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ABSTRACT

In this paper we consider acoustic shock waves in a variable area duct
which contains near sonic flows. The problem we treat here is modelled
after an aeroen_ne inlet. It is known experimentally that area variation
of a duct and high Mach number mean flow can reduce acoustical energy
yielding substantial noise reduction. One possible reason for this is acoustic
shocks. We describe the use of an explicit numerical method which is very
accurate and also captures shocks reasonably well. Comparisons of the
results are made with an existing asymptotic theory for Mach numbers
close to unity. When shock occurs reduction of sound pressure levels are
shown by examples.
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1. Introduction

Recently a numerical solution for the propagation of sound in a vari-

able area duct which contains a high Mach number subsonic flow was

studied by the authors (reference 4). The nature of the wave propagation

was nonlinear. This note is a continuation of this work and presents some

results concerning computation of shocked waves in this situation. The

model problem studied here and in reference 4 serves the purpose for the

study of an aero-engine inlet. Briefly there is a flow in a variable area duct

and acoustic waves propagate upstream of this flow. The acoustic waves

are generated by an incident plane wave on the left of the duct and leave the

right end without reflecting. It was first observed experimentally (reference

3) that with a given flow and a proper choice of area variation it is possible

to attenuate the sound intensity as much as 20db. TheoreticaI reasons for

this mechanism of reduction of noise level are still under investigation,

They are complicated by the fluid equations which are the Navier-Stokes

equations. However, in the inviscid limit it is believed (reference 7, 8)

that acoustic shocks which result in energy loss is one such possibility.

Though sound level attenuation was not shown in ref. 7, they did show

ener_o_oloss when shocks occur. The work in reference 7 is based on an

asymptotic theory and valid for Math numbers close to unity. In a later

experimental study (reference 5) it was shown that even for Mach numbers

far less than unity (about 0.7) one still obtains substantial sound reduction.

Thus a numerical study was undertaken to calculate solutions for all Mach

numbers.

There has been only a little published in the literature for this flow

confi_ration. The classical Fubini solution uses an asymptotic expansion



to obtain an approximate solution to the one dimensional gas dynamic

equation for a uniform duct. Polyakova (reference 10) made extensions for

problems with flow and Blackstock (reference 1) for the case of shocks. For

variable area ducts Myers and Calleghari (reference 8) used the method of

matched asymptotic expansions. This reference was the only source for any

constructive shock solution in the literature. Recently parallel to our work

Walkin_on and Eversman (reference 12) carried out computations of this

situation. Our study yields similar results, but we believe, our approach is

simpler for the reasons indicated in the next section. Moreover the scheme

used here is more accurate than the one in reference 12. The authors

would like to point out that there has been other work namely Nayfeh. et

al (reference 9) to compute the nonlinear, but unshocked solutions for this

type of configuration.

In this work we describe the model briefly and indicate the assembly of

the numerical method. We emphasize the approach we took for obtaining

boundary conditions. We present numerical results obtained for shock

cases and compare with the asymptotic results of reference 7. We also

present noise level distribution over the duct and demonstrate the noise

reduction in the situation of a shock.

2. Equations of motion

The total flow field is governed by the inviscid, compressible Euler

equations. They consist of equations for continuity, momentum and

energy. The energy equation can be replaced by isentropic relations

provided one is seeking only weak shocks. This is exactly the case ia

acoustics where only _veak shocks are the central goal. Strong shocks



cause disturbances in the main stream and the meaning of acoustics will

not be valid. This philosophy was adapted in reference 4 and it yielded a

system of two equations for acoustic density and velocity rather than three

equations thus reducing computational costs.

The situation which is of interest here assumes a quasi one dimen-

sional flow. The flow configuration is depicted in figure 1. In this a steady

flow is moving from the left to right and the acoustic waves are propagat-

ing up-stream of the flow from a harmonically varying source (plane wave}.

Then the total field is governed by the following equations, where A(x) is

the area variation of the duct:

O-fi _ -fi _ dA --- 0 (2.12t- (-ff u) "Jr- A dx
)

0zk 9 ]=0 (2.2)
and the pressure is determined from

(9,.3)P= pa
Here p, u and _ are the total density, velocity and pressure, respectively,

and the quantities with subscript zero denote ambient values. We divide

these flow quantities into 'mean' and 'acoustic' parts. That is, if mean flow

quantities are assigned a subscript s then:

"_-- u s-q- u

m_ p,_-Jr-P (2.4)

_--- p6 -J_ p

The mean flow is assumed to be steady and they satisfy the following

steady state flow equations:

_x (usps) 2r- PsUs dA _ 0 (2.5)Adz
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_.V -{ ,_ I_P_ = o (2.6)

_ p0 _ (2.7)
P8- po_P8

Then equations (2.1) - (2.3) yield the following nondimensional acoustic

equations.

