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ABSTRACT - In LANDSAT imagery, spectral and
spatial iaformation can be used to detect
the drainage network as well as the rela-

tive elevation model 4in mouatainous tere
rain. To do this, aixed inforsmation of ma-
tsrial reflectance and topographic

modulation iz the original LANDSAT imagery
sust be separated first. From the asterial
reflectance informatioa, dig viastible rivers
can be detected. from the topographic mo-
dulation faformation, ridges and valleys
can be detected and assigned rslative ele-
vations. 4 complete elevation model can bde
generated by faterpolatiag values for noa-
ridge and con-valley pixels. The amall
streams got detectadle from material re-
flectaace informatioa can bde located {a

the valleys with flowv direction known fre:
the elevation model. Finally, the flow di.
rections of bdig visidle rivers can bde {n-
ferred by solviag a coasisteat labdeling

problea based on a set of spatial reasoning

coanatraints.

1. Iatreduction

. It is a common task for a photointer-
preter to examine the spatial pattern on aa
aerial image and by appropriate interpreta-
tion be able to tell the elevationm of one
area relative to another and be sdle to fa-
fer the stream network aand the drainage
cetwork even though some of the streams =may
be Dbdslow the resolution of the sensor.
There i3 a wvealth of information in spatial
patterans on aerial imagery bdut gost compu-~
ter data processiag of remotely sensed im-
agery, being limited to pixel spectral
characteristics, does not stke use of (t.

In this paper, we describe a procedurse
by which the stream network aad relative
elevation wmodel can be inferel froa a
LANDSAT scene of mountainous and hilly ter-
rain. The processing has a aumber of dis-
tinctly different steps. First to appro=
priately prepare the imagery for processing
ve zust destripe {t aad perri.rm haze remo-
val. Destripiag caa be done by the Born
and Woodham [1979]) technique. Haze removal

can be done by the Switzer, Kowvalik and
Lyon [1981) technique. These two 3s.eps
constitute the preprocessing and are not

formatioa related to surface

discussed iz this paper.

To a first order effect, after preproe-
cesaing the cause of the inteasity value at
any pixel is due to the combined effect of
the aangle at which the sun {lluminates the
grouad patch corresponding to the pixzel and
the reflectance of the surface material on
the ground patech. To make senae ol the
spatial pattern first requires separating
these tvo effects. for this purpose the
£liason, Sodertlom and Chavez [1981] tech-
aique can be used to create two imeges fros
the one LANDSAT image. The first image is .
a reflectance {mage aad the secdond ‘image is
a topogrsphic modulation i{mage aad has ia-
slope and sun
illuminatioa. are givea 1in
Section 2.

The details

As discussed ian Section 3, ti> reflec-
tance image can de used DLy the Alfoldi and
Munday [1978] procedure for fdeatification
of all areas of water. The topographic mo-
dulation i{mage can be used Lo identify the
ridges and the valleys. This is discussed
ia Section 4. With the valleys ideatified,
each valley pixel may be assigned g rela-
tive eslevation vhich Lacreases as the vale
ley path fros the pixel to the river-. it
empties iz iacreases. Ridges must bde as-
signed elevatioans higher than their aeigh-
boring valleys aad esch ridge pixel can be
assigned a relative elevation vwvhich ian-
creases on the ridge path froa the pixel to
the saddle point where the ridge crosses a
valley increases. The ridge valley eleva-
tion assigament procedure is discussed {n
Section S. Once ridges and valleys have
been located and assigned relative eleva-
tions, a complete elevation model caa bde
generated by faterpolating values for aon-
ridge agd anoan~valley pixels. The interpo-
lation procedures are discussed {a Section
6. The final element of the spatial rea-~
soning is the assignaent of streac or river
flow direction for those water bodies which
vere directly ideatified Dby reflectance
properties. This is discussed in Sectioan 7
and 8. In the remainder of this section,
ve review previous work done by saptial
reagsoning investigators.

NASA CR-/75/23
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Siace the launch of the first Earth
Resources aad Technolozy Satellite (ERTS,
later renamed LANDSAT) {n July 1972, auch

wvork 1a remote sensing has deea doae by us-
ing pattern analysis and picture processing
techniques for image classificatioa, re~
atoration and enhancesent. Few pecple have
*ried the scene analysis or artificial ine-
telligeace approachk to describe the image
ia teras of the properties of objects or
regions in the image aad the relationships
betveen thes. Ehrich (1977] fouad global
lineaments dy partitiocaing the Iimage into
wvindovs and applying long, straight linear

filters at different orientatiocas {2 each
viadov to extract local evidence. Dynanic
prograaming (Moatanari, 1971; nartellt,

1972] was then used to form complete global
lineaments. VanderBrug (1976] tested vari-
ous detectors to get linear features in sa-
tellite imagery. This was oanly at the lo-
cal level. Later VanderBrug (1977a] used
relaxation to reduce ntoise ia the output.
Finally VaaderBrug (197T7b] defined a amerit
function that can be used to select pairs
of segments to de merged so that local line
detector regsponses can be linked together
{ato a globdal representation of the curves,
Ris work {3 closely related to the Shirai
(1973] techaique which employed sequential
line following to find edges in scenes con-
tainiag polyhedra. Li and Pu (1976] used
tree graaaars 0 locate highvays and rivers
from LANDSAT pictures. The above investi-
gations deal with the extraction of all the
linear features from aa image, bdut they do
aot deal with the interpretatioa of these
linear features. In the following iavesti-
gations, knowledge adout the desired fea-
tures are considered crucial ia such ana-
lyses.

