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ABSTRACT

A mathematical model has been developed for spinning mode acoustic

radiation from a thick wall duct without flow. This model is based on a

series of experiments (with and without flow) conducted by Richard Silcox

[Silcox] of the Noise Control Branch at Langley Research Center. In these

experiments a nearly pure azimuthal spinning mode was isolated and then

reflection coefficients and far field pressure (amplitude and phase) was

measured. In our model the governing boundary value problem for the Helmholtz

equation is first converted into an integral equation for the unknown acoustic

pressure over a disk, $I, near the mouth of the duct and over the exterior

surface, $2, of the duct. Assuming a pure azimuthal mode excitation, the

azimuthal dependence is integrated out which yields an integral equation over

the generator C1 of S1 and the generator C2 of $2 (see Figure 2). We

approximate the sound pressure on C1 by a truncated modal expansion of the

interior acoustic pressure. We use piecewise linear spline approximation on

C2. We collocate at the knots of the spline and at zeros of the first term

excluded in the truncated modal expansion. Finally, we compare numerical and

experimental results.

Research was supported by the National Aeronautics and Space Administration
under NASA Contracts No. NASI-17130 and NASI-16394 while the author was in

residence at the Institute for Computer Applications in Science and

Engineering, NASA Langley Research Center, Hampton, VA 23665.
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INTRODUCTION

The reduction of jet noise radiated from the inlets of aircraft engines

has become an increasing important problem. Methods to suppress this noise

have included the development of acoustic liners, high _ch number inlets, and

the use of inlet geometry to redirect the sound. Experiments with and without

flow have been conducted at Langley Research Center [Ville], [Silcox] to study

these methods. In particular, in July 1982 an experimental study was

conducted by Richard Silcox [Silcox] in a continuing effort to examine the

effect of inlet geometry on the reflected and radiated acoustic fields.

This report describes a mathematical model for the no-flow experiments.

This model has been constructed to cover a range of reduced wave numbers and

azimuthal and radial modes. The inlet contour can be modified so that the

result is a model for both inlet and engine, each with its own excitation. An

axisymmetric impedance boundary condition can also be easily incorporated into

a portion of the interior duct wall.

The experiments of Richard Silcox were designed around the spinning mode

synthesizer (SMS) in the Langley Research Center flow duct facility. The SMS

can excite a nearly pure (20-30 dB isolation) azimuthal mode inside the

duct. This modal expansion for the interior acoustic pressure is built into

the model. At an artificial circular disk interface, $I, near the mouth of

the duct, the pressure and its normal derivative are required to match

continuously (see Figure 2). On the exterior duct surface, $2, a hard wall

boundary condition is imposed. In the exterior region, the pressure is

required to satisfy the Helmholtz equation and the radiation condition at

infinity. This boundary value problem is converted into an integral equation

over S1 + $2 using Helmholtz" formula. The unknowns in this equation are



the complex pressure on $2 and the reflection coefficients in the interior

modal expansion.

By assuming a single azimuthal mode excitation, it is possible to

integrate out the azimuthal dependence which yields an integral equation over

the generator C1 + C2 of S1 + $2. We arrive at a one-dimensional integral

equation at the expense of a somewhat more complicated kernel.

The numerical method used is collocation; i.e., the integral equation is

required to be satisfied at certain points on CI + C2. The unknown pressure

on C1 (and its normal derivative) is approximated by a finite Bessel series

which is a truncation of the interior azimuthal mode expansion. Piecewise

linear spline approximation is used on C2. The absolute error in the

solution is estimated at the knots of the spline and this information is used

to recommend the number of knots required for a given error tolerance on

C2. This information can also be used to distribute the recommended number of

knots to achieve an equal distribution of the absolute error. This is useful

if it should be necessary to run the code a second time in order to achieve a

better error performance. The code also provides (optionally) for one step of

Neumann iteration. This yields a natural interpolation formula for the

pressure, and gives an approximation with the same smoothness as the exact

solution. Finally, Helmholtz" formula is used to compute the pressure on a

semicircle in front of the duct for comparison with experimental results.

