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SUMMARY

Two finite element procedures are described for vredicting the dynanic response
of general 3-D fluid-filled elastic piping systems. The first approach, a low
frequency procedure, models each straight pipe or elbow as a sequence of beams. The
contained fluid is modeled as a separate coincident sequence of axial menbers (rods)
which are tied to the pipe in the lateral direction. The model includes the pipe
hoop strain correction to the fluid sound speed and the flexibility factor correction
to the elbow flexibility. The second modeling approach, an intermediate frequency
procedure, follows generally the original Zienkiewicz-Newton scheme for coupled
fluid-structure problems except that the velocity potential is used as the
fundamental fluid unknown to symmetrize the coefficient matrices. From comparisons
of the beam model predictions to both experimental data and the 3-D model, the beam
model is validated for frequencies up to about two-thirds of the lowest fluid-filled
lobar pipe mode., Accurate elbow flexibility factors are seen to be crucial for
effective beam modeling of piping systems.

INTRODUCTION

The vibrations that occur in fluid-filled piping systems are c¢f interest in a
variety of industrial, aircraft, and shipboard applications. The interesting dynamic
behavior includes both water hammer (a transient phenanenon) and the steady-state
{(time~harmonic) vibrations caused by unbalanced rotating machinery such as pumps, for
example.

Over 30 years ago, Callaway, Tyzzer, and Hardy (Ref. 1) recognized in their
experimental wcrk the importance of the coupling between the vibrations of the liquid
and the pipe wall, even for nominally straight pipes. JSince then, a number of
investigators have proposed various techniques of mathematical modeling for design
and analysis purposes.

Most of these techniques have been restricted to straight pipes. Some recent
work, for example, was reported by El-Raheb (Ref. 2,3), who analyzed the acoustic
propagation in a perfect, finite length, fluid-filled, thin elastic cylindrical
shell. El-Raheb obtained eigenfunction expansions for Koiter's consistent shell
equations and the Helmholtz equation governing the fluid field.

There have also been sane finite element analyses of 2-D fluid cavities of

general shape (Ref. 4,5). These approaches, however, avoid the fluid-structure
coupling by requiring as input the impedance of the pipe wall.
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There has been relatively 1§%tle flufg structure interaction work involving
general 3-D piping systems containing joints such as elbows and tees. The first such
analyses were probably performed by Davidson, Swith, and Samsury (Ref. 6,7).

They recogniZed that & simplified beam model should suffice for the relatively low
frequencies which are often of interest. Low frequency dynamic behavior is charac-
terized by pipes which respond only in their beam (rather than lobar) modes a..u by
fluid wavelengths which are large compared to the pipe diameter. Thus, for such
situations, the fluid wave propagation through the pipes is essentially planar. This
procedure, although fully general in concept, was implemented in a special purpose
cumputer program limited as to the generality and size of problems which could be
handled.

The same assumptions formed the basis of a finite element procedure developed by
Howlett (Ref. 8) for aircraft hydraulic systems. This procedure modeled the fluid
inside the pipe as a beam having zero bending stiffness. Elbows and tees were not
modeled explicitly. Instead, campatibility at a joint (elbow or tee) was enforced as
an additionsl constraint requiring the conservation of fluid mass passing through the
Joint. Tre Howlett analyses, however, apparently omitted two essential ingredients:
(1) une correction to the fluid sound speed to account for the elasticity of the pipe
walls, and () the flexibility factor correction for the elbows to account for the
fact that curved pipes are considerably more flexible than straight pipes of the same
cross section (Ref. 9).

More recently, the transfer matrix approach was used by El-Raheb (Ref. 10)
to calculate the beam-type dynamic response of 3-D multiplane piping systems consist-
ing of straight sections and elbows. OUne of El-Raheb's conclusions was that the one-
dimensional acoustic assumption is valid for frequencies up to about one-half the
frequency of the lowest acoustic mode having two waves around the circumference
(n=2).

