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LIST OF SYMBOLS

A Matrix coefficient (subdiagonal element); coefficient
in discretized Hilbert integral, Appendix A.

B Matrix coefficient (subdiagonal element).

c Chord length.

cF Skin-friction coefficient.

c Pressure Coefficient.
P

c.. Coefficient in discretized interaction condition.
lj

C Lift coefficient.
L

D Matrix coefficient (diagonal element).

f d_/dx, Appendix B.

F Normalized stream function.

g dn/dy, Appendix B.

h Grid spacing.

2h h
Ih ,12h Fine-grid to coarse-grid screening operation,

interpolation operator, respectively.

Jl Value of Hilbert integral, Appendix A.

K Coefficient in interaction condition, see Eqs. (7)
and (9).

Finite-difference operator with grid spacing h,
Appendix B.

M Number of points in s-grid.

N Number of points in n-grid; also number of points
along wake centerline. (p.21).

N O Initial number of points on grid.

NX Option number for two-point or three-point x-
differencing.

P Matrix coefficient (last €olumn).

r Relaxation factor in interaction condition.
V
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LIST OF SYMBOLS (continued)

R Element of right-side column vector of matrix equation.

R_I),R_ 2) Residuals of difference equations on h grid, Appendix B.

RN Reynolds number, u c/v.

s x/c, normalized boundary-layer coordinate (surface
oriented).

S Matrix coefficient (superdiagonal element).

u Velocity component in x-direction.

u s Inviscid flow speed at surface.

v Velocity component in y-direction.

x Boundary-layer coordinate measured along airfoil surface
and wake centerline; potential-flow coordinate parallel
to freestream.

x° Point of initiation of boundary-layer computation.

xI Initial point on airfoil for full interaction.

x2 Downstream cutoff point for viscous-wake computation.

X x/c, normalized potential-flow coordinate (parallel to
freestream).

y Boundary-layer coordinate measured normal to airfoil
surface or wake centerline; potential-flow coordinate
normal to freestream.

Angle of attack.

B Coefficient in boundary-layer momentum equation.

F Circulation.

6;6 Boundary-layer thickness scale; displacement thickness.

6F Change of F in one iteration.

A* Normalized displacement thickness.

y/6, normalized boundary-layer coordinate perpendicular
to surface.

0 Angle variable in polar coordinates, Appendix B.
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LIST OF SYMBOLS (continued)

v Kinematic viscosity coefficient.

Transformed x-coordinate for potential flow,
Appendix B.

Dependent variable, Appendix B.

Relaxation factor in potential-flow computation,
Appendix B.

2 Finite-difference approximation to Laplace operator.
Vh

Subscripts

e External flow conditions at edge of boundary layer.

i Grid-point index for x-coordinate.

j Grid-point index for y or H-coordinate; also used
for x-coordinate in interaction condition.

N Conditions at edge of n-grid.

s Surface value.

TE Trailing edge.

x,y Partial derivative, Appendix B.

Freestream conditions.

Supercripts

n Iteration index.

* Modified value.

Dummy variable.

^ Approximation at current stage of solution,
Appendix B.

+ Update value in iteration procedure, Appendix B.

Partial derivative with respect to _.

Deviation from current approximation, Appendix B.
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SIJMMAI{Y

Numerical solutions of the interacting laminar boundary-

layer equations are presented for two symmetric airfoils at zero

incidence: the NACA 0012 and the NACA 663-018 airfoils. The

potential flow was computed using Carlson's code, and viscous

interaction was treated following a Hilbert-integral scheme due

to Veldman. Effects of various grid parameters are studied,

and pressure and skin-friction distributions are compared at

several Reynolds numbers. For the NACA 0012 airfoil, Reynolds

number is varied from a value just below separation (R N = 3000)

to a value for which extensive separation occurs (RN = i00,000).

For the 663-018 airfoil, results are given at intermediate

values (RN = i0,000 and 40,000). The method fails to converge

for greater values of Reynolds number, corresponding to the

development of very thin well-separated shear layers where

transition to turbulence would occur naturally.
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INII_ODUC_]ON

A major problem in computational aerodynamics is the predic-

tion of maximum llft coefficient for two-dimensional wing sections.

" The numerical solution of this problem would involve computation

of the flow past airfoils at large angles of attack, including

conditions of separation and stall. At large Reynolds number the

boundary-layer model is appropriate, provided viscous interaction

is included; in fact, separation bubbles of moderate extent have

been analyzed on the basis of such a model. The long-term goal

of this study is to carry out such computations for airfoils at

moderate angles of attack, with the hope that a computation of this

type would provide aerodynamic data up to inception of m_ssive

separation. However, the present study has been restricted to

zero an_<le of attack, with emphasis on the complications of laminar

separation a_d wake flow that arise with that condition.

The computer program developed for this study is based on the

laminar-flow condition. This was desirable for two reasons:

(i) leading-edge separation, which can limit the maximum lift, is

usually of laminar type, and (2) the basic interaction phenomenon

is the same for laminar and turbulent flow, while the equations

of motion are simpler in the former case. In addition, laminar

flow solutions are of interest for their own sake. For higher

Reynolds numbers, an appropriate turbulence model can be

incorporated.

Various computer codes are available for the potential-flow

portion of the computations. A code developed by Carlson (Ref. i)

for airfoil analysis and design was selected for adaptation to our

use; it is well-documented and structured in a way that readily

permits interaction with a boundary-layer code in both direct and

inverse modes of solution. Since our current interest is in low-

speed flow, a simplified version of Carlson's code was programmed

" for the special case of incompressible flow. In addition, the

multigrid technique was incorporated to accelerate convergence of

the potential-flow computations. Our implementation of the

multigrid procedure, as applied to Carlson's program, is described

in Appendix B.

3



A new boundary-layer code was developed based on a stream-

function formulation that permits a natural traatment of inter-

action. Direct, inverse, and interaction modes all are included

in the solution procedure, with switching between modes permitted

at any streamwise station. Details of the method are _iven in the

body of this report.

An attempt was made to couple the potential-flow and boundary-

layer codes and operate each in the inverse mode. However, a

conversed solution was not achieved by this method. Instead, an

alternative fully interacting scheme was developed successfully.

This method and results obtained with it are discussed in the

followin_ sections.



