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SURFACE ANALYSIS IN COMPOSITE BONDING

I,	 INTRODUCTION

There is increasing use of graphite fiber reinforced composites for

example in the aircraft industry.	 There is a concomitant increase in interest

j of adhesively bonding these composites.	 A SEM photomicrograph of a typical

i } graphite fiber reinforced composite surface is shown in Figure 1.	 It is the

+a{F detailed analysis of this kind'of surface which is, the primary objective of

this research.	 However, it is recognized that not only is the composite

Sri surface of interest but also the characterization of the fibers themselves and
r ^ j

^. SA q
the interaction between the fibers and the matrix. 	 This report will discuss

=v
surface analysis results for graphite fibers and then for graphite reinforced

composites prior to adhesive bonding and following fracture of lap shear

samples.

	

t	 I:

	`st	 II. GRAPHITE FIBERS

We have reported earlier (1) a study of coated and uncoated graphite

fibers. A description of the fibers studied is g iven i T	 I
a€

p	 g v n n able

Representative SEM photomicrographs of HTS-2 fibers and HMS 'gibers are shown 4^

y.	 t

in Figure 2. Striations are noted for the HMS fibers in contrast to the

smooth surface of the HTS-2 fibers.
^rtf

A wide scan ESCA spectrum of HTS graphite fibers is shown in Figure 3.

The major photopeaks are assigned to carbon and oxygen. A minor N is

K

E, photopeak is also observed. These fibers have quite clean surfaces. Three

	

i	 narrow scan ESCA spectra for the C 1s, 0 Is and N is photopeaks are shown in;^ t

Figure 4 for Thornel 300 fibers. A summary of the ESCA results for the

-`	 different graphite fibers are shown in Table II. The binding energies for all

k
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Ellthe C is and N is photopeaks are fairly constant. The atomic percentages (AP)
 of both oxygen and nitrogen are also listed in Table II; the balance is due to

carbon. Significant differences are noted in both the C/0 and CA ratios for

the different fibers. The HTS-2 fibers have the highest carbon content as

gauged by the high values of both sets of atomic ratios. The surface

	

H,	 composition of uncoated and epoxy coated Thornel 300 fibers variesH,
significantly. The C/N ratio of Celion 6000 increases on rinsing with methyl

	

rill',	 ethyl ketone suggesting some removal of the polyimide finish from these

particular fibers.

The ESCA spectra of Courtaulds AS carbon fibers reported by Wa'ltersson

(2) are shown in Figure 5. Trace amounts of sulfur, chlorine, sodium andr

silicon were noted and are commonly observed residuals of PAN-based carbon AS

fibers. The presence of calcium had not been reported previously but its

source was not identified. Brewis et al. (3) used ESCA to detect changes in

surface composition resulting from different'oxidation pretreatments of

acrylic fibers carbonized at 1600% as shown in spectra A - D in Figure 6.

Photopeaks A and B in the unresolved 0 is is doublet of the untreated fiber

i
are assigned to at 'least two different oxygen species. The lower binding

	

;j	
energy component (Photopeak B) is more predominant in the oxidized fibers.

	

y	 Hopfgarten (4) demonstrated using ESCA that oxidation of Courtaulds HM-S

	

Eli	
carbon fibers is limited to <50 nm by ion etching. The ESCA spectra before

and after etching are shown in Figure 7. The original surface has a

significant 0 is photopeak but oxygen does not appear on the surface which has

	

Fla,	

been ion etched to a depth of 50 nm.

The surface energy of graphite fibers has been studied thermodynamically

in an extensive series of gas adsorption and contact angle measurements by

Drzal and co-workers (5,6). An analysis (5) of the adsorption of krypton on

P.,

-. x

Y.

i



C5
untreated PAN fibers gives a surface area of the fibers of about 0.5 m 21g. A

detailed analysis of contact angles of liquids against graphite fibers was

?
lx made (6) to estimate the polar and dispersion components of the surface energy

^r
F }1%1 of untreated and surface treated fibers.	 The equation below was used to

calculate YD and y  the dispersion and polar components of the surface energy
S	 S

of the fiber, rest,

I$

/2	 /2	 /2	 /2
Y	 (1+ cos a )/2	 (YD)1+

(YD)1(YP)1
(YP/YD)1

L	 L	 S	 S	 L	 L

r Here, contact angles (e) of liquids having known 	 Y L	 and	 YL	 values are

measured against the fiber. 	 Selected results are listed in Table III. 	 The

PAN fibers designated	 'A'	 and	 'ISM'	 were graphitized at 1500°	 and 2600°C, resp.

