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ABSTRACT

A commercially available ceramic coating has been evaluated for
application to metallic heat shields for Shuttle-type entry vehicles. Coated
Inconel 617 specimens were subjected to thermal .shock cycles, surface
emittances were measured, and surfaﬁé equilibrium temperatures were measured
for coated and oxidized specimens exposed to an arc-tunnel environment. The

coating adhered very well to the metal and appeared to be very non-catalytic.
INTRODUCTION

For the same earth entry conditions, a metallic surface of an entry
vehicle will usually be subjected to a higher heating rate than a non-metallic
surface. This difference occurs because metallic surfaces are generally
catalytic to the recombination of dissociated air molecules, and the energy of

dissociation, released during recombination, adds to the heat load.

Several advanced thermal protection systems are being considered for
future Shuttie-type entry vehicles (ref. 1). One concept being considered for
the 1600-2000°F range has an Inconel 617 outer face sheet (ref. 2). To
prevent this surface from being exposed to the added heat load due to

recombination, the Inconel 617 face sheet must be made non-catalytic.

In this paper, a commercial ceramic coating has been evaluated as a
non-catalytic coating for Inconel 617. Coated specimens were subjected to
thermal shock cycles, surface emittances were measured, and surface
equilibrium temperatures were measured for coated specimens and oxidized

specimens exposed to an arc-tunnel environment.
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TESTS

Both coated specimens and oxidized specimens of Inconel 617 were tested
in this investigation. The latter specimens provided a basis of comparison
for the coated specimen. The oxidized specimens were first cleaned until a
water-sheeting surface was obtained, and then the specimens were oxidized for
two hours at 1800°F in an atmospheric furnace. The resulting oxide was

uniform and stable.

The ceramic coating is a commercially available, water base,
silica-alumina type proprietary coating designated CRC-SBE.* The coating,
which has been used extensively inside commercial furnaces to improve furnace
efficiency was applied to the Inconel 617 specimens and cured at 500°F after
application. Both 0.005 inch and 0.050 inch Inconel 617 specimens were

coated. The thickness of the cured coatinb was 0.0015-0.002 inches.

Thermal Shock Tests
The thermal shock tests were conducted in an atmospheric oven. Sixteen
test specimens of 0.005 inch Inconel 617, approximately 1.0 inches square and
coated on one side, were used in the tests. The furnace was heated to 2000°F
and held at that temperature. For a typical thermal shock cycle, the
specimens were inserted into the hot furnace for 20 minutes and then taken out

and allowed to cool at ambient conditions to near room temperature. Two

* Produced by the Ceramic-Refractory Corporation, Transfer, PA. Use of trade
names in this publication does not constitute endorsement, either expressed
or implied, by the National Aeronautics and Space Administration.



specimens were removed from the sequence after each ten cycles. Thus, the
least exposed specimens were subjected to ten cycles, and the most exposed

specimens were subjected to 80 cycles.

Emittance Measurements
The emittance of both oxidizéd and coated Inconel 617 specimens was
measured using the apparatus and iethod described in reference 3. The
emittance of the oxidized metal was measured after it had been oxidized in the
furnace and after exposure in the arc-tunnel. The emittance of the coated
metal was measured after curing and after 80 cycles of exposure in the furnace

environment.

Arc-Tunnel Tests

Test models. - The configuration of the arc-tunnel test models is shown
in figure 1. The test specimens, which were of 0.05 inch thick Inconel 617,
were mounted on blocks of 50 ]b/ft3 fused silica using metal straps
spot-welded about one inch from each corner of the specimen. The straps were
inserted through holes in a silica block and fastened on the underside of the
block. The surface of the specimen was about 1/8 inch below the surface of
the copper wedge because previous tests (ref. 4) have shown that a more
uniform heating distribution can be obtained with a rearward facing step than
when the specimen is flush with the wedge. Four 30 gage chromel-alumel
thermocouples were spot-welded symmetrically one-half inch from the center of
each specimen. The thermocouple lead wires were covered with a silica cloth
sheathing, inserted through a hole in the silica block, and taken out through

a hole in the water-cooled copper wedge to a junction box.