Schwirian and Karabin (Ref. 11) developed another finite element procedure which
was similar to Howlett's (Ref. 8) except that the fluid inside an elbow was
apparently modeled with a single straight axial menber ("spar" element) with
fictitious properties assigned to simulate properly the fluid mass and coapressi-
bility. This model also included the pipe hoop strain correction to the fluid sound
speed and the flexibiiity factor correction to the elbow flexibility. No experimen-
tal validation of the model was included in the paper.

One additional modeling procedure was formulated by Hatfield and Wiggert (Ref.
12). They used a transfer function approach involving separate analyses of liquid
and solid components, followed by synthesis of the component solutions. The scheue
was validated for planar piping systems by comparison with experimental data.

In general, beam wodels of fluid-filled elastic piping systems are very attrac-
tive because of their simplicity. Finite element approaches have the added feature
of allowing essentially arbitrary specification of geametry, boundary conditions,
loadings, and output requests. In addition, finite element models of piping systems
can easily be combined with models of the support structure.

In this paper, we will develop further the finite element approach for low fre-
quency predicticn by combining ideas from the papers just mentioned. Our model is
mathematically equivalent to the lavidson-Smith-Samsury model (Kef. 6,7), a non-
finite eleasent approach. Our modeling scheme is similar to those of Howlett (Ref. 8)
and Schwirian and Karabin (Ref. 11) except that we model elbows explicitly by a po-
lygonal set of beam elements for the pipe and axial members for the fluid. We will
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also show the importance of assigning the correct flexibility factors to the elbows.
(In general, most classical ueans of calculating fiexibility factors are not adequate
for elbows with straight pipe extensions at the ends (Ref. 13,14)). The modeling
approach will be validated in two ways. First, for a simple planar system, compari-
sons will be made with both experimental data and a general 3-D finite element model
which models the pipe as a shell and the contained fluid with 3-D fluid finite
elements. Second, for a complex non-planar system, comparisons will be made between
a beam solution and a general 3-D finite element solution. Since the latter includes

the essential physics of the fully-coupled problem, it provides a good test for the
approx imate models.

The 3-D finice element solutions to be presented use the generally classical
procedures which 2volved from the work of Zienkiewicz and Newton (Ref. 15). In our

analyses, we make use of the recent improvement (Ref. 16) which shows how to obtain
symaetric matrix equations.

LOW FREQUENCY BEAM MODEL

For low frequency dynamic excitation of fluid-filled elastic piping systems, the
pipes respond only in their beam (rather than lobar) modes, and the wave propagation
in the fluid coluan is essentially planar. It is assuded either that the fluid is

~initially at rest, or that the average flow speed is so swmall compared to the sound

speed that the acoustic response is unaffected. The fluid-structure coupling is
assumed to occur only at pipe bends and other joints., Thus, the fluid is allowed to

" slide without friction in straight sections of pipe. The circular pipe cross section

is assumed to remain circular. The equation satisfied by either the fluid pressure
or the axial camponent of fluid displacement is the scalar wave equation; thus the
fluid can be moydeled by an axial structural member (rod).

Finite element models are prepared using the following procedure: Beam elements
are used to model both the straight sections and the elbows. If straight beam
elements are used, a minimum of three elements is recomaended (on the basis of some
numerical testing) for 90-degree bends, regardless of the spacing of grid points 1in
adjacent straight sections., In straight sections, the grid point spacing is dictated

by the need for accurate normal modes of vibration in the frequency range of
interest.

Since a pipe bend is more flexible than an equivalent length of straight pipe,
the moments of inertia for the beam elements in each elbow should be divided by the
appropriate flexibility factor. For piping systems with straight sections not
significantly longer than the arc lengths of the elbows, the elbow stiffness plays an
important role in the dynamic response and must be accurately modeled. Thus the
flexibility factor: assigned to each elbow should apply to the elbow as it is
configured in the piping system. In particular, the flexibility factors for 40-
degree elbows with straight pipe extensions are sensitive to the length of those
extensions (Ref. 13,14). As shown by Quezon and Everstine (Ref. 14), idealized
approaches such as those used in the ELBOW computer progran (Ref. 17) are generally

not adequate for predicting the flexibility factors of YU-degree elbows with straight
pipe extensions.