Bajcsy and Tavakoli (1975] argued that
an image filter is not meaningful wunlass
one has a world sodel, a description of the
world one is dealing with. They recognized
objects matching this description aad fil-
tered them out. This strategy 1is used to
sequence the recognition of dridges, rive
ers, lakes, and is] ds from satellite pic-
tures. Nagao and Ma. tuyama [1980] bduilt an
image understanding system that automati-
cally located a variety of obdjects in an
aerial photograph by wusing diverse know-
ledge of the world. It iz one of the first
image understandiag systeas that has iacor-
porated very sophiszscated artificial iatel-
ligence techniques into the analysis of
coaplex aerial photographs. Fischler, Ten-
enbaum and Wolf (1981] designed a lovw-reso-
lution road tracking (LRRT) algoritha for
aerial isagery. The approach was based on
4 new paradiga for cnmbining local iaforma-
ticn from aultiple sources, ecap knowledge,
and generic knowledge abdbout roads. The fi-
nal (interpretation of the scene was ac-
hieved by using either graph search or dy-
namic prograaaing.

Similarly, kaowvledge 1is {mportant ia
our problea which requires analysis doth at
the local aad globdbal levels. Local level
analysis will be discgussed in Seation 2 to
§; global level analysis will be discussed
ia Seation 5 to 8.

2. Ilusination modsl

The bOrightness and darkness in each
band of LANDSAT images come from two main
sources. First, they can be due to matertal
properties. For example, 4in the spectral
region (.8 - 1.1 pm) of bdaad 7, water dode-
{es absord {afrared radiatioa, 30 they ap-
pear as clearly delineated dark bdodies;
living vegetation reflects stroagly ia this
portion of the iafrared, so areas of living
green vegetation appear as bdright regiloans.
Second, they may be due to topography aad
sun illumination angle effects. The moua-
tain side facing to the sun appears 23 8
bright region; the amountairn side facirg
avay from the sun aay appear as a shadow or
dark region, Cafortunately, the LANDSAT
data values are some combination of these
twvo effects. Eliason, Soderbdlom, and Cha-
vez (1981] address this problea by defiaing
an illuminatioa model. In the follewing,
their general theory about the bdrightness
in LANDSAT imagery will be iatroduced, and
extraction of material reflectance azd to-
pographic modulation ianformation based <cn
clustering on ratio images will be de-
scribed.

The original LANDSAT image B' measur-
inag the amount of light reflected froe 2
surface at pixel (r, ¢) Cfor wavelength Ve,
{=28,5,6,7 1is:

8*(r, ¢, '1) e R(r, e, 'L) c,
p) « B (w,)
where R 1‘ the bdrightness of the scene {f
the surface vwere flat, Tp is the sodulation
of the brightaess iatroduced by topography,
and §H {3 the haze due to atmospheric scat-
tering. The image of R is called materizl
reflectance image, and the image of Tp L¢
called topographic modulation image. p is
the photometric function which depends on
the phase angle, the incideace angle, and
the angle of emergence (Wildey, 1975}, but
wich does not depend on w,- Two assusp-
tions are made here:

1. Tp is independent of material proper-

ties aand wavelength.
2. The photometric function p {s indepen~
dent of wavelength.

* To(r,

After H i3 calculated by the Switzer,
Kowalik and Lyoa [1981] technique, for sach
band, H(w,6) is subtracted from B8'(r,
at all pii
age

e, w,)
els to get the haze-corrected 1&-

B(r, o, 'L) s B'(r, ¢, '1) - H(wt)
= Rr, e, v ) Tplr, ¢, pP).



Because Tp is independent of
wavelength, in the ratio image of two bands
with wavelength w, and Vo each pixel (r,
¢) has gray level

B(r, ¢, '1) / B (r, ¢, wz)

s (R(r, e, v1) ¢ Tp(r, o, p)) 7 (R(r, e,
vz) ¢ Tp(r, o, p))

s R(r, ¢, w,) 7/ R (P, e, w,),
which is independent of Tp. Thus,
pographic information is removed. A simple
demonstration of this theory is that, in
the ratio image after all diffuse lighting
has been removed, all shadows disappear.

the to-

Eliasoa, Soderblom, and Chavez estimate
the material reflectance image R [for each
W by clustering using different ratio im-
ages as features. The result i3 a cluster
image Cl (r, c). For each w,, the average
bi-ightness value of all the pixels in each
cluster is taken to represent R for their
respective cluster. Two basic assumptions
are inherent:

1. All i{mage elements that group in a ra-
tio cluster represent a single material.

2. The topographic slopes of all elements
in a cluster are symmetrically distributed
toward and away from the sun, such turat
their average brightness can be used to es-
timate thc brightnass of that mate-’al oo a
flat surface.