In Section 2 we give for completeness a brief description of the SMS and

the Langley Research Center flow duct facility. In Section 3 we describe the

mathematical details of the model, while in Section 4 we outline the numerical

method. Our codes and their implementation are discussed in Section 5.

Numerical results are presented in Section 6 and Section 7 contains concluding

remarks.



2. THE SPINNING MODE SYNTHESIZER (SMS)

For completeness, we give a brief description of the SMS. The reader is

referred to Figure 1 and references [Pal] and [Ville]. The following is taken

from [Ville].

The SMS incorporated into the flow duct facility is a research apparatus

designed to overcome the problems involved in static testing of real turbofan

• engines or research fans. The SMS generates arbitrary combinations of

acoustic patterns at a specified frequency in a 0.3 meter duct (with or

without airflow). Specified duct modes are generated by controlling the

amplitude and phase of 24 acoustic drivers equispaced around the duct wall in

a plane perpendicular to the duct center line. By properly adjusting the

input to the drivers, individual spinning modes, a combination of modes, or

circumferential standing waves can be generated in the duct. The acoustic

field produced by the array of drivers is monitored by an array of 48 wall

mounted microphones located 0.2 meters upstream of the drivers. At these

microphone locations the desired acoustic wall pressures (amplitude and phase)

are approximated to some specified degree of accuracy. In order to attain

this accuracy, the pressure field sensed by the 48 microphones feeds back

through a control computer optimization algorithm to generate correction

signals to the drivers. By an iterative process, the pressure field at the

microphone array converges to some specified target pressure at the monitoring

array. Once the target pressure is attained, the mode setup may be stored by

recording the driver settings for future recall, or the steady state acoustic

field may be left intact for experimental studies.

The inlet duct test apparatus is mounted in the flow duct facility of the

Langley Aircraft Noise Reduction Laboratory and extends into the anechoic



chamber shown by the view in Figure I. This chamber measures 9.15 meters

wide, by 6.1 meters deep by 7.16 meters high.

The flight inlet is attached to the inlet section of the duct. The

geometry actually used in our model is indicated in Figure 2. We have

extended the flight inlet contour BCD with a straight (r = constant) portion

DE, and quarter arc of a circle EF. We note that our numerical results

indicate that this termination of the inlet has little effect at the

frequencies considered.

3. THE MODEL

This model was suggested by the approach of Kagawa, et al. [Kag] to

loudspeaker design.

Figure 2 gives a contour drawing of the idealized inlet. This is the

flight inlet contour (an arc BC of an ellipse plus the line segment CD)

with a straight extension DE and a quarter circle termination EF.

Let a denote the interior duct radius (a = 0.15 meters) and introduce a

cylindrical coordinate system (z,r,6) with origin 0 and positive z axis

pointing out of the duct. Let m denote angular frequency, c the speed of

sound, and k = m/c the reduced wave number. We will use the dimensionless

coordinates z = _/a and r = _/a and the parameter k = k--a. Let

denote the exterior of SI + $2 and let D denote the interior of SI + S2.

We denote complex pressure by _(z,r,e)e -imt where

= I_, -d _ z _ 0, r _ 1

_, in _



For a fixed integer m, it is assumed that the SMS generates the modal

expansion _ = _e im8 with

-iL(n)z)(3.11 7 = _ (A(n)eiL(n)z + R(n)e Jm(%(n)r).
n=O

This expansion comes from separation of variables in the reduced wave equation

plus application of the hard wall boundary condition. In practice other "m"

or azimuthal modes are present inside the duct but are at least 20 dB below

the desired mode. In (3.1) Jm denotes the ordinary Bessel function of the

first kind and order m. The increasing sequence %(n) is defined by

J_(_(n)) = 0, n _ 0. We assume that k _ _(n) for all n and define NCT

to be the integer satisfying I(NCT-I) < k < I(NCT). Then

L(n) = _k 2 - (l(n)) 2 , 0 _ n _ NCT-I

(3.21

-iL(n) = _ (_(n)) 2 - k2 n > NCT

The radial modes corresponding to n=0,..',NCT-I are called cuton, the other

cutoff, and NCT is the number of cuton radial modes. Complex R(n) is

called the reflection coefficient of the nth radial mode, while complex

A(n) is the strength of the forward propagating modes, since we assume that

A(n) = 0 for n > NCT. This is a reasonable assumption since the plane of

the 24 acoustic drivers of the SMS is about 13 duct interior diameters from

SI.