^y
The designations	 'U'	 and	 'S' mean untreatere, and surface treated to promote

^ matrix adhesion b	 Hercules,	 Inc.	 The surface treatment of eithery	 type fiber

leads to a marked increase in the polar component 
YS 

of the surface energy and

l - T

hence to an increase in the total surface energy YS .	 In a separate series of

experiments, the concentration of oxygen in the fiber surface was calculated

from the ESCA spectra. 	 The correspondence of the results of the macroscopic 

contactc	 angle and the microscopic ESCA measurements is illustrated in Figure

W'
8.	 Here the YS values increase with an increase in the surface oxygen content

of the fibers.

The significance of measurements of surface composition in composite

adhesion is summarized succinctly in Figure 9 where interlaminar strengths of

carbon fiber-based composites are plotted against the density of acidic groups

on the fiber surface (7). An increase in interlaminar strength results from

an increase in the number of surface acidic. groups. Presumably, the higher

e



6

	f'	 strengths result from enhanced adhesion between acidic groups on the fiber

surface and the matrix. Such rettults bespeak the importance of careful

	u	 surface characterization not only of the composite but of the fibers

hil"
themselves.

III. GRAPHITE FIBER REINFORCED COMPOSITES

	

1	 The analysis of graphite composite surfaces is prefaced by reference to

the work of Parker and Waghorne (B). The results shown in Figure 10

demonstrate the marked dependence of the lap shear strengths of carbon

fiber-reinforced composites on the concentration of fluorine on the composite

surface. The higher the surface fluorine concentration, the lower the lap

shear strength. Different adhesives show varying dependencies with a room

te4mperature curing modified epoxy paste being the most sensitive.

A. Composite Fabrication and Surface Pretreatment

Celion 6000/LARC - 160 composites were fabricated by Rockwell

International. Par^iculars of the fabrication process are shown in Figures

	

r.^"
	 11-13 and properties of the fabricated composite panels are given in Table IV.

A SEM photomicrograph of the fabricated composite surface before any

Fil pretreatment is shown in Figure 14. The composite panels were subsequently

pretreated in a variety of different ways including mechanical abrasion,

chemical etching and light irradiation by the Flashblast o process. Details of

the pretreatment processes have been reported (9, 10).

B. Composite Surface Characterization Prior to Bonding

SEM photomicrographs of the composite surfaces following a SiC handsand
d

and the Flashblast® process are shown in Figures 15 and 16 res . Some9	 p

matrix removal but minimal fiber damage is noted in Figure 15 for the SiC

^.w

{Y tr'
„r
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handsand. The composite surface is altered clearly by the Flashblaste process

as seen in Figure 16. SEM photomicrographs for the chemically etched

1	 composite surfaces were quite similar 'to the untreated surface. Progar (11)

	

ii
Eli"	

has done an extensive SEM study of the pretreated composite surfaces.

Selected ESCA results of the composite surfaces are summarized in Table

V. The binding energy (in ev) and atomic fraction of each major photopeak is
ll:

listed. Fluorine was detected at varying levels on most of the composite

k surfaces. A delaminated surface showed a minimal fluorine signal suggesting

that fluorine was introduced only onto the external composite surface during

the fabrication process presumably by contact with the teflon coated glass

rY
fabric; (ZTLL) shown in Figures 11 and 12. Carbon, nitrogen and oxygen are

expected since a poiyimide matrix resin was used. Atomic fraction ratios are

listed in Table VI. The 4/C and N/C ratios are fairly constant for the

untreated, delaninated, mechanically abraded and chemically etched composite

surfaces. However, large differences are noted in the F/C ratio of these same

	

a	 surfaces. Mechanical abrasion reduced the fluorine content whereas chemical

etching was ineffective in reducing the fluorine content. The Flashblaste

r
process not only eliminated the surface fluorine but also oxygen and nitrogen

as gauged by the low values for the three atomic ratios. Thus, the

Flashblast® process results in a carbonized surface.

ESCA results obtained during ion sputtering of the untreated composite

surface are shown in Figure 17. Sputter time on the abscissa is directly

	

1!	 proportional to depth. Thus, the fluorine signal decreases quickly or

alternately stated the fluorine is restricted to the topmost surface of the

composite. This conclusion is consistent with the minimal fluorine signalP	 9

	

'	 observed for the surface resulting from delamination.

