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SHOCK CONDITIONS AND SHOCK \,lAVE STRUCTURES IN A STEADY 

FLm'l IN A DISSIPATIVE FLUID 

Paul Germain* and Jean-pierre Guiraud** 

SUM.~ARY 

This work differs from conventional studies on the 
same subject in that the thickness and camber terms, 
usually neglected, are here taken into account. More 
precisely, calling £ the reciprocal of the Reynolds 
number based on the shock wave curvature radius, 
the £ terms of the first order are systematically taken 
into account. The most important result is a system 
of formulas giving a correction of order £ for the 
various P~NKINE-HUGONIOT conditions. The suggested 
formulas may for instance have to be used instead of the 
conventional ones to evaluate the loss of the total 
pressure across the detached shock wave which is 
found at the nose of a very small probe in supersonic 
flow. 

IK'TRODUCTION 

The present paper will make a contribution to the classical 

shock wave theory. Strictly speaking, a shock wave in a perfect 

fluid is a surface along which the various parameters which 

characterize the flow (especially pressure) experience this con­

tinuity. The shock conditions are relationships which relate 

the various discontinuities. Such a discontinnity surface in 

fact is only a perfect fluid model of a zone with a very small 

thickness, which exists in a real fluid which is slightly dissipative. 

* r 
Professor at the Sorbonne, outside collaborator with ONERA 

**Research Engineer at the ONERA 
***Numbers in margin indicate foreign pagination 
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.. 
-In th~n .~ t these quantities. experience· subs tan tial variations· -but· 

these are continuous. The 'flow is always continuous, no matter 

-how small the effects of the coefficients are which characterize 

the various dissipation mechanisms. In an exact sense, how can we 

legitimately speak of a shock"wave in such a fluid? Is it possible 

to write down shock conditions which complement the classical 

conditions taking into account the dissipative effect? Such is 

_. - ~ .-:.. -:. -~ _.' 
.- .",-* 

the purpose of this paper. /4 

This has led to various studies which have now become 

classical [2, 6, 7, 9] and provide a valid model when the coefficients 

of the dissipation mechanisms are evanescent. Recently, the question 

has been discussed by Sedov-Mikhailova and Chernii [8] and also 

by Probstein and Kemp [5], in order to improve the description when 

the dissipation mechanisms are weak and not evanescent. This was 

treated in a memoire which discusses a number of interesting 

questions. For reasons to be discussed below, the responses given 

by these various authors are not satisfactory. 

Our discussion will be divided into four parts. In the first 

part which continues in a sense our Introduction, we will analyze 

the work of Probstein and Kemp. In addition to its intrinsic 

interest, this will allow us to discuss the relationship between 

our problem and modern aeronautics. The formulation of the problem 

is then described exactly and intuitive analysis is performed in 

order to show the kind of results obtained and the terms which have 

to be implemented in order to obtain these results. The second part 

has the purpose of setting the simple properties of a class of 

functions, called N.S., which allows one to formulate in a mathe­

matically explicit manner the term which is loosely called shock 

wave and shock conditions in a fluid which has dissipation mechanisms, 

for example, a fluid which satisfies the Navier-Stokes conditions. 

In the third part we will use a global method to formulate the shock 

conditions in the most general way • • 
We will use a symbolic notation 

in the case of a steady flow. The calculations are made up to 

first order in R!. The result shows that some of the additional 

terms which are introduced in the conditions (compared with the 

classical Rankine-Hugoniot conditions) require a precise knowledge 

of the development of the flow inside the zone in which the rapid 
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but continuous variations of the various characteristic quantities 

take place. 

The study of this "internal structure" of the shock wave is 

discussed in the last part. We indicate how one should set up 

differential equations which govern this structure and we proceed 

with the solution of these equations. Independent of the global 

method one can then obtain the shock conditions and one can prove 

the coherence of the general theory which is presented here. In 

this article we will limit ourselves to the consideration of 

first order terms, but verification of coherence was made for all 

orders. /5 

1. PRELIMINARY GENERAL P.EMARKS 

With the construction of artificial satellites and rockets 

having slow re-entry, there is increasing interest in the prediction 

of the aerodynamic characteristics of flying machines which fly 

at a very high speed and a very high altitude. Even though the 

stresses encountered and the heat flux received are small, because 

of the low atmospheric density, it may be important to take them 

into account for long flights. 