Test Apparatus. - Figure 2 presents a simplified diagram of the Langley

Research Center 1-Megawatt Aerothermal Arc-Tunnel. The arc-heated wind
tunnel, which is described in reference 5, consists of a Thermal Dynamic
F-5000 constricted-type d.c. arc-heater, a plenum chamber, a 15° conical
supersonic nozzle with a 1.0-inch diameter minimum and a 6.0-inch diameter
exit, a free-jet test section, a diffuser, and a 3-stage steam ejector. The
arc-heater consists of a tungsten cathode and a water-cooled-copper anode.
The arc is stabilized on a tungsten cathode with a nitrogen vortex. 0Oxygen
can be added downstream to simulate an air mixture or additional nitrogen can
be added for a 100% nitrogen flow. The arc is magnetically stabilized on the
anode. The nominal stagnation pressures were 0.85 atm for simulated air and

0.75 atm for nitrogen.

Test Environment. - The test environments used in this investigation are

given in Table 1. The local pressure at the test surface was measured with a
calibration model the same size and shape as the test models. For the tests
in air, the enthalpy was determined by using the following established
facility procedure. Probes were used to determine the stagnation heating rate
and stagnation pressure in the center of the stream. A correlation equation

was then used to calculate the enthalpy using the theory of reference 6.

This established method could not be used to determine the enthalpy for
the nitrogen test stream. Stray electrical current could be seen in the test
chamber. Although none of this stray current appeared to attach to the test
specimens, the heating rate probe was affected. Therefore, the enthalpy was

determined using an energy balance method.



The baseline test environment was established by adjusting the arc-tunnel
power settings until the oxidized specimen reached a temperature of
approximately 1750°F when tested in air. The coated specimen was tested at
the same power settings. For the tests in 100% nitrogen, the arc-tunnel
current and mass flow rate were kept the same as for the tests in air.  The

resulting arc-tunnel voltage and specimen temperature were lower.

RESULTS AND DISCUSSION

Thermal Shock Tests

After the thermal shock cycles were completed, the specimens were
examined using an electron microscope. Decarburization of the Inconel 617 was
significant after as few as 10 cycles or 200 minutes at 2000°F (fig. 3).
Decarburization is the main mechanism for the decrease in creep resistance of
Inconel 617 at high temperature (ref. 7). Examination of the coated and
uncoated sides indicates the coating did not affect the decarburization rate.
Also, the coating appeared to be firmly attached to the metal even after 80

temperature cycles.

Emittance Measurements
The surface emittance of the specimens was determined by measuring the
monochromatic normal emittance at several wavelengths between 1 and 15 microns
and then integrating to obtain the total normal emittance at the test

temperature.

The emittance of the oxidized surface was measured on two specimens. The

emittance of one specimen was measured after being oxidized (fig. 4). The



other specimen was taken from the arc-tunnel specimen after it had been
subjected to 4 cycles of arc-tunnel heating (fig. 5). The total emittance of
both specimens was approximately the same, varying from about 0.77 at 990°F to -

about 0.82 at 1880°F.

The emittance of the coated metal was measured in the as received
condition (fig. 6) and also measured with the specimen that was subjected to
80 thermal shock cycles (fig. 7). The total emittance of the as received
coated specimen varied from about 0.70 at 990°F to about 0.65 at 1880°F. The
total emittance of the 80 cycle specimen was about 0.79 at 990°F and about
0.75 at 1520°F. The emittance was inadvertantly not measured at 1880°F on the
80 cycle specimen, however the emittance would probably not change
significantly from the 1520°F measurement (see fig. 6). These tests did not
determine whether the increase in emissivity of the coated specimens after 80
thermal cycles was caused by the carbon-layer under the coating, which
resulted from the decarburization of the metal, or by a change in the coating,

which resulted from the long-time high temperature exposure.