Note that the dependence on m in the above notation has been suppressed.
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The appropriate boundary value problem for the Helmholtz equation (the

wave equation with the harmonic time dependence separated out) can be stated

as follows:

Find _ in class C2(fl) CI(_) such that

A_ + k2 _ = 0 in _,

(3.3) _n - 0 on S2,

satisfies the radiation condition at infinity,

= _ and _--_= _--_ on SI.
_n _n

We use Helmholtz" formula (an application of Green's third identity) to

convert (3.3) into an integral equation. Let _ denote the observation point

and _" the integration point. Then

(3.4)

4_, x Eft

_2_, x E Sl + $2 - (SIn $2)

_(x) • _, x E Sl n $2

[0, x ED

= _rl" (x') R" -_(x') 81]" (---_'--) dS ,
SI + $2

where R = I_ - _']. Here _" denotes the normal to S1 + S2 pointing

-- imO
into D. Now uniqueness for (3.3) implies that _ = _(z,r)e . If we



-im0
change to cylindrical coordinates in (3.4), multiply by e , and integrate

from 0 = -_ to 0 = _, we obtain the one-dimensional integral equation

(3.5)

_(z,r), (z,r) E C2 - (CI N C2) 1 i _ 7(0,r') K(z,r;0,r')

_(z,r)/2, (z,r) = C1 N C2 = - r" dr" _z---7

_(z,r), (z,r) € Cl

i _K

+ f r" dr" _(0,r') _-_ (z,r;0,r')
0

-- , _K (z,r ;z',r'),
- f r" ds" _(z ,r') _n---r
C2

where

ikR

(3.6) K(z,r;z',r') = -i f cos(mY) e R dY,
0

(3.7) R = ((z-z')2 + (r-r')2 + 4rr" sin2(y/2)) I/2,

s" denotes arc length on C2, and _" denotes the normal to C2 pointing

toward the duct interior. We note that (3.5) appears to be homogeneous;

however, _ in (3.1) is the sum of two terms, one of which is assumed known.

This is the excitation term

co

_ A(n)e iL(n)z Jm(%(n)r)
n=O

controlled by the SMS.



4. THE NUMERICAL METHOD

Our numerical method is collocation. We require (3.5) to hold at

specified (collocation) points on CI + C2. We obtain a full, square complex

linear system whose solution provides an approximate solution to (3.5).

For the approximation of _ we truncate (3.1) at n = N1 > NCT-I,

N1
-iL

(4.1) _ = I (A(n) eiL(n)z + R(n)e (n)z) jm(_(n)r).
n=0

To approximate _ on C2, we first parameterize this contour. We will refer

to certain values of this parameter t as knots. We require points B, C, D,

E, and F to be knots. Additionally, knots are added so that BC is divided

into K2 subintervals of equal length with respect to this parameter, CD

into K3 subintervals, DE into K4 subintervals, and EF into K5

subintervals. This yields N2 + 1 = K2 + K3 + K4 + K5 + I knots.

An additional line segment AB can be added to the duct mouth and divided

into K1 subintervals. This is useful if it is desired to alter the hardwall

condition on AB. In the following A = B and K1 = _, but activation of

these parameters is provided for in our codes.

We use N2 Chapeau functions, _n(S) depending on arc length s to

approximate _. These basis functions are centered at the values of s

corresponding to the knots, except for the knot corresponding to the endpoint

F of C2. This is because the solution at F must be zero for azimuthal

mode index m > I. Hence, we write

NI+N2

(4.2) _ = _ C(n) _--n(S) on C2.
nffiNl+l



We have experimentedwith two numericalprocedures.

