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Abstract

An asymptotic technique is developed for analysing the
propagation and dissipation of wave-like eolutions to finite
difference equations. It is shown that for each fixed
complex frequency there are usually several wave solutions
with different wavenumbers and the slowly varying amplitude
of each satisfies an asymptotic amplitude equation which
includes the effects of smoothly varying coefficients in the
finite difference equations. The local group velocity
appears in this equation as the velocity of convection of
the amplitude. Asymptotic boundary conditions coupling the
amplitudes of the different wave solutions are also derived.

A wavepacket theory is developed which predicts the
motion, and interaction at boundaries, of wavepackets,
wave-like disturbances of finite length. Comparison with
numerical experiments demonstrates the success and
limitations of the theory.

Finally an asymptotic global stability analysis is
developed which gives results which agree with other
stability analyses and which can be applied to a wider range
of problems.
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1. Introduction

Consider the following very simple problem and

numerical solution. The partial differential equation is

9
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where ¢ is a positive constant. The domain

considered is 0<x<1 . The initial condition is

u(x,0) = exp[=200(x=0.5)?] cos(kx) t1.2)

with k=80. This form of distribution is usually
called a wavepacket. The cos(kx) term defines the
oscillation of a group of waves and the exp[=-200(x-0.5)%]

term is an amplitufs 'envelope'.

The upstream condition is

u(0,t) =0 (1.3)

The solution of this problem is
u(x=-ct,0) ct < x < 1

u(x,t) = (1.4)
0 0 < x < ct

The numerical solution uses a uniform grid with

computational domain 0<j<200 and a trapezoidal scheme.

n+1 n ) n+1 n n+1 n
- T + - - = ~
Uj Jj 4[(Uj+1 + Uj+1) (Uj-1 + Uj«10 0 (1.5)
where r = L (1.6)
Ax
In this example r=1. The initial condition is
v’ = u(x,,0) (1.7)
3 L

and the upstream boundary condition is



s

U =0 (1.8)

In addition a numerical boundary condition is
required at the downstream boundary. For this condition
space extrapolation is used.

n n
Y00 = Y199 : REE L

Figure 1 shows the numerical solution at intervals
of 60 time steps with each plot drawn to the same scale.
The first two plots show the initial wavepacket travelling
downstream in the direction of the physical characteraistic.
Corresponding wavecrests are labelled a-e and it can be seen
that the propagation velocity for the wave crests is greater
than for the amplitude envelope. Note for example that the
amplitude maximum lies approximately midway between crests b
and 4 at n=60 but at n=120 the maximum is clearly nearer
crest b. At n=180 the numerical disturbance is interacting
with the downstream boundary. The solution appears to be
the sum of two waves, one with the original wavelength , and
one with a very much shorter wavelength. At n=240 there is
a reflected wavepacket of wavelength slightly greater than
2. and the plots at n=300,360 show that this wavepacket
travels back up the domain at approximately the same speed
as the origina. wavepacket. This solution is clearly
numerical and not physical since the analytic, physical
solution moves from left to right across the domain and then
out the downstream boundary. The analytic equation does not
have any solutions with waves travelling from right to left.
At n=420 the wavepacket is interacting with the upstream
boundary, and at n=480 there is a reflected wavepacket with
the original wavelength. This completes one cycle. If the
solution was continued the wavepacket would travel down to

the downstream boundary and then reflect again into a
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n=300 The Wavepacket
Travels Upstream.

n= 360 The Wavepacket
Continues To Travel Upstream.

n=420 The Wavepacket is
Interacting With the Upsireom
Boundary.
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Has the Same Wavelength os
the Original Wavepacket.
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FIGURE 1, NUMERICAL SOLUTION OF CONVECTION EQUATION
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wavepacket with short wavelength, and a decreased amplitude,

travelling upstream.

The qualitative and gquantitative prediction of the
behaviour of numerical solutions in problems such as the
above is one of the two objectives of this parer. The
second objective is a global stability analysis
incorporating boundary conditions and smootialy varying
coeff.~ients and predicting both stability and accurate

asymptotic estimates of convergence rates.

To achieva these aims a technique is developed to
Analyse the approximate time evolution of an amplitude
modulated wave, i.e. a wave with fixed frequency and a
slowly varying amplitude. Chapter 2 derives the theory for
partial differential equations, while chapter 3 derives the
theory for finite difference equations incorporating
smoothly varying coefficients and boundary conditions. In
the case of dispersive, non-dissipative wave propagation, it
is found that the amplitude is convected at the local group
velocity, a principle which is well understood in partial

differential equations.

Chapter 4 applies the theory to the motion of
wavepackets which are wave-like disturbances of finite
length and constant frequency such as in the earlier
example. Chapters 5 and 5 derive global stability analyses
with different levels of asymptotic approximation. Chapters
7-9 develop further topiﬁs and examples including
comparisons between numerical experiments and theoretical

predictinns.

Throughout this paper a finite operator notation is

used which greatly simplifies analysis and is a neccessity
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for general proofs. Since there is no universally accepted

standard nocation Appendix 1 details the notation used.

Very little previous work appears to have Lbeen done
along the lines of this paper. The concept of group velocity
in partial differential equations is well understood and is
explained in many texts 12, The asymptotic approach of
chapter 2 is not common due to the advantages of other
methods but is discussed by Whitham . Kentzer 3 has
discussed the use of group velocity 1in analysing finite
difference equatioqs but does not derive a general eguation
for the amplitude or calculate the gquantitative effects of
boundary conditions. Vichnevetsky and Bowles 4 derive the
the group velocity 1n finite differe.ce equations using an
approach which is valid only for constant coefficients.
They also derive amplitude reflection coeffficients at

boundaries and discuss some of the examples given in this

paper.



2. Amplitude Analysis of Partial Differential Equacions

2.1 Fourier Analysis

Consider a homogeneous partial differential equation

L!

u(x,t) = 0 - < x < =» , t >0 (2.1)

where L is a constant linear differential operator

defined by,

3 Ym (3 \n
T

(~—’ r \
= =1 -_ 2
- 2“ Cmn (3 x/ 3tJ ( 2)

and the coefficients Cmn are cornstants.

An eigenfunction of the operator L is a function

u(x,t) satisfying
L u= }lu (2.3)
where A is a constant called the eigenvalue.

An eigenmode is a solution cf the homogeneous

equation (2.1) i.e. it i1s an eigenfunction with eigenvalue
zero.

