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PREFACE 

The report contains the results of several papers 

related to modeling using a class of the bivariate gamma 

distribution. The separate papers contain loosely related 

subjects pertaining to this problem. Since the separate 

papers were prepared at different times during the contract 

period and have been submitted for publication in the open 

literature and each paper is intended to be self-contained, 

there is some redundancy in tables and illustrations. 

Each of the papers in this report were extensions 

and/or generalizations of the results given in NASA TM- 

82483, entitled "A Bivariate Gamma Probability Distribution 

with Application to Gust Modeling," by 0 .  E. Smith, S. I. 

Adelfang, and J. D. Tubbs. A modification of this paper is 

currently under review by Communications - in Statistics. 

The first paper in this report, entitled "A Note on 

the Ratio of Positively Correlated Gamma Variates," has 

been accepted for publication in Communications - in Statis- 

tics and it presents some new analytical results using a 

class of the tivariate gama distribution. Comparable 

results were available in the open literature using a 

different ciass of the bivariate gamma. 

The second paper is entitled "A Method for Det?rmin- 

ing if Unequal Shape Parameters are Necessary in a Bivariate 

Gamma Distribution" and is an application of the results 

given in the first paper and addresses questions concerning 

iii 



hypothesis tests for equality of shape parameters from 

correlated gamma distributed variates. This paper is 

currently under review by Teclmometrics. 

The third paper, entitled "A Differential Equations 

Approach to the Modal Location for a Family of Bivariate 

Gamma Distribution," contains extensive analytical results 

for the location of the mode as a function of the free para- 

meters. To the authors' knowledge this is the only such 

repre.entation for a non-gaussian bivariate distribution. 

This paper has been submitted to --- SIAM J. on Scientific 

and Statis tical Computinq. - 
The fourth paper is a report summarizing the analysis 

of some wind gust data using the analytical 'results devel- 

oped in relationship to the modeling application. 
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CHAPTER I 

A NOTE ON THE RATIO OF POSITIVELY CORRELATED GAMMA VARIATES 

J. D. Tubbs 

Department o f  Mathematical  Sciences  
U n i v e r s i t y  o f  Arkansas 
F a y e t t e v i l l e ,  Arkansas 

0. E. Smith 

Systems Dynamics Laboratory  
NASA Marsha l l  Space F l i g h t  Center  

H u n t s v i l l e ,  Alabama 

ABSTRACT 

Mielke and Flueck (1976) d e r i v e d  t h e  d e n s i t y  f u n c t i o n  and 

corresponding moments f o r  t h e  r a t i o  of c o r r e l a t e d  gamma d i s t r i b -  

u ted v a r i a t e s .  They cons idered  a c l a s s  o f  b i v a r i a t e  gamma d i s -  

t r i b u t i o n s  sugges ted  by Cher ian  (1941) and David and F i x  (1961). 

Recently,  Lee, Holland, and F lueck  (1979) der ived some a d d i t i o n a l  

d i s t r i b u t i o n a l  r e s u l t s  u s i n g  t h i s  c l a s s  o f  func t ions .  Th is  paper  

d e r i v e s  s i m i l a r  r e s u l t s  u s i n g  a d i f f e r e n t  c l a s s  of b i v a r i a t e  

gamma d i s t r i b u t i o n s .  

1. INTRODUCTION 

Mielke and Flueck (1976) d e r i v e d  t h e  d i s t r i b u t i o n a l  r e s u l t s  

f o r  t h e  r a t i o ,  R ,  o f  c o r r e l a t e d  gannaa d i s t r i b u t e d  v a r i a b l e s .  

There are s e v e r a l  c l a s s e s  of t h e  b i v a r i a t e  gamma d i s t r i b u t i o n  [ t h r e e  

a r e  summarized i n  Mardia (1970) and a n  a d d i t i o n a l  two i n  Johnson and 



Kotz (1972)l. Mielke and Flueck (1976) der lved the  d i s t r i b u t i o n a l  

r e s u l t s  f o r  t he  r a t i o ,  R, of c o r r e l a t e d  gamma d i s t r i b u t e d  v a r i a b l e s  

using the  Cherian-David-Fix c l a s s  of b i v a r i a t e  gamma random v a r i a b l e s  

[ ~ h e r i a n  (1941) and David and F i x  (1961)l. That is, l e t  X, Y ,  and P 

denote independent gamma random v a r i a b l e s  wi th  common s c a l e  parameter 

X and r e spec t ive  shape parameters a - c ,  B - E ,  and E ,  f o r  O < E < 

m i n b  ,B) . 
Then i t  can be shown t h a t  t h e  b i v a r i a t e  p robab i l i t y  dens i ty  

func t ion  f o r  U X + P and V = Y + P is given by 

min (u,v) 

a-E - 1 
fU,,(u,v) = K (v-p) '-'-I ePdp (1.1) 

f o r  K = r (a-E)r (6-E)r (€1 

when t h e  s c a l e  parameter X i s  assumed t o  be  un i ty .  Mielke and 

Flueck (1976) showed t h a t  (1.1) can be w r i t t e n  a s  

* m (a),-(bIn 
where Fl(a,b,c:x,y) C x y ,  is a " d e ~ e n e r a t e "  (c)*m!n! 

m, n=O 

two v a r i a b l e  hypergeometric func t ion  [ ~ r a d s h t e y n  and Ryzhik 

(1967), p. 10671 and (a)n = r (a -h) / r (a ) .  Thus, U and V a r e  gamma 

random v a r i a b l e s  with shape parameters a and 6 and p o s i t i v e  depend- 

ence parameter '. I n  p a r t i c u l a r ,  E(U) = Var(U) = a ,  E(V) = Var(V) 

= B ,  and Cov(U,V) = 6 .  

Mielke and Flueck (1976) der ived t h e  dens i ty  funct ion f o r  

R = U/V using a change of v a r i a b l e s .  That is, 



- ( a ) - ( b ) , ( ~ ) ~  
where F (a,b,c,d:x,y) = Z 

1 (d)mhlm!n! .myn, 1x1 < 1 l y /  1 
m , n=O 

is a two v a r i a b l e  hypergeometric f u n c t i o n  [Gradshteyn and Ryzhik, 

(1967), p. 10531, and B(a,b) = r ( a ) r ( b ) / r ( a + b ) .  I n  a d d i t i o n ,  they 

show t h t  t h e  i n t e g r a l  moments of R a r e  g i v e n  by 

s (a-S) (El 
s-j 

E(R') j10 (B!j)s f o r  s L 0. 

I n  p a r t i c u l a r ,  

t 'ocently, Lee, Holland, and F lueck  (1979) were a b l e  t o  o b t a i n  

comparable r e s u l t s  f o r  d e n s i t y  o f  R u s i n g  t h e  Cherian-David-Fix 

c l a s s  of d e n s i t i e s  by express ing  f  as a  weighted d i f f e r e n c e  of R 
hypergeometric f u n c t i o n s .  The purpose  o f  t h i s  paper is t o  d e r i v e  

comparable r e s u l t s  f o r  R us ing  a d i f f e r e n t  c l a s s  of t h e  b i v a r i a t e  

gamma d i s t r i b u t i o n .  This  c l a s s  is  a s p e c i a l  c a s e  of t h e  one 

suggested by Jensen  (1970) as modif ied bv Gunst and Web!.:ter (1973). 

The n e x t  s e c t i o n  c o n t a i n s  a b r i e f  d i s c u s s i o n  of t h i s  c l a s s  of 

d i s t r i b u t i o n s .  I n  s e c t i o n  3 t h e  d e r i v a t i o n  of f  is  given us ing  R 
t h i s  c l a s s  of func t ions .  S e c t i o n  4 o u t l i n e s  a  p o s s i b l e  app l ica -  

t i o n  f o r  t h e  p r o b a b i l i t y  f u n c t i o n  i n  t h e  a r e a  of hypothesis  

t e s t i n g  f o r  t h e  e q u a l i t y  of shape paramete rs  i n  t h e  presence of 

c o r r e l a t i o n .  



2.  - GUNST AND WEBER CLASS OF BIVARIATE GAMMAS 

Gurist and Weber (1973) proposed a  computa t iona l ly  f e a s i b l e  

method f o r  d e r i v i n g  t h e  j o i n t  d e n s i t y  f u n c t i o n  f o r  t h e  b i v a r i a t e  

chi-square  d i s t r i b u t i o n .  S i n c e  t h e  ch i - square  is  a s p e c i a l  c a s e  

o f  t h e  gamma, t h i s  method w a s  used f o r  t h e  b i v a r i a t e  gamma case .  

That is, a  b i v a r i a t e  gamma d e n s i t y  f u n c t i o n  f o r  U and V w i t h  

common s c a l e  parameter  A = 1 and shape paramete rs  a,B, (a < 8 )  

i s  g iven  by 

where II = p {m, p is t h e  c o r r e l a t i o n  c o e f f i c i e n t  between t h e  

v a r i a b l e s  U and V. Gunst and Webster (1973) sugges ted  t h i s  c l a s s  

of d e n s i t i e s  i n  t h a t  they a r e  computa t iona l ly  t r a c t a b l e  and do 

n c t  i n v o l v e  mathemat ical  f u n c t i o n s ,  such  a s  Laguerre  polynomials 

o r  convoluted sums [Jensen '  (1970) and Kibb le  (1941) l .  Smith, 

Adelfang, and Tubbs (1982) d i s c u s s  t h i s  c l a s s  of d e n s i t i e s  h 

g r e a t e r  d e t a i l .  