INTERACTION THEORY

In the classical boundary-layer theory proposed by Prandtl,

the pressure gradient acting on the boundary layer is pre-

scribed by the inviscid (potential flow) solution and the

boundary-layer properties, such as the displacement thickness,

result from the solution. Prandtl (Ref. 2) also proposed that

the pressure distribution could be determined to higher-order

accuracy by recalculating the potential flow, accounting for

the displacement thickness of the boundary layer. This scheme of

accounting for the viscous effect on the potential flow is

known as weak-interaction theory. Unfortunately it fails when

boundary-layer separation occurs, since Goldstein (Ref. 3) has

shown that the boundary-layer solution at separation is singular

when the pressure gradient is prescribed, so that an accurate

computation must break down at the separation point. Catherall

and Mangler (Ref. 4) showed that this difficulty can be overcome

by treating the boundary-layer problem as an inverse problem, thus

solving for the pressure distribution which would produce a

specified displacement thickness. Of course, in practice neither

pressure gradient nor displacement thickness are known a priori.

The successful treatment of flow separation as an inverse

problem, contrasted with the failure of the classical theory,

indicates that separated flows are of the strong-interaction

type; i.e., the equations of the external potential flow and of

the boundary layer must be coupled and solved simultaneously.

A qualitative theory of viscous interaction based on this concept

was presented by Crocco and Lees (Ref. 5). The idea also appears

in the early work of Lighthill (Ref. 6), and a rational theory has

evolved in more recent times in the independent works of Neiland

. (Ref. 7), Stewartson and Williams (Ref. 8), and Messiter (Ref. 9).

This theory, termed the triple-deck by Stewartson, is valid as an

asymptotic solution of the laminar Navier-Stokes equations in the

limit of infinite Reynolds number. (We note that Prandtl's

boundary-layer theory is a valid limit solution for unseparated

flows in the same sense.)
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The first complete problem to be solved in triple-deck

theory was that of the viscous interaction at the trailing edge

of a flat plate*. This problem is an example of one for which

the classical weak-interaction theory fails. The interaction

is caused by the discontinuous change from a no-sllp condition

on the plate to a no-stress condition on the wake centerline.

The resulting solution of the classical boundary-layer theory

exhibits a singularity in the slope of the displacement surface

for x = 0+(x = 0 at the trailing edge), and a corresponding

singularity then is produced in the inviscid pressure distribu-

tion if the computation is pursued in the classical manner. In

triple-deck theory, the viscous lower-deck solution is determined

simultaneously with the inviscid upper deck and no singularity

develops. The solution was obtained first by Jobe and Burggraf

(Ref. 10), and confirmed by Veldman and Van de Vooren (Ref. ll)

and by Chow and Melnik (Ref. 12). A summary of the results is

given by Figure 1. The skin friction shown there is normalized

by the Blasius (non-interacting) value; the effect of interaction

is seen to raise the value by about one third of the Blasius

value at the trailing edge. Correspondingly, the pressure on the

plate is reduced below the freestream value, and then quickly

rises in the wake to a level above the freestream value with a
slow decay downstream.

Chow and Melnik (Ref. 12) went on to consider the flat plate

at angle of attack. The triple deck then substitutes for the

Kutta condition in classical airfoil theory, and in fact the so-

lution gives the viscous correction to the ideal llft of the air-

foil. For fixed (but large) Reynolds number, viscous loss of

lift is a relatively weak function of angle of attack for small

a, but appears to increase catastrophically as _ approaches

the stall limit. Actually the computation scheme failed before °

the stall limit was reached, but an estimate was made by extrapo-

*Stewartson and Williams (Ref. 9) solved for the upstream eigen-

functions in supersonic flow, but did not match these to particu-
lar downstream disturbances.
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lation of the computed results to the point at which separation

first occurred at the trailing edge. Thus the first rational

prediction of CLmax (maximum llft coefficient) was made on the

basis of triple-deck theory. Of course for the flat plate in

laminar flow, CLmax is likely to be determined by leading-edge

separation, whereas the analysis of Chow and Melnik is restricted

to the vicinity of the trailing edge. Nevertheless, a major step

in the theory has now been taken.

In reality, the Reynolds numbers for laminar flow are not

high enough for triple-deck theory to be quantitatively accurate.

Consequently for practical calculations the interacting boundary-

layer theory is more appropriate. This theory was first thought

to be merely an approximate model of the flow processes, but it

is now known that it is exact in the limit of infinite Reynolds

number in the same sense as is triple-deck theory (Burggraf, et al,

Ref. 26). The main source of error in the triple-deck appears

to be the treatment of the upstream boundary conditions. Because

of its asymptotic nature, the longitudinal length scale approaches

zero, and hence, the upstream boundary condition (matching to the

boundary layer) is applied infinitely far upstream on the triple-

deck scale. In contrast, in the interacting boundary-layer model,

the upstream condition is that the boundary layer originate at the

leading edge. The simplification in the triple-deck case is that

Reynolds number can be scaled out of the problem, whereas it must

be specified as a parameter in interacting boundary-layer theory.

This complication is more than made up for by the improvement

in accuracy for practical applications. Experience with the

interacting boundary-layer theory indicates that accurate re-

sults can be obtained for flows that include regions of separ-

ation having moderate transverse extent. The model is likely

to fall when breakaway occurs, with its resultant catastrophic

reduction of llft. Thus even if breakdown of the theory occurs,

it would be an indication of maximum lift conditions.
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The computations described above were based either on a time-

marchin_ or similar procedure (Rizzetta et al, Ref. 13) or an in-

verse method of solution (Jobe and Bur_v,raf, Ref. I0; Veldman and

Van de Vooren, Ref. Ii_ Chow and Melnik, Ref. 12). With the latter

method, the potential-flow problem is solved for the shape of the

displacement surface for specified pressure distribution, and con-

versely for the boundary-layer problem. (The direct method of

solution is unstable.) Both of these methods are slow, requirinv

severe under-relaxation or small time step to convert<e; thus lon_<

computer runs are required to achieve the stead v-r;tate _;o]ution.

Recent!v Veldman (Ref. 14) has presented an alternative method,

which appears to be significantly faster than either of the above

met]_od_;. In his method, the potential flow and boundary layer are

coupled on a given vertical line and solved to[_ether, station by

station. Upstream influence is accomplished by iteration on the

whole flowfield solution. The method was shown to work well for

both unseparated wake flows and for separated flow over contoured

surfaces. Consequently, it would appear to be a Food method for

separated flow past finite airfoils. As will be seen, however,

the efficiency of the method deteriorates when the combination of

flow separation and wakes occurs.



FORMULATION

Vlscous-Interactlon Condition

The inverse method invokes viscous interaction by a back-and-

forth Iteratlve transfer of information between the potential flow

and boundary-layer codes. In contrast, Veldman's (Ref. 14) idea

. was to compute the boundary layer and potential flow simultane-

ously statlon-by-station so that the two flows fully interact at

all stages of the iteration process. In Veldman's work, the

potential flow was represented by the Hilbert integral of llne-

arlzed theory, relating pressure to the slope of the displacement

surface. This formulation is strictly valid only for small per-

turbations of the displacement surface from a true plane. However,

the idea is readily adapted to a potential flow computation pro-

cedure llke that of Carlson.