ét expli{kx=-ut)] = ik exp[i(kx=-ut)] (2.4a)
3 . ; .

e exp(i(kx-ut)] = =ju exp(i(kx=-ut)] (2.4Db)
3 “Mf3 \n ) ) m n )

T At exp{i(kx=-wt)] = (ik) (=1iw) exp(i(kx=-ut)] (2.4c¢c)
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e (3_\“[2_)“ cat)] =
Cmnkaxj it exp (L {Xx=ut]]

L
m,n
) m ) n 2
E: Cmn (ik) (-iw) exp[i(kx=-wt)] (2.44)
m,n
Thus exp[i(kx=-wt)] is an eigenfunction of
3 3 /3 \mr3 \n
3 a_ a ) a_ ; - ’ s
e T \ax) Lat} and L with eigenvalues ik , iw ,
o B, B 5" ..m_ . .n ‘
(ik) (=-iw) , and /. C mn(lk) (=iw) respectively
m,n
Hence ,
u(x,t) = expli(kx=-ut)] (2%5)

is an exact solution of (2.1) provided

;ﬂ ¢ (ik)® (-iu)™ = 0 (2.6)
/_ "mn

m,n

This relation between k and w is called the
dispersion relation.

Examples of dispersion relations are ;

Surface waves on deep water w? = | gk| (2.7a)
Acoustic waves w? = c?k? (2+7hH)
Waves prcpagating along a waveguide w? = c?(k? + ki) (2.7¢c)
where g , ¢ aad k, are constants.

A general solution of (2.1) is a superposition of
eigenmodes which in the case of a partial differential
egquation is expressed as an integral over all the
wavenumbers k of the sum of all the eigenmodes with

wavenumber k.

An(k) exp[i(kx-unt)] dk (2.8)

W)=
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If the dispersion relation is of order N in w , i.e.

. 3 N
it contains powers of w up to w , then

Wylk) 5, walk) 4 ceeeee UN(k)

are the N values of w which satisfy the dispersion relation

for a given value of k and the An(k) are the corresponding

constant amplitudes of those eigenmodes.

If An(k) is non-zero for all k,n then a neccessary and
sufficient condition for u(x,t) to remain bounded and not

increase exponentially is that each eigenmode must remain

bounded. Splitting w 1nto its real and imaginary components

gives ,
W = uR - qu (2.9)
exp[-iuvt] = exp[-iuRt - uIt] (2.10)

Thus the condition that every eigenmode remain

bounded, and hence a general solution remain bounded, is

uI < 0 for all k.,n.

This analysis is lacking in three respects. The
first is that in some situations the initial disturbance is
zero except for a finite region and one wants to know the
time evolution of this disturbance, in particular the
propagation velocity for the energy. The second failing is
that when the initial-value problem is replaced by an
initial-value / boundary=-value problem with boundary

conditions at x = 0,1 there is no easy way to include the

effect of the boundary conditions in this stability analysis.

The third failing is that exp(i(kx-wt)] is an eigenfunction

of L only when the coefficients cmn are constant. The

analysis breaks down when the coefficients are non-constant.
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The resolution of these problems requires the analysis of a
wave of constant frequency with an amplitude which varies
over a characteristic length scale much greater than the

wavelength.
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2.2 Asymptotic Amplitude Eguation

The problem now being considered is
L(x) u(x,t) = 0 - < x < ®» , t >0 (2+11)

where L(x) is a non-constant linear differential operator

defined by,
3 \®(a N
L(x) = E: Cmn(x) (3;) [;E) (2.12)
m,n

and the coefficients Cmn(x) are slowly varying functicons of

X

The theory calculates the approximate evolution of a
wavetrain with waves of a constant frequency w and a slowly

varying amplitude, so u(x,t) is written as ,
u(x,t) = A(x,t) exp(i¥(x,t)] (2.13)

where A(x,t) is the slowly varying amplitude and
¥(x,t) is the phase of the wave which is related to the

frequency w ani wavenumber k by

Y
Tt-- - () (2-14)
R4
= = k (2 15)

The frequency w is constant but the wavenumber k

will vary slowly with x because of the slowly varying

coefficients Cmn(x) so the above relations can be integrated

to give ,

b 4
Y(x,t) -[ k() df - wt (2.16)
0
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To explain the asymptotic approximacions which are

made two characteristic length scales L, and LA and one

k
characteristic time scale 'rA are defined. Lk is the length
scale for variations in k, LA is the length scale for

variations in the amplitude A, and TA is the time scale for

variations in A. Numerical values for Lk' LA and TA are

are given by ,

L = min [k //15] (2.17a)
k x
! 3A :
LAsmzn[A/ax) (2.17b)
h
; A %
TA = min [A,//a:] (2a17¢)
The asymptotic appreximations used in this theory are
> -1 -y > -}
Lk > k LA >> k TA w

which imply

.3_k<< kl E_A.<< Ak L&(( Aw
. ax X it

A Taylor series expansion of A and Y about a point

(xq,ty) gives ,

@
»

A(x,t) = A, + = (x-%,) +
X

(t-ta) + HoOoT (2.18)

v

to

X
Y(x,t) = ¥, - w(t-t,) +_[ k() af
X

x
= ¥, = w(t=-t,) +‘f (kg + %f (E=%x4) + H.O.T ] 4%
°
X
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28 I |
1 3k \
= ,0 - U(t-to) + k.(x-x°) L g (x x ) + H.O0.T. (2'19)
2 3x,

Subscript , denotes terms evaluated at (x,,t,).
The H.O0.T. , higher order terms, includes terms like

3z a alp 3tk
ax? ' at? ' ax?

-1 -2 -2
A which are O{A(LAk) 'A(TAU) ,A(ka) }

and are neclected in this asymptotic approximaticn.

exp[i¥(x,t)] =

= exp|i¥, + ik, (x-x,) = iw(t-t,) + % %E (x=-x,)% + H.O0.T
Xo
. . . ( i3k 2
= exp(i¥y, + iky(x-%x,) = iw(t-t,)] 1 + S B (x=-%,) |
\ X o J
+ H.O0.T. (2.20)
Hence ,
" ; ; i 3k 2
u(x,t) = exp(i¥, +ik, (x=-x,) =-iw(t-t,)] 1 + 2 % (x=x%,)
0

JA dA
[A, + E;U(x-x,) + Ezo(t-t.) ) + H.O0.T.