I n  the n e x t  s e c t  ion  t h e  d i s t r i b u t i o n a l  p r o p e r t i e s  f o r  t h e  

r a t i o ,  R, a r e  d e r i v e d  us ing  t h e  Gunst-Webst?r c l a s s  of b i v a r i a t e  

gammas. 

3. RATIO OF CORRELATED Gm-VARIATES 

By l e t t i n g  R = U/V and S  = U+V, t h e  j o i n t  pdf f o r  R and S 

can e a s i l y  be shown t o  be 

where c  1 = [ ( l - ~ ) ~ l . ( a ) ( ~ - a ) ] - ~ ,  c 2  = -- nl+% (B-n+k) . Hence, 
(1-n)2'+%' ( ~ + ~ + k )  ! kl 

by i n t e g r a t i n g  o v e r  S t h e  pdf f o r  R becomes 



j k where - = ( a ) , ~  Ij!, ck = ( B - u ) ~ ~  /k!, (a),, r ( a + n ) / r ( a ) ,  and 
-3 

B(a,b) = r(a)I'(b)/l'(a+b). 

Whenever t h e  shape parameters  are e q u a l  t h e n  t h e  de.lsity func- 

t i o n  f o r  R is  g iven  by 

From (3.2) i t  can be shown that t h e  mth raw moment f o r  R i s  

given by 

i f  m < B .  I n  which c a s e ,  i t  f o l l o w s  that 

and 

Whenever 0 = 0, then  

which a g r e e s  w i t h  t h e  v a l u e s  g iven  by Mielke and Flueck (1976) 

whenever E = 0 ana  wi th  Lee, Holland,  a r ~ d  Flueck  (1979) whenever 

a = 0. 

Lee, Hol land,  and Flueck (1979) d i s c u s s  some o f  t h e  mathe- 

m a t i c a l  p r o p e r t i e s  f o r  t h e  d e n s i t y  of R f o r  v a r i o u s  v a l u e s  of  



a r a r  and n. They demonstrated t h a t  t h e  d e n s i t y  can be m a t  r=l 

whenever e i t h e r  of t h e  shape parameters  is l e s s  t h a n  one. How- 

ever ,  in t h e  Gunst-Webster c o n s t r u c t i o n  by assurninf t h a t  a > l 

and a < fi t h e  d e n s i t y  f u n c t i o n  given i n  e q u a t i o n  ( 3 . 2 )  is  s t a b l e .  

F l g u r e s  1-4 i l l u s t r a t e  t h e  v a r i o u s  shapes  that f R ( r )  has  a s  a 

f u n c t i o n  o f  t h e  t h r e e  parameters .  

A d e f i n i t e  computat ional  advantage of e q u a t i o n  ( 3 . 2 )  v e r s u s  

equa t ion  (1.3) stems from t h e  a b i l i t y  t o  compute t h e  t a i l  proba- 

b i l i t i e s  for R. By l e t t i n g  a=a+j and b=B+j+k, we have 

where F deno tes  a random v a r i a b l e  from an  F - d i s t r i b u t i ~ n  wi th  
r , s  

r and s d e g r e e s  o f  freedom. Note i f  rl = 0, t h e n  ( 3 . 7 )  becomes 

which a g r e e s  w i t h  t h e  w e l l  known r e s u l t s  concerning t h e  r a t i o  o f  

independent  ch i - squares .  Furtnermore,  i f  rl f 0 and a = 0 then 

(3.7) becomes 

which is similar t o  an  express ion  given by Johnson and Kotz ( 1 9 7 2 ) ,  

Chapter 40, S e c t i o n  3.  

4 .  APPLICATION 

I n  t h i s  s e c t i o n  an a p p l i c a t i o n  is  g iven  f o r  computing t h e  

cdf  of R,  g iven  by equa t ion  (3.7). Diagram 1 d e f i n e s  t h e  a r e a  

g i v e n  i n  e q u a t i o n  ( 4 . 1 ) .  
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FIGURE 4. DMSIn FUNCTION FOR R - u I V  a - 3 .0 .  6 - 3.0  



By l e t t i n g  c o t  = U/V = ro and G(0) = 1-FR(ro), one has 

B m  " < (a/b) tan  01 
G(0) (1-n) cj ck P[F2b,2a 

k 

Figure 5 con ta ins  t h e  graph of the kunction G(8) versus  8 f o r  a = 1 

and = 1, 2, o r  3 and Q - 0, .25, -50, and ,75.  From t h i s  f i g u r e  

and o t h e r  ca ses  which a r e  not  included one observes t h a t  whenever 

a = B then ~ (45 ' )  = .5 and ~(45 ' )  c .5 whenever a < B. This  obser- 

va t ion  and add jc iona l  proper t ies  were used i n  developing a t e s t  f o r  

the  hypothesis  

H O : a s B  vs. HA: a < 8 (4-2)  

The procedure is  presented i n  Tubbs (1983) and uses  the  Cramer- 

Von Mises c r i t e r i a  f o r  t e s t i n g  (4.2). That is, def ine  

where FR(r) i s  the  cdf f o r  the n u l l  d i s t r i b u t i o n  given i n  (3.10). 

F ( r )  is t h e  empir ica l  d i s t r i b u t i o n  f o r  ri = ui/vi and the ri's 
n 

a r e  arranged in increas ing  order.  Whenever Ho is t r u e ,  then Wn is  

d i s t r i b u t i o n  f r e e  and has a convenient computational form given by 

where Zi = FR(ri). H is r e j ec t ed  i f  Wn exceeds a s p e c i f i e d  
0 

c r i t i c a l  po in t .  Tubbs (1983) considers  the p rope r t i e s  of t h i s  

t e s t  procedcre i n  g r e a t e r  d e t a i l .  

5. CONCLUSIONS AND SUMMARY 

This  paper de r ives  both the  dens i ty  and the d i s t r i b u t i o n  func- 

t i o n ~  f o r  t h e  r a t i o  of pos i t i ve ly  co r r e l a t ed  gamma v a r i a t e s  using 

a modi f ica t ion  of Jensen 's  b i v a r i a t e  gamma d i s t r i b u t i o n .  The 

expression f o r  t h e  moments d i f f e r  from those given by e i t h e r  

Mielke and Flueck (1976) o r  Lee, Holland, and Flueck (1979). 
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llowever, a l l  t h e  exp re s s ions  a r e  i d e n t i c a l  whenever t h e  v a r i a t e s  a r e  

uncor re la ted .  A p r i n c i p a l  advantzge found i n  t h i s  r e p r e s e n t a t i o n  

stems from t h e  a b i l i t y  t o  compute t h e  CDF of t h e  r a t i o .  The va lue  of 

t h e  CDF f o r  t h e  r a t i o  was shown t o  have p o t e n t i a l  a p p l i c a t i o n  t o  t h e  

problem o f  t e s t i n g  fo r  e q u a l i t y  o f  shape parameters i n  a p a r t i c u l a r  

family of  t h e  b i v a r i a t e  gamma d i s t r i b u t i o n .  

U 

Diagram 1 
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CHAPTER I1 

A METHOD FOR DETERMINING IF UNEQUAL SHAPE 
PARAMETERS ARE NECESSARY IN A BIVARIATE 

GAMMA DISTRIBUTION 

J. D. TUBBS 
Department of Mathematics 
University of Arkansas 
Fayetteville, Arkansas 

A B S i  -'ACT 

A procedure for aiding an experimentalist in decid- 

ing between four and five parameters in a Jensen's type 

bivariate gamma distribution is presented. The procedure 

is based upon the properties of the CDF for the ratio of 

correlated gamma distributed variates. The criteria of 

interest is posed in a test of hypothesis setting and 

results are presented using the cram&- on Mises test 
of fit. 

1. INTRODUCTION 

Smith and Adelfang (1981) discuss the applicability 

of a bivariate gamma distribution as a parametric model 

for wind gust amplitude and length. In modeling this 

bivariate data with a gamma distribution, it was neces- 

sary to find a distriburion that would allow for correla- 

tion between the random variables X and Y when the marginal 

distributions are univariate gammas with possibly unequal 

shape and scale parameters. That is, X - G(yx,~x) and 



Y - G(y,,, B ) where the probability density function for 
d Y 

Z - G(Y,B) is given by 

A brief survey of the open literature reveals that 

there are several classes of the bivariate gamma distribu- 

tion. One need only consult Mardia (1970) and Johnson and 

Kotz (1972) to find five classes of the bivariate gamma 

distribution [Kibble (1941), Cherion (1941), McKay (1934), 

;ensen (1970), and Moran (1969) 1. Of these classes only 

Jensen (1970) and Moran (1969) allow for unequal shape 

parameters and both of these have computational limitations 

which affect their utility to the experimentalist. Recently, 

McAllister, Lee, and Holland (1981) and McAllister (1983) 

have addressed the limitations with Jensen's model and 

provided results which overcome many of the computational 

difficulties. However, at the time of Smith -- et al. (1983) 

development these results were not available. Hence, they 

modified a bivariate chi-square model given by Gunst and 

Webster (1973). This allows for possibly unequal shape 

parameters and is computationally tractable. The model is 

not as general as that given by Jensen (1970), however, one 

can derive the bivariate model given by Kibble (1941) as 

a special case whenever the shape parameters are equal. In 

this paper, the unequal shape parameter model will be 

referred to as the five-parameter model and the equal shape 
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case a s  the  four-parameter model. Smith, Adelfang, and 

Tubbs (1983) d iscuss  the proper t ies  of these  d i s t r i b u t i o n s  

and i t  i s  apparent t h a t  the four-parameter has numerous 

computational advantages over the  five-parameter model. 