The wmaterial reflectanca images
used in detecting
in Section 3.

will Dbe
visible rivers described

From %“he cluster image, four material
reflectance images R(r, ¢, w,) can be esti-
mated because, for each clus&or, four aver-
age brightness values can be calculated
from %he four bdands, i.e., for L = 4, 5, 6,

7, i C1 (r, ¢) = k at pixel (r, c), then
Z:Zy B(x.y.vl)
Cl(x,y)=k
R(r,c,w,) =
i zlzy 1
Cl(x,y)=k
For any pair of the haze-corrected image

3(r, ¢, w,) and material reflectance image
R(r, ¢, w,), £t = 8, 5, 6, 7, the topograph-
ic modulafion 4image Tp can be calculated
siaply by taking the racio of B over R.
This topographic modulation image is an im-
age whose tonal variation is unagbiguously
identified with surface slope and sun {llu-
mination angle.

1. Detection of Visible Rivers

Because one pixel in
represents approximately
meter area on the ground,
low. For the most part,
to directly observe

the LANDSAT image
a S7T meter by 80
the resolution {s
it is not possible
the drainage network
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of the LANDSAT data. If rivers or lakes

are visible to the humans, they can be de-
tected by spectral information as described
in this section. We call such rivers (in-
cluding big lakes) ‘visible rivers.) On the
other hand, if the streams are not visibdle,
they can oaly be detected by spatial infor-
mation and we call them “invisible streens.”
For any window over the LANDSAT image, 1if
one can detect some visible rivers by using
speciral information anad detact ridges and
valleys by spatial pattern, then it is pos-

sible to continue to look for diavisible
streams by using spatial information. Ex-
amples of visible rivers and 4invisibdble
sc¢reams are shown in Figure 1. The image

1976 over areas in Ni-
and neighboring

vas taken in April,
cholas County, W. Va.
counties.

Figure 1 - LANDSAT scene in W. Va.
a indicate a visible river, and
b, ¢ indicate invisible streams

Once the material reflectance image is
created by the technique in last section,
it can be used to identify visible rivers.

In the spectral region (.8 - 1.1 pm) of
band 7, wvater bodies absorb infrared radia-
tion, 30 visible rivers appear as dark
curves, and lakes appear as dark regions.
In the wmaterial reflectance image of band
7, these dark features become more clear

because shadows are removed, However, not
all dark features are water bodies; the
real water bodies can Dbe identified by the

following process [Alfoldi and Munday,
1978].

(1) A band 4 groen coefficient x of
every pixel is calculated as the ratio of



the radiance of band & over the radiance
sum of bands 4, S and 6. Similarly a band
S red coefficient y is calculated for every
pixel. x and y are called LANDSAT chromat-
{icity coordinates.

(2) In this coordinate system, Munday
(1974] has determined a curve (Figure 2)
which is the locus of the positions of
chromaticity values of water bodies. Ir,
for some pixels, the x, y values calculated
in 1 are close to this curve, then those
pixels can be identified as portions of wa-
ter bodies.

vis S i)

i 3 > 'Y >
a(dgs 1 Z2gFPICIaNT)

Figure 2 - Chromaticity plot

4. Ridge-Valley Map and Invisible Streams

After vizible rivers are detected by

both spectral and 2D spatial informatioan,
invisible streams can be detected by 3D
spatial ioformation. In this mountainous
area, water flows through valleys, so that
the cdrainage network of 4invisible streams
is a substructure of the valley network.

Therefore, the approach suggested here is
to first get a relative elevation model,
then extract the valley network from this

(W A
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elevation model, and finally extract the
drainage network of invisible streams from
the valley network. In this section, wve
describe how to extract shadowed and bright
areas, create linear features on the bord-
ers between these areas, and classify these
linear features into ridge and valley seg-

ments, In the next two sections, we dis-
cuss how to generate a relative elevation
model. The extraction of valley network
and the network of invisible streams will

be discussed in Section 9.

Iz the topographic modulation image,
bright areas indicate that the surfaces are
facing to the sun, dark areas indicate sha-
dows. In order to detect valleys and ridg-
es, it is necessary to first segment the
image into regions of shadowed and bright
areas because valleys and ridges exist on
the borders bLetween these regions. Gray
level thresholding can be used to determine
shadowed and bright areas, We use the Wa-
tanabe {1974%] technique in a recursive way
to select thresholds. The details are giv-
en in Wang and Haraltick [1982]. The con-
nected componsnts of thiem are shown in Fig-
ure 3.