= exp(i¥, + ik, (x=-x,) = iw(t=-t,)]

R 2A i Ik
. e - — - - —— - 2
(A, + ax°(x X,) + at°(t L) * > A, axo(x X,y ) )
+ H.O0.T. (227)

To evaluate derivatives of u(x,t) at (x,,t,) a

two=variable version of Leibnitz's rule is used.

(3_ \ma\

ax) [3—J [ £(x,t) g(x,t) ] =

m n. —_ -
T nt [L"a_\“f a )"\
/. p!(m-p)! q!(n=-q)! ax) (3t ax at g
p=0 g=0
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f(x,t) = exp(1

g(x,t) =

Then,

[[%:J ) kel q‘] :

and all other

are zero. Hen

&) (&) e
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Y. +* ik‘(x-x.)

@

3A
Ix,

A

(x-x°) 2 a—t'.

derivatives of g(x,t)

ce ,

t)
0

= exp[i?,] °

(t=t,) + % A,

OF POOR (QUALIL

- iw(t=-t,)]

ak
Ix

(ik,)p (=iw)? exp(i¥,]

evaluated at

(x=-x,)?2
0

(2.22)

(2+.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

[A,(ik,)m(-iu)n +m %ﬁ tikeI™ pesud® % 0 22 (ak, (a1
X it,
+ 4 51%111 A, %E (ike )™ 2(-1u)® + H.O.T. (2.30)

and so ,
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L(x) u(x,t) = exp(i?] E: Cmn { A(ik)m(-iu)n +

m,n
22 ™ Veto)? ¢ 0 22 (k=103 o
Ix it
iﬂi%:ll A %% ek ™ Y edn )@ ] + H.0.T. (2.31)

To satisfy the homogeneous equation (2.12) the

amplitude A(x,t) must satisfy ,

a,(k,w,x) A + a,(k,w,x) %—: + a,(k,u,x) ;—: + a,(k,w,x) A %
= 0 + K‘OO-T- (2-32)
b
where ,
a,(k,0,x) = E: Cpp (%) (ik) ™ (=10)" (2.33a)
m,n
a,(k,u,x) = E: Copn(X) n (1k)™(=10)"""
m,n
= 3 18 (2.33b)
Iw
a(k,w,x) = E: Cap(X) m (ik)m—1(-iU)n
m,n
da,
i3x (2.33¢c)
and a,(k,w,x) = Z Cop (%) 1 !-n-(—l;il (i)™ 2 (-1a0) ™
m,n
- o 13la, (2.334)
2 ak? ’

Because of the asymptotic assumptions ,

3A A 3k
»> g~ 2= -y O -2 ——
A W t ’ k ix ! k A ™

so (2.32) can only be satisfied if
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a,(k,u,x) = 0 (2.34)

This is the dispersion relation between k and uw.
k is now a slowly varying function of x due to the slow
variation in the coefficients. Thus the characteristic

length scale L, is related to some characteristic length

k
scale Lc for variations in the coefficients.

Neglecting the H.0.T. and dividing by a, gives the

asymptotic amplitude equation.

3A 3A

Tt + cq ™ € A (2.35)

where cg = a, / a, (2.36)
3k

and € = - a, 3% / a, (2437)

1 & cq is real the left hand side of (2.35) is a
Lagrangian-type total time derivative with respect to an
observer moving with velocity cg. If the coefficients cmn
are all constant, k is constant, ¢ = 0 and so the amplitude
A is constant along rays moving with velocity cq. In a
wavepacket individual wavecrests move with phase velocity
w/k , usually denoted cp , but the wavepacket, or amplitude
'envelope' , moves with velocity cq. For this reason cq is
called the group velocity.

Because the group velocity is the propagation
velocity for the amplitude and energy of the wavepacket the
group velocity is often more important than the phase
velocity. One example is the Sommerfeld radiation condition
which states that the waves generated by a fixed source have

a group velocity directed away from the source. In some



Y‘-‘. S e

22

unusual cases the phase velocity of the waves is actuall;
directed towards the source. A second example is that the
group velocity never exceeds the speed of light which is the
limiting speed of propagation of information while the phase
velocity can exceed the speed of light , as happens in wave

propagation along an electromagnetic waveguide.

To link this derivation of group velocity to other
derivations the dispersion relation (2.34) is differentiated

with x held constant.

- 28, 2a,
da, 7% dk + 330 du
= 0 (2.38)
(2w - - 33 / 3a,
ERaEs lak]x const 3 dw
= a, / a,
= ¢ (2.39)

g

The most common method of showing that (12)
. dk)x const

is the group velocity uses the method of stationary phase
which is well explained in the available literature [1,2].
The usual approach is to combine the dispersion relation ,
the definition of the group velocity and some physical
principle suc: as energy coqserva:ion to calculate the
propagation of energy. The approach given above is not
usually used partly because sometimes the exact partial
differential equation is not known and the dispersion
relation has been determined by asymptotic methods (e.g.
water waves) or from empirical data (e.g. seismic waves).
This approach is however suited to analysing finte
difference schemes in which the exact finite difference

equations are known and there is no general equivalent to
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the principle of energy conservation.
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3. Amplitude Analysis of Finite Difference Equations

3.1 Fourier Analysis

Consider a homogeneous finite difference equation
LU, =0 (3.1)

As explained in the appendix A.1, L can always be

expressed as a sum of step operators,

L = Z.cmp e X (3.2)
m,p

where the coefficients cmp are constants, but it is
often more simply expressed as a polynomial of finite

difference operators written symbol.cally as,
L = P(EleXIUXlEtrstlut) {3:3)

The eigenfunctions and eigenmodes of L are defined
exactly as in §2.1. The finite operators all have the same
eigenfunctions, exp(i(je=-n)]. ¢ and Q2 are related to the
wavenumber k and frequency w of the physical wave being

modelled by,

» = kix (3.4)
Q = it (3-5)