So i f  one assumes t h a t  the da ta  i s  co r rec t ly  modeled by 

t h i s  c l a s s  of the  b i v a r i a t e  gamma d i s t r i b u t i o n ,  a question 

of p r a c t i c a l  i n t e r e s t  becomes, How does one decide i f  the 

five-parameters a r e  r e a l l y  necessary? The purpose of t h i s  

paper i s  t o  present  a procedure which would a i d  the  exper- 

imental is  t i n  answering the  above question. The problem 

is  posed i n  a hypothesis t e s t i ~ g  s e t t i n g .  That i s ,  t e s t  

the  hypo t h e s i s  

- Ho: Yx - Y~ 

versus 

H1: Yx < Y y .  

It should be noted t h a t  the proposed method i s  not an 

omnibus t e s t  of f i t  f o r  the  b i v a r i a t e  gamma agains t  a l l  

o t h e r  poss ib le  models. Instead the  procedure i s  intended 

f o r  deciding between the four  o r  f i v e  parameter models a s  

given i n  Smith, Adelfang, and Tubbs (1983). 

The next sec t ion  con ta i l s  the d i s t r i b u t i o n a l  r e s u l t s  

needed f o r  the t e s t  of hypothesis ( 1 . 2 ) .  The t e s t  proce- 

dure i s  given i n  sec t ion  3 and evaluated i n  s e c t i o n  4. 

Section 5 contains  a summary and remarks concerning some 

of t h e  l i m i t a t i o n s  of the procedure. 



2 .  DISTRIBUTIONAL RESULTS 

Smith, Adelfang, and Tubbs (1983) modified a  b iva r i a t e -  

Chi square d i s t r i b u t i o n  given by Gunst and Webster (1973) 

and obtained t h e  dens i ty  function given by 

where 

3 a r e  known s c a l e  parameters, and x = XBxJ y YByJ B x 8  

n = p {-IY, p i s  the  corre la t ion  c o e f f i c i e n t  between the 
Y X  

var iab les  X and Y.  The j o i n t  p robab i l i ty  d i s t r i b u t i o n  func- 

t i o n  i s  given by 

where 

djk = n j+kr(Y Y x  -Y +k)/r(yy+j+k) j l  kl 

- a-1 .-t ~ ( a , x )  = J o t  d t .  



Equations (2.1) and (2.2) a r e  f o r  the unequal shape para- 

meters and w i l l  be r e f e r r e d  t o  a s  the five-parameter model. 

It should be re-emphasized t h a t  t h i s  model is not  completely 

general  i n  t h a t  one assumes t h a t  y y  > Y, and the c o r r e l a t i o n  

between va r i ab les  X and Y a r e  r e s t r i c t e d  t o  the  i n t e r v a l  

[O, I f o r  nc [O, l l .  

If Y, = y = y then i t  can be shown t h a t  (2.1) and 
Y 

(2 .2 )  reduce t o  the  we l l  known functions &iven by Kibble 

(1941). That is ,  t h e  densi ty  function i s  given by 

and the d i s t r i b u t i o n  funct ion becomes 

Equations (2.3) and (2.4) w i l l  be r e fe r red  t o  a s  

the four  parameter model. A comparison of the d i s t r i b u t i o n  

funct ian  given i n  (2.2) and (2 .4 )  reveals  t h a t  the re  a r e  

d i s t i n c t  d i f f e rences  i n  terms of the computational com- 

p lexi ty .  Thus f o r  aomputational reasons the  experimental- 

i s t  would l i k e  t o  know how much g r e a t e r  does ; have t o  Y 
*I 

exceed y x  before equation (2.2) i s  r e a l l y  necessary.  

Idea l ly  he would l i k e  t o  answer t h i s  question before using 

both ( 2 . 2 )  and (2 .4 )  then se lec t ing  the r e s u l t s  which z~re 

more g r a t i f y i n g .  In  order  t o  z ld ress  t h i s  i s sue ,  t h i s  



paper considers  t h e  problem of t e s t i n g  hypothesis (1 .2)  

versus (1.3) using an un iva r i a t e  random v a r i a t e  given 

by the  r a t i o  o f  X t o  Y ,  R = X/Y. Tubbs and Smith (1983) 

derive the  dens i ty  and d i s t r i b u t i o n  functions f o r  R when- 

ever the  b i v a r i a t e  dens i ty  i s  e i t h e r  (2 .1 )  o r  (2 .3 ) .  That 

i s ,  i f  equation ( 2 . 1 )  holds then the dens i ty  funct ion f o r  

R i s  given by 

j where B(a,b) = ( a ) ( b ) /  ( a ) ,  cj = (a)jn /j I ,  

k ck = (b-a)kq /kl , a = y,+j, b  = y +j+k, and (a), = r (a+n)/r (a ) .  
Y 

The d i s t r i b u t i o n  funct ion f o r  R i s  given by 

where F denotes a random var i ab le  from an F-dis t r i b u t i o n  
r , s 

with r and s degrees of freedom. The corresponding funct ions  

whenever y x  = y = y a r e  given by 

where a = y + j. 



3 .  HYPOTHESIS TESTING 

Since R = X/Y i s  a u n i v a r i a t e  random var i ab le  i t  i s  

informative t o  graph FR(r) versus r .  However, s ince  r > 0 

a more meaningful graph can be produced by l e t t i n g  e = 

-1 cot-'= and C ( e o )  = 1-F, ( ro)  where e o  - cot  r 
0 ' 

The a rea  

corresponding t o  Fr(ro) i s  shown i n  diagram 1. Further- 

more, i t  follows t h a t  

( 3  1) 

i n  the five-parameter model and 

i n  the four-parameter case.  

Since e i s  r e s t r i c t e d  t o  the f i n i t e  i n t e r v a l  (0, a / 2 ) ,  
I 

i t  i s  somewhat i n s t r u c t i v e  t o  p l a t  G(e) versus a s  func- 

t ions  of the  f r e e  parameters. yx, y y  and n. A s  i n  Tubbs 

and Smith (1983) t h e  s c a l e  parameters a re  assumed t o  be 

known and hence equal t o  one. This r e s t r i c t i o n  w i l l  be 

addressed l a t e r  i n  the  paper. Figures 1-3 contain some of 

the  i l l u s t r a t i v e  cases .  

From these  p l a t s  one observes tha t  ~(45 ' )  = . 5  when- 

ever the four-parameter model holds and ~(45 ' )  < .5 i n  

the five-parameter models. Rather than j u s t  using t h i s  

observation a funct ion  was se lec ted  t o  measure the  d i s t ance  

between these d i s t r i b u t i o n  functions.  The cram&   on Mises 
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type goodness-of-fit procedure was selected since the test 

is distribution free whenever the parameters are specified. 

Furthermore the test statistic is easy to compute. 

Let 

s / 2  2 
wn = n$ tG(0) - G,(e)) dG(0) 

0 

where G(e) is given in ( 3 . 2 ) ,  Gn(0) is the empirical dis- 

tribution function of ei = tan''(ri), ri = Xi/Yi are 

arranged in increasing order. Whenever hypothesis (1.2) is 

true, then Wn has the convenient computational form given 

where zi = G (0 i). Furthermore, from Anderson and Darling 

(1951) one can reject (1.2) whenever Wn exceeds a specified 

critical point. These critical points are given from Ander- 

son and Darling's asymptotic distribution. Stephen (1976) 

defines a procedure for modifying the critical points for 

small samples, however, the underlying problem of modeling 

bivariate data will probably dictate large sample sizes. 

4. EVALUATION OF THE TSST PROCEDURE 

In this section the procedure defined in the previous 

section is evaluated. The evaluation is performed in two 

parts. The intent of the first part was to determine 

whether or not the procedure even works. That is, are the 
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apparent visual differences between the function G(e.\ as 
0 

seen in Figures 1-3 significant in the "Cramer-Von Mises" 

metric. The second part of the evaluation concerns the 

robustness of the procedure to the nuisance parameters. 

In the first part, let 

where G(e) is given in (3.2) and A(e) is given by (3.1) 

when y = 
Y 

y, + a ,  for 6 >O. For positive integers n, 

compute. 