Two aerodynamic regimes can be considered to be well known 

at the present time, at least from the engineer-designer point of 

view. First of all we have the molecular regime and the continuous 

regime. The molecular regime is the regime for which the average 

mean free path is sufficiently large with respect to the characteristic 

dimensions of the obstacle, and for this the gas molecules can be 

considered as independent of one another. From the point of view 

of calculations of these forces the aerodynamic aspect of this 

regime does not introduc~ any difficulties. The only question 

which is not entirely clear is the mechanism of the reflection of 

molecules at the surface of the object. At the other extreme, 

the continuous regime is so well known that it is not necessary 

3 



~ to discuss it. 

Therefore, for the aerodynamic designer, the aerodynamic 

regime which is most important for extended flight at high 

altitudes may be the intermediate regime. This is a situation 

which exists when the flight is not high enough so that the 

rarefaction of the air is sufficient so that one can utilize the 

very s~~le molecular regime properties, but is not low enough 

so that one could use these numerous results for the continuous 

regime. 

The intermediate regime which we will now discuss is 

characterized by the requirement for describing the microscopic 

structure of the gas medium and equilibrium. This is a structure 

which varies greatly from the Maxwell-Boltzmann structure, which is 

adapted to extreme regimes. The Boltzmann equation states the 

compromise which is realized between the tendency to move away 

from the Maxwell-Boltzmann distribution due to the motion of the 

molecules by inertia, and the trend to return to this cononical 
distribution due to the regularization effect of the collisions. 

In principle it should be able to predict the variation of the 

microscopic structure of the gas medium and consequently to determine 

the aerodynamic characteristics of the obstacles in the intermediate 

regime. 

In any case, the extreme complexity of the Boltzmann equation 

(integral-differential equation which is highly nonlinear) has 

discouraged all attempts to obtain explicit solutions which are 

different from the Maxwell-Boltzmann solution. Experimentation at 

high speeds and in a rarefied atmosphere is difficult. There are 

at least two decades of aerodynamics of the intermediate regime 

which are entirely unknown . 

• 
But the development in this area is rapid, and we now have 

both theoretical and experimental reasons which lead us to assume 
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that the variation of the aerodynamic characteristics is 

perfectly known from one of these extreme regimes to the other. 

If this is confirmed, togethe~ w~.th a good knowledge of the 

continuous regime and the molecular regime, then approximation 

formulas will make it possible to predict the initial part of 

the variation from either one of the other two regimes. For the 

engineer, this will be sufficient information for interpolation 

with enough certainty of the variation of the aerodynamic 

characteristics in the intermediate regime. The various recently 

developed models may be sufficiently powerful in order to make 

a direct study of the intermediate regime and also to support 

interpolation methods. 

1.1. CRITICAL EXAMINATION OF THE MEMOIRE OF PROBSTEIN AND 

KEMP (P and K) 

Recently the study of heat transfer of the stagnation point 

was discussed in a memoire* of Probstein and Kemp [5] in order 

to extend slightly the results of the continuous regime already 

/6 

known into the intermediate regime. In reality, the work of these 

authors goes even further. Figures 6 and 7 of their memoire show 

this. It is possible to show that an interpolation within the 

intermediate regime between the continuous regime and the molecular 

regime is possible with minimum difficulty. Nevertheless, in spite 

of this technical success, and one might say even because of this, 

the work of P and K is not without criticism, both in the conceptual 

and fundamental sense. The purpose of the present article is to 

examine one of the points of the P and K memoire which can be 

criticized. We will attempt to shed light on the controversial 

question [4, 5, 8] of shock conditions within a dissipation medium. 