As shown in the appendix A.1

Ex exp(i(jo=-nQ)] = exp(i9o) exp(i(3jo=-nQ))] (3.6a)
éx exp(i(joe=-nR)] = 2i sin(¢/2) exp(i(je=-nQ)] (3.6b)
i exp(i(je-nR)] = cos(9/2) exp[i(jo-nQ)] (3.6¢)
E_ exp(i(jo-nf)] = exp(=-il) exp(i(jo-nQ))]) (3.64)
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6t exp(i(je=-nQ)] = =2i sin(Q/2) exp(i(je=-nQ)] (3.6e)
. exp(i(jo-nQ))] = cos(R/2) exp(i(je-nQ)] (3.5€F)
me Ept exp(i(je=-nQ)] = exp(i(me=-pfR)] exp(i(jo=-nQ)] (3.69)
Thus exp(i(jo=-nfl)] is an eigenfunction of

h .
E , § , uw, E , 6:' ut and me !pt with eigenvalues

exp(i¢), 2i sin(¢/2), cos(¢9/2), exp(=-iQ), =2i sin(0/2),
cos(Q/2), exp(i(mo=-pQl)] respectively, and L has eigenvalue
Z cmp exp(i{moe=-pR)] or

m,p

Plexp(io),2i sinf9/2),cos(9/2),
exp(=-iQ),=-2i sin(Q/2),cos(02/2)]

depending which expression for L is used.

u; = expli(je=nQ)) (3.7)
is an exact solution of (3.1) provided
2: Cmp exp(i(me=-pR)] = 0 (3.8)
m,p

This is the dispersion relation between ¢ and Q.

Since exp[2nwi] = 1 for all integers n, ¢ + 2nw is
equivalent to 9 so only solutions in the ranges

-7" < Re(¢9) < 7w

-7 < Re(Q) < w

need be considared.

If L involves P+1 time levels and M+1 spatial nodes
the dispersion relation is a polynomial of degree P in
exp(=il) and of degree M in exp(i¢). Thus for &« given ¢

there are P corresponding values of 2, and for a given Q
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there are M correspondiiag values of ¢.

A general solution of (3.7) for periodic boudary

conditions is a superposition of eigenmodes.

U; = z: }:: Ap(o) oxp[i(jo-nnp)] {1.9)
? p=1
The ¢ summaticn is a summation over all the values
of ¢ which satisfy the periodicz boundary conditions, and
the p summation is over the P values of Q corresponding to

each value of 9.

p 4 < AP(O) is non-zero for all ¢,p ther a necessary and
sufficient condition fcr U? to remain bounded and not
increase exponentially is that each eigenmode must remain

bounded. Splitting Q@ into its real and imaginary components
gives,

Q= Q_ + iQ (3.10)

exp(=infi] = cxp[-inﬂR + nQ_) (3.11)

I

Thus the condition that every eigenmode remain
bounded , and hence a general solution remain bounded , is

QI <0 for all o¢,p.

This analysis is lacking in the same three respects
as the analysis of partial differential equations by
eigenmode expansion in the last chapter. The analysis
gives no informatioﬁ about the movement of an initially
localised disturbance, cannot incorporate boundary
conditions or arnalyse schemes with non-constant

coefficients.



3.2 Asymptotic Amplitude Eguation

In this section the coefficients cmpin the
definition of L (3.2) are assumed to be slowly varying

functions of j. The analysis is performed in computational
space with coordinates (j,n) in whicn the grid spacing is
Aj=1, An=1. Variations in mesh spacing in physical
coordinates are incorporated directly into the variable

coefficients of the finite difference equations.

The theory calculates the approximate evolution of a

wavetrain with waves of a constant frequency Q@ and a slowly

- n . :
varying ampliitude , so Uj is written as ,

c'j‘ = A(j,n) exp(i¥(j,n)] (3.12)

where A(j,n) is the slowly varying amplitude and
¥(i,n) is the phase of the wave and is related to the

frequency 2 and waven _ sber ¢ by

¥ - (3.13)
an
ii = 9 (3.14)
Ch
which can be integrated to give,
3
*(3,n) = [ e(%) a& - na (3.15)

0
As in §2.2 two characteristic length scales, LO for
variations in ¢, and LA for variations in the amplitude A
and one characteristic time scale TA for variations in the
amplitude A , can be defined with numerical values beiug

given by,



28

IRIGINGL |

OF POOR QU
L, = min (1 /1%) (3.16a)
Lp = min (A //%%] (3.16b)

. 3A
Ta = min (A// 3n) (3.16¢c)
The asymptotic approximations are
Ly >> 1 Lp >> 1 Ta 2> 1
which imply
33 << 1 33 << A LE. << A
3j 33 an

A Taylor series expansion of A and ¥ about a point

(jorny) gives,

A(jo+m,n,+p)

+ H.O.T (3-17)

]
»
-
+
- |
I
+
o
I

jo+m

¥(jo+m,n,+p) = ¥, - pQ +‘[ o(g) dg

32a

3o
Jo+m
30 -
= ¥, - p + ‘[ [¢6, + 3? (§-3,) + H.O.T ] 4§
: 0

Jo

-V, ~pd +me, + X L& , 4o0.7 (3.18)
L] p 0 2330 «Uel o o

Subscript , denotes terms evaluated at (j,,n,).

The H.0.T. , higher order terms, includes terms like

32a 3y

3j?

' A which are O{ALpr~"%,AT,~? ,AL,"?} and are
an? ' 342 A & ’

neglected in this asymptotic approximation.
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exp(i¥(j,+m,n,+p)]
imd
= axp( i¥, - ipQl + ime, + i% i% + H.O.T ]
0
. im? 3¢
= exp( i¥, = ipo + ime,] 1 + == 35 + H.O.T. (3.19)
0
Hence ,
Nn,+ X im? o
j:+P = exp[i¥,] exp(i(mo,=-pR)] [ = 3;0)
3A 3 A
[A, +m 33, - n ] + H.O.T.
, . 3A 3A  im? 39
= exp(i¥,] exp[i(meé,=-pR)] [A, + m —30 +p 3;0 = A, 3;0]
+ B.0.7. (3020)
Hence,

Lj'Ug = exp(iY¥] E: cmp(j) exp[i(mo=pR)] o

m,p
3A 3A im* 3¢
[A *®iTep gt 7 A j] + H.O.T. (3.21)

To satisfy the homcgeneous equation (3.1) the

amplitude A(j,n) must satisfy,

a,(4,2,3) A + a;(9,8,3) 25 + a,(¢,2,3) 3& + a,(9,2,3) A 1&
an j 3
= 0 + H.0.T. (3.22)
where ,
ag(‘rarj) - Z Cmp(j) exp[i(m@-pﬂ)] (3.23a)
m,p
a,(¢,2,3) = E: Cip(j) P exp(i(mé=-pQ)]
m,p
- 138 (3.23b)
3 $,j const :



L B .