If the alternative hypothesis given by 

- HI: Yx ' Yy - Y, + 6 (4.3) 

holds, then the expected value of Wn in (3.3) is given by 

Dn(d). Hence, an(6) is the expected type I error of test- 

ing hypothesis (1.2) as a function of 6. Table 1 contains 

the value of an(6) for various values of the parameters. 

The an (6) ' s were computed using Tiku' s approximation to 

the asymptotic distribution of Wn [Tiku (1965)J. 

For example, from Table 1 one would expect the test 

to rej ect integer (6=l) differences between the shapes for 

X and Y at the 95% significant level whenever n > 50. 

The procedrire used to generate the val-~es in Table 1 

.- is somewhat unconventional: however, they do indicate that 
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the test procedure would be sensitive to differences in 

the shape parameters that exceed unity. A Monte Carlo 

simulation was also performed. The results are not 

rsported in the interest of space and since the simulation 

was quite limited. A detail simulation is very expensive 

due to the computational cusi, in computing the null dis- 

tribution G(e) needed in evaluating type I errors. It 

IS especially costly to simulate any type I1 errors. In 

spite of these restrictions upon the simulation's uerit, 

the results were supportive of the expected results given 

in Table 1. 

The second part of the evaluation is concerned with 

the question of robustness of the test to the unspecified 

parameters, namely, p and B ~ ,  . In order to determine 

the sensitivity of the test to the misspecified correla- 

tion coefficient p ,  the following distance was evaluated 

for different values of y, - - y Y .  

where G ( e )  is given in equation (3.2) when p = 0, and 

B ( e )  is given by equation (3.2) whenever p > 0, for 

p = -25 (. 25).  75. Table 4 contains the type 1 errors 

an(d given by 

for different values of n and yx = y y  = y .  a n ( P )  in 

I I - 14 



Table 1. Tail Probabilities f o r  an(6)*  

"if a n ( 6 )  < .01, then the  entry i s  left blank. 



(4.5) is the expected type I error as a function of the 

nuisance paraaeter p. It should be mentioned that the 

distribution for Wn is not the same as that given by 

Anderson and Darling asymptotic approximation since the 

nuisance parameter p is unspecified [cp. , Stephen (1976)], 

however, it does not appear feasible to follow Darling's 

procedure for computing the exact distribution whenever 

p and BX, 6 are replaced by their consistent estimators. 
Y 

In spite of this shortcoming, equation (4.5) is used. 

However, Stephens (1976) showed that the asymptotic 

approximation given by Anderson and Darling is conserva- 

tive as compared to his fitted distribution in the family 

of normal distributions [Stephens (1976) Table 4, p.. 3671 

and the extreme value distributions [Stephens (1977) 

Table 1, p. 6871. Thus, it seems reasonable that 

equation (4.5) is also conservative, that is, if 

is the true value for the 1.h.s. of equation (4.5), then 

.(P> c an(p). 

Table 2. Type 1 Errors for Unspecified 
'Y n o=.  25 .50 . 7 5  



From Table 2, it follows that the procedure is only 

sensitive to p whenever p = .75 and n > 50. This obsel~a- 

tion was also supported in the simulation study. 

In order to determine the sensitivity of the test co 

the scale parameters, the distance given by 

where G(e ) is given in (3.2) and C (e ) is given by (3.2) 

whenever tan0 = sr, s = 6,/fjy = .go( .  02)l. 10. Errors in 

either of the scale parameters can be considered by varying 

s in (3.2). Table 3 contains the expected type I errors 

given by 

Pr[Wn > Dn(s)l = an(s) ( 4 . 7 )  

for different values of n, y , and p~ 

From Table 3 one observes that the procedure appears 

to be resilient to errors in the scale parameter and that 

one might have a type I error when y = ;, p = .75,  and n = 

100 at the 95% significance level. In addition it also 

appears that the results are symmetric about s = 1. 

CONCLUSIONS AND SUMMARY 

A procedure is outlined for determining whether 

a four or five parameter bivariate gamma model is appro- 

priate. The procedure was evaluated and three 
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Table 3. Type 1 Errors for 
Misspec i f i ed  Scales 

The values of s = ( . 9 6 , 1 . 0 4 )  were omitted s ince the Type 1 
error was 1 . 0  f o r  all parameters. Likewise,whenever n=20. 



different functions were evaluated in order to determine 

the procedure's feasibility and sensibility to the nuisance 

parameters. Admittedly, the evaluation is very limited 

and there are several linitations which would prohibit 

this type of procedure as an omnibus test of fit. How- 

ever, the results appear to be promising to the experi- 

mentalist interested in obtaining insight into the stated 

problem. 

There are several nonparametric procedures for test- 

ing (1.2) versus (1.3) and perhaps these are not as sensi- 

tive to the nuisance parameters. However, the proposed 

II procedure is based upon measuring" significant departures 

of the parametric distributions function which are vital 

to the modelers' primary objective. 
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ABSTRACT 

Analytical and numerical computational methods are 

given for determining the location of the mode as a func- 

tion of the parameters of a class of the bivariate gamma 

df stribution. 

I. INTRODUCTION 

Smith, Adelfang, and Tubbs (1983) derived some compu- 

tational results for a family of bivariate distributions. 

In their paper they consider the location of the mode as a 

function of the shape parameters, y and y2, and the 

dependence coefficient ri.  The purpose of this paper is 

to consider this problem in greater detail. Tha,,: is, the 

paper will consider analytical and numerical computational 



methods f o r  l o c a t i n g  t h e  modal va lues  f o r  the  c l a s s  of dens i ty  

funct ions given i n  Smith, Adelfang, and Tubbs (1983). The 

genera l  d e m i t y  func t ion  i s  given by: 

j k Ij'kr (, 2-yl+k) t2 
w h e r e a  = 

j k  (l-n)2j+kr (y2+j+k) j !k! I 

tl = B ~ X ,  t2 = B ~ Y ,  B ~ , B ~  a r e  s c a l e  parameters. y 2  > y1 > 1 

a r e  shape parameters,  and 0 < s < 1 i s  associa ted  with t h e  

c o r r e l a t i o n  c o e f f i c i e n t  p by the  equation n = P/+=. We 

w i l l  assume without l o s s  of genera l i ty  t h a t  B1 = B 2  = 1. 

We w i l l  concent ra te  on t h e  spec ia l  case  r l  = Y 2  = Y of 

(1.1) f o r  which t h e  d i s t r i b u t i o n  funct ion  reduces t o  

This i s  the  form given by Kibble (1941). 

Smith and Adelfang (1981) used the  above c l a s s  of dens i ty  

functions i n  modeling wind gus t  da ta  f o r  the  ascent  f l i g h t  o f  

the  Space S h u t t l e .  A parametric model was se lec ted  i n  t h a t  t h e  

parameters a r e  used t o  e s t a b l i s h  engineering cons t ra in t s  f o r  

t h e  s h u t t l e  payload system. Thus, the modal loca t ion  and va lue  
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were of i n t e r e s t  t o  t h i s  p a r t i c u l a r  app l i ca t ion .  The authors  

a r e  not aware o f  any o t h e r  r e s u l t s ,  e i t h e r  a n a l y t i c a l  o r  numer- 

i c a l ,  f o r  the  modal l o c a t i o n  f o r  non-Gaussion mul t iva r i a t e  d i s -  

t r i b u t i o n s .  The c l o s e s t  r e l a t e d  work i s  i n  the  area of dens i ty  

and mode es t imat ion  ( 3 . g .  Sager (1978, 197?), de Bea:lville 

(1978), and Eddy (1980) 1. 

In  Sect ion 2 we w i l l  der ive  some q u a l i t a t i v e  r e s u l t s  con- 

cerning the  behavior of  the  modal loca t ion  of (1.2) a s  a func- 

t i o n  of ( y , n ) .  Sec t ion  3 presen t s  analogous r e s u l t s  f o r  

> 2 o f  (1 .1) .  I n  Sect ion another borde r l ine  case y l  = 1, y 2  , 

4 we present  some numerical procedures based on the t h e o r e t i c a l  

inves t iga t ions  of the  previous sec t ions .  The general  case 

y2 ' y 1  
> i is  considered i n  Sect ion  5. We present  some numer- 

i c a l  t abu la t ions  f o r  t h e  modal loca t ion  of (1.1) a s  a  funct ion  

o f  (ylJ y 2 ,  " and consider  some numerical in t e rpo la t ions  from 

,the borderline cases  considered i n  Sections 2  and 3 .  

2. EQUAL SHAPE PARAMETERS - ANALYTICAL METHODS 

Lemma - 1. The f u n c t i o r  f ( t l , t 2 ; y , n )  defined by (1.2)  a t t a i n s  

i t s  maximum i n  t h e  region R: = t ( t l l  t 2 )  : tlzO, t2z01 on the  

l i n e  tl = t2. 