But before starting the present study, we have to somewhat analyze 

the work of P and K. After this is done, the reader will undoubtedly 

feel that the question ~ormulated is a fundamental one. We are 

considering the problem of the flow over a sphere or a circular 

cylinder near the stagnation point. We will follow the investigation 

* In the following we will call this memoire by its initials P and K. 
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I ·of P and K about the influence of rarefaction. One is then led to 

distinguishing less than eight flow regimes mentioned above. 

Regimes 1 and 8 are naturally the two extreme regimes mentioned 
".""_ n- .. "_ 

before. The mean free path and the viscosity are directly related 

~~PaA with ~ = viscosity and p = specific mass, a = speed of 

sound, A = mean free path"). The continuous regime is a fluid regime 

which is almost perfect, that is~it"has only slight dissipative 

mechanisms. It follows from this that the viscous fluid effects 

and the heat conduction are only felt in the boundary layer near 

the obstacle. Naturally they are felt through the 'shock waves 

because the concept of a shock wave, discontinuity surface are 

conditions of a perfect fluid, which have to be replaced by the 

path layer with a very high gradient if one takes into account 

the dissipation mechanisms. Also, the shock wave effects are one 

order ~igher than the boundary layer effects so that in regime (1), 

which ~ne can call the limit boundary layer, the shock waves can 

be mo~eled by a discontinuity surface. The remaining six regimes 

estab!ish a division which may be artificial of the intermediate 

regime. Using approximation formulas, one can distinguish in 

realit~1 three sub-regimes within the intermediate regime. There 

is the almost continuous regime" or sliding regime for which one 

takes into account terms on the order of M~/jRe~ (M~ Mach 

nurnbe= of the incident flow, Re~ = P .. U .. R/~ .. Reynolds number 

of the flow upstream based on the radius of the obstacle). There 

is the almost molecular regime for which one takes into account terms 

on the order of Re .. /M.. There is the transi tion regime proper, 

for vl:-.ich one considers all of the characteristics of the intermediate 

regime. The regime (7) of P and K is the "First-order collision 

regime~, but does not differ from the almost molecular regime. /7 

One a:'so has to identify regime (2) or the "Vorticity interaction 

regime~ and the almost continuous regime mentioned above. The re­

maini~; four regimes: "viscous layer regime (3), "incipient merged 

layer ::-egime" (4), "fulW merged layer regime" (5), "transitional 

regime" (6) with the only real transition regime. From the point 

of vie~ of kinetic theoiy of gases, this division into six sub-

regimes is not necessary. 
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In fact, the point of view of P and K is different because 

it is not based on the concepts of kinetic theory of gases, but 

on the theory of continuous m~dia and the Navier-Stokes equations. 

The best proof of this is that in regime (2), in which we have found 

the sliding regime of the kinetic theory of gases, the sliding 

conditions and temperature jump conditions at the wall are not taken 

into account by P and K, and also not in regimes (3) and(4}. 

Since we have now discussed this, the rather artificial 

division of P and K is based on the sUbstitution of the initial 

problem by four different problems which are assumed to be directly 

related to the evolution of the first problem as a functon of the 

degree of rarefaction of the air. Let us discuss this in more 

detail and also the four problems. The problem of regime (1) is 

so well known that it is not necessary to discuss. The problem of 

regime (2) is the same as for regime (1) but there is only a changed 

condition at the boundary layer edge, so as to consider the 

effect produced on it by an external vortex, a vortex produced by 

the shock wave. The problem of regime (3) is the problem of 

a flow of a viscous fluid between an obstacle and a shock wave, 

when one assumes that the Rankine-Hugoniot conditions are 

valid over the shock wave. The problem of regime (4) is the 

same as that for regime (3), but for different conditions over the 

shock, which makes it possible to take into account the thickness. 