I. (i) Collocate at (0,r0),.-.,(0,rNl) where 0 < r0 < "'" < rNl < 1

satisfy Jm(l(Nl+l)ri) = 0; i.e., choose the r coordinates to be

positive zeros of the first term left out in the truncation (4.1)

with z = 0.

(ii) Collocate at the points (ZNI+I,rNI+I),''',(ZNI+N2,rNI+N2)

corresponding to the centers of the Chapeau functions.

II. (i) as in I

(ii) as in I but replace the equation generated by the collocation point

at B by the continuity equation

N1 N1

(4.3) - _ R(n) Jm[l(n)) + C(NI+I) = _ A(n) Jm(l(n)).
n=0 n=0

Now let R = [R(0),''',R(NI)] T, C = [(NI+I),''',C(NI+N2)] T, and

= [A(0),''',A(NI)] T. We write the linear system resulting from I or II by

T
(4.4) CKTOT*[R,C] = CRITE*A ,

where CKTOT is a full, complex square matrix of order N1 + N2 + 1 and

CRITE is an (NI + i) × (NI + N2 + I) complex matrix. Writing (4.4) in

block form for procedure I we have

(4.5) _+ _ _+ = _-_J



i0

where

(4.6) 5_(£,n) = Jm(%(n)r£), 0 < £,n < NI,

(4.7 _(£,n), 0 _ £,n < N1 \I

_(£,n), NI+I < £ < N1 + N2, 0 < n _ NI

1

=-iL(n) _ r" dr" Jm(_(n)r') K(z£,r£;0,r'),

I

8K, 0,r'),(4.8) $9_(£,n)=-f r" dr" Jm(_(n)r')_ (z£,r£;0

NI+I < £ < NI+N2, 0 _ n < NI,

_(£,n), 0 < £ < NI, NI+I < n < NI+N2((4.9)

_(£,n), NI+I < £,n _ NI+N2

-- _K (z ,r£;z',r')f r" ds" _n(S')_ £C2

_(NI+I, NI+I) = 1/2

(4.10) _(£,£) i, NI+2 _ £ < NI+N2

_(i,j) = o, NI+I _ i#j < NI+N2.

_Km •

We note that F(£,n)= 0 for 0 _ £ ( NI+I because 8z" (0,r;0,r) = 0 for

0 _ r_ r" ( i.
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If procedure II is used, then row NI + i in CKTOT and CRITE must be

changed according to the continuity equation (4.3).

The system (4.4) is solved NCT times with "basis" excitations

A0,...,ANcT_ 1 which satisfy Aj(i) = _ij" We call the resulting approximate

solutions to (3.5), basis approximate solutions and denote them by _i and

Calculation of the basis far field (or basic first Neumann iterate) is

done using the Helmholtz" formula:

I 2, (z,r,@) in

(4.11) Fi(z,r) • i, (z,r) E C1 + C2 - (CI n C2)

1/2, (z,r) = CI . C2

= - f r" dr"_-_-;(0,r')K(z,r;0,r')0

1
3K

+ f r" dr" _@i(0,r')_-_ (z,r;0,r')
0

- f r" ds" _i(z',r')_K_ _ (z,r;z',r').C2

Given the coefficients A(0),...,A(NCT -1) of the desired excitation, we find

the corresponding approximate solution to (3.5) and the far field (or first

Neumann iterate) from

NCT-I NCT-I

(4.12) @ = [ A(i)@ i, F = [ A(i)F i.
i=0 i=0

The initial choice of N1 and N2 in (4.1) and (4.2) may not always be

consistent with the desired accuracy. Also, the equispacing of the knots with
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respect to the parameter t is usually suboptimal. Section 6 discusses rules

for choosing N1 and N2 initially. We now present a procedure (see

[deBoor2]) which uses the first approximate solution obtained to estimate the

absolute error at the knots, and then recommends new values for K2, K3, K4

and K5 and a new distribution of the knots. The goal being to equally

distribute the absolute error among the knots and to achieve a desired

accuracy.