2  Proof: Since f  i s  i n t e g r a b l e  and continuous over R+, i t  is  

2 c l e a r  t h a t  f a t t a i n s  i t s  maximum on R+. Choose any constant  

c  > 0. Let h ( t )  = f ( t , c - t ; y , o ) ,  0 < t < c.  Then from (1.2) 

we have 
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where K .  (y ,n)  > 0 i s  independent of t. Therefore, J 

I 
8 

11 ( t )  = K j ( y I n ) ( y + j - l ) t  y + j  -2 ( c - t )  ~ + j - ~ ( c - 2 t ) .  
j =O 

Since h ' ( t )  > 0 f o r  0 < t < c /2  and h ' ( t )  < 0 f o r  c /2  < t < c ,  

h  a t t a i n s  i t s  maximum a t  t = c / 2 . .  Therefore f ( t l , t 2 )  a t t a i n s  

i t s  maximum along any l i n e  ti+t2=c a t  t h e  point (c /2 ,c /2) .  

This completes t h e  proof. 

Define g ( t ; y , o )  = f ( t , t ; y , q ) .  Then by Lemma 1 it is  suf -  

f i c i e n t  t o  f i n d  the po in t  on t (3 a t  which g a t t a i n s  i t s  maxi- 

mum value. Using (1.2) one can show t h a t  

g ( t ; v , n )  = c ( y , n ) e  - 2 t /  ( l -n )h ( t )  (2.1) 

where c(v ,n)  = - n y y l  and h ( t )  = ty-'1 - L ( P ( ~ ) t ) ,  
Y 

where I (z)  denotes the modified Bessel function with index , 
IJ 

and p(n) = 2 K / ( l . - n ) .  

Using [Abramowitz and Stegun (1964), Eqn. 9-6-28] i t  i s  n o t  

d i f f i c u l t  t o  show t h a t  h '  ( t )  = p ( n ) t y - I  Iy -2 (p (n) t )  , t he re fo re  

f ( T , ~ ; Y , ~ )  i s  the  mode a t  t h e  b i v a r i a t e  gamma d i s t r i b u t i o n  given 

by (1.2) i f  and only if g ' ( t )  = 2 g ( ~ ) / ( l - n )  O r  

G ~ ~ - ~ ( p ( n ) ~ l  = Iy-l(p ( n ) ~ ) ,  (2 2) 

where p (n) = 2 6 1  (1-0). 

With the  a i d  of ( 2 . 1 ) ,  we may prove the  following theorem. 

Theorem 1. For f ixed  y > 1 ,  l e t  T (n) denote the  value a t  which 

f (T ( n ) ,  t (0) ;y ,n )  i s  a  maximum. Then T i s  continuously d i f f e r -  

e n t i a b l e  f o r  0 2 ,, < 1 and s a t i s f i e s  t h e  i n i t i a l  value problem 
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Proof: It is easy to show directly from (2.1) that g attains 

its maximum at t = Y - 1 when r~ = 0 ,  so that r ( 0 )  = Y - 1. 
Furthermore 2 is continuously differentiable for 0  c n < 1 and 

a computation shows that 4 f 0  at t = y - 1  and q=0. Therefore, 
a t2 

~ ( n )  is continuously differentiable in a neighborhood of n = 0 

by the implicit function theorem. The proof will be completed 

by differentiating both sides of ( 2 . 1 )  with respect to 0 .  

After some simplification and solving for ~ ' ( n )  this yields 

where q ( n )  = I '  
v - 1  ( p ( n ) d  - 6 I y-2  (p ( n  1 -r 

By [Abramowitz and Stegun (1964), Eqn. 9-2-26], 

substituting these expressions into q ( n )  and using ( 2 . 2 )  .-yields 

after some simplification 

q ( 0 )  = 1 -  - 2  + 3 ) I Y w 2  ( p ( n ) ~ ) / 2 ~ .  

Substituting this expression into ( 2 . 4 )  completes the proof 

of Theorem 1. 

The nonlinear differential equation ( 2 . 3 )  cannot be solved 

in general in closed form. Some numerical solutions arc given 

I JI-5 



in Section 4. However (2.3) does give information regarding 

the qualitative and limiting behavior of r(n) for y > 1. In 

the special case y = 3/2, (2.3) reduces to a linear differen- 

tial equation which can be solved directly by standard methods. 

Corollary 1 If y = 3/2, then 

This result can also be obtained directly from (2.2) using the 

fact that I (z) can be expressed in terms of hyperbolic func- v 
tions when IJ = +1/2. 

Since the differential equation (2.3) is singular at 

n = 0, its numerical solution requires some additional knowl- 

edge of the behavior of ~ ( n )  near n = 0. This is provided 

by the following corollary. 

Corollary 2. The function T(Q) is continuously differentiable 

at n = 0 and satisfies 

Proof. The continuous differentiability of T at n = C was -- 
considered in the proof of Thec.rem 1. Choose 0 > 0,  then by 

the mean value theorem there is a number 5 c (o,n) such that 

~ ( 0 )  = ~ ( 0 )  + ~T'(E) = Y-l + ~T'(E). 
Substituting this expression into (2.3) and simplifying yields 



Letting s + 0 and using the continuity of r'(q) we have 

~'(0) = -(Y-l)(l+~ '(0)). 

Solving this equation for r ' (0) yields (2.5) 

We will write T (q , y) when we wish to emphasize the uepend- 

ence of the modal location on y. Theorem 1 and Corollary 2 

may be used to obtain several of the qualitative and asymptotic 

properties of the function T(rlpy) in the region 0 c rl c 1, 

y > 1. These are summarized in the following theorem. 

Theorem 2. The modal location function ~(rl,y) has the following 

properties: 

(i) T (q,y) is a decreasing function of rl for fixed y > 1; 

3 
(ii) lim r (q,y) = max (r-Z,O! for y > 1; 

n+l 
3 (iii) T (qly) - (y--) is a decreasing function of y for 
L 

fixed q E (0,l) and y > 1; 

Proof: We will show that T ' (0) < 0 for 0 2 rl < 1. Suppose 

net, then since T ' (0) < O by Corollary 2, there is a point 

6 > 0 such that TI(&) = 0 and ~'(rl) 0 for0 < 0 < t .  Let 

3 then from (2.3) it is 
w(n) = r(n) - (Y-~) and ~ ( d  = 22(1+n)t 

easy to see that 

so ~'(5) = 0 if and only if w(E) = z(0. 



Let h = w - z .  Note t h a t  z ' ( ~ )  = - ( ~ + n ) ' ~  so  t h a t  h ' ( 0 )  = 

wl(0) - z ' ( 0 )  = ~ ' ( 0 )  + 1 > 0 and h(0) = w(0) - z(0) = 0. 

Therefore s ince  h(5)  = 0 and h(n) > 0 f o r  0  < n < 6 ,  we must 

have h1(6)  5 0. However, h ' ( ~ )  = ~ ' ( 6 )  - ~ ' ( 6 )  = T ' ( s )  - 
z '  (6) = -2 '  (s )  = ( l+h)-2  > 0. This cont radic t ion  proves ( i ) .  

Furthermore, we have t h a t  w(n) > z(n) f o r  0  < TI < 1. 

We w i l l  now consider  the  proof of ( i i i ) .  F ix  y l  > y 2  * 1 

and l e t  f (n )  = w ( n 1 )  - w(n J y 2 )  where as before  w(n , y )  = 

3 
r  ( I - , , ~ )  - (Y-2). We wish t o  show t h a t  f ( n )  c 0 f o r  0  < n < 1. 

-- 

1 1 C l e a r l y f ( 0 )  = O a n d b y  (2.5) f ' ( 0 )  - -  - - < 0. Assume 
y 1  y2 

t o  obtain a  con t rad ic t ion  t h a t  the re  i s  a  point  E ( 0 , l )  such 

t h a t  f (6) = 0. I f ,  i n  add i t ion ,  we assume 6 i s  the f i r s t  

such poin t ,  then f  (rl) < 0 f o r  0 < n < 6 SO f '  (5) L 0. However, 

using (2.6) a t  both y l  and y 2  and the  f a c t  t h a t  W(E ,yl) = 

w(6 ,y2) it is  n o t  d i f f i c u l t  t o  show t h a t  

f ' ( 5 )  = 
(~1- '2)  r 1 

4n Lw7ES - 
J 

Since y1 > y 2  and w(5) > z ( 6 ) ,  i t  follows t h a t  f ' ( 6 )  < 0.  

This cont radic t ion  completes t h e  proof of ( i i i )  . 
Now we t u r n  t o  the  proof of ( i i ) .  F i r s t  consider the  

case 1 < y 2 3/2. Since T is decreasing i n  n and p o s i t i v e  

f o r  0  2 n < 1 we know t h a t  r*  = l i m  ~ ( n )  e x i s t s .  where the  
r+l  

l i m i t s  at  1 a r e  always from t h e  l e f t .  Assume t o  obta in  a  

contradict ion t h a t  r* > 0. Then i t  i s  not  d i f f i c u l t  t o  show 

-. using (2.3) t h ~ t  



n < 1 we have Therefore, f o r  7 - 
In tegra t ing  both s i d e s  of t h i s  inequal i ty  from t o  n y i e l d s  

< 9 < 1. However, t h i s  implies t h a t  r ( s )  + - = as f o r  2 - 
s + 1, a cont radic t ion .  

