0.3 mmthe therma] conductdvity of helium is
low enough that it imposes a significant limitation on regeneration, even if
the specific heat of the plastic washigher.
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Fig. 3.

Regeneration and shuttle heat loss as a function of helium

gas pressure, for two temperatures. Cylinder was epoxy-glass

and the dJsplacer was epoxy-glass plus 60% by wt. lead.

CONCLUSIONS

The good a_reement obtained between experimental measurements of

losses and the theoretical calculations encourages us to examine the

implications of the theoretical loss calculations on cryocooler design.

ExamlnatJon of Fig. 4 shows that for temperatures above 26_ the shuttle loss

is dominant, whereas below 20K regeneration losses are dominant. The

equations in the appendix show that an increase in the radial gap between

the displacer and the cylinder causes an increase in the regeneration loss

and a decrease in the shuttle beat loss. This suggests that the total loss

due to regeneration and shuttle heat transfer can be reduced by increasin_

the radial gap in the warmer parts of the cryocooler and decreasing it at

the cold end. This can be effected in a conical cryocooler by decreasing

the pitch of the cone at the cold end, since the pitch of the cone is
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related to the meangap if the displacer and outer cylinder touch everywhere
at the bottom of a stroke.

Unfortunately, the poor regeneration at low temperatures will not be
greatly improved by reducing the redJal gap as it is limited by the low heat
capacity of the epoxy. The addition of lead to the epoxy should improve
this somewhat,but the most we were able to add was 60wtF, which did not
ma_ea huge difference Jn the specific beat.

Regeneration losses at low temperetures _ril] be very large for all
regenerator materials. They can be reduced somewhatby decreasing the
thermal gredient by extending the tip of the displacer. The result of this

modification would be a shape somewhat like that of an exponential born

rather than the simple cone used in our earlier cryocoo]er.

Fig. 4.
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Regeneration and shuttle beet loss as a function of temperature

for a pressure of 60000 Pascals (0.6 atmosphere).

--Theoretical regeneration plus shuttle beat loss.

.........Theoretical shuttle heat loss.

..... Theoretical regeneration loss.

Experimental data.

* Epoxy glass.

)_ Epoxy glass plus 60Z by weight lead.

+ Epoxy glass plus 10% by weight charcoal.

o Epoxy with graphite fibers.
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APPENDIX: THEORETICAL HEAT LOSS EQUATIONS

The theoretical regeneration and shuttle heat losses plotted in Fig. 4

are derived from published equations for regeneration !2], shuttle heat loss

[7], the physics] properties of epoxy-glass G-10 [I], and the physics]

properties of helium [6]. The equations used are reproduced below for

conven ienc e •

The regeneration loss Qre_¢ne_ation is the sum of a term due to the

finite effective heat capacity bt the plastic (Qrp) and a term due to

the limited thermal conductivity of the helium gas (Q_He). The Reynolds

number is about half that for the onset of turbulent _ow even at the lowest

temperatures, consequently the conductivity of the gas is ca]culated for

laminar flow conditions.

Qreseneration _ QrP + QrHe

AT AT AT

(2)

QrP

AT 16_DL
(CpHeMo) 2 t 0_ _½ (3)

2

QrH._.__e= 17 m g (CpHeMo)

AT 1120 7rDLKtt e

(4)

M is the mass of helium moved in one cycle. The mass flow is assumed to be
9

slnusoidal, therefore the peak moss flow rates are +/-00Mo/2.

For our test conditions the QrP term was about twice the QrHe term between
5K and 1 0K.

The shuttle heat loss Omhu_t]e is due to tbe effective conduction of

the plastic QsP in series with the effective conduction of tbe helium gas in

the gap QsHe"

• -i

Qshuttle = ( &_T mE AT
AT \QsP QsHe

(5)

QsP = D S 2 (wKpCp) ½
AT 4L

(6)

QsHe KHe D S 2

AT 2gL
(7)

For our test conditions the 0sHe term dominated the QsP term by more than a

factor of two. This indicates the importance of a large gap in reducing

shuttle loss at high temperatures.
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The thermal conductivity Kp in mW/(cm-K)and the specific beat per
unit volume ppCp in mJ/(K-cm 3) for epoxy-glass G-10 for temperatures from 5K

to 300K may be expressed as [I] :

Kp(T) = 0.917 + 0.0319 T - 3.67 x 10 -5 T 2, and

ppCp(T) = -14.9 + 3.75 T + 0.0335 T 2 - 9.21 x 10 -5 T 3.

(8)

(9)

SYMBOLS :

D - diameter of the d_splacer (1.9 cm)

- 2m times the frequency of cycling (@.63Hz x 2_)

KHe - Thermal conductivity of helium gas.

Cn - Heat capacity per unit mass of helium gas.

K_ He Thermal conductivity of the plastic (G-10).

pp - Density of the plastic.

Cp - Heat capacity per unit mass of plastic.

_T - Temperature difference between the ends of the test section.

g - Mean radial gap between the displacer and cylinder (0.2 ms)

L - Length of test section (7.6 cm).

S - Stroke (i.3 cm)

DISCUSSION

Ronald E. Sager - Was your radiation shield isothermal or did it match the

temperature gradient of tbe experimental apparatus?

Calvin Winter - The radiation shield was isotherms]. It was held at the

temperature of the coldest (top) end of the regenerator under test. The

effects of radiation were negligible for tests at 6K and ilK.

Donald B. Sullivan - Does variation of the gap affect the operation of

tapered displacer cryocoolers?

Calvin Winter - Yes. The tlp region of the d_sp]scer will have a smaller

slope and tberefore a smaller variation in the gap when the d_splacer is

moved, than tbe base region of the displacer. A smaller average gap st the

tip tban st the base will tend to reduce losses. Unfortunately, it is not

possible to make the gap at the tip small enough because the resultant

friction will render the cryocooler inoperative.
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