Let us explain this procedure for BC which is initially divided into

K2 subintervals. Let ti denote an interior knot and let hi and hi+ I

denote the mesh spacing immediately to the left and right of ti. Set

h = max{hi,hi+l}. At ti we estimate the second derivative with respect to

t of the jth basis approximate solution to (3.5) by interpolation with a

parabola at ti_l, ti and ti+ I. Denote this estimate by d_ and seti

di = max{Id_l: 0 < j < NCT-I}. We estimate the absolute error at ti by

di h2/2. Let AE denote the sum of the errors at the interior knots divided

by the number of interior knots, K2-1. Let AER denote the desired absolute

error, and set

L2 = [K2/_] + I,

unless the result is I, in which case set L2 = 2.

Next, we partition BC into L2 subintervals so that the error is

approximately the same at all interior knots. Set p = K2 and _ = L2 and

let tl,''',tp+ 1 denote the initial knots on BC. Set u I = tl, ui =

(ti + ti+l)/2 , i = 2,''',p-l, Up = tp+ I. Let G denote the piecewise

constant function defined by G(t) = _di+ 1 for ui < t < ui+ I. For

uI _ u _ Up, define
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u
u p

y = f G(t)dt and yp = f G(t)dt.
uI uI

Now y is increasing in u so let u = H(y) denote the inverse function.

Construct % + 1 new knots according to _I = tl' _i = H((i-l)yp/%),

i = 2,''',%, _%+i = tp+l" This procedure is based on our observation that in

this problem the redistribution of a fixed number of knots has little effect

on the average error AE.

5. CODE DESCRIPTION

We will discuss the following codes: CLLEQS (CLLIQS), CLLRDS (CLLIRS),

NELMAN, FALFLD, and SPDATA. CLLEQS use the continuity condition (4.3) at

CI C2, while CLLIQS and CLLIRS collocate at this point. Our codes are

programmed in CDC Fortran 5 (Fortran 77).

We begin by discussing CLLIQS. First, values for k = _a (RKA), m, NI,

N2, NCT, and AER, the error tolerance for C2, must be input. CLLIQS contains

the data X(0),.--,X(NIMAX), %(0),''',A(NIMAX) in arrays ZERO and RLAMDA for

m = 1,''',4 (currently), where Jm(X(1)) = 0 and J'(A(i)) = 0. Array RLm

contains the complex parameters L(0),''',L(NIMAX). Currently, NIMAX = 13.

The value of NCT, the number of cuton modes is computed from RLAMDA and k,

and then checked against the user supplied value.

Subroutine CURV contains the parameterlzation of C2 and provides, for a

given parameter value t, the corresponding value 0£ z and r, the z and

r components of the normal, and the value of arc length measured from B.

The values of the constants determining the location of B, C, D, E and F are

stored in subroutine CONSTS.
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BC is an arc of the ellipse in the z-r plane given by

z 2 (r - 1.2080719)2( 4161438 ) + = 1• .2080719 '

which joins B = (0,I) to C = (.147804, 1.4025775). CD is the line segment

joining C to D = (-1.6187892, 1.7381843). DE is the line segment

joining D to E = (-2.6, 1.7381843), and EF is an arc of a circle of

radius 1.7381843 with center (-2.6, 0) joining E and F = (-4.3381843, 0).

Arc length on BC is computed by approximating

t

S(t) = •4161438 f _(5 + 3 cos(2T))/8 dr

0

using I0 point, piecewise cubic Hermite interpolation for 0 < t < 2.7784911.

This is accomplished in subroutine HERM and BARCL.

Subroutine KNOTGN generates the knots (array RKNOT) on C2 in terms of

the parameter t as described in Section 4. Subroutine COLLGN uses CURV and

KNOTGN to produce the NI+N2+I collocation points (arrays COLLZ, COLLR) and

the values of arc length corresponding to the knots (array ARCL).

Subroutine COEFF assembles the complex matrices CKTOT and CRITE in (4.4).

Almost all the execution time of CLLIQS is devoted to this one subroutine.