Arc-Tunnel Tests

The results of the arc-tunnel tests are shown in Table 2 and figure 8.
The maximum surface temperatures given in Table 2 are shown in figure 8 as the
temperatures at 165 seconds when the surface had approximately reached
equilibrium. The maximum surface temperature for each test and the measured
emittance for each type of specimen were used to calculate a heating rate
ratio for each test stream. The heating rate ratio is the emittance of the
coated specimen (€) times the fourth power of the maximum absolute temperature

of that specimen (T) divided by the product of the same quantities for the



uncoated specimen. Inherent in these calculations is the assumption that the
heat input to the specimens is equal to the heat output from the specimens
which is approximately equal to the heat rejected by radiation. At maximum
temperature conditions this approximation is satisfactory since the heat being
stored and rejected by mechanisms other than radiation are insignificant
compared to the heat rejected by radiation. Although a higher emittance for
the coated surface would reduce the surface temperature and thus increase heat
shield thermal efficiency, the heating rate ratio given in Table 2 would not
change significantly even if the emittance were changed because the increase

in € would be countered by the decrease in T4.

As can be seen from Table 2, the heating rate ratios are quite
small--0.37 for the air stream and 0.29 for the nitrogen stream. These small
ratios show that the coating is very non-catalytic compared to the oxidized

surface.

The heating rate ratio is smaller in the nitrogen test stream than in
air. Calculations of the stream composition using the equations of reference
8 and assuming chemical equilibrium indicated that in air essentially all the
oxygen and 7 percent of the nitrogen was dissociated, where as in pure
nitrogen, approximately 18 percent was dissociated. Because the catalytic
effect is more pronounced in the nitrogen stream, these results indicate that
nitrogen recombination rather than oxygen recombination was the dominant
catalytic effect. Reference 9 suggests that at the surface temperatures
obtained during these tests, the oxygen would recombine on both the coated and
uncoated surfaces. Thus nitrogen recombination should be the dominant

catalytic effect observed in these tests.



CONCLUDING REMARKS

A commercially available ceramic coating which is being considered for
metallic thermal protection systems for advanced entry vehicles has been
evaluated as a non-catalytic coating for Inconel 617. Coated Inconel 617
specimens were subjected to up to 80 thermal shock cycles, each cycle
consisting of a 20 minute exposure in a 2000°F furnace. Microscopic
examination showed that the coating did ﬁot interact with the metal and that

the coating was still firmly attached to the metal after 80 cycles.

Surface emittance was measured on coated specimens and oxidized (2 hrs.
at 1800°F in air) specimens. The measured emittance of the oxidized specimens
varied from about 0.77 at 990°F to 0.82 at 1880°F. The emittance of the

coated specimens varied from about 0.70 at 990°F to 0.65 at 1880°F.

The arc-tunnel test results showed that the coated surface was much Tess
catalytic than the oxidized metal. In air, the heating rate on the coated
surface was 37 percent of the heating rate on the oxidized surface and in
nitrogen, the coated specimen heating rate was only 29 percent of the oxidized
specimen heating rate. These results indicate that nitrogen recombjnation is

the dominant effecc in increased heating rates to catalytic surfaces.
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TABLE 1. - NOMINAL TEST CONDITIONS

RECONSTITUTED AIR NITROGEN
TOTAL PRESSURE, ATM. : 0.85 0.76 .
TOTAL ENTHALPY, BTU/LB 5500 5000
MASS FLOW RATE, LB/SEC 0.044 0.047
MODEL STAGNATION PRESSURE, ATM 0.034 0.032
MODEL PRESSURE CENTER POINT, ATM 0.0015 0.0013
MACH NUMBER 4.1 4.2

1



TABLE 2. - ARC-TUNNEL TEST RESULTS

TEST TEST ENTHALPY Tmax> HEATING
STREAM | SPECIMEN btu/1b °F RATE
RATIO**
COATED 5590 1353
AIR 0.37
UNCOATED* 5510 1753
COATED 4890 1045
No 0.29
UNCOATED* 4980 1495
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