According to llnearlzed theory, the interaction law can be

expressed in terms of a Hilbert integral as

_I Ve (_) d_

ue = u + x -

where (Ue,V e) are the (x,y) components of velocity at the edge of

the boundary layer. In terms of the surface ordinate Ys and the

displacement thickness of the boundary layer

d 6*Ve(X) = u. _-'£(Ys + )

The Inviscid surface speed us results from the above Hilbert

integral if 6" is set equal to zero. Hence the deviation of ue

from us is given by

= -- d6* d_ (I)
Ue Us + _ d-3[x--'-'X
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Thus in (i) us can be calculated by any potentlal-flow method,
while the displacement correction due to the boundary layer is

the given by the Hilbert integral of linearized theory. In the

present study, us has been evaluated using the Carlson code. In
the discretized version the Hilbert integral is truncated at

finite limits, resulting in a Cauchy integral; then, using the

trapezoidal integration rule, the integral is replaced by a

finite sum. Denoting values at the i-th grid point along the

x-axis by the subscript i, we have
M

u= + _ cij (2)
Uei Usi w J=O

Veldman gives the values of the cij corresponding to a uniform
grid; we have generalized his derivation to allow for a non-uniform

grid, as presented in Appendix A.

In Eq. (2) neither Uei nor 6_ are known a priori, but are
related by the solution of the boundary-layer equations, which

are solved sequentially at successive stations. Thus at a given

station xi, the values of 6_, for J < i are known (at least in the
current approximation) while those for J > i are known only in the

preceding approximation. For the values at J = i, Eq. (2) is

used in the form

M

U_ U
6* (3)

Uei _ cii 6_ = us + --_ ciji j=o j
j#i

together with the no-slip condition at the surface

u = v = 0 at y = ys

The boundary-layer equations and the above interaction condition

are solved Iteratively by marching from xo to xM in each iterate

l0



with the unknown terms for J # i on the right side of Eq. (2)

evaluated from the known solution for the previous iterate. In

our application of Eq. (3), a relaxation factor rv was introduced

to allow more flexibility with the calculation; letting the super-

script denote the iteration number, we have

M

u(n)/u rv * (n) I/u + 1 _-- c j_*(n-l)ei_ - _-- cil _i = Us _ _ i
J_O

r

V *(n-l) (4)
- _-" eli _I

Thus rv.0 produces the direct problem, with Goldsteln singularity

at separation, rv = 1 corresponds to Veldman's approach, and rv .

yields the inverse problem. Usually the value rv = 1 is satis-

factory, but for the higher values of Reynolds number rv in the

range 1.5 to 2.0 is necessary for convergence. Above a certain

value of Reynolds number the iteration procedure would not converge

for any value of rv.

ll



Boundary-LaTer Formulation

The boundary-layer equations are expressed in terms of

G6rtler variables in order to reduce the variation of bound-

ary-layer thickness in computational space. Thus the new co-

ordinates s and n are introduced as

s = x/c , n = y/6

where x and y are distances measured along and perpendicular

to the airfoil surface (or wake centerline), c is the airfoil

chord length, and 6 is a thickness scale defined as

i

= [(2uclu2) 1 Usds]ll2
J
O

The non-dimenslonal stream function F(s,n) is introduced, so that

the x-component of velocity is given as

u = UsF'(s,n)

where the prime denotes the n-derlvative. The displacement

thickness also is given in terms of F, as

Ye

6* = (l-U/Ue)dY= 6(s)[ne - F(s,ne)/F'(S,ne)]

o

The boundary-layer momentum equation then becomes

F''' + FF'' + 81 - 8F,2 = 82(F , a-{-aF' a-_FF'') (5)

12



where 62 dus
B = _c ds

62 = Us62/uc

ue due

_i = (62/_c)U--sd'-_

The displacement thickness is rescaled as

A* = 6 /6 = ne -F(S,_e)/F'(s,n e) (6)

Let the subscript i denote the i-th grid point, as

Fi(n) = F(si,q). Then in these boundary-layer variables the

interaction condition (4) becomes

M

F1 (ne)- (rvCii6i)A_-1+Z CIjA_-rvCliA_ (7)J=l

where

cij = (cij/_)(UJUs)1

The interacting boundary-layer problem is defined by Eqs. (5)-(7).

In this formulation the Reynolds number RN occurs only through
-i12

the variables 6 and 6*, both proportional to RN .

It may be noted that ue = us for the direct problem, in

= B; also in the similarity case F and F' arewhich case B1

independent of s so that the right side of Eq. (5) vanishes,

and the classical Falkner-Skan equation results. For the inter-

action problem, ue (and hence Bl) is unknown and must be deter-

mined along with the velocity profile F_(n).

13



Numerical Procedure

The computer program is based on a second-order accurate

finlte-difference representation of Eqs. (5)-(7). The stream

function was chosen as primary variable to facilitate treatment w

of _*, as suggested by Eq. (6) . Four-point centered differencing
is used in the n-variable; typical terms are

F'''(nj_l/2) = (Fj+ 1 - 3Fj + 3Fj_ I - Fj_2)/(An)3

F''(nj_i/2) = (Fj+ 1 - Fj - Fj_ 1 + Fj_2)/2(An) 2

F'(nj_l/2) =(Fj - Fj_I)/A n

F(nj_l/2) = (Fj + Fj_l)/2

On the other hand, backward-differencing is used in the s-varlable.

Either two-point or three-point differencing is available as an

option (NX = 2 or NX = 3). For two-point differencing

BF
(3-_)i = (Fi - Fi-1)/As

while for three-point differencing

BF

(%-_2= (3Fi - 4Fi_1 + Fi_2)/2As

For the direct problem, on n=0 the no-sllp conditions are

F = F' = 0, while on the wake centerline F = F" = 0. Also since

U e = U S

F' = 1 at n = ne (8)

In this case the coefficients of the difference equations form

a banded matrix having four non-vanishing diagonals, two of which

lie below the principal diagonal. This structure is unchanged by

Newton-Raphson iteration and the solution is obtained by a variant

14



of the Thomas algorithm, described below.