Reilley and co-workers (11) have demonstrated convincingly the utility of

doing ESCA on derivatized surfaces to determine the types of functional groups

I 	 '+

i

C
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present on the surfaces. Some ' derivatization reactions are shown in Table VII

with the surface functional group on the left and the expected surface group

after reaction with the derivatizing agent on the right. We have applied this

	

((!	 elegant technique for the first time to composite surfaces. Preliminary

1.
results are shown in Figure 18. Spectra A and B are the F is and Hg 47 and

1
4f5 photopeaks, resp., after derivatizing reactions [3] and [5] (see Table VII)

on the as-received composite. The results indicate that both (COOH) and (C=C)

groups are present on the composite surface. Work is in progress to further

document these assignments of surface functional groups. In complementary

Ste in	 C	 reported (12)	 texperiments, Young, teen and hang have reports ( ) assignmen of surface

functional groups on similar composite surf;.r:ces using diffuse reflectance

FT-IR.

	

'	 Critical surface tensions (yc) of the composites were obtained fromC^

measured contact angles of liquids against the composites using the Zisman

appro ach 1	 values a	 li sted 	 t	 t	 VIpp oach ( 3). The yc 	 rein he last column of Table	 where

significant differences were noted for the different composite surfaces.

(^ 
a

Again, the correspondence between, the results of the macroscopic contact angle

	

lJ	 measurements and the microscopic ESCA results is demonstrated in Figure 19.

Here, the composite surfaces with the lower critical surface tensions have the

higher surface fluorine concentrations. It would be expected based on Parker

and Wanghorne ' s results (8) discussed above ( see Figure 10) that the lap shear

strengths of the untreated composite having a high surface fluorine

	

L,	 concentration would be significantly lower than for pretreated surfaces with a

lower surface fluorine concentration.

C. Composite Surface Characterization Following tap Shear Fracture

The Celion 6000/LARC 160 composites panels were bonded with the epoxy FM

346-18 adhesive	 Lap shear strengths of unaged and thermally aged samples
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are given in Table VIII. The untreated composite can be compared to a

mechanically abraded (SIC handsand), a chemical etch (hydrazine hydrate) and

the Fflashblasta process. Surprisingly, there is no apparent effect of

composite pretreatment prior to bonding on 14p shear strength. That is, the

lap shear strength of the untreated composite is equivalent to the lap shear

strengths for the three pretreated surfaces. At firsts glance, these results

may appear to be inconsistent with those of Parker and Wanghorne (8).

However, the results in Fig. 10 show that for some adhesives, surface fluorine

concentrations in excess of 50% are necessary before a significant reduction

of lap shear strength occurs. Presumably, the lap shear strength of Celion

6000 composite with a LARC-160 polyimide matrix is not strongly dependent on

surface fluorine concentrations at least up'to 30%.

A much reduced fluorine signal is noted in Table VIII for the fracture

surface of all samples compared to the pretreated but unbonded sample. This

result suggests either migration of the fluorine-containing species out of

the fracture region or that fracture occurred away from the original bonding

surfaces. Further work is necessary to distinguish between these two

possibilities.

The lap shear strengths of the thermally aged samples also listed in

Table VIII are significantly lower by a factor of two than for the unaged

(control)-samples. It may be significant that in every case the fluorine

concentration in the fracture surface is greater for the aged than for the

unaged sample. It is not clear whether the presence of fluorine resulted in

the lower lap shear strengths of-the thermally aged samples.

IV. SUMMARY

A significant fluorine signal was observed by ESCA on the as-received

Celion 6000/LARC-160 composite surface prior to pretreatment. Only a trace



^	 R	
..

1p

f
4

fluorine signal	 is noted on a del aminated surface of the same as-received

sample.	 This result indicates that fluorine is introduced probably by contact

, a with the Teflon coated glass fabric during the fabrication step. 	 Chemical

pretreatment was the least effective method of removing surface fluorine while
6^F

the Flashblaste process reduced the fluorine signal to trac 	 levels.	 Critical
j

surface tensions of the pretreated composites were determined from measured

j contact angles.	 Low critical	 surface tensions were characteristic of
t^

3

composite surfaces having high surf a^^e fluorine concentration as determined by

ESCA.
{ fz

g The lap shear strength of the composites bonded with epoxy was

independent of the type of pretreatment and in turn the surface fluorine

concentration.	 In contrast, the lap shear strength of thermally aged bonded

9 composites was about one-half that of the control samples.	 There was a
k.

significant increase in the surface fluorine concentration on the fracture
b

surfaces of the thermally aged samples. 	 The effect, if any, of this fluorine

lei
on the lap shear strength of thermally aged composites was not established.