Naturally the question can be posed as to how the four 

problems discussed are related to the evolution of the solution 

of the initial problem as a function of the degree of rarefaction 

of the air. This is a very difficult question and it does not seem 

possible to give a satisfactory answer, at least from the theoretical 

point of view. The only remark which we can make, and which was 

stated by P and K, is that recent studies have shown that the 

conclusions derived fro~ the Navier-Stokes equations agree well 

with experimental results in the rarefaction domains, where from 

the beginning one would expect a good agreement. Based on this 

remark, we can replace the initial problem by a less difficult 
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problem and which is probably well posed: the variation of the 

flow of a viscous fluid over ~n obstacle having a rounded nose 

when the dissipation mechanism coefficients (viscosity and -conductivity) increase from a value of zero. The question has 

special importance if one wishes to enlarge the area of debate 

and if one wants more than a simple'analysis of an expedient means 

of predicting the aerodynamic characteristics at high speeds and 

high altitudes. In effect, this is one of the aspects of a 

fundamental problem which arises and which is being discussed more 

and more by applied mathematicians: how to study problems with 

nonlinear limits, in order to obtain explicit solutions and 

using asymptotic expansion. This is certainly the problem 

raised by the memoire of P and K, even though it is not strictly 

stated in these terms. It is necessary to expand the heat flux 

for example, according to powers of l/J~_ , and the expansion 

starts with a term in l/./Re.. The only valid criterion for 

distinguishing among regimes is the following: determination 0= 
each coefficient of expansion is related to solving a special 

problem, and one is certainly free to assign a flow regime to each 

one. Certainly, the preceding criterion is the only one that 

an applied mathematician can accept. 

1.2 EXACT DEFINITION OF THE PROBLEM BEING STUDIED 

Of course it is necessary to examine the memoire of P and K 

•• "_ t·_·". ... 'l'"J",. . ~ ':'\ . 

/8 

from this point of view. This is a problem of singular perturbations, 

because a unique formal development can only be valid close to an 

obstacle and also close to a shock wave. These are two regions 

where there are large gradients. Our purpose here is more limited 

because we will propose to only study the vicinity of the shock wave. 

But we will operate with a maximum of generality by posing the problem 

as a question in the ~llowing form. When the fluid has dissipative 

mechanisms (essential viscosity and heat conduction), which are 

small but not zero characterized by a small parameter £, and if we 

have a perfect fluid, then for this fluid, how can one develop 

using asymptotic expansions in £, a representation of the real fluid 

close to (r), where (E) is the shock wave? 

8 



The answer to this question has to. give conditions over the 
shock wave (r) to be applied for regime (4) • Conditions of this 

type were obtained by P and K'but they are different from the ones 

established here and which are certainly exact, .because they are 

obtained using an exact systematic procedure. The differences 

essentially come from the fact that P and K did not have a special 

technique for solving this problem. They wrote down the Navier­

Stokes equations in integral form using intuitive ideas about the 

orders of magnitude. which led to approximations. It is difficult to 

control the validity of these approximations and especially the 

significance of them with respect to the question being discussed. 

Again we have shown that obtaining terms of a higher order in an 

asymptotic expansion is most of all a technical procedure in con­

trast to determining the first term. The first term often is obtained 

using intuitive methods. Only a posteriori will the result be 

justified by the technique. 

Let us now directly consider the question being discussed, 

by trying to develop as intuitively as possible the solution method. 

In Figure 1 a) we show (E) which is the discontinuity surface 

model of the perfect fluid. In a real fluid, it is part of a 

band B which lies between (E 1) and (E 2)' Inside of this, the 

gradients are much larger than outside of it. In 1 b) we 

schematically show the profile of the densities when one moves 

p~rpendicular to (E). Outside of B, we can make a formal expansion 

according to the powers of the small parameter E which characterizes 

the magnitude of the dissipation mechanisms. 

I 
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Let 

+ ED r!n)+ ••••• 

+ ED p(D)+ ••••• 

+ ED h(D)+ ••••• 

D ...(0) + E' ::;" + •••• , 
D V(O) + € + ••••• 

(1) 

be such expansians for the pressure, the specific mass, the 

specific enthalpy, the specific entropy and the velocity vector. 