For the acoustic fluid inside the pipe, a duplicate set of grid points is ;
defined to coincide witn the pipe grid points. The fluid is modeled with elastic rod i
elements (sometimes called spars), which are equivalent to beam elements with zero .
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flexural and torsional stiffness. These elements are assigned the actual mass
density p for the fluid anc a Young's modulus E given by
.
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In Equation (1), ¢, the effective sound speed in a fluid colunn contained in an
elastic circular thin-walled pipe, is obtained from

c= VB/lp/ /1 + BD/ESt' (2)

where B is the fluid bulk modulus of elasticity, p is the fluid mass density, D is
the mean diameter of the pipe, ES is the Young's modulus of the pipe material, and t
is the pipe wall thickness. SincCe the numerator in Equation (2) is the actual speed
of sound in the fluid, the denoninator (which is always greater than unity) is the
corrective factor which accounts for the elasticity of the pipe. This correction is
well known (Ref. 13); according to Krause, Goldswmith, and Sackman (Ref. 19), this
relation was first derived by Joukowsky (Ref. 20) over 40 years ago. Eguations (1)
and (2) can be combined to yield

E =B/(1 + BD/ESt) 3)

The fluid, which is wodeled with axial members, must have only one independent
dedree of freedom (DOF) at cach grid point. The three rotational UDOF are restrained
at all fluid points. Both transverse translational DOF at each fluid point are con-
strained (using multipoint constraints or rigid links) to imove with the corresponding
structural point. The only rewaining DOF, the axial DOF, is free to slide relative
to the beam. These constraints are applicable in both the straight sections and the
elbows. It is therefore convenient to define for each elbow a separate cylindrical
coordinate system whose axis is perpendicular to the plane of the elbow and inter-
sects the center of curvature. For elbows, the independent DOF is thus the azimuthal
translation. For each straight section, it is convenient to define a separate
Cartesian system with one axis coincident with the pipe axis. It is emphasized that
the single independent fluid unknown is the axial displacement, not the pressure.

The fluid pressure can be recovered from the finite element program in the usual way
by requesting that stresses in the fluid elements be calculated and printad.

The modeling of fluid-filled tees is handled differently from that of elbows.
Since fluid entering one leg of a tee can flow out both of the other two branches,
the procedure must ensure that the total fluid mass flowing into one branch of the
joint equals the total mass flowing out the other two branches (Ref. 8). (This con-
dition is automatically satisfied for an elbow, a two-branch joint.) 1In the finite
element model, we define at the intersection of the tee branches nne structural grid
point and three fluid grid points, as shown in Figure 1. As with other fluid grid
points in the system, each of these three points is permitted to move only in the
axial direction for the branch in which it lies., In addition, the three axial DOF
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\_ { 1 STRUCTURAL GRID POINT

3 FLUID GRID POINTS

Figure 1 - Low Frequency Model of Piping Tee

ire not independent (because of conservation of mass) and must satisfy the relation

3
L A (5 -u)=0 (4)
4oy 1014

here u, and £, are *he axial components of structural and fluid displacements, re-
.pectively, ané A, is the fluid cross-sectional area for branch i of the tee.
‘hus, a tee introéuces two independent fluid DOF into the model.

As with elbows, flexibility factors should be used with the beam elements which
odel the tee. Unfortunately, even less is known about tee flexibilities than about
:lbow flexibilities. The procedure that we find convenient for computing tee flexi-
ilities is to perforwm a separate finite element analysis for a tee modeled as a
shell. This analysis can be easily made since a tee data generation program (Ref.

1) has been interfaced with NASTRAN by Quezon (Ref. 22) so that, given a few basic
.arameters, an analysis can be performed within a few hours. No tees are included in
‘he examples in this report.

: Damping in the piping system can be directly incorporated in the finite element
*odel by entering the damping loss factor as a material damping constant, which
vesults in complex material moduli.