AIdA __0 (2.8)pt+ (u_p4-p_u4-up)_4-(u_p4-pou4-up) d--_

[ ( )]u,+ _o_+ -5-+ _ p/p_+ _- 2(dpo)2 = 0 (2.9)
2_

2 P (2.10)
Here co is the local sound speed in the flow and is given by

2 qP___ (2.11)Cs ---
Ps

The details of derivation of these equations are availabIe in reference

4. Note that in these equations density, velocity are scaled by their ambient

values P0, C0 , the pressure is scaled by poC_ and the area by the throat

area At of the duct. Moreover the distance and time are scaled by _z_andco

by w , where _ois the frequency of the source. This frequency corresponds

to the engine noise source. In this nondimensionalization process the

meanflow speed becomes the Mach number distribution and the solution

space becomes the interval [0,L], where L is the duct length multiplied by

These equations are to be solved subject to the following boundary

conditions. At x _ 0,

u(o,t)= f(t) (t > o). (2.12)
4



Atx _ L,

B(u, p)(L, t) -- 0 (2..13)

where f(t) is the source variation and (2.13) dictates a noareflective

(impedance type) condition. We shall derive this condition in section 4.



3. Numerical scheme

We shall briefly indicate the numerical method used in this work.

This method is an extended version of MacCormack's method with fourth

order accuracy in space and second order accuracy in time (see reference

2). However, it should be viewed as a fourth order accurate scheme,

since we are interested in steady time averaged quantities. Let the spatial

discretization of the axis of the duct be given by xy ---

(j- 1)L/J (j "-- 1, .... , J). Let us define forward and backward flux

difference operators by

P}(f) = 7fj- + f ±2 (3.1)

Here the plus 'sign' denotes forward and 'minus' sign denotes backward

operations, respectively. Then for a single equation of the form

ut -_- fx -- h (3.2)

the scheme works as follows:

At/2 -- °n, At hn

This has a backward predictor and a forward corrector. In the next At,/2

time step it is changed into a forward predictor and a backward corrector

as follows:

6Ax 3 k .,/

1 [U_+1/2 _lt_U_I) A,/2p_.(f(1,.__.____h(,,] (3.4)
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In these formulas subscript n, n 27 1/2 and n 27 1 denote quantities

evaluated at times nat, (n 27 1/2)At and (n 27 1)At and the superscript

(1) denotes the predicted values. It is pointed out in reference 9 that

alternating formulas (3.4) and (3.5) at each time step is necessary to achieve

fourth order accuracy for nonlinear problems.

We note in (3.3) and (3.4) the flux difference operator p-l- is not

defined for j -- J-1 and j--J and P-- is not defined for j--1 and j--0. At

these points fluxes are extrapolated according to the following third order

formula.

fj = 4fj.l -- 6fj4-2 27 4fj+a -- fj4-4 (J -- 0,--1) (3.5)

fj-t-1 -- 4fy-- 6fj--1 27 4fj--2- fj--z (J --- J,J -1- 1) (3.6)

When these extrapolations are applied to define the fluxes then the steps

(3.3) and (3.4) are valid for all grid points j:l through J.

This process is then applied to equation (2.8) with



Artificial viscosity

Similar to fluid dynamic calculations, in order to capture shock waves

without oscillations, viscous damping terms are added to the difference

equations. The previous numerical scheme described here is a dissipative

scheme and therefore, we will show results with and without artificial

viscosity. Von Neuman Richtmyer type viscous terms are used herein. If

the equations (2.8) and (2.9) are written in the form:

w t -q- f....(W)x"-- H(w__) (3.7)

then the artificial viscous term added to (3.7) is

where u --- 0(1). We differenced this quantity according to the following

formula.

- ',;- (3.0)
This is a second order formula. This formula is used in both stages

of our scheme up to the boundary. The added viscosity terms tend to

reduce the accuracy of the scheme. Nevertheless, it provided better results

than other types viscosity models we tried and g-ave a sharper shock with

reasonably accurate solutions in the smooth regions. We shall see this later.

in our comparison with the asymptotic method of reference T.
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4. Boundary Conditions.