When one limits oneself to variables with index O,'which is exact 

for a perfect fluid (£=0) and which constitutes the zero order 

approximation for the real fluid, the variables in question will 

satisfy the perfect fluid equation 

(2) 

and the Rankine-Hugoniot conditions over (r): 

[p.0) wC0)] = 0 I 

[ UfO) ] = 0 • 

[ p(o) + p(o) w(o)z ] = 0 I (3) 
(0)% 

[Ho)+ '!!..-- ] = 0 • 
2 

In the equation (3) the [ ] indicates a difference between 

the values of the expression inside the bracket, directly adjacent 

/9 

to either side of (L); w is the vector velocity component perpendicular 
• 

to (r) and U designates its projection on the plane tangent to (r). 
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We will designate the n order of approximation as being the 

result obtained by taking into account the first n terms in 

equation (1). The approximation of rank n is formed by variables 

having an index n. The determination of the approximation of 

rank n includes the solution of a linear system of partial 

differential equations with suitable boundary conditions, 

especially on (r). 

The expansions (l) are certainly not valid close to (L), in 

the sense that they do not represent the real flow in this vicinity, 

that is, within the band B. Therefore, one has two expansion 

systems similar to (I): one to the right of (L2), and the other 

to the left of (Ll), which respectively are their areas of 

representation. Even though the expansions discussed are not 

representative within the band, nevertheless they can be extended 

respectively to the left of(L 2 ) and to the right of{r
l
), and in 

particular, right up to (L), where they do not coincide. If we 

do not now discuss the question of which expansion is representative 

(1) close to (r), we can say that we have only a single system of 

expansion, valid to either side of (L), which experiences disconti­

nuities through this surface. The question posed therefore is the 

following: How to express the discontinuities of the variables 

having index n through (L)? We will indicate such discontinuities 

in the following form 

( 4 ) 

One would expect that knowledge of the shock conditions over 

(L) ,that is knowledge of all of the discontinuities (4), allows one 

to determine each of the terms in the expansion one after the other 

(1), using suitable boundary conditions at the various boundaries 

'! ............ -.. .!. ... .;, ~ 

of the flow and the parutal differential equation system which we 

mentioned. This then leads to a representation of the real fluid flow, 

which is valid except close to (L). The exceptional band becomes 

11 
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wider as £ becomes smaller. Inside this band it is necessary to 

carry out a special study. We state that one has to determine the 

internal structure of the sho.ck wave. 

It is important to note that we are not especially interested 

in the vicinity of (~); it is quite sufficient to have only the 

information provided by the expansions (1). Then we have the situation 

represented in Figure 2 where (0) is the approximation curve of 

order 0, that is, the perfect fluid model, (1) is the approximation 

curve of order 1 corresponding to retaining two terms in the 

expansions (l). (00) is the curve obtained by retaining the complete 

series (1), assuming that they converge. Therefore, it can be com­

pletely legitimate to disregard completely the internal structure 

of the shock wave, but with the reservation that one must not lose 

sight of the fact that the fictitious fluid flow obtained is not 

representative for the real flow except for a more or less close 

vicini ty of (~). 

(00) 

(f) 

. ....-'-
....... --: •••• (0) . . . 

•• ... ~. 
(0) •• ;.. . ....­.. ~. 

(1) 

. ~ .. 
•• 

Figure 2 

z 

However, it is necessary to 

determine the expansions (1). For 

this purpose it is of fundamental 

importance to know the shock conditions 

for the approximatiornof various rank, 

that is, the expressions (4) for each 

value of n. For this purpose, we 

are led to pose the following question: 

is it possible to determine the discon­

tinuities experienced by the character­

istics of the fluid, for the rank and 

approximation, without taking into 

account the internal structure of the 

shock wave? We will see that the 

answer is negative and this is funda­

mental because as a consequence, it is 

definitely not possible to disregard the 

internal structure, even if at the end 

of the calculation we are not interested in it, in contrast to what 

may have been stated above. In reality, for the perfect fluid model, 
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that is for the zero approximation, it is not necessary to take it 

into account, but this is a very exceptional circumstance. Start­

ing with approximation of rank 1, the determination of the shock 

conditions involves very greatly the internal structure of the shock 

wave. Sedov, Mikhailova, Chernii [8] nevertheless assumed the 

opposite and gave shock conditions with a first order of approxima­

tion which were wrong. This error was corrected by P and K which 

were very well aware of the fact that it is necessary to take into /11 

account the internal structure of the shock wave using a fictitious 

expression for its thickness. But because there was no technique 

for the problem, these authors were not able to do this in a com-

pletely correct manner. 