30

gl

a (e,9,3) p(j) m exp[(i(mé=-pQ)]

8

2,4 const (3.23¢)

and a,(e,2,3) exp(i(me-pQ)]

im
2

u
8
g
0
8
o
o
|

if3ata,
- 2(30’ )Q,j const k- sant

In the above derivat:ion of a,,a, ,a,,a, the general

shift operator expression for L, (3.2) is used. 1In

3

applications it is more convenient to use the finite
operator polynomial expression (3.3). a, is obtained by
replacing each operator with its corresponding eigenvalue

and then a, ,a,,a, are calculated by differentiating a,.

Because of the asymptotic assumptions ,

A 3A 20

>> —
A an " a3 ' 2]

so (3.22) can only be satisfied if

4 - -1 -1 -1 .
a,(e,2,3) 0 + 0 { L’ .LA 'TA } (3.24)

This is the asymptotic form of the dispersion
relation between ¢ and @ and will usually be satisfied by

setting a, identically equal to zero. ¢ is now a slouwly

varying function of j due to the slow variation in the
coefficients. The characteristic length scale Lo is related
to some characteristic length scale Lc for variations in the
ccefficients.

Neglecting the H.O0.T. and dividing by a, gives the

asymptotic amplitude equation.
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3A 3A
a—n + rg 3‘3‘ € A
where rg = a, / a,
and e = - ( a, %% + a, ) / a;

{3.28)

(3.26)

(3.27)

Differentiating (3.24, with @ held constant gives,

EET 2a,
el (ao Jn,j const g +(3j) $,2 const 43

= 0 - H.O.T.

Hence, neglecting the higher order terms,

q (3aﬂ
j $,2 const 30 ﬂ,j const
: ') a

j $,2 const t

so € = =i a (13° a, a
Y133 )¢ ,2 const 178

If rq is real the left hand side of (3.25) is

3 9

-
2
%

$

w

j"[
e if
\

Lagrangian-type total time derivative with respect to

observer moving with velocity rq. Thus the amplitude

(3.28)

(3.29)

(3.30)

a
an

A is

being convected with velocity rg in computational space.

Differentiating (3.24) with j held constant gives,

- 3% ) 9,j const 3¢ ) 2,3 const

= 0 g H.O0.T.

Hence, neglecting the higher order terms,

(3.31)

ag = - (220 3a,
ae j const 3¢ /| 2,j const 32 ) 6,3 const

= a, / a,

(3.32)
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Substituting for Q@ and ¢ using (3.5a,b),

- I(wAt)
g 3(kAx)

- -4 (3.33)

Thus rq is the CFL number corresponding to the group

velocity in physical space of the propagating numerical

wave. It is the number of spatial mesh intervals which a

localised disturbance travels in one time step. For the

rest of the paper rg is called the group CFL number.
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3.3 Examples

The model problem which is considered is,

du 3u

Tt + c(x) i 0 -® < x < @

Three different methods are analysed.

2.3.1 Trapezoidal Scheme

The trapezoidal scheme is

1 n+1 n e | [ n+1 n A+l n
e Yy vyl 4ijL(Uj+1 *Uge1? = 0404 054!

which can be written using operator notation as

b -4
1 j n+}
ae | 8¢ ¥ 2 S Ve | Uy 0

where the CFL number r is defined as

¥ - cat
Ax
- 3
and Ax. = l (x - X )
73 2 j+1 j=1

(3.34)

(3.35)

(3.36)

(3+37)

(3.38)

a, is obtained by replacing the operators by their

eigenvalues.

a, = -2i sin(2/2) + % 2i sin(e) cos(Q/2)

The dispersion relation is

a, =0

so tan(Q/2) = § sin(¢)

a,, a,, a, are obtained by differentiating a,

(3439)

(3.40)

(3.41)
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al = i .a—ao

W

= cos(Q/2) + % sin(e) sin{(Q/2)

= r cos(¢) cos(Q/2)

a = - l 1 -a-.z—a°
3 9 302

o=
o
©

= - % sin(¢) cos(R/2)

Using the dispersion relation a, and a,

simplified.

a, = cos(Q/2) + sin(¢9) sin(Q/2)

(N1,

= cos(Q/2) + tan(Q/2) sin(Q/2)

ouALITY

(3.42)

(3.43)

(3.44)

can be

= [ cos?(Q/2) + sin?(Q/2) 1 / cos(f/2)

= 1 / cos(Q/2)

sin(¢) cos(0/2)

(ST

= - tan(Q/2) cos(/2)

= ~ gin(6/2)

so r_ = a, / a,

r cos(¢) cos? (Q/2)

, 12,
and ¢ 3 a,(aj) 6.0 cohas / a,a, =~ a, / a,
i 3
= %5 sin(¢o) cos(Q/2) [ —% sin(9) cos(Q/2)

(3.45)

(3.46)

(3.47)

1/[r cos(¢)]
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1 3 r " )
7 33 St (90 cos (/2) / cos(s¢) (3.48)

There are three points of interest

sin(w=¢) = sin(¢)
so for all Q@ there are two corresponding values of

by the dispersion relation,

¢, satisfying =-1/2 < Re(9,) < m/2
¢ =T =0,

For real @ in the range
0 < 2 < 2 tan~!'(r/2)

0 < tan(Q/2) < r/2

0 < sin(9) < 1

Thus ¢, and ¢, are both real and

0 <9, < n/2

/2 < ¢, < *
r (9,) < 0
gk

Hence for every frequency in the given range there

is one forward travelling wave, travelling in the same

direction as the physical waves being modelled, and one

backward travelling wave with wavelength less than 44x.

1id)

For real Q0 in the range
2 tan~!(r/2) < @ < «
sin(¢) > 1

so ¢, and ¢, are complex
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Let o, = 7/2 + i9_

Then sin(¢,) = cosh(oI)

so ¢ is real and satisfies

I
tan(Q/2) = 3 cosh(¢_)
2 I
9; =¥ =09,
= v/2 = LoI

These are evanescent waves. If there are
boundaries at j = 0,J and the boundary conditions force a
steady oscillation with a frequency in the given range one
wave will decay in amplitude exponentially away from the

boundary at j=0, while the other will decay exponentially

away from the boundary at j=J.