For the interaction problem, the edge condition (8) is

replaced by condition (7), which can be written as

F_ + KA = R (9)

Eliminatinghn by use of (6) gives

(F_) 2 + K(q N F_- FN) = RF_

" -- 0 we can discretize FI_ as (F N - FN_l)/h. Thus theSince F e
(N+I) st equation is

AN+IFN_ 1 + BN+IF N = 0

where

AN+l _ FN_ 1 - FN - h(Kn N - R)

BN+ 1 = .Kh 2 _ AN+ 1

Linearizlng gives the final form for Newton iteration:

A_+I6FN_ 1 + B_+I6F N = R*N+l (l0)

where 6FN is the change of FN from one iteration to the next,
and

A_+ 1 " AN+ 1 - FN + FN_ 1

B_+ 1 = BN+ 1 + FN - FN_ 1

R_+ 1 = -AN+IFN_ 1 + BN+lF N

The interaction problem introduces an additional unknown,

B1; to permit use of the same programming as for the direct

problem, the element Fj for J -_N refers to the stream function

15



while the element FN+ 1 refers to B1. The matrix structure is

still banded, but in addition its right-most column is non-zero.

Thus, the complete system of equations for the Newton iterates

has the structure given by (ll) below. [Note that P = 0 for the

direct problem, while R_ represents the error in the original
difference equations.] The subdlagonal elements are eliminated

llne-by-llne, proceding fram top to bottom; the system of re-

duced equations is then solved from bottom to top. Convergence

of the Newton iterates is rapid• For a boundary layer on a

< l0-6 is achieved in four
solid surface, convergence to 16FImax
or five iterations with the direct problem, and perhaps double

that number for the interaction problem. On passing into the

symmetric wake, the iteration count rose to about 20 or 25,

falling slowly to the original four or five farther downstream•

on

D3 _3 0 0 0 0 ... 0 P 6F_J = R3

B4 D4 S4 0 0 0 . . . 0 P 6F4 R4

A5 B5 D5 S5 0 0 ... 0 P 6F5 R5
(ii)

0 A6 B6 D6 S6 0 ... 0 P 6F6 R6

0 0 A7 B7 D7 S7 ... 0 P 6F7 R7

: : : : : : • : : •• . . : . :

0 0 0 0 0 ... AN BN DN SN 6FN RN

0 0 0 0 0 ... 0 AN+1 BN+1 0 681 RN+I

For the symmetric wake, the system of equations (ll) actually

begins with an equation for 6F2, the equation for _F3 also contains

the element B3, and that for 6F4 contains A4 as well. For the solid

wall (located at ni = 0, i = 1.5), the no-sllp condition gives

F1 = F2 = 0 so that the first unknown is F3, as indicated in (ll).

16



For the symmetric wake, F" vanishes instead of F', so that F1 and

F 2 are not known explicitly. Hence the differential equation (5)
is solved on n = 0 as well as for n > 0. Using the four-point

differences listed above we have

A2F0 + B2FI + D2F2 + S2F3 + P B1 = R

(Note P = 0 for the direct problem, while R = 0 for the inter-

action problem). From the symmetry of the wake flow

F0 = -F3 , F1 = -F2

Hence the centerline equation reduces to the form

(D2 - B2)F 2 + (S2 - A2)F 3 + PB1 = R

while for the Newton iterates

* * §

D26F 2 + $26F 3 + PB 1 = R2

The solution procedure is unchanged.

The solution of the boundary-layer equations for a single

streamwise station is carried out in a subroutine. The Hilbert

integral (sum) in Eq. (7) is evaluated in the main program, along

with mesh control and overall iteration of the boundary-layer sweeps.

The mesh thickness in the n-coordinate is varied to account for the

exaggerated growth of the boundary-layer thickness when separation
,

occurs. A was used to control the mesh thickness, according to

the equation

(N - N0)Aq = A - A0

where the subscript 0 denotes values with which each boundary-

layer sweep are initiated at the leading edge (stagnation point).

This scheme permits the shear layer to be well separated from the

surface and yet retains the resolution in n needed to allow for

the strong shear at the dividing streamline. Mesh-thickness

control was found to be essential for the success of the method.

17



Veldman also used a variable thickness grid, although he used a
different technique.

Some special features of the program are summarized below:

OBoth direct and interaction modes are allowed. The

direct mode is used at the leading edge, a mixed mode

is used for 0 < x < Xl, and full interaction is used for

I.
OThe Rehyner/Fl_gge-L6tz (Ref. 15) technique (FLARE) is used

to stabilize reversed-flow computations.

ONewton iteration is used for rapid convergence at each
streamwise station.

OA non-unlform grid is allowed in the streamwise direction,

with optional subdivision to improve resolution when needed,

OOptional two-polnt or three-point backward - differencing

of the boundary-layer equations is available in the stream-
wise coordinate.

OVariable mesh thickness in the n - coordinate is included

to account for boundary-layer growth when separation occurs.

18



DISCUSSION OF RESULTS

Test Cases

Two test cases that exhibit alrfoil-like features were run as

a check on the program: (1) the flat plate with wake at finite

Reynolds number, and (2) the Carter-Wornom dent in an infinite plate.

Both of these cases were computed by Veldman (Ref. 1), and the flat

plate was computed by Werle and Verdon (Ref. 16), using a semi-in-

verse iteration scheme due to Carter (Ref. 17).

The flat-plate calculations were carried out for a Reynolds

number of l05 for both uniform and non-uniform grids (x-only), the

latter corresponding to Carlson's airfoil grid referred to above.

For the uniform grid, the results compared very well with those of

Veldman and of Werle and Verdon. With the non-uniform grid, it

was necessary to refine the wake grld-point distribution to achieve

satisfactory accuracy downstream of the trailing edge. This point

will be emphasized later in the airfoil study. Convergence was

rapid for this unseparated flow, with successive iterates for 5"

agreeing to five significant figures after ten iterations.

Computations for the Carter-Wornom dent were made for RN = 80,000,
with good agreement with Veldman's results. In this case, variable

grid thickness was necessary for accuracy owing to the extreme vari-

ation of boundary-layer thickness at separation. Convergence was

slower than for the unseparated flat-plate flow, requiring 43 iter-

ations for convergence of 5' to five significant figures.

These test cases incorporate singly two difficult features of

viscous interaction: flow separation and wakes. These features

combine in flow past airfoils, and it will be seen that convergence

is much slower when flow reversal occurs in wakes. For comparison,

in the results below for the NACA 0012 airfoil at a Reynolds number

" of i00,000, convergence to four significant figures required 60

iterations.
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Airfoil Results

Interacting flow computations were carried out for two

symmetric airfoils at zero incidence: the NACA 0012 Airfoil

and the NACA 663-018 airfoil (see Figure 2). The 0012 section

shape is characterized by adverse pressure gradient over most of

the chord, whereas the 663-018 shape has minimum pressure at 60

percent chord with adverse pressure gradient aft of that point.