'
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Because of the versatility of finite element computer codes, various boundary

conditions on the fluid column are possible. At a free surface (where the pressure
vanishes), the fluid DOF (the axial displacement) is left free, a natural boundary
condition., At a fixed boundary, the unknown is restrained. If the pipe modeled is
part of a very long system, in which case a non-reflecting fluid b undary is needed,
the plane fluid waves can be absorbed by attaching to the fluid DOF a dashpot whose
constant (ratio of axial force to velocity) 1is pcA, where p is the fluid mass
density, ¢ is the effective sound speed as given by Equation (2), and A i3 the cross-
sectional area of the fluid column. For a pipe that opens invo a large volume of
fluid (e.g., the sea), the appropriate boundary condition is that of a piston in an
infinite baffle (Ref. 23), in which case the scalar added mass

M= 8pal/3 (5)

is applied, where p is the fluid mass density and 'a' is the radius of the opening.
For a pipe with a closed end, the axial fluid displacesent at the end is tied to the
axial structural displacement using a multipoint constraint equation or rigid link.

The beam model just described can be applied using most general purpose finite
element structural analysis codes without modification. The analysis is performed in
a single pass with the fluid-structure coupling included in the model. The resulting
model has seven independent degrees of freedom at each grid point location, six for
the pipe and one for the axial casmponent of fluid displacement. For matrix bandwidth
reasons, each fluid grid point should be sequenced adjacent to its corresponding
structural point. The major limitation of the model is frequency: this is a low
frequency model. More will be said about this limitation later.

INTERMEDIATE FREQUENCY 3-D MODEL

For the dynamic response prediction of piping systems at frequencies for which
beam models are not valid, general three-dimensional finite element models are
required. 1In general, this approach models the pipe with shell elements and the con-
tained fluid with 3-D acoustic finite elements, Thus the pipe need not respond only
as a beam (for which the cross sections are rigid), and non-planar fluid response is
allowed. Such a model generally requires thousands of degrees of freedom, even for
simple piping systems. Thus, although 3-D models may find only limited use (given
current computing power), it is worthwhile to describe the model's formulation and
demonstrate its application. A 3-D model is particularly useful for validating
approximate models such as beam models since the limitations of the approximate model
can then be determined. The purpose of this section is to describe the general 3-D
finite element modeling of non-planar fluid-filled elastic piping systems. We are
not aware of any previous finite element analyses of the size to be considered here
for the fully-coupled fluid-structure problem,

Most general finite element work involving an elastic structure coupled to
an acoustic fluid (for which the fluid pressure satisfies the wave equation) can be
traced to the work of Zienkiewicz and Newton (Ref. 15). In their work and in many
subsequent papers by others, the fundasental fluid unknown was taken to be the

pressure. A few investigators (e.g., Hamdi, Ousset, and Verchery (Ref. 24)) selected
the fluid displacement as the unknown,
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Everstine (Ref. 25-27) showed how general purpose structural analysis codes
. could be used, without modification, to solve the common field equations arising in

. mathematical physics (including the wave and Helmholtz equations of acoustics). He

, also showed how the codes could be used to solve mixed field problems such as coupled
structural-acoustic problems.

More recently, he showed (Ref. 16) that, if the coupled fluid-structure problem
were formulated with velocity potential rather than pressure as the fundamental fluid
unknown, the nonsyumetric matrices of the pressure formulation would be symmetric.
For some situations, including steady-state problems involving damped systems (which

" are of interest here), significant computational advantages result.

' If both fluid and structure are modeled with finite elements, the following
matrix equation arises (Ref. 16,28):

M 0 ii‘ B A u K o u £,
J e e L
0 Q q A C q 0 H q t‘z
where 3, the fundamental unknown in the fluid, is the time integral of pressure
_and hence proportional to the velocity potential. The unknown q is a vector with a
> single wnknown at each fluid mesh point. In Equation (6), u is the vector of dis-
Zplacement components in the structure, M and Q are the mass matrices for the struc-
. ture and fluid, K and H are the stiffness wmatrices for the structure and fluid, A is
“the area matrix which converts fluid pressure at interface points to structural
loads, B and C are the damping uatrices for the structure and fluid, and f, and f

" are the structural and fluid applied loads. If the pressure gradient (or equiva-
lently, fluid motion) is specified at a fluid boundary, f2 takes the form

£, = -(Asaqlan) /p (7

where A is the area matrix for the boundary surface. In Equation (6), the required

"mat‘.erigl constants" for the fluid elements are

- - - - - - 2
G, = 1/p, Ee = 10 Gyr Pe 1/pc (8)

where Ge’ E_, and p_are, respectively, the "shear modulus," "Young's modulus,"”
and "mass density" Sssigned to the fluid finite elements (Ref. 16,28).