1.3 INTERNAL STRUCTURE AND SHOCK CONDITIONS 

Let us consider the one dimensional model shown in Figure 3 

which represents the profile of densities close to (E) z = 0) . 

The solid curve shows the behavior of a real fluid. The dash curve 

which is interrupted is the result of using expansions (1). A 

study of the internal structure, therefore, amounts to studying 

how the solid curve can lead to a continuous agreement between the 

two parts of the interrupted curve in dashed lines. 

In order to study this internal structure, we are led to sub­

stituting a variable ~ for the variable z which is related to z 

with the relationship 

E ~ = z, (5) 

if we note that the width of the band B in Figure 3 is effectively 

on the order of E. Let us now perform this variable change in the 

two functions shown in this figure: One corresponds to expansion 

(1) and is shown by dashed lines. The other one corresponds to the 

effective value taken on in the flow. Let us now assume that one 

could expand the result ~btained according to powers of E and let 

us now consider in the two expansions terms of rank 0, rank 1 ..• 

of rank n. The results obtained are shown in Figures 4 and 5 which 

we will now briefly discuss. Let us first discuss the nature of 

the curves obtained in Figure 4. When ~ is finite, z is on the 

13 



. order of E so that the approximation of order 0 based on (1) is 

independent of ~ to either side of (E) which results in Figure 4a. 

p 

z 

Figure 3 

The approximation of rank 1 obviously is 

a linear function of ~ to both sides of 

(E), and Figure 4b results. The approxi­

mation of rank n is a polynomial of degree 

n in ~ which results in Figure 4c. In 

this way, the curves derived from Figure 

4 are perfectly determined for any value 

of ~ by the local behavior of the quantity 

under study and which is represented schem­

atically in Figure 3 (p,for example) 

according to the definition given by (1) to either side of the value 

z = o. Obviously, curves in Figure 5 are not very simple, but their 

relationship with the other curve corresponding to Figure 4 is 

easy to discern. When ~ is on the order of a few tens of units, 

the curves of Figures 4 and 5 must coincide for the corresponding 

cases. This is because outside of B, the deviation between the solid 

curve and the interrupted curve is exponentially small in E. Thus, 
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for each order of approximation, the behavior close to z = + 0 of 

expansion (l) and the behavior close to t = + 00 of the internal 

structure are closely related~ The approximation of rank n of the 

internal structure is equivalent to a polynomial of order n (up 

to an exponentially small term), both for t ~+cc and 7,; ~_cc. The 

constant terms of these two polynomials are exactly the values 

taken on in (E) on either side by the approximation of rank n 

defined from (l). We, therefore, have a rule which will be dis­

cussed again, proven and used in the fourth part and which will 

provide a first method for obtaining the shock conditions. These 

will be a direct consequence of the internal shock structure. 

1.4 THE FIRST DEVELOPMENT OF A GLOBAL METHOD 

Disregarding any technical considerations, we would now like 

to discuss the principles of the global method which will be devel­

oped in the third part. Without disregarding the intuitive consi­

derations, at least for the simple case of the mass conservation 

equation, we will give almost the final formulation of the corres­

ponding shock condition. As shown in Figure 6, we will consider a 

small cylinder perpendicular to (L) which cuts a surface element 

dA out of the surface which is limited by the closed curve (r). 

By n we designate the unit vector perpendicular to (r) drawn in 

the plane tangent to (L) and which is directed toward the outside. 