The ESCA results and contact angle measurements produced information on

T H the surface contamination as a result of fabrication techniques which may

w
provide answers to the strength' and durability of adhesively bonded

composites.	 These techniques have been shown to be capable of providing

valuable information with respect to surface analysis of pretreated composites

prior to adhesive bonding and following lap shear fracture.
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TABLE I

a

[4

DESCRIPTION OF GRAPHITE FIBERS

1	
,

Graphite Fibers	 Description

HMS	 Batch No. 32-2
No surface finish

HTS-2	 Batch No. 94-1
No surface finish

relion 6000	 Lot No. HTH-7=7711
1.2% polyimide finish

Thornel 300	 Grade WYP	 - n
30% Epoxy finish (UC 309)

r	 NASA-2	 CG-3 fiber coated with
styrene/maleic anhydride

NASA-3	 HTS fiber coated with
nadic anhydride

t ^

	 j+Iĵ+ A

rr

ri

f[	

1P

F

41j^

r%
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TABLE II

ESCA ANALYSIS OF GRAPHITE FIBERS

C is 0 is N is
Fiber 3E eV.AP 8E(eVT^AP Be(^VT AP C/O C/N

1. limn (284.0) 88.6 532.4 9.7 399.5 1.7 9. 52.

2. HTS-2 (284.0) 92.9 532.2 6.7 399.4 0.4 14. * 232.

3. Thorne] 300 (284.0) 85.0 532.3 13.4 399.8 1.6 6. 53.

4. Thornel 300 (284.0) 72.4 531.9 23.1 399.0 4.5 3. 16.
Epoxy finish

5. Celion 6000 (284.0) 85.3 531.4 11.8 398.4 2.9 7. 29.
Polyimide finish

6. Celion 6000 (284.0) 85.3 531.8 13.0 399.0 1.7 7. 50.
1EX rinse

7. NASA-2 (284.0) 83.0 531.6 16.0 398.6 1.0 5. 83.

8. NSAS-2 (284.0) 84.2 532.0 14.5 399.4 1.3 6. 65,
Toluene rinse

9. NASA-3 (284.0) 81.0 531.8 17.6 399.1 1.4 5. 58.

10. NASA-3 (284.0) 82.0 531.6 16.4 398.6 1.6 5. 51.

Toluene rinse

Average	 6±1	 51±13

*Values not included in average

ter:

i

v^

.	 j
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TABLE III

POLAR, DISPERSIVE ANp TOTAL. SURFAt3E FREE ENERGY

OF GRAPHITE FIBER SURFACES

Fibers	 Surface free energy {mJ/m2)

	

P	 U	 T

	

Y S	 YS	 YS

„--_.

"ass received"

AU	 23.6	 27.4	 5100

AS	 30.0	 26.4	 56..4

HMU 8.1 33.0 41.1

HMS 20.7 28.2 48.9

^,	 ,

^, .. ;-,^,^ ^-:
..^^ ,

f=^

^_

,:	 ^'

* M ,.

a	 .

rtd...^,.e.....^.^..	 ^ .. _..,--	 -	 . ,
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^^C	 TABLE TV

-^ PROPERTIES OF CELION 6000/LA!tC-160 COMPOSITEa

^! Paned	 No.	 Tg( ' C) Average Specific	 VF Vold
Thickness(r^n) Gravity

{;
x^

._	 •^	 _	 -

1 	 344 (651'F) 2.2	 (0..086	 in) 1.57	 59 0.1

2	 332 {629'F} 2 d {0.079 in) 1.58	 61 <1.0

t

1^

^°^' x(0,0,0,+30,-30,+30,-30)s ply orientation.

^,	 s

,;,
^^,r_^ .^::sir,:.^^^,..

.s_



,^	 :^

_,, ,. -_.. ^_ ::^	 ., __^:	 ^	 -, r- -	 -	 -^,	 _ __	 -^	 --_.	 _

^^

i;^
^:

alt

f
^^
^^

x̂ '`
,.,
.^'

'^^,
^^ Sample Sample
'^^ ^ No. Pretreatment
^^ —

^'^^ lA As-received
^^
^^

x^r' ^

,^ 1B Del a^ninated

;^^

` 5 60A SiC Handsand

^r

	

:a	 9	 Concd. M2SO4 + 30^ H2O2

	

^^ ^	 11	 Fl ashbl ast #2

a^>

	

^	 '°

	

^	 ^	 NSP - no significant peak

''
^^{( ,

(f

c±a^

1

^a
s

t

^f

+t^;...	 -

TABLE V

ESCA ANAL1fSIS OF COMPOSITES

.	 ,

i
r

i

J

a
a

a

.,	 .^

_'°,

=^ ^ `

t^
"r

t

e^
..1.