In the fluid-filled piping systems of interest here, damping is introduced

by specifying an overall system loss factor. In that case, the matrices K and H in
- Equation (6) are complex, and B = C = 0. The loss factor n, if uniform, 18 given by
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All matrices in Equation (6) except A are automatically formed by the finite
element program once the elenents are defined. The area matrix A has nonzeros only
at rows and columns corresponding to interface degrees of freedow. For p ping
systems which involve only cylinders and tori, the area contribution at each point is
easily calculated analytically, so that A can be generated by an automatic data
generation preprocessor.

This finite element scheme can be implemented on any general purpose structural
code which allows the user to enter matrix elenents directly from the input str:am.
We used NASTRAN for the analyses described in this paper.

EXAMPLE 1: A PLANAR PIPING SYSTEM

The formulations described in the preceding sections will be illus‘“rated first
on a simple planar piping system for which experimental data are available (Ref. 6).
This system, shown in Figure 2, consists of two straight sections of stanaard 4-inch
copper-nickel pipe connected by an elbow. The system is filled completely with lu-
bricating oil. Table 1 summarizes the pertinent properties of the systea.

FREE END;

FREE SURFACE FOR OIL \*

PIPE FIXED;
OIL DRIVEN BY PISTON

Al

1_ 36" - NOT TO SCALE

Figure 2 - Planar Piping System
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l Pipe (4~inch 70-30 Cu=Ni)

outside diameter (0.D.) 4.5 in

minimun wall thickness 0.203 in

nominal wall thickness 0.232 in

Young's wodulus , 22,000,000 psi

Poisson's ratio 0.294 .

weight aensity 0.323 1b/in>
Elbow

bend radius (R) 4 in

bend angle 90 degrees

Fluid (2190 TEP oil®

actual bulk modul us 282,000 psi
effective bulk wmodulus in pipe 228,000 psi 3
weight density 0.0315 lb/in
. As seen in Figure 2, one end of the pipe was fixed, and the fluid was driven by

<3 piston designed to excite only the fluid. The other end of the system was free.
yeasurements (Ref. 6) included the fluid pressure at the piston and the inplane com-
-yonents of structural velocity at the free end.

Both beam and 3-D models were prepared for this piping system using the finite
xlement approaches described in the preceding section. The beam model consisted of
en beam elenents in each straight section and eight elements in the elbow. For this
2-D problem, each fluid and structural g-id point had, respectively, one and three
legrees of freedom (DOF). The beam model thus had 112 DOF., The elbow flexibility
factor used for the beam analysis was 8. 14, which was computed by the tLBOW coumputer
program (Ref. 17). For inplane wanent loads on elbows with long straight sectious,
iLBOW has been shown to be satisfactory, although it does overestimate tYe flexibil-
tty factors slightly (Ref, 14).

The mesh used for the 3-D model is shown in Figure 3. The structural element
1sed is a low-order four-node quadrilateral pl-Lc (NASTRAN'S QUAD2). Because of
symmetry, only half of the circumference (180 degrees, was modeled. The model had
.en elements in the circunferential direction, 19 elements longitudinally in each
itraight section, and nine elements in the elbow. The dry pipe thus had about 2800
JOF. As shown in Figure 3, the fluid finite element mesh had two elements (a con-
stant strain wedge and an eight-node isoparametric hexahedron) in the radial direc-
.ion between the center of the pipe and the shell. With the fluid added, the size of
:he 3-D model increased to about 3900 DOF.