Figure 3 = a. Connected components of dark

regions
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bright regions

Kext, thao perimeters of these bright
and shadowed regions are segmented into
“border segments according to their left re-
gions, right regions, and orientations. A
border segment is a maximally long sequence
of connected pixels which are on the border
between two given regions. Because the de-
tection of ridges and valleys is highly or-
ientation-dependent and the sun {llumina-
tion comes from east in Figure 1, each
border segment is further broken iato sev-
eral pieces according to orientation: all
the east-vest parts can be separated froam
the north-south parts, The result is shown
in Figure 4.

As the sun 4{llumination comes from
east, those border segments which are val-
ley segaents or ridge segments can be iden-
tified according to the brightness of their
left and right regioas. Because most of
the trees in this area in April are unfoli-
ated, tha strongest region boundaries are
shadow bou‘daries rather than tonal boun=-
daries, and the strongest boundaries are
those at the extremes of steep slopes
oriented normal to the sun direction. Be-
cause the sun i{lluminatiocn {s predominaantly
east-west, a boundary that is dark on the
left and bright on the right will corres-
pond to a ridge, and the reverse will cor-
respond to a valley.

For east-west region boundaries, the
above ridge-valley inference csechanism
fails. Where east-west boundaries exist,
some are ridges and some are valleys. To
classify these east-west DbDorder segments
correctly, it requires elevation informa-
tion. As shown in Figure S, if end a of
the valley segment V1 is higher than end b,

X can be determined to be a valley. Also,
if end a {3 lower than end b or about the
same, X can be determined to be a ridge.

The results of ridge-valley finding are
shown in Figure 6. Assignment of relative
elevation to ridge and valley is discussed
in the next section.
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Pigure S « Classifying east-west Dorder
segments. ¥1 4is a valley segmeant; R! is a

ridge segaent
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Figure 6 - a. Valley map consisting of the
border segments which are i{dentified as
valleys.
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Figure 6§ - b,
border
ridges.

Ridge wap consisting of the
segments which are ideatified as

5. Ralative Elsvations of Ridze and Yallay
Sagmants

The detection of the ridge and valley
segrents as discussed {n the last section
only assigns a ridge or valley label to

thes and does not assiga relative eleva-
tions to them. In this section, ve de-
scribe how to estimate their relative ele-
vations. First we will describe a model
which can do the elevation assignmeat jobd,
then we will give the equations of eleva-

tion assignment.

Assuming that ve have 3 streazm network

in a sountainous area, and ve .know vhere
the biggest rivers are, wvwe can trace the
network, astartiag from the biggest rivers,

to find the flow directions of all the
streas segments bascause vater alvays flows
from higher locations to lower locations..
Ia other words, 4if the valley segments de-~
tected {n the last section formed a net-
work, then starting from the visible rivers
detected in Section 3, wve can trace the
netwvork and assign relative elevations to
all the segments. Oafortunately, the ob-

served valley segments do not form & net-
work; there are many gaps. As shown in
Figure 7, if it is dark on the right and
bright on the left of stream Vb, then Vg

cannot be detected due to the shadow on the
right of Vb, and a gap exists Ddetween VD
and a smaller stream Vs,
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Figure 7 = The gap between a smaller aad a
larger streas

The knowledge “hat the ocross-gections
of  valleys are Veghaped can be used ¢to
bdbridge the gaps.-
graphic =mapa, the elevation coatours of
valleys such as in Figure 8 can de fre-
queatly found. Thus, 4f one dravs a3 line
ab perpeandicular to the valley Va, the ele-~
vations are iacreasiag froms pofax o to
toint a , and also from poiat o to paint b.
However, if a ridge point 1is esncountersed
during the process, the iancreusing has to
atop because the elevation starts to de-
crease. Thus the route of growth is di.
rected both by the valleys and by the ridg-
es, in other words, by global information.

Wil

7e 12¢0 1300 “2cCC

Figure 8 - The elevation pattern of valleys
and {ts relation to elevation growing

Applying this idea to Figure 7 and assuaing
that growing propagates avay from valley
segment Vb, the end a of valley asegment Vs
will be touched first by this growing, 4aad
it i3 deduced that end b of Vs sust be
higher than end a, This ia the dasic idea

If one looks at topo-

c . st 18
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for determining the highers=lower enda of
all the valley segments. The elevations of
all the poiats ia oae segment caa be calaue
lated {f we know its slope. Oa the other
hand, ridges get elevaticas vhea the grovs
iog stops at thex. Now, we will give the

simple asquitions of elevation assignment.

Our elevation growing wmodel simply as-
suses that elevation imcreases monotonical-
ly €roma valleys to ridges or aloag valley
segnents from rivers to the saddles where s
valley crosses a ridge. It casm be used for
assigning iaitial relative elevations to
each pixel. Because no attempt {3 made to
realistiocally asccount for the topographic
shape of th. hillsides from the velley to
the ridge, the iaitial relative eslevations
will be more acocurate for the ridge or vale
ley labdeled pixels than the noa-ridge aad
goa=valley labeled pizxels. Section 6 dis~
cusses a more realistic procedurs for hille
side elevation estimation using the ridge
valley elevatioas ocalculated in this sec-
tion.