3 The case y > 2 follows e a s i l y  from (iii) and the  proof of 
3 ( i )  because f o r  y 2 7 

3 and both z (n) and r (s  , Z) approach zero as n + 1. 

Final ly ,  we consider  the  proof of ( i v ) .  Let u ( s J y )  = 

From the  proof of ( i )  w ( s , ~ )  - z ( s )  f o r  0 5 s 1 and Y z 2. 

we know t h a t  u ( s , y )  2 0. From (2 .0 )  we obtain 

so t h a t  

3 w'(s ,y)  2 - ( Y - ~ ) u ( ~  , Y ) -  

Therefore, 



From t h i s  inequa l i ty  we obta in  

Therefore 

* 

L 

This  implies t h a t  u(n , y )  + 0 as y -+ and completes the 

proof of Theorem 2. 

3 .  UNEQUAL SHAPE PARAMETERS--THE CASE y l  = 1 

In t h i s  sec t ion  we consider  another "borderline" case of  

the general b i v a r i a t e  gamma d i s t r i b u t i n n ,  the case y l  = 1. 

For technical  reasons we w i l l  l i m i t  our discussion t o  t h e  

range y 2  2 2 and f o r  b r e v i t y  l e t  y 2  = y .  Then the  F ~ n c t i o n  

given by (1.1) reduces t o  

where 

- t2 and where s = s - , and s3 = q s 2 .  

The following lemma allows us t o  r e s t r i c t  our a t t e n t i o n  

t o  t h e  l i n e  t l  = 0. 



Lemma 2. The funct ion f ( t l l t 2 ; l , y ,  T-I) given by (3.1) f o r  

y 2 2 ,  takes on i t s  maximum value i n  the region t1 2 0 ,  

t2 2 0 on the l i n e  tl = 0. 

Proof: Since f  i s  continuous and in tegrable  i n  the  f i r s t  

quadrant, we know i t  takes on i t s  maximum value a t  some poin t  
* * * 

( t l , t 2 ) .  We w i l l  prove t h a t  tl = 0 by showing t h a t  f o r  any 

f ixed  t2 > 0 , f ( t l ,  t 2 )  i s  a decreasing function of tl. This 

i s  equivalent t o  showing t h a t  the  function 

i s  a decreasing funct ion on s 2 0 where c i s  given by ( 3 . 2 ) .  
j 

Note t h a t  

Therefore g '  ( s) < 0 f o r  s 2 0 i f  c ~ + ~  c c fo r  j = 0 , 1 1 2 ,  .... 
j 

To t h i s  end note  t h a t  



k s ince  y 2 2 implies t h a t  ,k-z c 1 f o r  k - 1 , 2 , 3 , .  . . . This 
Y+ 

completes the proof of Lemma 2.  

According t o  the  preceding lemma, the  mode of the b i v a r i a t e  

gamma d i s t r i b u t i o n  i n  t h i s  case i s  the  poin t  (0,~) where v i s  

t h e  point on t 2 0 where t h e  following funct ion i s  a maximum: 

where 

Note t h a t  

Therefore,  

so t h a t  t h e  funct ion w e  wish t o  maximize i s  



Lemma 4. Let LI (n) , o r  when necessary P (n , Y )  , denote the value 

f o r  which f ( 0 , ~  (0 ,y)  ; l , y  ,n )  i s  a maximum where f i s  defined 

by ( 3 . 1 ) a n d ( 3 . 2 ) .  T h e n v ( O ) = y - 1 ,  ~ ( r l ) ~ y - 2 f c ~ x O & n <  1 ,  

and s a t i s f i e s  t h e  equation 

where g i s  defined by (3.3) .  

Proof: It i s  easy t o  see  from (3.3) t h a t  g a t t a i n s  i t s  maximum 

on [0 , - )  a t  a poin t  t* > 0 f o r  which g '  (t*) = 0 and gW(t*) 5 0.  

Di f fe ren t i a t ing  (3.3) we obta in  

g l ( t >  = - 17 g( t )  + t ~ - ~ e - ~  

and 

1 
g u ( t )  = - g '  ( t )  + t ~ - ~ e - '  (y-2- t ) .  

Theresore g '  (P )  = 0 implies (3.4) and g " ( ~ )  < 0 implies t h a t  
-T 

p - 2. Since whenn = 0,  g ( t )  = e " tY i t  is easy t o  
y-l 

see t h a t  ~ ( 0 )  = Y-1. This completes the  proof of the  lemma. 

With the  a i d  of these pre l iminar ies  we may prove the 

following theorem i n  the  s p i r i t  of  Theorem 1. 

Theorem 3. For f ixed  y 3. 2,  l e t  p (n) denote the value of 

which f (0,  P (n) ; l , ~ ,  n) is  a maximum. Then 11 is  continuously 
1 d i f f e r e n t i a b l e  on 0 2 n < 1 ,  ~ ' ( 0 )  = -1 + -, and on Q < Q c 1 
Y 

p s a t i s f i e s  t h e  i n i t i a l  value problem 



Proof: A s  i n  the proof of Theorem 1 the  continuous d i f fe ren-  

t i a b i l i t y  of p i n  a neighborhood of n-0 may be proved by applying tht 

impl ic i t  funct ion theorem t o  (3.4) .  This d i f f e r e n t i a b i l i t y  w i l l  

be extended t o  a l l  of [0,1) by proving t h a t  (3.5) holds. Let 

g ( t  ,n)  denote the  funct ion  defined by (3.3) and l e t  gt and gn 

denote i t s  p a r t i a l  de r iva t ives  with respect  t o  t and n, 

respect ive ly .  Then d i f f e r e n t i a t i n g  both s ides  of (3 .4)  with 

respect  to  n we obta in  

By d e f i n i t i o n  gt( ' ,n) = 0 and d i r e c t  d i f f e r e n t i a t i o n  of (3.4) 

and in teg ra t ion  by p a r t s  y i e l d s  f o r  0 c Q c 1 t h a t  



Therefore, using (3.4) we obtain 

Substituting this expression into ( 3 . 6 )  and simplifying yields 

( 3 . 5 ) .  For q = 0 ,  an easy calculation shows that 

from which substitution into ( 3 . 6 )  with r) = 0 and p = y - 1 
shows that p '  ( 0 )  = -1 + 1. This completes the proof of 

Y 

Theorem 3. 

The following corollary exploits the fact that ( 3 . 5 )  

reduces to a linear differential equation when y = 2. 

Corol.lary 3 .  If y = 2 ,  then 

Proof. For y = 2  equation ( 3 . 5 )  reduces to 



which is  e a s i l y  solved i n  closed form by s tandard methods t o  

show the  des i red  r e s u l t .  This r e s u l t  i s  a l s o  e a s i l y  derived 

d i r e c t l y  from (3.4) .  

It is  i n t e r e s t i n g  t o  note t h a t  the  t r a n s l a t e d  modal 

loca t ion  funct ion  ~ ( 0 )  = ~ ( n )  - (y-2) s a t i s f i e s  the d i f f e r -  

e n t i a l  equation 

whereas the  t r a n s l a t e d  modal loca t ion  funct ion  w(i7) = 

3 
r ( n )  - (r-T) of Section 2 j a t i j f i e s  the analogous d i f f e r e n t i a l  

equation 

For t h i s  reason p behaves i n  a  manner s i m i l a r  t o  T .  Its 

proper t ies  a r e  s t a t e d  i n  the  followi.ng theorem. Since the 

proof of t h i s  theorem i s  e n t i r e l y  analogous t o  tne proof .7f 

Theorem 2 ,  i t  is omitted. 

Theorem 4. The modal loca t ion  funct ian  p ( n , y )  has t he  follow- 

ing p roper t i e s  : 

(i) p(n ,y )  i s  a  decreasing functiori of  n. f o r  f ixed  

( i i j  l i m p ( n , ~ )  = y - 2 f o r  1 2 2 ;  
r l + l  



(iii) ~ ( n , ~ )  - (y-2) is a decreasing filnction of y for 
> 2 and fixed n E (0,l); y ,  

(iv) lim(p (n ,y) - (Y -2)) = 1-n for 0 & n 2 1- 
Y *- 

4. NUMERICAL RESULTS 

In this section we present some quantitative results based 

on the results of the previous sections. Table 1 shows the 

value of the modal location function for equal shape parameters 

r(n,y) for various values of n and y .  Table 2 shows values of 
3 the translated modal location function w(n,y) = r (n ,y) - (Y-~). 

This table illustrates the qualizative behavior of this func- 

tion derived in Theorem 2. The limiting values of n = 1 and 

y = - are taken from Theorein 2. 
The values in Tables 1 and 2 were computed using Theorem 

1. Specificslly, a fourth-order Runge-Kutta algorithm was used 

to coqute an approximate solution of the difcerential equation 

(2.3) on the interval 0 5 n < 1 for each specified value of y . 
Since equation (2.3) is singular at I, = 0, Corollary 2 was used 

to replace the initial condition T (0) = y-1. by the approximate 

initial condition 

where h is the step size of the numerical method. Figure 1 

shows the data of Table 2 in graphical form and illustrates the 

b behavior of the function w(~ ,y) derived in Theorem 2. 