IIence these two airfoil sections represent a wide range of flow

conditions. Computed results are presented in Figures 3-8 for

the 0012 airfoil and in Figures 9-11 for the 663-018 airfoil. The

effects of computational-grid parameters are indicated in Figures

3-5. Of these parameters, the point of initiation of interaction

and grid resolution are the two most important.

For the non-interacting boundary layer on the 0012 airfoil,

laminar separation occurs at about 60 percent chord; hence inter-

action must begin ahead of that point. Various locations of the

point (xl) of initiation of full interaction were attempted from

x I = 0.19 to Xl= 0.52. Converged results for these extremes are

shown in Figure 3, in terms of the computed 6" versus chordwise

location from leading edge (x = 0) to about one chord length

beyond the trailing edge (x/c = 1). The results for x I > 0.19

are unsatisfactory since the interacting and non-interacting

flow solutions deviate beyond that point. Consequently the re-

maining results are for x I = 0.19. This value is satisfactory

for both lower and higher values of Reynolds number, since the

separation point is farther aft at lower Reynolds number, and

the length of interaction is reduced at higher Reynolds numbers.

The effect of grid resolution is shown in Figure 4. As

mentioned earlier, Carlson's program was used to generate the

non-interacting potential-flow solution, and the interacting

flow solution is then computed on the same non-uniform grid. The

results shown here correspond to an x-grid size of about three per-

cent chord on the airfoil, but considerably larger in the wake.
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The actual wake-grid points for Carlson's grid are indicated

by vertical lines in the figures. A fine grid was generated by

interpolating points in the wake such that a nearly uniform

grid (Ax _ 0.03c) is obtained from leading edge to the wake cut-

off position x2, where the boundary-layer solution is stopped.
Figure 4 shows that use of Carlson's grid leads to very large

errors in the wake and, owing to upstream interaction, to signifi-

cant errors on the airfoil as well. Consequently, only flne-grld

results are presented in the subsequent figures. Computation time

is increased greatly for the fine grid, since the number of points

is doubled in each successive grid interval of the original coarse

grid aft of the trailing edge. Thus for N points along the wake

centerline in the original grid, 2(2N-1) points are used in the

fine grid. In particular, N = 5 for the cases shown in Figure 4

(x2 = 2.8c); thus 62 points are distributed along the wake center-

llne for the fine grid, versus the original five points. In both

cases, 33 grid points were distributed along the airfoil.

The effect of wake-cutoff position x2 (where the boundary-

layer solution terminates) is shown in Figure 5, corresponding

to two wake lengths of about one and two chord lengths. The

shorter wake appears to be sufficiently accurate, especially on

the airfoil itself. Shorter values were attempted (x2 = 1.4c),
but were not satisfactory since the reversed-flow "bubble"

does not close in that distance (for the NACA 0012 airfoil).

Figure 6 compares results of computations using 2-polnt and

3-point backward differencing for x-derivatlves (i_X= 2 and 3,

respectively). The more accurate 3-point differencing yields some-

what smaller values of 6* in the separated-flow region. (The

separation point is at x/c = 0.69 for NX _ 3, 0.67 for NX = 2.)

Recall that the approximation of Rehyner and Fl_gge-LBtz (Ref. 15)

is used, leading to some inaccuracy in the reversed-flow region.

Since most of the computations were made with NX = 2, and Figure 6

indicates that they are reasonably accurate, the following Reynolds-

number comparisons are for NX = 2.
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The effect of Reynolds number on the distribution of skin

friction is shown in Figure 7. At the lowest Reynolds number,

curve A, RN = i000, the flow is completely unseparated and the

skin-friction has the highest values. As the Reynolds number

increases, separation first occurs at the trailing edge, moving

forward to about 70 percent chord at RN = i0,000, curve B. The

skin friction then takes its lowest (most negative) value at the

trailing edge. At a higher Reynolds number, curve C, RN = 100,000,

the separation point has moved forward to about 35 percent chord,

and the skin friction reaches its most negative value at about

40 percent chord, slowly decaying in magnitude toward the trailing

edge as the thickness of the reversed-flow region increases on the

airfoil. At this Reynolds number, the separation "bubble" does not

close in the wake even for x2 = 2.8. Attempts to carry out compu-

tations at a higher Reynolds number (RN = 130,000) failed to con-

verge. This lack of convergence for large values of RN is discussed
below.

The effect of Reynolds number on the pressure distributions is

shown in Figure 8 for the same cases. Viscous effects lower the

suction peak at about 12 percent chord for all three cases, and

likewise eliminate the stagnation pressure recovery at the trail-

ing edge in all cases (thus producing pressure drag). The effect

of f!ow separation is most pronounced for RN = i00,000 (curve C),
which shows a nearly flat pressure distribution over the whole

separated region, at least beyond the point of minimum skin-frlction.

This result agrees with the classical IIelmholz-Kirchhoff free-

streamline theory, recently combined with triple-deck theory by

F. T. Smith (Ref. 18) for inviscid separated flow behind bluff

bodies.

Turning now to the NACA 663-018 airfoil section, we expect
certain differences in the viscous characteristics to be ap-

parent. First, the airfoil is designed to have a favorable pres-

sure gradient over the forward 60 percent of the chord length,

followed by a rather severe rising pressure. IIence, the laminar
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separation point should be nearly fixed in position.* Second,

the relatively thick section combined with the rearward location

of separation should produce a rather thick separation "bubble"

that extends rather far into the wake.

A few computations have been carried out for the 663-018 air-

foil at Reynolds numbers of i0,000 and 40,000. In this case, the

inviscid surface velocity distribution was taken from the tables

of Abbott and Von Doenhoff (Ref. 19) and supplemented by use of

the Hilbert integral for values in the wake. The grid was es-

sentially uniform in the x-direction, with Ax = 0.05c, but with

finer intervals near the leading edge. Full interaction was

initiated at 30 percent chord, since separation is delayed to

about 60 percent chord on this airfoil. The wake was computed

only to one chord length downstream of the trailing edge, al-

though the results indicate that it should be continued farther.

Figure 9 shows the resulting skln-friction distributions.

Separation occurs at about 55 percent chord at both Reynolds

numbers compared with the 60 percent location deduced from the

inviscid pressure distribution. The most negative skin friction

values occur at 60 percent chord, followed by a slow decay to-

ward the trailing edge. This trend is like that for the 0012

airfoil at RN = 100,000, corresponding to the thicker separated

layer.

The corresponding pressure distributions are shown in

Figure 10. Their behavior is similar to the RN = 100,000 case

for the 0012 airfoil, with deviation from the inviscid distri-

bution occurring near the leading edge and with a suction mini-

mum in the separated region. Unlike the 0012 case, the pressure

tends to fall (suction rises) as the trailing edge is approached.