The difficulty is that the oscillatory and singular double integrals in (4.7)

- (4.9) must be computed. We use adaptive integration which is ideal for this

type of behaviour, but expensive. We were constrained by the need to test our

formulation and produce a working code during 14 weeks at ICASE in the summer

of 1982. Alternatively, we could have developed a suitable product

integration formula and then used the Nystrom method instead of collocation,

but this would have required more time.
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We have separated the integrands in (4.7) - (4.9) into a bounded part and

a singular part corresponding to the axisymmetric potential equation.

Let p = ((r'-r%)2 + (z'-z£)2) I/2 and _ = ((r'+r£)2 + (z'-z£12) i/2, let

= kR/2, _" = (Nz,, Nr,) , and let _/ and _ denote the complete elliptic

integrals of the first and second kinds as functions of the complementary

parameter ml = p2/_2.

Then in (4.7) we have

i 1[

/_(£,n) = iL(n)1[f r" dr" Jm(%(n)r') f dY(cos(mY)(eikR-l) + cos (mY)-I)/R
o 0

I 1[

iL(n) _ r" dr" J (%(n)r') _ dY
1[ m R

0 0

] IT

_ iL(n)k1[_ r" dr" Jm(%(n)r') _ dY(i cos(mY) sin(_)e i_ - sin2(mY/2))/_
0 0

i

2iL(n) f r" dr" Jm(%(n)r') _(m I)/_
0

while in (4.9) we have

c ikR I I)

-- 1[ _ e (cos (mY)-I) _
_(£,n) = -If r" ds" _ (s') / dY os(mY)- ( ( ) +

C2 n 0 3n" 3n"

1[

+ 1[-1 f r" ds" -_ (s') f dY _ 1
C2 n 0 v,"

R

k2 )- _ r" ds" _n(S') f dY{N (z'-z.)+N .(r'-r£ + 2r£ sin2(y/2))
2_ C2 0 \ z" _ r

" li c°s(mY)ei_(_ c°s _- sin _ + sin__)2 i + Isin(_Y/2))2}- -
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-i (s')
+ _ f ds"

C2 p

• + + I•

For the evaluation of Jl' Jm' m > 2, __(ml) and _(ml) we use the LRC

FTN5MLB library routines BJIR, BKIR, ELIPKC and ELIPEC. For the evaluation of

the one-dimensional integrals we use the FTN5MLB routine CADRE which is a

modification of an algorithm due to deBoor [deBoorl]. For the double

integrals we use the FTN5MLB routine CAREDB which computes the integral as

iterated single integrals with the single integrals computed as in CADRE.

CADRE is an adaptive cautious Romberg extrapolation routine which is

designed to identity certain types of integrand behaviour by examining a ratio

based on the previous three trapezoidal sums. We split the integrals so that

the singularities are endpoint singularities. If such a singularity is

detected, CADRE switches to a process similar to Aitken's 62 process to

estimate the integral and evaluate the error. As a result of this switching,

we have observed that execution times decrease with the error tolerances. We

use EPS(1) = EPS(2) = E-5, where EPS(1) is the maximum allowable relative

error and EPS(2) the maximum allowable absolute error. EPS(3) is the sum of

the computed error estimates over each subinterval in which the convergence

criteria is satisfied. These remarks also hold for CAREDB.

Adaptive integration is particularly suited to oscillatory and (or)

singular integrals. It offers the possibility of constructing a test code for

an integral equation method in a relatively short time. Both CADRE and CAREDB

require real integrands so real and imaginary parts were integrated

separately. We did not take the time to convert these routines into

integrators for complex valued functions.
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Once the linear system (4.4) is assembled, we solve it using FTN5MLB

routine CXGCOIT. This subroutine performs an LU decomposition, solves by

forward and backward substitution, and estimates the condition number

(CONDNUM) of CKTOT in the 1-norm. Optionally, iterative refinement can be

performed (see [Don]).

Finally, recommended values for K2, K3, K4 and K5, with respect to an

absolute error tolerance (AER) on C2 are computed, and estimates made of the

second derivative of the approximate solution (with respect to the parameter

t) at the interior knots of BC, CD, DE and EF.