In this section we consider some questions concerning boundary con-

ditions. First, we need a nonreflective boundary condition at the exit

section of the duct. Next we need boundary conditions appropriate to

the numerical scheme. These are accomplished by obtaining characteristic

variables for the system (2.4) and (2.5). We linearize this system to get

_wt+ = 0 (4a)

where

A-- c2 and w--
_7 us u

The eigenvalues of this matrix are

kw---us-_-cs and )x_--us--cs

We note that us < cs thus >, is strictly negative. The sigr_ of these

eigenvalues gives the characteristic directions of propagation f_ow. At x

= O, )_+ > 0 gives the inflow direction and X_ < 0 gives the outflow

direction. Similarly at x = L, X+ > 0 gives the outflow and _-- inflow

directions respectively. The matrix formed by the eigenvectors is

so that T--1AT is diagonal. The characteristic variabIes are then

v_v_--T-lw__ (4.3)

If
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then

p u

PB Ca

P U
v2 _- (4.4)

Ps ¢s

Here vl, v2 corresponds to the eigenvalues )_-t- and X_, respectively. At

x --- L v2 is the inflow variable. Setting v2 ":= 0, i.e.

p u - 0
Ps Ca

is exactly the nonrefleetive condition stated by the general form in (2.13).

In linear acoustics this is known as the impedence condition.

For the numerical scheme it was found effective prescribing the boun-

dary conditions in terms of these variables Vl and v2. At x -- 0, v2 is

computed through an iteration. Let us call this value to be v_. Thus

p u
-- v_ (4.6)

Ps Ca

But u is prescribed at x_---0.

u= f (4.7)

Solving (4.7) and (4.6) for u and p we have

u--f; p'-- ps(v_-[ -f ) (4.8)

Similarly, at x = L, we compute Vl. This gives

P+£ o-- -- v 1 (4.10)
Ps Ca

We solve (4.5) and (4.10) to obtain the values of _zand p at x _ L. They

are
C

p -- p_vl/2
u'-- csv_/2 (4.11)

lo



Together with these conditions the solutions were started at a state

of rest and iterated over 6 periods to obtain the results discussed in the

next section.

5. Discussion of results.

The procedures developed in the previous sections were applied to a

particular geometry called a Crocco-Tsien duct. A detailed description of

the contour of the duct is available in reference 6. This contour is designed

in such a way that, the mean flow accelerates linearly to Math number

unity at the throat. In particular, for the exampIes given here the entry

Mach number at the exit section was -.50 and at the throat -.90 (=Mr).

Here the "minus" sign denotes the flow in the negative x direction.

Figure l(a) shows a typical configuration of the duct. Figure l(b)

shows the area variation. This geometry has exit/throat ratio about 1.32,

so that this area variation provides a gradual choking of the flow. In

this case the Mach number distribution becomes as depicted in figure

2. With this area variation and Mach number distribution, the steady

flow equations satisfied by Ps and Us (equations 2.5 and 2.6) were solved

explicitly (see also [41).

As we discussed previously, the finite difference algorithm is compared

with the asymptotic theory developed in reference Y. Since the typical

nonlinear situation arises at higher sound pressure levels and Mach num-

bers approaching unity, in this theory a small peaturbation parameter was

chosen as (1-- [ Mt i), where Mt is the throat Mach number. Comparisons

for a value for Mt = -.90 are given in figures 3 and 5 respectively. The

strengths for an equivalent sound pressure source located at x--0 (figure

11



la) are roughly 149 and 156dB, respectively. Corresponding to equation

(2.12) they have the form

f(t) -'- Acost,

where A is the amplitude calculated according to the source strength. In

both (149dB and 156dB) cases shocks were predicted in reference 7. In

these figures the time history of the velocity over a period (2 7r) is given.

The velocity is normalized by (1-- ] Mt [)_ since the acoustic veIocity

is small in magnitude. Thus the actual value of the azoustic velocity

is of the order 10 -3 or less. This is exactly the reason _ higher order

accurate scheme was necessary. The solid lines in these Figures are the

numerical solution and the other (see figures 3 and 5) are the asymptotic

solutions computed at x = 0.75L and at the exit x = L respectively. The

finite difference calculations agree well with the asymptotic theory. The

difference scheme we used itself is a dissipative scheme. We carried out

the computations without artificial viscosity terms in the algorithm. For

the case of 149dB source the results are shown in figure 7. The comparison

is still good in the smooth regions. Results shown in figures 3 and 7 also

validate the fact that the amount of added artificial viscosity did not affect

the physics of the wave nature.

Finally, figures 4 and 6 show the overall sound pressure level (dB) in

the duct. Figure 4 corresponds to the shock case of 149rib sound source.

This is a very weak shock case. At the exit we see a 2dB sound pressure

level reduction. Figure 6 shows the sound pressure leveI for a 156dB source.

In this case we see a sound pressure level reduction about 5dB at the exit.

These results show that the higher the sound source level one obtains

12



substantial sound reduction through loss of energy due to shocks.

Extension of this work in two dimensions is in progress by the authors.

The results will be reported elsewhere.
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