There are.two ways a pixel can get ase
signed an elevation depending on whether
the pixel belongs to a valley segment or
whether the pixel does not delong to a vale
ley segment. Let U bde the set of valley
segments. Two slopes ars associated with
sach valley segment Vs in U: Sv{vs) and
Sp(vs). 8Sv(Vs) 4s the slope along Vs it
self. Sp(Vs) ia the slope of lines outside
of ¥s aad perpendicular to Vs.

The elevation growing model constructs
the elevation function Bl: 2Zr X Z¢ > Ip,
where Zr {s the set of row coordinates, Z¢
is the set of coluan coordinates, and Ipmis
the set of zero and positive Lategers. If p
is a pixel belonging to a valley segment Vs
and pl is .the lowver ead pixel ideatified as
in Figure 7, then

El(p) = El(pl) + Sv(Vs) ® Dist(p, pl)
where Dist s the Euclidean distance bdet-
veen two pixels.

If p does not bslong to any valley seg-
mseat, and its elevation is origimated fros
pixel pr of valley segment Vs, then

£1(p) s Zl(pr) « Sp(Va) * Dist(p, pr).

Ia a s3mall ares, one can assume the
rlevations of visible rivers are lowvest.
Assigning some initial elevation values to
the pixels of the valley segnenta classi-

fied as visidle rivers, the elevations of
all the othar pixels 1in the {mage vindow
can be related to the {nritial elevations of
visibdle river segments Dby repeatedly usiag
the adove two equations. The relative
heights of valley segments created dy ele-
vation growing =model are indicated Dby ar-
rovs in Figure 9, and the grouad truth (s
shown ia Figurs 10.
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Figure 9 -« Relative elevations of valley

segments. The arrov are from
low ends.

high ends %o

Figure 10 « Streaa map created from grouad

truth.

S.1 Idsotification of Paak Junctioas

When several valleys and
toward a junction, very often
is a peak (pesk at junection).

ridges point
this juctiou
The peak it-

self is Cformed by the junotioa of several
ridges that radiste-cutward from the psak.
(The ddealized situatioa represented ia
figure 11 shows four aymetrically ortesataed

.ridges; 4a our area, real pesks are often

forsmed by Juaotions of twe or three ridg-
es8.) Ridges of course are separated by
valleys, 80 the higher tips of valley seg~
aents tend to point toward peaks. The
ridge segments {atersect to form a Deak,
vhereas valley segnents tead to point toe
vards peaks, without actually Jjoining. Ia
this subsection, wve discuss the criteria
vhich can be used to identify peak Junce
tions.

Because ridge segments are the major
features of peaks, ve make the constraint
that the aumder of ridge segments at a
Junction is larger than the ausber of vale
ley segaents. For @sany situatioans, it
SeeRs reasoniable to relate the Dheights of
peaks to the leagths of ridges that form
the peaks. For our class of topographic
forms (for example), Lt is wuanlikely that
very high peaks ftgn be fcrmed by the Later~
section of very short ridges. As a result,
to exclude very lovw peaks and false peaks
from aonsideration, we impose a rather are
bitrary coastraint opos definitiona of
peaks. Currently, we define a peak junce
tion ac a junction acomposed of four border
segments, vith the number of its ridge seg-
nents larger than the aumber of valley seg~
meats, aad the leangth of its longest ridge
segment loager than 800 meters. The peaks
thus located ip Figure i are parked as tri-
angles ia Figure 6.b. The correspondence
between this result and the topographical
map is suprisiangly good.

v NV v PERSPECTIVE VIEW

PLWN VIEW
v

Figure 11 < Idealized relationships bdetween
peaks, valleys, ridges.



& lazarpolating Satwasg Ridges and Yalleva

Ian the last saction all pixels wvere as-
signed elevations, but bdecause realistic
shape of the hillsides froa valleys to
ridges vere aot takea Lato accouat, oaly
the relative elevations of the ridges aad
valleys are held to be aacurate. Ia this
seatioa we descride a few Iaterpolation
procsdures whish perait more realisiia elee
ration assignment ¢to aon-valley aand nofe
ridge pixels.