Tables 3 and 4 show the corresponding results for the 

modal location function u ( T - I , ~ )  for the case yl = 1, y 2  = y 

and its associated translate v(n , y )  = u (n, y) - (Y-2). These 

tables were computed by the same methods as Tables 1 and 2 

except using the results of Section 3. Figure 2 illustrates 

the qualitative behavior of the function v(n,y) as indicated 

by Theorem.4. 

Note that the differential equations (2.3) and (3.5) 

allow the nodal location to be computed recursively in TI for 

a fixed value of y as a dynamic process in a time scale meas- 

ured by the modified correlation coefficient n. Error in the 

computation is introduced through the discretlzatlon of this 

continuous evolutionary process. A nore conventional compu- 

tation of the modal location would require an independent 

calculation for each value of n with error introduced through 

the truncation of the series representation (1.2) of the dis- 

tribution function. This error becomes particularly trouble- 

some as rl .+ 1. 



Tab? : 1. Selec ted  values of the  modal l o c a t i o n  funct ion  T ( n l y )  
f o r  equal  shape parameters. 

H 
H 

10.0 9.0000 8.9152 8.7754 8.6697 8.5891 8.5624 8.5000 
H 
t 
+ 
a Table 2 .  Se lec ted  values of t h e  t r a n s l a t e d  modal l o c a t i o n  func t ion  

w(n,v) f o r  equal  shape parameters. 
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5. UNEQUAL SHAPE PARAMETERS 

In  t h i s  sec t ion  we b r i e f l y  consider t h e  mode of the 

general  b i v a r i a t e  gamma d i s t r i b u t i o n  given by (1.1).  By 

s e t t i n g  t h e  p a r t i a l  der iva t ives  of f  ( t l J  t2 ;y l  J Y 2 , n )  with 

respect  t o  tl and t2 equal t o  zero,  one f i n d s  tha t  f a t t a i n s  

i t s  maximum a t  t h e  point  ( t l J t 2 )  whose coordinates s a t i s f y  

and 

m m 

where S = C X a 
k = ~  j = O  jk  

and a given a s  i n  (1.1) depends on tl and t2. 
j k  
Table 5 shows se lec ted  values of the  modal loca t ion  f o r  

t h e  case y 2  = 3.  They were computed by t runcat ing  each of 

the  s e r i e s  i n  (5.1) and (5.2) t o  about f i f t y  terms and simul- 

taneously i t e r a t i n g  on these equations u n t i l  an approximate 

s o l u t i o n  i s  obtained. These computations become unre i i ab le  

a s  n + 1 and the  t runcat ion e r r o r  becomes unacceptable. 

Figure 3 gives a graphical  representa t ion  of the change 

i n  modal loca t ion  with n and y l  f o r  f ixed  y 2  = 3 .  It i s  

i n t e r e s t i n g  t o  note  f o r  a f ixed  n t h e  ex ten t  t o  which the 

modal loca t ion  may be approximated by l i n e a r  in te rpo la t ion  

between t h e  border l ine  cases  discussed i n  Sections 2 and 3 .  
-. 



More specifically, tre have the empirical approximations 

and 

where T and p are as defined in Sections 2 and 3, respectively. 

This empirical relationship is a subject for further investiga- 

tion. 
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CHAPTER IV 

ANALYSIS OF WIND GUST DATA 

J. D. Tubbs 
Department of Mathematical Sciences 

University of Arkansas 
Fayetteville, Arkansas 

ABSTRACT 

This paper summarizes the analysis of wind gust data 

using statistical and mathematical procedures which were 

developed for the bivariate gamma distribution. 

1 . INTRODUCTION 

Adelfang and Smith (1981) discuss the use of the gamma 

distribution in modeling gust data at Cape Canaveral, 

Florida. Smith and Adelfang (1981) treated gust amplitude 

and length scale as the variables of the bivariate gamma 

distribution. Smith, Adelfang, and Tubbs (1983) presented 

some useful analytical and computational results for a class 

of the bivariate gamma and applied some of these results to 

the wind gust data. The purpose of this paper is to analyze 

the wind gust data dsing some additional analytical results 

obtained for the bivariate gams distribution. 

2. DATA 

The data used in this paper consists of absclute gust 



magnitude and gust length for both the zonal and mexidional 

components. Thz 150 wind profiles were filtered using the 

band pass filter for wavelengths within 420-2470 meter band. 

Data were available for the reference altitudes: 4Km, 6Km, 

8Km, lOKrn, 12Km, and 14Km. The data was paired into bivar- 

iate components for both the zonal and meridional components, 

denoted by the pairs (Au,Lu) and Av, Lv) , respectively. 

ANALYTICAL PROCEDURES 

The data were partitioned according to reference alti- 

tudes, then the 150 observations were analyzed using both 

univariate and multivariate techniques. Simple descriptive 

mivariate techniques were generated using PROC UNIIrARIATE 

in SAS. These procedures were used to help in the assess- 

ment of the marginal distrib~ttion. The multivariate 

descriptive procedures consisted of bivariate scatter plots 

and contour plots. 

Goodness of fit tests consisted cf a univariate test 

for marginal normality generated by SAS, two tests for 

bivariate normality as discussed in Meredith and Tubbs 

(1981), and a bivariate test for the gamma distribution. 

The latter procedure is a bivariate Chi-square type test 

which uses the computational results for the distribution 

function as presented in Smith, Adelfang, and Tubbs (1983). 

Parameter estimates for the bivariate gnnann distribu- 

tion were evaluated. These estimates were then used in 



generating the three-dimensional bivariate gamma density 

function plots and the modal locations were estimated 

using the results given by Brewer, Tubbs, and Smith (1983). 

4 .  RESULTS 

The results are sumnarized in Tables 1-7. Additional 

results are given in Appendices A and B. 

Tables 1-6 summarize the results for both the test of 

fit and the parameter estimates for the bivariate gamma 

distribution. There are two main tests for bivariate nor-. 

mality and both of these are discussed in MereJith and 

Tubbs (1981). The first is a procedure proposed by Rincon- 

Gallardo et al. (1979). Since this procedure transforms 

the data to a univariate test for uniformity three differ- 

ent tests for uniformity are used. The second test for 

bi,variate normality is based upon a procedure propoeed by 

Cox and Small (1978). 

The bivariate test for the g m a  distribution is a Chi- 

square type test of fit. Thus, this procedure has tbe 

usual difficulties of selecting the number of cells and 

cell location that are associated with t'ds type af test. 

In the interest of time and space a fixed procedure was 

applied for all the data sets. Namely, the narginal distri- 

butions were partitioned according to the .05, .25, -50, .75, 

and .90 quantiles based upon the gamma parameter estimates. 

This paxtf~ular choice affected the results for some of the 

data sets, however, it seemed a reasonable global choice. 

IV-3 



The univariate gamma parameters were estimated using 

a maximum likelihood procedure presented by Greenwood and 

Durand (1960) and discussed in Tubbs and Brewer (1981). 

Appendix A contains the results for the univariate 

descriptive statistics. Appendix B contains plots for each 

data set. The density functions were generated using the 

gamma parameter estimates. The contour piots are level 

slices of the density function and are not equal proba- 

bility contours. The location of the mode is denoted by 

the symbol + and this value is computed using the analytical 
results given in Brewer et al. (1983). Table 7 summarizes 

the results for the o dal location. 



Table 1. Sumnary for Wind Gust Statistic 
Using Band Filter 420-2470 Altitude = 4 Km. 

Multivariate Test (Au , Lu) (Av , Lv) 

Cramer-Von Mises .2062 .2144 
Normality Watson's u2 .2023* .2058* 

K - S  .0618 .0551 

Cox 11.45** 26.07*** 

Gamma Chi-square 33.3 53.00*** 

Univariate Test 

Au 
Lu Normality Av 

Parameter Estimates 

* denotes that test is significant at .05 level. ** denotes that test is significant at .O1 level. *** denotes that test is significant at .001 level. 



Table 2. Summary for Wind Gust Statistic 
Using Band Filter 420-2470 Altitude = 6 Km. 

Multivariate Test ( AuLu) (Av , Lv) 

Cramer-Von Mises ,3806 .2942 
~ormality ~atsoa's u2 .2411* .2208* 

K - S  .0897 .0623 

Cox 2 4.4*** 31.8*** 

Gamma Chi-square 72.03*** 57.14*** 

Univariate Test 

Au 
Lu Normality 
Lv 

Parameter Estimates 6 A ,. 
Y 8 P 

e * denotes that test is significant at .05 level. ** denotes that test is significant at .O1 level. *** denotes that test is significant at .001 level. 
- 9  



Table 3. Summary f o r  Wind Gust S t a t i s t i c  
Using Band F i l t e r  420-2470 A l t i t u d e  = 8 Km. 

b lu l t i va r i a t e  Tes t  (Au , Lu) (Av , Lv) 

Cramer-Von Mises 1.090*** .490* 
Normality Watson's ~2 .721** .409*** 

K - S  .102* .083 

Cox 10.67** 8.67* 

Univar ia te  Test  - 
Au 
Lu Normality 
Lv 

A A A 

Parameter Estimate; Y 8 P 

* denotes t h a t  t e s t  i s  s i g n i f i c a n t  a t  .05 l e v e l .  
** denotes t h a t  test i s  s i g n i f i c a n t  a t  . O 1  l e v e l .  