However, the computed reversed-flow "bubbles" for both cases

Note that at high Reynolds number, the boundary layer is turbu-

lent and does not separate on the 663-018 airfoil at zero
incidence.
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A and B in Figure i0 do not close up to the point at which

the wake computations were terminated. Consequently, these

results must be viewed with some reservations.

Computations for the 663-018 airfoil at Reynolds number of
i00,000 were not convergent, corresponding to a similar failure

for the 0012 airfoil at a higher Reynolds number. It is thought

that this non-convergence may be caused by thinning of the

separated shear layer as Reynolds number increases. This hy-

pothesis is illustrated by Figure Ii, which presents the boundary-

layer velocity profile at the trailing edge for RN = 40,000, in
terms of the boundary-layer coordinate n = Y/6 (see above Eq 5).

At this Reynolds number, the nearly stagnant reversed-flow layer

is about as thick as the shear layer above it. This comparison

would be more pronounced at a higher Reynolds number. A velocity

profile of this type is highly unstable, so that turbulence would

develop under such conditions. Flow visualization studies of the

663-018 airfoil by Mueller and Batill (Ref. 20) show laminar flow

to the trailing edge at RN = 40,000, with oscillatory vortical

flow immediately downstream, whereas at RN = 130,000 the entire

separated shear layer appeared to be turbulent. At RI,_ = 400,000

no separation occurred (for zero incidence), probably because the

boundary layer became turbulent upstream of the laminar separ-

ation point. These comparisons suggest that the breakdown of the

present laminar interaction computations coincides with conditions

for which laminar flow ceases to exist in the separated shear layer.

The conclusion then is that a reliable boundary layer-transitlon

model is needed for extending the computations to moderately

higher Reynolds number.

24



CONCLUSIONS

The computational results show that the present method for

solving the laminar interacting boundary-layer equations is most

successful at relatively low Reynolds number where the separated-

flow region is small. Convergence is progressively more difficult

" as the Reynolds number is increased, and the method fails to con-

verge at some value of R_ that depends on the airfoil shape. This

breakdown of convergence appears to correspond to conditions for

which the viscous shear layer is thin and well-separated from the

surface. Such shear layers are highly unstable and transition to

turbulence would be expected. Hence, it is concluded that the

method works best where laminar flow occurs naturally.

Although the present work was restricted to symmetrical

flows, airfoils at angle-of attack could be treated by solving the

boundary-layer equations (and interaction condition) separately on

both sides of the airfoil. Similar computations have been carried

out using the trlple-deck model (Danlels, Ref. 21, Chow and Melnlk

Ref. 12, Mansfield, Ref. 22). However, the separated region would

become thicker, and the breakdown of convergence would be expected

to occur at lower Reynolds number. The remarks above concerning

transition to turbulence apply here as well. The method easily

extends to turbulent flow by incorporating a turbulence model in

the boundary-layer equations as already carried out by Burggraf

(Ref. 23). However, at intermediate Reynolds-numbers where trans-

ition occurs in the separated shear layer, a transition model

would be required. While such models exist, they are not very

reliable. Another area of interest is that of leading-edge sep-

aration, for which all of the above remarks apply. In addition,

the present method would need to be modified to permit full inter-

action at (or very near to) the leading edge. In that case, the

use of the Hilbert integral as interaction condition would no

. longer be appropriate; direct coupling of the boundary-layer com-

putation with a full potentlal-flow solver would be recommended.
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APPENDIX A

EVALUATION OF HILBERT INTEGRAL ON IRREGULAR GRID

Two discretized formulations of the Hilbert integral have

been given by Veldman (Ref. 14), both for uniform grids. For

our purposes, it is convenient to allow a non-uniform grid,

and so one of his algorithms is generalized here for that

situation. Denote the arbitrarily spaced coordinate values
< Then the

by xj, J = 0,1,...,N+l, where x0 < xI < ... XN+ 1-
Hilbert integral in Eq. (I) can be replaced by a finite sum Ji

with each term centered in the grid intervals, as

Xn+l

d6 dx Ji N Ida]j_..xi-x= = £ (Xj+l-_)/(xi-xj+i/2)j=0 +1/2

xo

where xj+i/2 = (xj+xj+l)/2, and we drop the superscript (*) for
convenience. The limits on the integral x0 and XN+1 are assumed
to be sufficiently wide that d6/dx is negligible beyond those

points. Using central differencing

d6 = 6j)/(xj )[d-£]J+i/2 (6J+l- +l-Xj

Hence

N

Ji = 7 (6j+l-6j)/(xi-xj+I/2)
J=0

The sum in 6j+ I can be reindexed and combined with that in 6j to
obtain

N

= - Z (Aj/2) (Xj+l-Xj_l)/(xi-xj_l/2) (xi-xj+l/2)Ji j=i

- A0/(xi-xl/2) + AN+I/(Xi - XN+i/2)
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In terms of the cij notation of Eq. (3.3), we have

Cio _ -1/(xl-xl/2)

clj = -½(Xj+l-Xj_l)/(xl-xj_I/2)(xi-xj+I/2)

Ci,N+ 1 = 1/(xi-XN+l/2)

This formulation of the Hilbert integral is second-order

accurate, consistent with the differencing of the boundary-layer

equations. Note that the Cauchy principal value of the inte-

gral is evaluated accurately by centering the integrand between

adjacent grid points. For a uniform grid, this algorithm reduces

to Veldman's simpler version.
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APPENDIX B

MULTIGRID MODIFICATIONS TO A POTENTIAL-FLOW CODE

The Multisrid Concept*

Suppose we want to solve the following flnite-difference analog

to some differential equation:

_hCh = Fh (B-l)

(The subscript h signifies a finite-difference representation

on a grid with spacing h.) Further, let us assume that we have

some approximation Sh to Ch and let the difference between the

two be _h' i.e.

Ch-_h = _h (B-2)

Then, if _h is a linear operator (as it is in our case)

or

_h6h = Fh -_h6h = Rh (B-4)

The idea of multigrid is to make use of the fact that we can

make useful (and inexpensive) approximations to the above equa"

tion (B-4) on a coarser grid, say of mesh size 2h. Thus using

some relaxation technique, we solve the equation

J = 12hR
-'2h 2h h h (B-5)

I_h is an operator which transfers to each point on the
where

coarse grid the corresponding value of the residual Rh on the
fine grid. The solution is obtained more rapidly on the coarse

grid than on the fine grid. Once we have obtained the solution

of (B-5) (or at least a good approximation to it) on the coarse

.
Reference 24 is an excellent treatment of this subject for

general applications.
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grid, we interpolate the correction _2h to the finer grid:

_h = I_h_2h

where I_h is an interpolation operator. Depending upon a

number of factors (grid geometry, interpolation order), the in-

terpolated value of _h may or may not satisfy (B-4) closely

enough to be used as a correction to _h" If not, we simply
relax (B-4) a few times and then use

_h = _h + _h (B-6)new

to get a better approximation to Ch' which is the solution of

the flnlte-difference equation of interest. In general, the multi-

grid procedure uses a sequence of grids, rather than only 2 grids.