The first ianterpolating surface has the
given elevation values at ridges and vale-
leys and has & 3 X 3 digital Laplacian of
zero at all noa-ridge and noa-valley pix-
els. This t'ill be referred to as the lLa-
placian surface. The systaz of 1linear
equations vhich this coastraint gives rise
to can be written as

‘:.bo

The vector x is the solution and represents
the values to be assigned to each "varia-
ble” (non=ridge noaevalley) pixel 1in the
elevatioa model. The A nmacrix is defined
by applying the digital Laplacian aask op-
erator (Figure 12) to each variable pixel.
A mask operator is applied to a pixel dy
placing the mask over the image so that the
central (large positive) aask value is di-
rectly over the pixel whose value is to bde
computed. The pixel value i3 changed to
make the sum of the mask values times the
corresponding image values uader them equal
to zero. For the Laplacian surface oaly,
Neumann boundary coaditioans are eaforced
along the outside rovs and columns of the
elevation model image. That is, the outer-
most row or coluamn is repeated so that the
mask operator can be applied to the outside
pixels. There is ovaoe row in A for each va-
riable pixel in the elevation model aand one
coefficient value in that row for each va-
riable. A i3 a sparse matrix since no va-
riable 4is constrained by sore than four
other variables (due to the definition of
the digital Laplacian mask operator). The
b vector is the right hand side of each of
the linear equations ia the aystes. The
constants on the left haad side of each
equation (that resul’ from applyiag the La-
placian operator to a variable pixel thit
has a known pixel Ud-adjacent to it) are
carried to the right hand side ard appear
ia b. For equations representing variable
pixels not 4e-adjaceat to known pixela, the
corresponding b element {3 zero.
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FPlgure 12 « A digital Laplacian msask

The second ianterpolating surface has
the given boundary values and miniaizes the
quadritic variatioa of the resulting sure
face [Gerimson, 1981). The bdoundary condie
tions with whici the surface aust agree are
depth values along the zeroscroasings. Y 4
the surface eslevation function (s [ anud
subsoripts denote partial differentiation,
then the final surface £ minimizes

) 4_ d

2 2 2
j] (E xx * 2 E xy * £ x 4y

Since the surface fuanction can be coaverted
0 3 discrete grid format, the differeatial
operators can bde converted to  difference
operators, and the double integral caa be
eoavarted to doudle summation, the solutioa
of the adbove function can de formed by sete
ting up a discrete corresponding set of li-
near equations
Qx = b

The x and b vegtors have the same meaning
as in *he Laplacian case and are coastructe
ed similarly. The Q matrix i{s likewise si-
silar to the A matrix of the Laplacian.
Inatead of using Neumana bouadary condie
tions at the edge of the image, the quad-
ratic variation surface is defined by using
special maska to fit the rows and columas
near the outside edges. The six =asks
(Figure 13) are rotated as necessary and
applied to the oanly appropriate variable
pixels of the elavation image to define Q.
Mask two is applied to corner pixels, mask
three {3 applied to pixels ia the outside
row or column that are adjacent to a coruer
pixel, mask four is appiled to other pixels
in the outside rows aand columns, =ask Cive
is applied to pixels 4in the nexteto-the
outside row and columns that are f-adjacent
to corner pixels, =mask six i{s applied to
other pixels in the next to the outside
rows and coluans, ~“ad aask 1 is applied to
all other variable pixels in the image.
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Figure 13 - Six masks for the quadratic
variation method.

The third kind of interpolation surfac-
es can be created without using any mask.

For each non-boundary pixel, we can first
find its distances to the nearest valley
pixels and nearest ridge pixels. From

these distances and the elevations at these
nearest valley pixel and nearest ridge pix-
el, either u linear, cubic, or fifth o ‘der
fit interpolation can be wused to cai.ulate
the elevation of this non-boundary pixel.
If cubic fit is used, the first order deri-
vative is zero at ridge and valley pizels.
If rifth order fit is used, both the first
and second order derivatives are zero at
ridge and valley pixels. The resulting
surface plots of these elevations are shown
in Figure 113,
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Figure 18%e. Elavation Model by Method 3,
Fifth order it

Thvs far, we have found the relative
elevat. ons of valley segments and generated
several interpolation su,,faces. More about
invisible streams is discussed in Section
9. In the next two section, we -discuss the
assignment of flow directions to visible
rivers detected in Section 3.

1. Elow Directions of Visible Rivers
and Copstraints at Jupnctions x

In Section 5, an elevation growircg mo-
del was used to find relative elevations of
invisitle streams in valleys. It remains
to find the flow directions of visible riv-
ers which are assigned constant elcvations
in the elevation growing model. This prob-
lem of assigning label:s of (upstream, down-
stream} to the visible river segments i.
very much like the Waltz (1975] problem of
labeling edges of polyhedra objects, and wve
need to find constraints applicable to
streanms.

It is belisved that several stream seg-
ments joint at a juaction with certain or-
fentation an< length patterns. The most
obvious and (mportant one is the configura-
tion similar to Figure 7. It is ploited as
Figure 15. When a smaller stream S2 flows
into a larger stream 51 S3, very often the
angle between S2 and S1 is less than 90 de-
grees, Generral rules about flow directions
at junctions are given in Table 1.



Figure 15 - One pattern
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of a stream junc-

(82,83) Upatream Dovnstreans

=180
181}
1814
‘g1
181!
=180
s100
<180
>180
181}
{81}
{821
181}
=120
AR
181}
1821}
181}

90
1821 ¢
183! >
132! >
182) =

Table 1 -« Rules

Two constraint relations can bde

ly stated oa the basis of Table

lows.

they meet {n a junction;
all 6~-tuples
ths streas segments meet

=90
183! $1 an¢ 82,
{82! s2
183! 32 a1id 83,
1831 32

>90 S a3 82,
<90 $2 and 83,
»90 St ant 33,

{83} {% and 33,

{821 ?