*** denotes t h a t  test i s  s i g n i f i c a n t  a t  .001 l e v e l .  



Table 4. Summary for Wind Gust Statistkc 
Using Band Filter 420-2470 Altitude = 10 Km. 

Multivariate Test (Au , Lu) (Av , Lv) 

Cramer-Von Mises .I29 .753** 
Normality Watson's u2 .I26 .469* 

K - S  .052 .104* 

Cox 8.23* 8.58* 

Gamma Chi-square 45.04** 36.29 

Univariate Test 

Au 
Lu Normality 
Lv 

A 

Parameter Estimates 
.. A 

Y B P 

* denotes that test is significant at .05 level. ** denotes that test is significant at .O1 level. *** denotes that test is significant at .001 level. 



Table 5. Summary for Wind Gust Statistic 
Using Band Filter 420-2470 Altitude = 12 Km. 

Multivariate Test (Au Lu) (Av , Lv) 

Cramer-Von Mises .465* .398 
Normality Watson's u2 .391** .329** 

K - S  .077 .076 

Cox 

Gamma Chi-square 

Univariate Test 

Au 
Lu Normality Av 
Lv 

A 

i? Parameter Estimates 
A 

Y P 

* denotes that test is significant at .05 level. ** denotes that test is significant at .OL level. *** denotes that test is significant at .001 level. 



Table 6. Sunnnary for Wind Gust Statistic 
Using Band Filter 420-2470 Altitude 1 14 Km. 

Multivariate Test 

Cramer-Von Mis es 
Normality Watson's ~2 

K - S  

Cox 

Gamma Chi-square 48 

Univariate Test 

Lu Normality 
Lv 

Parameter Estimates 

* denotes that test is significant at -05 level. ** denotes that test is significant at -01 level. *** denotes that test is significant at ,001 level. 



Table 7 .  Modal Location 

Variables Method* 

*Method I Truncation of  a double ser ies .  
Method I1 Interpolation. 
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5. SUMMARY 

The data s e t s  a r e  discussed according t o  reference 

a l t i t u d e .  

4 Km. The normal o r  the gamma a r e  no t  r e j ec ted  f o r  the 

zonal (u) components. As discussed i n  Meredith and 

Tubbs (1981) the Cox and Sma l l  procedure i s  s e n s i t i v e  

t o  symmetry and is not  recommended f o r  t h i s  data.  The 

gannna d i s t r i b u t i o n  w a s  r e j ec ted  f o r  the  v-component and 

normality was accepted. However, marginal normality 

was re jec ted  a t  the  . O 1  l eve l  f o r  t h e  absolute  gust  

magnitude (Av) . 

6 Km. The b i v a r i a t e  gamma was re jec ted  i n  both wind com- 

ponents and normality was not  re jec ted .  

8 Km. NormaliCy was re j ec ted  f o r  both wind components. The 

b i v a r i a t e  gamma was accepted i n  the  u-component but not  

f o r  the  v-component . 

10 Km. The u-component appears t o  be normal whereas the 

gamma i s  accepted i n  the v-component. 

12  Km. Both d i s t r ibu t ions  appear t o  be suspect f o r  the  

u-component and the gamma i s  accepted f o r  v.  Normality 

i s  a l s o  r e j ec ted  f o r  v by considering the marginal d is -  

t r ibu t ions .  

14 Km. Neither d i s t r i b u t i o n  i s  acceptable f o r  u and the 

gamma i s  perhaps b e t t e r  f o r  v. 
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6 .  CONCLUSIONS 

The wind gust  da ta  was analyzed using some new proce- 

dures f o r  tha b i v a r i a t e  gamma distrj-bution. The analys is  

was meant t o  be informative, i n  t h a t  it represents  examples 

f o r  some of the a n a l y t i c a l  procedure. The analys is  is  no t  

meant t o  be complete; - 'borough. Hence, t h e r e  a r e  s t i l l  

some unresolved questions concerning t h e  a p p l i c a b i l i t y  of 

the b i v a r i a t e  gamma f o r  modeling wind gust data .  One sus- 

pects  t h a t  ne i the r  the normal nor the gamma a r e  completely 

appropriate ,  however, perhaps both could provide acceptable 

r e s u l t s  f o r  defining engineering cons t ra in t s .  

A s  mentioned i n  the paper the t e s t  f o r  gamma i s  a Chi- 

square type procedure which has inherent  problems which 

does no t  lend i t s e l f  t o  easy data  independent ana lys is .  

Instead it requires  judicious se lec t ion  of parameters. 

This ana lys is  did not  take advantage of t h i s  option, hence, 

the  r e j e c t i o n  of the gamma could be a t t r i b u t a b l e  to poor 

c e l l  loca t ion  choices. 

Every data  s e t  was analyzed using a t e s t  f o r  equal i ty  of 

shape parameters as  proposed by Tubbs (1983). Thia hypothe- 

sis of equal shape parameters was re jec ted  i n  rvery case.  
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APPENDIX A 

Univariate sumnary s ta t i s t i c s  generateg using 
PROC UNIVARIATE i s  the - Statist ical  Analysis - 
System. 
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The next four pages ccr,:ain the swpmary s ta t i s t i c s  

for each of the univariate variables Au, Lu, Av, and Lv, 

respectively. The reference altitude i s  

ALTITUDE = 4000 
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The next four pages contain the summary statistics 

for each of the univariate variables Au, Lu, Av, and Lv, 

respectively. The reference altitude is 

ALTITUDE = 6000 



ORIGINAL PAOE 19 
of POOR QUALrrY 

hT 
I -m1 
Siy DEV 
S;%3 * :ESS 
uss 
CV 
T:! :2<:=0 
%I: Fan: 
la: O= 0 
C::mJ'& 



ORIGINAL PAGE aJ 
OF POOR QUALITY 

QUAI TILES (flE'=4) 

i t  JXlZS!r HIGEEST 

f 
65.9 1560.4 
140.9 1582.9 
151.8 1G07.6 
194.8 1625.1 
205.2 1646.5 



ORIGINAL PAGE 19 
OF POOR QUALITY 

I< 
I DL.? 
m DEV 
SIX Z?ESS 
USS 
C57 
T:I1rnBO 
SGIl PAlK 
I\m,; "= 0 
D : IDP? Vi?L 



ORJGJNAL PAGE I1I 
OF POOR QUALIT). 

N 
I rn? 
sm DEV 
SI<EV?iUESS 
USS 
CV 
T:IXPL?=O 
%I! FJXX: 
1TUI.; O= 0 
D:ilG?: !AL 



The next four pages contain the summary statistics 

for each of the univariate variables Au, Ls, Av, and Lv, 

respectively. The reference altitude is 

ALTITUDE = 8000 



ORIGINAL PAGE b 
OF POOR QUALm 

11 
1 3 x 1  
uID D W  
s:;TX,'I:ESs 
USS 
CV " " * m y =  
A : I J~-u .  0 
S!? PJdX 
in: O= 0 
D:l?2?1.& 



ORIGINAL PAGE IS 
O f  POOR QUALm 

IJ 
I ' a d 1  
S!Ul DEV 
SI3 3:T;Ss 
USS 
CV 
T : I 'XX:=O 

SUii LGTS 
urn31 
'mm1EE 
INKLDSIS 
CSS 
sm IW? 



ORIGINAL PAGE IS 
" POOR QUALITY 

1: 
I 'UL? 
STil DFY 
S I 3  Z?ES 
USS 
CV 
n v 1 :I ;m!=o 
.W? FdVX 
1x: C =  0 
D : ; :CFi Y& 

SUI: (:GTS 150 
LU 242.03 
W E  0.761444 
i;uMGSIS -0.351765 
CSS 113.455 
s;' IFAN 0.0715481 
Pi?OB$5:T!! 0.0001 
m).os!:~rsrr 0.0001 



ORIGINAL PAGE 
OF POOR QUALlW 

11 
1m: 
SID  DEN 
SItE .I :Ess 
USS 
a' 
T:I 'EM!=O 
%I: Pi<n: 
1m; "= 0 
D:lm;U 

HIGHEST 
1746.5 
1734.7 

1839 
2284.5 
2314.7 



The next four pages contain the summary s t a t i s t i c s  

for each of the univariate variables Au,  Lu, Av, and Lv, 

respectively. The reference altitude i s  

ALTITUDE = 10,000 
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The next four pages contain the summary s tat i s t ics  

for each of the univariate variables Au, Lu, Av, and Lv, 

respectively. The reference altitude is 

ALTITUDE = 12,000 
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The next four pages contain the sumnary s tat i s t ics  

for each of the univariate variables Au, Lu, k-r, and Lv, 

respectively. The reference altitude i s  

ALTITUDE - 14,000 
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APPENDIX B 

Plots for the bivariate gamma density function, scatter 
plots, and contours are given for each data set .  
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