To achieve fast convergence, the multigrid method relies on the

fact that standard relaxation techniques converge rapidly duringl

the initial iterations, but exhibit progressively slower conver-

gence at later stages, especially for fine grids. This is be-

cause relaxation techniques are efficient at removing high fre-

quency-error components (i.e.,errors with wavelengths on the

order of the grid spacing h), but inefficient at removing low

frequency-error components (i.e., errors with wavelengths on the

order of the overall grid size). The multlgrid method circumvents

this difficulty by using a series of coarser grids to eliminate

the low frequency-error components. In effect, each of the coarse

grids acts as a filter which removes error components with cor-

responding wave lengths. Peaceman and Rachford (Ref. 25)

formulated a method for solving Laplace's equation exactly in a

finite number of steps, with one spectral component of the error

removed in each step. For NxN grids their method requires of

order N 3 operations to obtain the exact solution, whereas the

multigrld method requires only of order N2 log N operations to

reduce the error to a specified tolerance.
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Applicationto PotentialFlow Past Airfoils

Carlson's (Ref. I) code has been modified to incorporate

the multlgrld solutionprocedure. For efficiency,the transonic

code was simplifiedto allow only the incompressiblecase. The

resulting code then solves the differenceequation

V_¢ h = 0

subject to

(_X) = (_) = [(sine+ Chy)/(cose + Chx)]ss s

where the subscript s denotes the airfoil surface, and the

subscripts x and y denote differentiationwith respect to x

and y, and

Ch . Ph(8-s)/2_ as x2 + y2. .

where tan 8 = y/x and rh = ¢h(X,0+) -¢h(X,0-)for x > XTE-

Substitutionof _h TM Sh + _h into the above equations leads

to the followingresidual equationsfor _h:

Vh_h2= R_I) (B-7a)

subject to:

_ = R_2)(_x)s(_h)S (_h)s (B-7b)
x y

_h . - _h(e-_)/2_ as x2 + y2.. (B-7c)

where rh = _h(X,0+) - _h(X,0-) for x > XTE-

Here the residuals R(_)and R(_) denote interior and boundary
residuals,respectively;

R(_)= -V2$h (B-8a)

= (dx)s (B-8b)
R(_) sin _ + (Shy)s-[C°Sa + ($hx)s] dy
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Coordinate Stretching

The coordinate stretching scheme of Carlson has been pre-

served in the multigrid routine. Carlson (Ref. l) shrinks both

the x and y directions onto the finite computational plane

_,n according to

x = x4 + A2tan[_(_ + _4)/2] + A3tan[_(_+ _4)3/2] for[xl>x4

x = _(a + b_2) for Ixl<x 4

and y = A1 tan(_n/2)

where AI, A2, A3, a, b, x4 and _4 are constants. Then, denoting

f = d-i and g m dndx _#

equations (B-Ta) and (B-7b) can be w_itten as

f(f¢_)_ + g(g_n)n = R (I) (B-9a)

dd-_x_ - = R (2) (B-gb)( (f_)s (g_n)s

where the subscript h on _ and R is understood. In the new

coordinate system, the circulation correction _ is determined

from:

= _(_,0 +) - _(_,0") for _TE (B-10)

The residual functions R (I) and R (2) become

R (I) = -f(f_)_ - g(gSn)n (B-lla)

R(2) = sin m + (gSn)s - [cos m +(f_)s] (_x)s (B-llb)
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Finite Differences - Governing Equations

Employing second order-accurate differences in _ and n,

equation (B-9a) can be written as

[gjgj_i/2/(An)2 +]_lj_l-[(fi+i/2+ fi_ll2)fl/m(A_)2 + (gj+ll2+gj_ll2).

+ = R(I)
'gj/(A_)2]_ij + [gJgJ-i/2/(An)2]_i,J+l iJ

-[fi/(A_)2][fi+l/2_i+l,J -(fi+l/2 + fi-1/2)(1-1/m)_iJ

+ fi-I/2 _i-l,J (B-12)

where as in Carlson (Ref. I), m is a relaxation factor and

+ denotes new values. The above represents a tridiagonal system
N+

of equations for the values of ¢iJ' on a given column, i.
Equation (B-12) is solved on columns, sweeping from upstream to down

stream.

The residual function R (1) must also be replaced by its

flnlte-dlfference form. Using second order-accurate differences

in _ and n, equation (B-11a) is represented as:

R(1) 2
iJ = -[fi/(A_) ][fi+i/2$i+l,J-(fi+i/2 + fi-i/2 )$i,J

+fi-I/2$i-l,J] - [gj/(Aq)2][gj+i/2 $i,J+l - gJ-I/2 °

"($i,J - $i,J-I ) - gJ+i/2$i,J ] (B-13)

Finite Differences - Boundary Conditions
i l

As in Carlson's original program, the residual tangency

condition, equation (B-11a) is used to create fictitious values

. of _ inside the airfoil, allowing equation (B-12) to be used as

it stands at points immediately outside the airfoil. We expand

(¢q)s and ($_)s in Taylor series about fictitious points in-
side the airfoil and replace the resulting derivatives of $ by

finite differences yielding second-order accurate results.
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for the upper surface

_i,JA-1 = 2(Aq)2/gs [3An - 2(q s - njA_I)]"

"IR(2) + gs[ - _i )12anlu (4_i,JA ,JA+l

- (_s - qJA-1)(2_l,JA - _l,JA+l )/(Aq)2]

- (dd_xx)sfs[(_l+l,JA-1- _i-l,JA-1 )/2A_ + (ns- qJA_l )"

"(_i+l,JA - _i+l,JA-i - _I-I,JA + _I-I,JA-I)/2A_An_ (B-14)

and for the lower surface:

6i,JA+l = -2(Aq)_gs[3An + 2(ns - qJA+l )] I R(2)Ig

+ gs [(-4_i,JA + _i,JA-i )/2Aq - (ns - qJA+l)(2_i,JA

- _i,jA_l)/(An) 2] -(_x)sfs[(_l+l,JA+l - _I_I,JA+I)/eA_

+(qs-qJA+l )(_I+I,jA+I-_I+I,jA-_I_I,jA+I+_I_I,jA)/2A_An_ (B-15)

where the index JA denotes the closest point outside the air-

foil boundary, and Riu and Rig denote residuals for upper and
lower surfaces.

