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COMPARISON OF CALCULATED AND MEASURED PRESSURES ON STRAIGHT- AND
SWEPT-TIP MODEL ROTOR BLADES

Michael E. Tauber, I-Chung Chang, David A. Caughey,*
and Jean-Jacques Philippet

Ames Research Center

SUMMARY

Using the quasi-steady, full potential code, ROT22 , pressures were calculated
on straight- and'swept-tip model helicopter rotor blades at advance ratios of 0.40
and 0.45, and into the transonic tip speed range. The calculated pressures were
compared with values measured in the tip regions of the model blades. Good agreement
was found over a wide range of azimuth angles when the shocks on the blade Were not
too strong. However, strong shocks persisted longer than predicted by ROT22 when the
blade was in the second quadrant. Since the unsteady flow effects present at high
advance ratios primarily affect shock waves, the underprediction of shock strengths
is attributed to the simplifying, quasi-steady, assumption made in ROT22.

INTRODUCTION

The emphasis on increasing helicopter flight speed has resulted in higher rotor
advance ratios and tip Mach numbers. However, it is essential that desired perfor
mance improvements not be made at the expense of increasing noise. The formation of
shock waves in the transonic flow on the advancing blade is a major source of high
power requirement and high-speed noise. Therefore, it is essential to understand
and to calculate this three-dimensional, unsteady, transonic flow field.

The first three-dimensional, transonic calculations for flow over rotor blades
were performed by Caradonna and Isom (ref. 1), using small disturbance theory. The
calculations were made for a non1ifting rotor in hover such that the tip speed was
representative of forward flight. Subsequently, this steady formulation was extended
to the unsteady, forward flight case (ref. 2); however, the spanwise free-stream
velocity component due to rotation was assumed to be small and thus ignored. Grant
(ref. 3) included all free-stream velocity components in his solution of the tran
sonic small disturbance equation for non1ifting forward flight, but assumed quasi
steady flow.

~ In contrast to the difficulties encountered in calculating the rotary wing flow
field, computer codes for solving the three-dimensional transonic flow over lifting
fixed wings have been available for some time. A widely used one is the full poten·
tial code, FL022 , developed by Jameson and Caughey (ref. 4). The FL022 code solves
the nonconservative, inviscid, full potential equation using exact surface tangency
boundary conditions. The ROT22 code (refs. 5 and 6) was developed by reformulating
FL022 to calculate the flow about a lifting rotor blade in forward flight. Although
the full potential equation is solved, the formulation is quasi-steady in that the
time derivatives of the perturbation potentials were neglected in the interest of

*Cornell University, Ithaca, ' New York.
tONERA, Chatillon, France.



greatly speed~ng the computation. Since the unsteadiness of the flow increases with
advance ratio, it is important to determine the effect of the quasi-steady assump~

tion on the flow field calculation at high advance ratios. Also in high-speed for
ward flight, it was proven advantageous to sweep the blade tips to delay shock for
mation. The objective of the present computation/experiment comparison is to .
determine the ability of the ROT22 code to predict pressure distributions on non
lifting straight- and swept-tip blades at high rotor speeds and high advance ratios.

TEST CONDITIONS AND MODEL CONFIGURATIONS

The pressure measurements used were made by ONERA (refs. 7 and 8) on modified
A10uette helicopter tail rotor models having non1ifting, sYmmetrical, airfoil sec
tions. The test was conducted using a rotor on a stand in a wind tunnel; rotor speed
and tunnel velocities were varied to achieve desired advance ratios. Two different
rotor blade configurations were tested. One had a nearly straight leading edge and
a 75-cm radius from the center of rotation (fig. 1); the second configuration (which
had a radius of 83.5 cm) had 30 0 of leading edge sweep on the outer 15% (fig. 2).
Both types of blades had sYmmetric NACA four-digit airfoils, varying in thickness
to-chord ratio from 17% at the widest chord station to 9% at the tip.

Instrumentation on both blades consisted of three chordwise rows of Ku1ite LDQL
pressure transducers, nominally at the 85%, 90%, and 95% radial stations. To achieve
the desired instrumentation density, two tips were built for each configuration. The
straight tips were nearly identical. However, the swept tips differed slightly, thus
introducing some scatter in the data, notably at the middle, most densely instru
mented, stations. The measured data were transmitted via an electro-pneumatic switch
and slip rings to amplifiers. Mean instantaneous pressures were computer averaged;
values were measured at 256 blade azimuthal positions. On the straight blade, the
thickness-to-chord ratios at the instrumented stations were,in the direction of the
tip, 13.1%, 12.15%, and 10.6%; while for the swept-tip blade the ratios were 13.5%,
12%, and 10.5%.