On execution a listing is provided of all input parameters, NCT, RLAMDA,

ZERO, COLLZ, COLLR, RKNOT, ARCL, CONDNUM, the real and imaginary parts of the

complex approximate solution (as well as phase and amplitude), a continuity

check at CI N C2, recommended values for K2, K3, K4, K5, and estimates of

second derivatives and error on C2. In addition, the maximum integration

error estimate and the corresponding indices is written for the matrices

and _, for __, and for__and _.

Program CLLRDS is essentially the same as CLLEQS except that provision is

made in subroutine KNOTGN for using the recommended values of K2, K3, K4, K5

and the second derivative estimates to distribute this new number of knots.

Program NELMAN takes the output of CLLEQS, CLLIQS, CLLRDS or CLLIRS and

computes one basis Neumann iterate. This iterate and corresponding

integration error estimates are output.

Program FALFLD takes the output of CLLEQS, CLLIQS, CLLRDS, CLLIRS or

NELMAN and computes an approximate basis far field. The basis far field and

corresponding integration error estimates are output.
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Program SPDATA takes the output of FALFLD and user provided excitation

data A(0),''',A(NCT-I) (amplitude in dB, phase in degrees) and computes and

outputs the approximate solution and far field. The far field amplitude is

referenced to its maximum value. Finally, plotting files are created.

6. NUMERICAL RESULTS

All computations were performed on a CDC Cyber 175 at NASA Langley

Research Center. We give results for the programs which collocate at C1R C2

instead of demanding the continuity equation (4.3) hold. We have found little

difference in the outputs of these two sets of programs.

For a given azimuthal mode index m, it is best to start with a value of

k = ka so that one mode is cuton (NCT = I) and then increase k to the

desired level. Good starting values then are NI = NCT + 5 and K2 = 20,

K3 = I0, K4 = i0, K5 = 7. Program CLLIQS recommends new values for K2,''',K5

with respect to a user supplied tolerance. The user has the option of running

CLLIRS with these new values and derivative estimates from CLLIQS as input.

We have provided a continuity check which outputs the modulus of the

difference in the two sides of (4.3) for an approximate solution. If this

continuity check is greater than the error tolerance, then N1 can be

increased in CLLIRS.

The error estimates on C2 and the continuity check are a reasonable

indication of the accuracy attained. Of course, the condition number and the

accuracy with which CKTOT and CRITE are computed must also be considered. We

have run CLLIRS for k = ka = 2.66 and an increasing sequence of values for

N1 + N2. Table I gives some of these results. CONT is the value of the
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continuity check. The error in IR(0)I and the error at C1 N C2 are

estimated by comparison with the case N1 + N2 = 78. These data support the

hypothesis that the condition number in the 1-norm satisfies

CONDNUM < 1.8 N1 + 4.5 _-N_ ,

and that the error in R(0) and the maximum error on C2 are less than

K1 K2 1max 2N I , (N2)2

for some constants KI and K2.

Table II gives for m = I a comparison of experimental and numerical

results. Some of these results are in close agreement; for example, for

k = 2.66, we have IR(0)I/IA(0)I = .348 (numerical) and .35 (experimental).

However, for k = 3.20, we have IR(0) I/IA(0)I = .164, while the experimental

value is .196. Our error tolerance here is .002. The continuity check and

error estimates on C2 are consistent with this tolerance. Generally, when

R(i) is small compared to max{IA(0) I,''',IA(NCT-I)I}, we have the greatest

relative error. We have indicated the error bracket on some of these entries

in Table II. But these brackets do not account for some of the discrepancies.

We note that the dB levels in Table II are referenced so that the peak sound

pressure level in the far field is 0 dB (for both experimental and numerical

results).

Figures 3, 4, 5, 6, and 7 give far field patterns computed on a semicircle

of radius 20 in front of the duct (see Figure I). We note the good agreement

between the numerical and experimental curves. The small oscillations in the
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experimental curve may be due to reflections, while the lack of symmetry

indicates less than complete isolation of the desired azimuthal mode. We

compute and store a basis approximate solution and far field. Then we can

interactively produce approximate solutions and far field patterns for any

given excitation strengths A(0),''',A(NCT-I). Thus we have an NCT parameter

family of possible far fields that can be generated quickly. It is possible,

for example to make the -30 dB downward spikes in the k = 6.50 case almost

completely disappear by choice of excitation strengths. But roughly speaking,

these different patterns have the same "envelope."