(¥
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The box scheme is

l_ [(Un+1 & Un+1) - (Un & Un )J

At 3 i+ b] it
il (Un n+1 n " Un+1) 0
ij j+1 Uj+1) (Uj 3j

which may be written in operator notation as

n+$ - 0

1
—_— [ -
ag (¥ TydelSy ! Ussp

x t 3

a,= ~-2i cos(¢/2) sin(Q/2) + 2ir cos(Q/2) sin(¢/2)

The dispersion relation is

tan(Q/2) = r tan(¢/2)

L

a, = i -30

o

= cos($/2) cos(Q/2) +# r sin(R/2) sin(e/2)

= 8in(9/2) s8in(R/2) + r cos(Q/2) cos(6/2)

i
&y = 3 3o

(3.49)

(3.50)

{351}

(3.52)

(3.53)

(3.54)

= % cos(¢/2) sin(Q/2) = % r cos(Q/2) sin(9/2)

= 0

Thus rq = a, / a,

sin(6/2) sin(Q/2) + r cos(R/2) cos(9/2)
cos(¢/2) coa(R/2) + r sin(Q2/2) sin(4/2)

(3.55)
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tan(¢/2) tan(Q/2) + r
1 + r tan(¢0/2) tan(Q/2)

2
- & 1 + tan® (9/2) (3.56)

1 + r? tan?(¢/2)

and € = 0 (3.57)
There are two points of interest

i) For each real value of Q2 there is one corresponding
real value of ¢ given by the dispersion relation and the

group CFL number rq is real and positive.

ii) When r=1, rg-r , 8o waves of all frequencies travel

at the same velocity as the physical waves being modelled.
This is because when r=1 the Box scheme reduces to,

1
oL, = ol (3.58)
4

which agrees exactly with the solution of the partial
differential equation,

u(x+ct,t) = u(x,0) (3.59)
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3.3.3 Backward Eule: Scheme

The backward Euler scheme is,

[~}
1 n+1 n j n+1 n+1
At (Uj Uj ) + T (Uj+1 Uj-1

)

w- “TT‘:.‘“L P;{\}: ‘8

OF POOR QUALITY

which may be written using operator notation as

1 1 n+1
at (Ve * 2%y 82 Uy

ay= 1 - exp(ifl) + ir sin(9)

The dispersion relation is

exp(iQ] - 1 = ir sin(¢)

|-
@
R=3

so r = a, / a,

= r cos(¢o) exp(=-iQ)

[ exp(iQ)

a, / a,

= -] 2'
st & . a’{ajJ 0,2 const / M1
ir . ar
3 sin(¢e) [ i 73 sin(e) ] /
= - % 3% sin? (¢9) exp(=-iR) / cos(e)

r cos(o)

(3.60)

(3.61)

(3.62)

(3.63)

(3.64)

(3.65)

(3.66)

(3.67)

]

(3.68)
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3.4 Asymptotic Boundary Conditions

The general solution of
L, ul =0 (8 1)

is a sum of waves with different constant frequencies Q2 and

slowly varying wavenumber ¢ and amplitude A

M j
n
Uj = zi: E: An(j,n) exp (i [ om(E) df =-nQ)] (3.69)

m=1 0
The outer summation is over different values of Q,

and the inner summation is over the M different values of ¢

which satisfy the dispersion relation for each Q.

For each @,m the amplitude A satisfies its
asymptot : amplitude equaticn on the interior of the
computational c¢mmain independent of all the other waves.
All the waves of each frequency are however coupled by

boundary conditions.

Suppose a finite difference bouvndary condition at

i=J is
BU_=F {3:70)

where B is a constant tinite difference operator which can

be expressed in operator polynomial form as

B = pS(EX'Gx‘uX'!C'GC'ut) (3.71)

and F" is a forcing function which can be expressed as a

sum of inputs of different frequencies.

n o™
F = ), £(Q) exp(=id) £3.72)
Q
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Performing exactly the same asymptotic expansion as
in the derivation of the asymptotic amplitude equation the

boundary condition becomes,

] M
E ( 3b 3A . 3b 3A i 3a%b °
Z kb Am *igg -t 70 S—i-n' =3 It Am 3

s

J
exp (i f Om df =-nf)] = E: £(Q) exp(-inQ) + H.O.T. {3+73)
Q

where b(2,9 ) = P_[ exp(i¢ ),2i sin(¢ /2),cos(s /2),
m B m m m

exp(=-1iQ),-21i sin(Q/2),cos(Q/2) ) (3.74)
The coefficients of exp(-inQ) in (3.73) must be

asymptotically equal to zero for each Q so,

M
( 2
3
T [pa o+ s 22 3A, 3B 3AL_iatho3e ),
L m I 3In 93¢ 37 2 3¢ m 37
m=1
exp(i | o df ] = £(Q) +H.O0.T. ({3.78)
o

This paper is primarily concerned with stability
and convergence rates. When analysing perturbations from a
steady state or constant amplitude oscillaticn the boundary
condition f.r th perturbation has

£(R) = 0 (3.76)

Because the zero order terms will usually dominate

the normal form of the asymptotic boundary conditions is,

M J
\
“w, [i = .
Zd b(Q cm) Am(J) exp(i [ om d§ | 0 (3.77)
m=1 0
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The first order terms —2m , LY . m are only
an 33 37

important when,

b(a,9 ) = 0 ( 'rA", L,"', L ")

As explained in §3.1 if the finite difference
operator L in the interior scheme spans M+1 spatial levels
there will be M values of ¢ given by the dispersion relation
for a given value of Q. If the computational domain is
0<j<J the interior scheme gives finite difference equations
at J-M+1 nodes, so to complete the set of finite difference
equations there must be M finite difference boundary
conditions. Hence for each @ the asymptotic amplitude
analysis gives M independent amplitude differential

equations on the interior coupled at the boundaries by M

boundary conditions.
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3.5 Examples

The same model problem as in §3.3 is considered,

BV
(=4
ar
(=

et Sax "0 (3.34)
0 < x < xJ

c(x) > 0

The analytic boundary condition is,

u(0,t) = F(t) (3.78)
For perturbation analysis

u(0,t) = 0 (3.79)

The finite difference scheme using the trapezoidal
or backward Euler methods on the interior requires two
finite difference boundary conditions. For perturbations

the boundary condition at j=0 is,
u, =0 (3.80)

The boundary condition at j=J is some form of

extrapolation. Four of the most commonly used are analysed.