^:

^'

'I

^^

Photopeak

F l s 0 l s	 Nis C l s

689.0 531..8 399.8 (.284.6)	 B.E.(eV)
0.19 0.11 0.030 0.66	 A.F.

688.8 532.4 400.2 (284.6)
0.002 0.11 0.020 0.86

68+.4 532..2 400.2 (2$4.6)
0.025 0.13 0,020 0.80

689.2 532.0 400.0 (2:84.6)
0.19 0.12 0.020 0.65

532.6 (284.6.)
NSP 0.053 .NSP 0.93
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TABL£ VI

,^	 ^} ESCA ATOMIC RATIOS ANO CRITICAL SURFhCE TENSIONS OF .COMPOSITES

{^
s^

7

^^
^I

^` Sample Atomic Fraction Ratio	 Critical Surface Tension.

f

i^^.
.^ ^ ^^

^^ k lA 0.29 0.17 0.045: 23.
^^

^^z
^^^ 16 0.0023 0.13 0.023 --

^
"`''
^y

`# 5 O.Q31 016 0.025 35.
-{{{ ro

9 0.29 0.18 0.030 31.

^^a.
^ 11	 ^ '0.001 0.057 <0.001 40.

j+

^ 3̂

;^ s'

1 r	
1

^:
r^

M S

4l	 Y

t^YY..4

""_

'^

Y r^ ^

i^^IXi

a a

,5

..
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^::^	 TABLE VIII

R
DERIVATIZATION REACTIONS

^t
	°"^	 Re acti on	 Rroduct

`	 l:	 1^H2	C6F5CH0	
LN=CHC F

	

`^	 1 '	 6 5

	

CF CO) 0	 —COOCOCF
3 2

11	 ^'

	

3`	 +	 1) KOH ^ROH )

	

j	 NCO H	 3	 ^	 }--CO2CH2^6H5
t 2	 2) C f CH Br

6 5 2-

C 6F 5NHNH2	 ^--C=NNHC6F5

	^	 ^ C =0	 '^	 ^

C_	 Hg(CF3CO2)2	 C-Hg(CF3C0^)
(^	 5	 1
^'	 C13CH2OH	 --C-OCH2CCl3

._	 .^,^'	
r ^.
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TABLE VIII

LAP SHEAR STRENGTHS OF THERMALLY AGED ADHESIVELY BONDED COMPOSITES

Sample
Pretreatment F/C),e Exp. Temp (°F) LSS	 (psi} (F/C)f

as-received 0.29 CONTROL 3045 0.025

as-received 0.29 450 1245 0.15

600 SiC Handsand 0.031 CONTROL 2940 0.020

600 SiC Handsand 0.031 4F0	 ^ '445 0.034

NH2NH2 • H20 0.31 CONTROL 3080 0.018

NH2NH2 • H20 0.31 CONTROL 3080 0.011

NH2NH2 • H20 0.31 450 1220 0.079

NH2NH2 • H20 0.31 450 1220 0..090

Flashblast® #2 <0.001 CONTROL 2935 •-

Flashblast^ #2 <0.001 450 1280 --

{

r

as

..Q,

r	 --TM--

...,y	 >,^^r	 x^...^•	 .....^.,.. ,.- k^
._
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OF POOk QUALITY

^__	 _ . _

Figure 1. SEM p hotomicrograph of graphite f iber-reinforced polyimide 	 ^

composite.
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(a) VACUUM BAG LAYUP

NYLON VACUUM BAG

162 GLASS CLOTH
120 GLASS CLOTH

PERFORATED CAUL PLATE
MOCHBERG PAPER

---- -----	 --- TEFLON COATED GLASS FABRIC (3TLL)

COMPOSITE PREPREG
TEFLON COATED GLASS FABRIC (3TLL)
MOCHBERG PAPER
KAPTON OR NON-POROUS 3TLL

STAGING PLATE

SEALANT

(b) STAGING CONDITIONS

1. APPLY 12.7cm (5in) Hg VACUUM AND HOLD FOR FULL CYCLE.

2. HEAT TO 491K (4250F).

3. HOLD AT 491K (425 0F) FOR 30 MINUTES.

4. COOL TO LESS THAN 339K (150 0F) BEFORE RELEASING VACUUM..

Figure 11. Typical (a) vacuum bag layup and (b) staging conditions

for Celion 6000/LARC-160 composite fabrication.
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