COMPUTATIONS

The ROT22 code, described in references 5 and 6, with the correction of refer
ence 9, was used to calculate the pressure distributions on the blades. ROT22 solves
a quasi-steady approximation to the three-dimensional, full potential equation in a
blade-attached coordinate system. The quasi-steady approximation greatly reduces
computation time, since the true time-dependent history of the solution need not be
computed. A computational grid of 120 points chordwise, 16 vertically, and 24 span
wise, was used for the straight blade; resolution was more critical for the swept-tip
blade,and the number of spanwise stations was increased to 32. About two-thirds of
the spanwise computational stations were on the blade; the remainder were in the
field inboard and outboard of the blade tip. Using an efficient, fully vectorized
version of the code on a CRAY IS computer, computation times of 20-30 sec per case
for the straight blade, and 40-50 sec for the swept-tip configuration were obtained.
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RESULTS AND DISCUSSION

The results of the ROT22 computations were compared with the ONERA measurements
at blade azimuth angles of 30°, 60°, 90°, 120°, 150°, 180°, and 270° for advance
ratios of 0.40 and 0.45 (see table 1). For the straight blade, the spanwise mesh
spacing was adjusted so that a computational plane was located at the middle instru-·
mented station (0.892) while for the swept-tip blade, the crank in the tip (0.857
station) was matched. The pressure coefficients were linearly interpolated between
the nearest computational stations for the other two radial stations. The pressure
coefficient was defined as

C
p

= 1 1:2.-. _ ]\
o•7M~ \Poo ')

where the section Mach number was

(1)

(2)

Here Voo was the forward flight speed, aoo
blade rotation rate, and the subscript s

the free-stream speed of sound, w
refers to the blade radial station.

the

Theory and experiment compared well for the straight blade at an advance ratio
of 0.4 at all azimuth angles except 270°1 (see figs. 3(a)-3(g». At the important
90° position (fig. 3(c», the tip Mach number was 0.84, resulting in a sizable region
of supersonic flow. However, at 120° the flow was entirely subsonic. At the higher
advance ratio of 0.45, and a maximum tip Mach number of 0.87, agreement with the data
was again good (figs. 3(h)-3(n». The exception was at 120° where a pocket of super
sonic flow was present near the leading edge, and the subsequent shock persisted
longer than was calculated; this caused the peak expansion pressures to be somewhat
underpredicted.

The swept-tip blade represents a more complex geometry than the straight, and
experienced higher tip Mach numbers since the tip speed was increased from 200 m/sec
to 210 m/sec. At the advance ratio of 0.40, the maximum tip Mach number was 0.88,
and at 0.45 it was 0.91. In general, the agreement was not as good as for the
straight blade; however, there was also more scatter in the data for the swept-tip
cases. Still, agreement at both advance ratios (figs. 4(a)-4(n» was good in the
first quadrant to about 60° and in the second quadrant beyond 120°. At 90° (figs. 4(c)
and 4(j», at the station where the crank in the p1anform occurs, the pressure expan
sion rate near the leading edge is somewhat overpredicted; however, it is possible
that viscous effects were responsible due to the abrupt change in leading edge sweep.
At 120° (figs. 4(d) and 4(k», the tendency of the supersonic region and its termi
nating shock to persist longer and be stronger (the shock was farther aft) than pre
dicted by the quasi-steady calculation is noticeable. The combination of the 30° tip
sweep angle and the 120° azimuth angle resulted in peak Mach numbers on the blade

1At 270° there was much scatter in the data for all cases since the pressures
were below the sensitivity range of the gauges. While ROT22 does not treat the
reverse flow, inboard region, of the blade accurately, the calculation of the flow
on the outboard part of the blade should not be strongly affected by the inaccuracies
in the reverse flow region.
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surface which were almost as high as those at 90° azimuth. Therefore, the region of
supersonic flow persisted farther into the second quadrant when the tip was swept
back, as was previously discussed in reference 8.

CONCLUSIONS

Calculations from the ROT22 quasi-steady full potential rotor flow field code
were compared with pressure distributions measured by ONERA on straight- and swept
tip model rotors at advance ratios of 0.40 and 0.45.

For the straight blade at an advance ratio of 0.4 (corresponding to a tip Mach
number of 0.84 at 90° azimuth), the calculated and measured pressures agreed well.
At the higher advance ratio of 0.45 (corresponding to a peak tip Mach number of 0.87),
agreement was still good, except at 120° where the supersonic region and the shock
persisted longer than predicted by the quasi-steady calculation. The importance of
the unsteady effects for this case was also shown in reference 10 using time-dependent
small disturbance theory.

For the swept-tip blade at the 0.4 advance ratio, the tip Mach number was 0.88
at 90° azimuth and for the 0.45 advance ratio it was 0.91. For both advance ratios,
agreement was good to azimuth angles of about 60° and beyond 120°. At 90°, the pres
sures were somewhat overpredicted, especially near the crank in the tip. At 120°,
the shock strength and locations were underpredicted by the quasi-steady code.

In summary, the unsteadiness of the flow affected shock waves and their position
most in the second quadrant, beyond 90° azimuth. When the combination of tip Mach
number, advance ratio, and airfoil thickness ratio produced relatively weak shocks,
the ROT22 code gave good results. However, when the shocks were strong, they per
sisted longer on the blade than predicted by the quasi-steady calculation; this was
especially noticeable at the 120° blade position.
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TABLE 1. - TABLE OF FIGURES

1\ Tip configuration

$\. Straight Swept
0.4 0.45 0.4 0.45

30° 3a 3h 4a 4h
I

60° 3b 3i 4b 4i
90° 3c 3j 4c 4j

120° 3d 3k 4d 4k
150° 3e 31 4e 41
180° 3f 3m 4f 4m
270° 3g 3n 4g 4n
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