181} $2 und 83,
?

=120

18314 ?

1821 St and 83,
{811 81 and 33,
1831 $1 aaq 82,

of flow directions
tions

33
31 or 33
31
81 or 83
33
S
S2
3
N
£ 4]
?
?
32
F
$3
at junc=
rorsale
1 as fol-

One i3 about all 2-tuples of streas
saguents that coasterain each other because

the labels are

Junction.
tex at which 3 strean
least one segment is

rivers.

of segment-labsl.

possible for that

the other 1is abdout
pairs where
in a Jjunction and

typs of

Let a stream junction be & ver-

Let 4

tions, 8 = (1,

seguent

at

seyments seet and at
identified as visidle

be tLe set of stream junce

streaa jusmetioas,

seey Ml b the set of stream

oL s

{(upstream, downsiream}, and X be the set of

Jurection patterns i Table 1,

I be the fumction thac !lli‘nl

funetions, aad h: -> L

be the

that sgecifies s-euplcl of labels

Let £: J <>
labels to

function
that can

-meet-&t eaGH SYp® of Juhetien. For each x

in X, we d:=Zi0e¢ Tx and Rx as follows,

Tx s ((8,,0,,8,)18,,8,,¢, atet ia junme-
tion type :!'. 2'737
R = ((l'pl‘,lz.lz,lz.ls ! "1"3"3’

¢ tx and (1,.12,13) ¢ a(x)}

Let T s 'l“ rt(.’ and R o '." .ftl’.

T consists of all 3j-tuples of atream seg-~
ments that gonstrain each other, and R i»
the corresponding constraint relatica. The
labeliag prodles csn bde desoribed by a con=
patibility model (S, J, T, R), which {3 a
particular instance of the gensral consis~
tent labeliasg prodles (Haralick and Shapi-
ro, !97T9 aad 1980]. Becauses we believe
that there are nany spatial iaferstuce prode
lem which are iastances of oonsisteat la-
beling prodlem, 418 the nuxt section we de-
scribe the fors of the gensral consistent
label’ag prodlea as given by "llmana, Har-
slick and Shapiro [1082],

4. Copsaiatack Lahaling and 3eatial Raason-
inx Nodal

Let § be a set of objscts acalled
units, sad L bLe a set of possible labels
for those uaits. Let T g (£ir & O} ©ve
the collection of those subsets of uaits
frog 0 cthat sutually coastrain oce anoth-
er., That s, 4f £ s {u,, u,, -« « .« 4 U}
is an elemeat of T, :&on ioe all poau&bfa
labelings of u,,...,u are legal labdel-
ings. Thus there i3 a! least one labdel as-
sigoment 1., 1 . .
haviag lel hnv:ng lfbo
. . u hav ag Tabel 1. isa codbsdaen
labelt3g® T 1s called thf uatt comstraint
set., fimally, let Rc (gl gaU=xLl, &
single=-valued, and Doa(g) € T} Dde the set
of unit-ladel mappings is which constrained
subsets of units are mapped to their alle-
?:blc ;u?-oe; of labels. It £ s

u,,1 Ugela)y + ¢ o , (u.,1,)1 L8 an
0101 i ihou LI “2' P ? ? u are
disttnce unttl. « 4 u } is an
elemsnt of T l.l i e u o My
sutually conltratn one anoehcr. and u,
haviag ladbel 11, 2 having labei i,y . .
« o and u having labdel lk are a)° sia-
ultaneously allowed.

80 taat u,

In the consistent labeling problem, we
are looking for functions that rassign a la-
Yel in L to each wunit ta 7 and satisly
the coastraints i{mposed by T and R. That
is, a consisterr ladbeliny is one which when
restricted to any uait coastraint subset in
T yields ¢ mapoing 4in R. In order to
state this more precisely, wve first define
the restrictiou of & wrpping. Let h:l=adl
be a funetion that mafrs each unit in U to
s label in L. Let £ g U be a subset of




the units. The restriction h! \read h
crestricted by £ ) is defined Dby h!
((u,1) © b ! uéel. witn this notatfon,

ve define a consisteat labeling as follows.

a consistent
recT,

A fugction R:0 «=> L 13
labeling Lf and only if for every
h%r {s an element of R.