The assumed uniform loss factor used for all calculations for this piping systenm

vas 0.0262, independent of frequency. This value was selected on the basis of pre-
'ious experimental experience with similar systems.
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(b) Fluid Finite Element Mesh in Cross Section

(a) Dry Pipe

J‘ L 444

Figure 3 - Finite Elemeut Model of Planar Piping OSystem

The results of the analyses of this system are shown in Figures 4§ and 5 over the
frequency range 10 Hz to 10,000 Hz. Mobility responses {(the ratio of velpciiy re-
sponse to driving force) are shown for poth analytical models and the Davidson-Snith
experimental data (Ref. 6).

The two analytical solutions shown in Figures 4 and 5 are in reasonably good
agreement even for frequencies above the first lobar (n=s2) frequency, where the modal
density is high. The n=2 lobar frequency for a long pipe can be estimated from the

, i
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- Beam Model
esese 3D Model
= = = Experiment (Ref. 6)

10

> g

100 1000
Frequency, Hz

10000

Figure 4 -~ Mobility of Planar Piping System: Transverse Response at Free End

classical formnla (Ref., 29) for the p.ane strain vibrations of a ring. For a
ring, the lowest n=2 frequency is

£ = (1/2m) /3E_t¥/50 TV (1-vD)

where E_, p_, and Vv are, respectively, the Young's wmodulus, mass density, and
Poisson®s r8tio for the pipe materiel, t is the wall thickness, and r is the mean

Thus, from Equation (10), for Y~-inch Cu-Ni pipe, the lowest n=2 ’obar mode
occurs at about 1066 Hz for dry pipe.
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10 100 1000 10000
Frequency, Hz

Figure 5 - Mobility of Planar Piping System: Axial KResponse at Free End

The corresponding fluid-frilled frequency can be estimated if ps in Equation (10)
is replaced by the effective density Pefs for the structure-fluid combination:

Pege = Pg + or/2t (1D)

where p 1s the fluid mass density. Wit!. this correction, the lowest n=2 lobar fre-
quency for oil-filled 4-inch Cu-Ni pip- about 888 Hz.
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Although the results for the planar system show good agreesent between the bean
results and both the 3-D results and the experimental data, this planar system does
not provide an adequate test of a beam model. One difficulty which arises with
non-planar systems is that the flexibility factor k is hard to calculate. Although
idealized approaches for calculating k do not distinguish between inplane and
out-of-plane cases, it has been shown (Ref. 14) that, for 90-degree elbows with
straignt pipe extensions, the out-of-plane flexibility factor differs considerably
from the inplane factor. In addition, weny piping systewms of practical interest have
straight sections which are not so long (relative to the elbow arc length) as in the
planar system of Example 1. We would expect the elbow flexibilities to becowe more
important to the overall dynamic response for systems with shorter straight sections.

Here we consider a complex 3-D piping system also built with U-inch Cu-Ni pipe.
As shown in Figure 6, the system consists of four straight sections and three elbows
(two 90-degree elbows and one 45-degree elbow). The pipe is filled completely with

[ _J
_______ Elbow 3 (45-deg. LR, Rz6")

Elbow 1 (90-deg. SR, R=i")

Figure 6 -~ Finite Eler2nt Model of Non-Planar Piping System (Two Views)
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fresh water. Fluid free sur/aces are assumed at both ends of the system. (Experi-
mentally, such conditions could be simulated approximately by capping the ends with
flexible rubber membranes.) The loading for this system is a time-harmonic force
applied to the structure in the axial direction at point 1. The entire system is
assumed to be freely suspended. No experimental data are available for this systenm.

Both beam and 3-D finite element models were prepared for this piping system.
The beam model, which consisted of 21 beam elements, had 154 DOF. The 3-D model
(Figure 6) had about 7500 DOF (dry) and 9900 DOF (fluid-filled). The assumed loss
factor used for both analyses was 0.02, independent of frequency.

The response predictions for this system are shown in Figures 7 and 8. Since
the same pipe size is used as in the planar system, the lowest n=2 dry lobar mode
occurs at the same frequency, 1066 Hz. This pipe, however, is filled with water
rather than oil, so the lowest fluid-filled n=2 lobar frequency is slightly lower:

867 Hz.
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Figure 7 - Acceleration Response of Non-Pianar Piping System:
Drive Point Agcelerance
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Figure 8 - Acceleration Response of Non-Planar Piping System:
Transfer Point Accelerance

The flexibility factors for the 90-degree elbows in the beam model were esti-
mated from the tables published by Quezon and Everstine (Ref. 1i4) for 90-degree
elbows with various lengths of pipe extension. The flexibility factors for the
45-degree elbow in this system were estimated from similar tables nc - heing compiled
for U5-degree elbows. (These tables will be published soon.) The f “hility
factors used in this beam analysis are listed in the second and thirc olumns of
Table 2.