7. REMARKS

We will discuss existence, uniqueness and regularization in detail in a

later report. For now we note that the standard proof using a theorem of

Rellich (see, i.e., [Hellwig]) shows that uniqueness holds for the boundary

value problem (3.3). On the other hand uniqueness may not hold for the

integral equation (3.5). If uniqueness does not hold for (3.5), it follows

that k is an eigenvalue for Helmholtz" equation in the interior of S1 + $2

with Dirichlet boundary conditions, and that the corresponding eigenfunction

has the form u(z,r)e imS. If k is such an eigenvalue, we have not been

able to adapt the usual method to produce a homogeneous solution to (3.5).

However, the numerical evidence, namely the variation of conditioning with

changes in k suggests that nonuniqueness does hold at such interior

eigenvalues.

We have considered the problem of regularizing (3.5). A good discussion

of this problem can be found in [Burton] and the references there. We have
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developed a regularlzation procedure based on a vector relationship due to

Maue (see [Burton]). This procedure uses the Galerkin method, Maue's formula

and Stokes" theorem to move a derivative from the kernel to the unknown

function. This reduces the strength of the singularity which must be

integrated. This procedure has not yet been fully implemented and tested.

Our current code provides condition number estimates, a continuity check (when

collocation is used at C1 N C2), and error estimates on C2. These should

indicate when the results are unreliable.

We have experimented with the best location for the interface surface

SI. This is a trade-off between the two types of approximation - Bessel

series and plecewise linear splines. The best efficiency is obtained by using

the modal expansion over as large a region as possible.

We have already mentioned the idea of a full engine model. This more

complex geometry would be stored in subroutine CURV. Two interface surfaces

and two modal expansions would be required. This is a natural extension of

the current code. It is also possible to install a variable geometry. The

input would be points on the outer duct contour and the code would

automatically connect these points with a smooth curve having some specified

property.

In conclusion we point out that duct acoustics has b6en studied

extensively in recent years. The reader is referred to [Baum] for a

bibliography and a discussion of the various numerical methods which have been

used.
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Figure 3. m = I, k = 2.66, NCT = I.
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Figure 7. m = 1, k = 7.68, NCT = 2.
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Table I

MAX
ANGLE ERROR ERROR ERROR

N1 N2 CONDUM CONT IR(0) I R(0) IR(0) I Cl NC2 EST. C2

6 18 29 .0016 .3555 -20.76 .011 .0077 .0080

2 34 26.8 .006 .3479 -20.13 .0029 .0012 .0021

6 34 34.1 .00076 .3476 -20.17 .0027 .0015 .0019

i0 34 41.2 .00044 .3475 -20.17 .0026 .0019 .0019

6 68 47.9 .0011 .3451 -20.00 .000043 .00037 .00051

i0 68 54.2 .00038 .3451 -20.00

Table II. Max Far Field SPL = 0 dB

NUMERICAL EXPERIMENTAL

k = ka Coefficient dB Angle dB

A(0) 36.0 0° 36.1
2.66

R(0) 26.8 -20.2 ° 27.0

A(O) 33.8 0° 32.6
3.20

R(0) 18.1 +_ .2 25.2° 18.5

A(0) 24.4 -8.4° 25.8
R(0) 2.2 _+ 1.64 29.8° 18.3

5.54

A(1) 37.8 -139.1 ° 39.2

R(1) 28.5 141.3 ° 29.6

A(0) 23.9 70.4° 22.9

R(0) -9.2 +_ 4.3 19.90 ° 9.9
6.50

A(1) 34.5 -64 ° 33.5
R(1) -1.3 ± 1.7 -54 ° 9.9

A(0) 23.4 -159.6 ° 23.5

R(0) -5.4 i 2.2 -168.2 ° 3.4
7.68

A(1) 33.0 56.6 ° 33. i

R(1) -4 i 1.2 -5.7 ° 9.5
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