Aq example {s given delow. Suppose %he
inputs to the problem are ay follows:
0 = ('n 2, 3, 4, s}
L 2 f{a, b, ¢}

Ts= [ (1}, unary coastraint
(1, 2}, binary constraiats
(2, 5},
fi1, 3, &}} ternary coastraint

g =2 { ((1,a)},1C1,5)},
({1,a),(2,a)},
((1,a),(2,0)},
{C1,0),(2,0)},

unary coanstraint

binary coastraints

((2,a),(5,a})},

{(2,v),(s,0)},

((1,a),(3,a),{8,c)}, ternary constraiats

{(1,0),(3,a),(8,a);}
Theo h = ((1,2) (2,a) (3,a) (%,e) (5,a)}
is 2 consisteat labeling. To see this aote

(] (]

that h | {1} = ((1,a)}, h i {1,2} =
{(1,a),(2,a)}, &} (2,5} S ((2..).(5.3)’0

aad B ! s [(1,a),(3,a),(8,c)} are

all elemeblsdsh? n
If having (1., ..., 1 ) applxod to (“l'
cesr U,) when (u 1 .... u is not
! allowed ulth c pontlt;. ego proc-sss

in R 1

is ocalied inexact consiscent labeling
(Skapiro and Haralick, 1981], In order to
include these mappings, aa orrgr functioan
Sw {3 defined. Let EBw : T X L > [0, 1]
be the orror veighting functioa. Ew (u,,

eeey  l.)
occurs whol labels (1
plied to (u, ceey uul
-> L is an fnexact consistent labeling if
for all (u cees “H) ia T, the suamations
of Bw (u,, ..., L) h(u’), R (uu)) is
within some upper bouvnd.

is the orror whkich
veey are ap-
The nagpin B :U

In spatial reasoning problems, aany
spectral and geometrical properties can be
detected for the locally detected units.
Some frequently used properties 2re average
sray level, size, and shape descriptors.
Let P be the set of properties. The spa-
tial reasoning model i{s (¢, P, L, T, R,
EBw). U, L, T, Ewv have the same aeanings as
before; however, the slements Lu R now have

the fore (u,, p,, ) yr ly) vhe-
re p, is the list or proporgy valuo rangos
for 3ll the properties ia P for unit u

= 1 to N. It means that {f the proborty
values of u, are within the ranges speci-
fied by Py for £ = 1 to N, and (u,, ...,
¢,) is contained in T, then (t is 10‘!1 to
labdel l

to Ugr  eeey lu to oy at the same

18
RMN“QAL_Pw“BE
OF POOR QUALITY

time.

The spatial reasoning model (U, P, L,
T, R,. Bw) uan bde asplied to finu the flow
directions of visibie rivers. U coatains
the units of visidle rivers plus the units
of inviaible streams iaterseating the visi-
ble rivers at junctiorns. P contains all
the properties detectadle from the bdorder
segunents. L is (Opstream = 1, Downstreaa =
2}. T coatains the junction relatioas. R
coantaine the relations of legal flow direc-
tions defined in Table 1. %uw is the nuambar
of times incoasistency occurs at juactions
normalized by the total aumbder of Junce
tions.

9. Conscluaion

To detect stream network in LANDSAT,
both visidble rivers and invisible streaas
need to de distinguished. Visidble rivers
can be datected Dby both spectral and 2D
spatial information. Howeve~, the detec-
tivn of invisible streams needs 3D spatial
{nformation.

For invisible streama, ridge end valley
segunents must tirst be detected and then an
elevation growing model can be used to as-
siga relative elevatiocas to them. Iaterpo-
lation can generate surface slevatioa at
all 1locations (from the known values at
ridge and valley segments. From this ele-
vation surface a2 valley network can be gen-
srated easily. Another wny to form a val-
ley retwork is to creafs gap units as {z
Figure 7 during elevation growing. Local
information including rules in Table 1 and
other knowledge can be used to datermine
the invigible stream network as a subset of
the velley network. The flow direstiocas of
invis.ble streams come directly from the
relative elevatioans of valley segments.

For the visible rivers jart, the con-
sisteat 1labeling based spatial reasoning
sodel can be used to find the flow direc-
tions of visible rivers whose units are as-
sumed to have all constant elevatioans in
the elevation growving aodel.

Based on the consistent labeling model,
two types of spatial reasoning amodels can
be formulated. If one is only interested
in the classification or ladbeling of the
two digeasional space so that roads, builde
ings or other ground objects can be identi-
fied, the model i3 called a 2D spatial rea-
soning sodel. Cne example is the model
discussed in Section 8. If, i{n addition to
the classification, some feature values
such as terrain elevations are needed over
the two dimensioaal space, it is called a
3D spatial reasoning model. In other
wvords, 4in the 2D spatial reasoning model,
the output specifications are symbolic; in



the 2D spatial reasoning model,
specifications are numerical.

the output

An application of the 2D spatial rea-
soning =model which wve hope to report on
soon is to recognize the ground objects in
an urban area by segmentiag the aerial fa-
age intc regions, wmeasuring the properiies
of these regions, foraulating constraints
ina T and R, acd applying the model. An ap~
plication of the 3D spatial reasoning sodel
which will be discussed in Wang's forthcoa-
iag dissertatioa will bde to find the bdesat
set of segment slopes 80 that the estimated
relative valley ridge 2levations are as ac-
curate as possibdle.
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