As seen in Figures 7 and 8, the two analyses (beam and j-D) are in very close
agreement up to about 550 Hz, which is about 63% of ithe lowest n=2 fluid-filled lobar

mode (867 Hz) of the pipe. This agreement indicates that the beam model is a valid
model for low frequencies.

SENSITIVITY OF RESPONSE TO FLEXIBILITY FACTORS

Here we use the beam model of the non-planar piping system to determine the
effects of errors in the flexibility factors used in the analysis. As we indicated
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TABLE 2 - FLEXIBILITY FACTORS FOR NON-PLANAR PIPING SYSTEM

FLEXIBILITY FACTORS

ELBOW BASED ON REF. 14
ELBOW EFFECT
INPLANE | OUT -QF -=PLANE PROGRAM [17] IGNORED
1 (90-deg. SR) 5.0 2.8 7.8 1.0
2 (90-deg. SR) 5.4 2.8 7.8 1.0
3 (45-deg. LR) 4,2 3.7 5.2 1.0

in the preceding section, the flexibility factcrs used were based on tables for 90-
degree elbows published by Qezon and Everstine (Ref. 14) and other (as yet) unpub-
lished tables for U5-degree elbows with various lengths of straight pipe extensions.
Because the low frequency beam results using these factors agree well with the 3-D
model results in Figures 7 and 8, these flexibility factors are considered reasonably
accurate.,

For comparison purposes, analyses wWere also made using two other sets of flexi-
bility factors. The first set was that calculated by the ELBOW computer program
(Ref. 17). ELBOW is probably typical of the idealized approaches used by piping de-
signers. ELBOW's flexibility factors are in close agreement (Ref. 17) with the
current ASME code (Ref. 30), which, for zero internal static pressure, uses the
relation

2 ORIGINAL PAGE i3
k = 1.65 r°/tR OF POOR QUALITY (12)

where k is the flexibility factor, r is the mean radius, t is the wall thickness, and
R is the bend radius. The ELBOW program flexibility factors are listed in column 4
of Table 2.

The second additional set of flexibility factors used for an analysis was
obtained merely by setting k = 1.0 for all factors. This analysis would show the
consequences of ignoring the flexibility factor effect entirely.

The response predictions for all three sets of flexibility factors are shown in
Figure 9, in which the drive point accelerances (the ratic of acceleration to force)
are plotted over the frequency range 100 Hz to 1000 Hz (the low frequency regime).
Figure 9 clearly indicates the importance of using accurate flexibility factors in
the analysis,

DISCUSSIUN AND CONCLUSIONS

We have described two different finite element modeling procedures for predict-
ing the dynamic response of general 3-D fluid-filled elastic piping systems. The
beam model, a "~ w frequency procedure, was, for the non-planar system considered,
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Figure 9 - Sensitivity of Non-Planar Piping System Response to Flexibility Factor

valid for frequencies up to about 63% of the lowest fluid-filled lobar (n=2) pipe
mode. For frequencies between that and 100% of the n=2 mode, the general finite
element modeling procedure described could be used. For still higher frequencies,
where the modal density is high, the finite element approach remains theoretically
valid, but the analyst is probably wiser to use statistical energy analysis (S.E.A.)
techniques (Ref. 31) instead. The S.E.A. technigues are particularly well suited to
the high modal density regime.

It was shown that the accuracy of beam analyses of piping systems depends
strongly on the accuracy of the flexibility factors used. Such factors are not
required in the 3-D finite element model since they are implicit in a shell model of
the pipe.

Finally, the beam analyses presented here used straight beams to model the bends

(elbows). It would clearly be preferable to use instead curved beam elements, if
available.
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