3.5.1 Upstream Boundary

vt = 0 (3.80)
o)
B = 1 (3.81)
so b = 1 (3.82)
Hence A,(0,n) + A,(0,n) =0 (3.83)

In preparation for the theory developed in chapters

4 and 5 it is useful to define RO, the amplitude refiection

coefficient as
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(0] TN
(0,n) oF romE v (
A n

B bt hte 3.84
R0 A, (0,n) : ;
so in this example

= - (3.85
RO 1 3 )
3.5.2 Downstream Boundary : Space Extrapolation

The space extrapolation buundary condition is

vl = U, (3.86)
B=1-E
-x
= Eiy Ox (3.87)

so b =1 - exp(=-i9¢)

= 2i exp(=-i9/2) sin(¢/2) (3.88)
Hence
2 J
o=, A
) szL(om/Z) exp(i | o dfg - i om(J)/Z ] Am(J,n) = 0 (3.89)
m=1 0
The amplitude reflection coefficient RJ is defined
as,
(J,n)
R, = i‘TE—;T (3.90)

So in this example

J
- - 3in(e,/2) L[ - P & 7y -
RJ 3in(05/2) exp LL j (o, ,) di 2(01(3) 0, (J))
0

(3.91)
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3.5.3 Downstream Boundary : Space-time Extrapolation

The space~time extrapolation boundary condition is

n n-1

UJ = UJ_1 (3.92)

B =1 - E E (3.93)
-X -t

b =1 - exp(=-i¢ + iQ)
= 2i exp(i(R=-9)/2] sin((9-0)/2] (3.94)

Hence,

J

i [ o ag - is (3)/2| A_(J.,n) = 0 (3.95)
P mn m
0

J
I T S f (8,-0,) dE = 2(0,(I)=0,(3))
0

(3.96)

3.5.4 Downstream Boundary : Box Method

In this example the Box method which was discussed
in §3.3.2 as an interior scheme is now considered as a

downstream boundary condition.

n-$
[ uySy *+ T w8, 105 4 =0 (3.97)
= 8 2
B E-}x E-}t [ ux S + r ut6x ] (3.98)

so b = exp[i(Q=9)/2] { =2i cos(94/2) sin(R/2) +
2i ¥ cos(Q/2) sin(9/2) } (3.99)

Hence,
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2
[r sin(om/2) - tan(Q/2) cos(om/2) v
m=1

J
sxp[if 0 dE - i (3)/2 ] A(3,m) =0 (3.100)
0

r sin(¢,/2) - tan(Q/2) cos(¢,/2)

Ry ™ = T sin(e,/2) - tan(2/2) cos(0,/2)
J s
exp [i f (0,=0,) df = %(Ol(J)-O,(J))J (3.101)
0
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4. Ray Theory and Wavepacket-Particle Duality

4-1 Ray Theory

In addition to the asymptotic approximations made
in chapter 3 this chapter assumes that for all real

wavenumbers ¢, the frequency Q1 is real for all j and hence

the group CFL number rg is real.

N
Tq ?[QOJ j const {3 n3é)
A Lagrangian-type total time derivative 1in
computational space is defined by,
d _ 3 3
dn - an tg 33 LELE
so dj _ 3 ., 343
dn an g 37
= r (4.2)
g

From the asymptotic amplitude equation (3.25),

dA A 3A
-— = — + r —
dn an g 37
= €A (4.3)

and using (3.26) and (3.29),

de _ 3¢ [ . 20
dn an g 3j
3
= r —
g 9]
= 22 . [2a,
a7 37 ) ¢,2 const a2

(4.4)




URIGINAL PAGE IS
OF POOR QUALITY

A general initial value problem for a wave of
frequency 4 and wavenumber ¢(R,3j) can be solved by
integrating these equations (4.2)-(4.4) with initial

conditions

j(0) = 3, (4.5a)
A(0) = A(3,,0) (4.5b)
0(0) = 6(8,3,) (4.5¢)

Cach value of j generates a ray and all of the
rays together cover the entire domain for n > 0. Figure 2
shows the motion of some typical rays in computational

space.

n

FIGURE 2. RAYS IN COMPUTATIONAL SPACE
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rq is a function of j so at a particular j all the

rays have the same slope %%. Hence the time separation T of
two rays, illustrated in figure 2 for rays 1 and 2, remains

constant but the spatial separation L varies as r_ varies.

As explained in chapter 3 if the finite difference
operator spans M+1 spatial nodes then for a particular
value of @ there are M values of ¢ which satisfy the
dispersion relation. Define M, to be the number of
solutions ¢ for which the group CFL number is positive, and
similarly define M_ to be the number of solutions ¢ for
which the group CFL number is negative. Let the
computational domain be 0 < j < J as usual. At j=J there
are M, rays leaving the domain and M. entering it. The
amplitudes are related through the asymptotic boundary
conditions each of which has the form,

M

b(Q,Qm) exp( 1 [ 4ag ] Am(J,n) = 0 (3.37)

m

o'

m=1

Since the M, amplitudes of the rays leaving the
domain are known and the M. amplitudes of the rays
entering the domain are unknown there must be M_ boundary
conditions to uniquely determine the amplitudes of the rays
entering doma:in. Similarly at j=0 there must be M,
boundary conditions to uniquely determine the amplitudes of

the rays entering the domain.
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4.2 Wavepacket-Particle Theory

In terms of ray theory a wavepacket is a ray tube, a

group of rays, along which the amplitude is non-zero. From

the discussion in the last section the time length TA of the
wavepacket remains constant but its spatial length LA will
vary whenever rg has different values at the two ends of
the wavepacket. Provided LA << L° all the rays in the ray

tube have approximately the same value for 9(Q,3j) so the

motion of the wavepacket is given by,

a4 . ~
in rq(ﬂ,o(j),J) (4.2)
de _ i (3a,)

Sas dn ‘x(aj) ¢,2 const HaA

The energy, in physical space, of the wavepacket is

defined as,

X

J
E(n) = f |aCx,t )|? dx
X
3
d
-[ |a(3,n)|? == aj (4.6)
0 a3

Hence the wave energy density in computaticnal

space is detined to be,

p(j,n) = a(j) |A(j,n)|? (4.7)
where a(j) = %% (4.8)

Using (4.3) and the notation that A is the complex

conjugate of A it follows that

3p 2 3 - 3 -
+ =—(r p) = —(aAA) + —(r alAA)
- an 33 g

n 93
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- 3A A A A -3
= gA(=— + r —) + aA(=™— + r —=) + AA T=(r a)
n g 33 n g 33 3] g
- da dA - 2
= aqpA ” + aA an + AA aj(rga)
- —— - 2
= aAtA + aAceA + AA —=(r a)
3j g
= (e+?+la—.(r a))o (4.9)
3j g
Hence,
2 3
dF [*]
dn [ an ]
0
J
= [ - =—(r p) + (c + e + ) 1—(* a)) p 4]
3 a 3 “g
0
J J
= 1 2
= « r p - [ L + ¢ + = —(r a)) p d (4.10)
g i A ( a 3j g ]