Equation (B-14) or (B-15) is first solved on column I

using old values from the prevlous relaxation sweep. Then

equations (B-12) are solved for new values exterior to the air-

foil along the column I. The new values of _ so obtained are

used In equations (B-14) or (B-15)to generate new values for

the fictitious interior points. Thus the interior points are

based on new values at station i and old values at other

stations as are all points external to the airfoil.

The values of R (2) and R (2)
lu Ig are given In finite difference

form by

34



R(2)iu= sin c -(_x)s cos c + g_(-3$i,JA_ 1 + 451,j A - $i,JA+l)/2An

+ (qs -nJA-1)($i,JA-I - 2$i,JA + _i,JA+l )/(Aq)2]

-(_x)sfs [($i+l,jA-I - $1-1,JA-1 )/2A_

+ (ns - qJA-1)($i+l,JA-$i+l,JA-I -$i-l,JA + $i-l,JA-1 )/2A_An]

R(2)i£= sin c - (dd-_x)mcos c + g_.(Z$i,JA+l - 4$i,JA + $i,JA-1)/2Aq

+(n s - njA+l)($i,JA_l - 2$1,jA + $i,JA_l)/(An)2_

- (dd'_x)fs[($i+l,JA+l - $i-l,JA+l )/2A_S

+ (ns - "JA+l)($i+l,JA+l - $i+l,JA - $i-l,JA+l + $i-l,JA )/2A_An]

Computational Procedure and Results

I. Three grid spacings are used: fine, medium and coarse.

2. An initial approximation on the fine grid is obtained by

first obtaining an approximation by relaxing on the coarse

grid and interpolating these results to the medium grid,

where they serve as an initial approximation. Relaxation

is again performed on this grid, and these results are

interpolated to the fine grid to be used as its starting

approximation.

3. The residuals are calculated on the fine grid using (B-8)

and are transferred to the coarse grids.

4. A few relaxation sweeps (three are used here) are used on the

coarse grid to solve (B-7) (approximately) on that grid.

5. Using quadratic interpolation the coarse grid values of.

are transferred to the medium grid to serve as an initial ap-

. proximation to (B-7) there. At the same time, the residuals

are transferred to the medium grid.
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6. (B-7) is relaxed a few times on the medium grid and the

results interpolated to the fine grid. Three relaxations

suffice here.

7. In the present problem, it was found necessary to relax

three times on the finest grid, after which the new approxi-

mation _ to _ was found using (B-6).

8. On the fine grid, we relax % three times and check the

convergence tolerance: maxIA_I < €.

If convergence has not been achieved, new residuals are

calculated and Steps 3 to 8 are repeated until convergence to

the desired tolerance is achieved. Optimization of the multigrid

cycle was not attempted.

Multigrid computations were made at both zero incidence and

at an incidence angle of five degrees. In the former case, the

method gave the expected improvement in efficiency, but for the

latter case there was no significant improvement over the

original code. The interior flow computations appeared to be-

have well, but the circulation about the airfoil converged very

slowly. It is possible that an error exists in the program

relative to the treatment of circulation on the various subgrids,

though a considerable effort to find one was not successful.

To illustrate the method, we take the case of an NACA 0012

airfoil at zero angle of attack. For comparison we list the CPU

time on an Amdahl 470 V/6-11 computer and the equivalent number

of fine-grid iterations used (i.e., iteration on the coarse grid

of spacing 2h is 1/4 of an iteration on the fine grid). The same

value of relaxation factor was used throughout. The convergence

tolerance was set at 10 -5

Finest Grid No.of Orisinal Code Multigrid Code
Grids

CPU(sec) Work Units CPU (sec) Work Units

25 x 13 2 20 2.2 46

49 x 25 3 19.5 187 5.8 59

97 x 49 3 59.0 114 30.6 , 71

I ] -- , ,
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Figure i. Summary of Triple-Deck Results for Incompressible

Traillng-Edge Flow for a Flat Plate at Zero Incidence•
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Figure 2. Configuration of Two NACA Airfoils.
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Figure 3. Effect of Point of Initiation of Interaction on

Displacement Thickness, for NACA 0012 Airfoil.

RN = i0,000, NX = 2, Carlson Grid, X2 = 1.9.

• (4) xI = 0.52;(5) xI = 0.19.
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Figure 4. Effect of Grid Distribution on Displacement Thickness

for NACA 0012 Airfoil. RN = 10,000; NX = 2; X1 = 0.19_ X2 = 2.8.
(9) Carlson Grid; (14) Fine Grid.
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Figure 5. Effect of Downstream Extent of Grid on Displacement

Thickness for NACA 0012 Airfoil. RN = 10,000; NX = 2;

Fine-Grld Wake; X1 = 0.19.

(r4)X2 : 2.8; (18)X2 = 1.9.
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Figure 6. Displacement-Thlckness Results for Two-polnt and

Three-Point Integration Schemes for NACA 0012 Airfoil.

RN = 10,000; X1 = 0.19, X2 = 1.9.
(16)NX = 3; (18)NX = 2.
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Figure 7. Effect of Reynolds Number on Distribution of Skin-

Friction Coefficient for NACA 0012 Airfoil.

- NX = 2; Fine-Grld Wake; X1 = 0.19, X2 = 2.8

(A)R N= i000; (B) RN = i0,000; (c) RN = i00,000.
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Figure 8. Effect of Reynolds Number on Distribution of Pressure

Coefficient for NACA 0012 Airfoil.

NX = 2; Fine-Grld Wake; X1 = 0_9; X2 = 2.8.

(A)RN = i000,(B) RN = i0,000;(C)RN = i00,000.
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Figure 9. Effect of Reynolds Number on Distribution

of Skin-Friction Coefficient for NACA 663-018 Airfoil.

NX : 2; Fine-Grid Wake; X1 : 0.30; X2 : 2.0.
T

(A)RN : i0,000;(B)RN : 40,000.

49



Figure 10. Effect of Reynolds Number on Distribution of

Pressure Coefficient for NACA 663-018 Airfoil. NX = 2;

Fine-Grld Wake; X1 = 0.30; X2 = 2.0.

(A) _ : Zo,ooo; (B) _ : 40,000.
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Figure ii. Velocity Profile in Boundary Layer

at Trailing Edge of NACA 663-018 Airfoil at

. RN = 40,000.
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