If the wavepacket is in the interior of the domain
away from the boundaries the energy flux rqo at the

boundaries j=0,J is zero. Also assuming as before that

LA << Lc then € + € + & %?(rgv) is approximately constant

over the length of the wavepacket, so

J

dE - 1 3 .
— — e [
A [e + € + - aj‘qu)J f p dj
0
= (c + € + 3 1—(r c)) E (4.11)
a 33 g

Thus equations (4.2), (4.., and (4.11) completely
describe the motion of the wavepacket particle in the

interior of the computational domain.
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When the wavepacket reaches the boundary it
interacts with the boundary conditions to produce one or
more reflected wavepackets with the same frequency but
different wavenumbers. Tha2 only case for which i% is easy

to incorporate boundary conditions is when M=2 and

r (¢,,3) > 0
g 1 0]

r (e,.,3) < 0
g ' b|

An example of a scheme satisfying this condition is
the trapezoidal method which was applied to the model

convection problem in the introduction.

An additional assumption is that
Irq(h.j)l: |rg(’3lj)| << J

so that it takes much more than one time step for a

wavepacket to travel from one boundary to the other.

Suppose that initially there is one wavepacket with

wavenumber ¢, as in the introductory example. The
wavepacket travels to the right with position and energy

determined by the equations of motion previously derived
(4.2), (4.4) and (4.11). When the wavepacket reaches the

boun lary at j=J a proportion of the energy E, is reflected

into a left travelling wavepacket of frequency 1, wavenumber

¢, and energy E,. Figure 1 illustrates this interaction.

Equation (4.10) is

J J
g% = - r p + f £ + ? + = a——( a) dj (4.10)
dn g 5 a 33 rq J P 3 .
0

The outgoing energy flux is
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rg(o,,a) p,(J,n) = tq(o,,J) a(J) |A,(J,n)|? (4.12)

The incoming energy flux is

tg(o,,J) p,(J,n) = rq(o:.J) a(J) [A,(3,n)|2 (4.13)

The amplitude reflection coefficient RJ defined by

A (J,n)

B r— s
Ry * R(7.m) (4.14)

is a function of R,¢, ,0, determined by the asymptotic

boundary condition.

The energy flux entering the reflected wavepacket i

a factor

r (’1'J) 2
_1__1 |RJI
tq(Ox:J)

greater, or less, than the energy flux leaving the incident
wavepacket and so the totazl energy of the reflected

wavepacket is given by,

r (‘1;«1)
- SR

E, = E, (4.15)

r (¢ :J_)-
g 1

The reflected wavepacket travels left according to
the equations of motion for a wave 2 wavepacket until it

reaches j=0 where i: is reflected into a right travelling

wave 1 wavepacket. The reflected energy E, is given by,

I r (,,0) 2
E, = B laol E, (4.16)
| r (95,0
A, (0,n)
where R, = —— (4.17)

0 A, (0,n)

is determined by the asymptotic boundary condition.
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Figure 3 balow shows the particle-like path of the

wavepacket in computational space.

iA

(b) (b)

(a) (c) (a) (c)

(d) n

FIGURE 3. WAVEPACKET PATH IN COMPUTATIONAL SPACE

In summary the equatious for the different parts of

the path are,

dj : ¢ y
(a) %5 " rg"xIJ) (4.2

de, : ’aao“u

dn 3,133 ) ¢, const L

3 )
3 (rga)

| (4.11)

Q|
L}

t O
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r (‘z;J) ' l 2
(b) TR - el S = | & (4.15)
r (o,,J) J
g
4 |
(c) Fs rg(o,,j) (4.2)
de, _ i [2a,
dn ax[aj ¢,2 const V440
dE, = 1 3
—1? = - — 11
A% {s + e+ < aj(rqa)] E, (4 )
r (¢,,0) 2
() E, = g |”,|* = (4.16)
r (¢,,0)
g
In (a) and (c) the dispersion relation can be used
as a check on the accuracy of the numerical integration of b
the equations or can replace the equation for the variation
of ¢.
The total number of time steps for a round trip from
0 to J and back again to 0 is
J
N =f (r (0,,3) 1= = [ £ (8,,3) 11 a3 (4.18) )
5 g g

The energy growth of a wavepacket travelling from 0

to J is given by

a_ 1 dE,
g PEVEL) E dn
=€ + € + i lv(r a) (4.19)
a 33 g
d d dj
- ko = ——— \’
so a3 ln(E,) an In(E,) / T
€ + € 1 )
= + -—(r a)
> r a 3j
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€ + ¢ 3
= + ==[ 1In(r a) ] (4.20)
r 33 g
g
Hence, J - J
In(E, (J)] = 1ln[E, (0)] + [ E—%—E dj + ln(rqa) (4.21)
0 9 0
J -
r (o,,J) € + €
so E, (J) = e exp ‘[ dj E,(0) {4.22)
rq(Ova) 0 Ty

Similarly the energy growth of the reflected

wavepacket as it travels from J to 0 is

b 3 (01'0)
— e

so E,(0) =

J -~
E + € .
exp [ - = dj E,(J) (4.23)
rq(o,,J) 0 g

Combining (4.15),(4.16),(4.22) and (4.23) the round

trip energy amplification factor X 1is

r (¢,,J3) J - r (0,,J)
y = |_9_L’__' exp [ (S| a5 - I AR |=_|*
| £ _ (o,.0) r r (0,,J) J
g o} g J! g
r (6,,0) ’ J fe » &) r (¢,,0) g
| T e, | ®*P 1T ‘J j ° (6,,0) IRO,
3 219 0 \ g : rg 2 ¢
J { - _\
| 2 € + € £ + €
= : R! 3 | — - - ( .
lpo %, exp [\ . ] [ | a3 (4.24)
0 g 1 g 2
(e + €) . :
where | ~ai is evaluated at ¢,,3
\ g Jx
e *;\
and i = J is evaluated at ¢,.,3
\ g J2

The condition for stability is

A <1




The equivalent average decay rate o0 is

In(Ai) (4.25)
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