~he terminal bases of the cylinder with area dA are located at a 

distance of (E) which is sufficient so that the deviation between 

the approximation of order n based on expansions (1) and the beha­

vior of the reel fluid are exponentially small in £. By w, we 

will denote the component of V along the cylinder generators. 

U = V - w Z is the proj ection on the plane perpendicular to the gen­

erators. The distance to (E) along the generators (algebraic dis­

tance) is naturally called z. Z designates the unit vector of 
" one of these generators. The mass flux penetrating into the cylin-

der through the two bases is - {p WdA}, where I} designates the 

difference to be taken between these two bases. It is, therefore, 
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clear that the mass balance for the cylinder is written as follows 

where H is a geometric factor such that ds=Hds which is an arc o 
element of the curve parallel to (r) to the distance z of (L): 

(6) 

Now f designates an arbitrary characteristic of the flow. We 

call , its approximation of order 00, which is. a formal approxi-

mation using expansions (1). It is clear that according to the 

position of the terminal bases inside the flow, in (6) one can 

replace t pw dAI by {pw dA\ • After this, let us introduce the nota­

tion ( )± in order to indicate the difference between the terminal 

base and the section perpendicular on (L), from the side z > 0 or 

of the side z < o. We then have 

(7) 

After this, it is clear that even after the definition of the 

approximation of order infinity based on expansion (1) the 

following is true 

l
' ( p w dAL + f dSD f pYu• n Hdz = 0, 

r lot 

(PWdA)++jdSo{pYu •n Hdz=O· 
r lot 

(8) 

From (6), (7) and (8) and the remark made above that there 

is a time at which the shock condition on p w is the following, 

for order infinity 

[pw]=- lim d\fSor~pu -pu).n Hdz=O. 
dAo" 0."0 :J... 

r p 

(9) 

The shock condition corresponding to the mass conservation 

was thus obtained up to·any desired approximation. Obtaining the 

other conditions does not involve any new ideas but the calcula­

tion is slightly more complicated. Here we will not discuss this 

in this introduction, but we will give equation (9) a slightly 

different form. 
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-Let us note that pU -pu, is exponentially small in E when (z) 

satisfies both » £ and «1. The points P and Q which intersect 

(r) at M in Figure 6 naturally ~atisfy this condition. But accord­

ing to the definition of the approximation of order 00 for the inter­

nal structure, we can modify the integral .(Q by an exponentially 

small amount by substituting for 'pu its internal approximation 

of order 00, which is pu But then ~ = Z/E is in fact the var-

iable upon which the expression under the ~ sign depends without 

these conditions, and except for an exponentially small error, the 

integral ~ of (10) is equal to the following expression 

E(PUt (M) =EL(PU-p"u).n HdC' (10) .. 

!'--'.~ ~'. 

Finally, the shock condition (9) can be written in the form /14 

[ p w ] = - € d Ao ~ 0 d Ao (p u t . n ds. lim 1 f (11) 

It should be noted that for the zero order of approximation, 

the second term is 0 and one finds as required the Rankine-Hugoniot 

conditions. It is clear that the second term will involve the inter-

nal structure in an essential manner. When developing the 

structu~e as in (1), we could develop (PU)· according to the 

of £ and from this we could obtain the development of [pw]. 

internal 

powers 

It is 

then obvious that obtaining the shock conditions up to the approx­

imation of rank n will involve internal structure up to order n-l, but 

not of order n.. For the problem of P and K where one is restricted 

to the f:"rst order, it is sufficient to have the internal structure up to the 

approxirration of order 0, which has been studied many times [2], [6], [7], [9]. 

It should be noted that the second term in (11) provides a local 

measure which is mathematically well defined of the shock wave thick­

ness. ?here is a thickness for each conservation equation, that is, 

for each shock condition. In fact, (11) gives a displacement thick­

ness because (10) is formally almost identical with the definition 
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thickness in the boundary laver theory. In this theory, the dis­

placement thickness expresses the mass flux above the mass flux of 

the external flow which traverses a section perpendicular to the 

boundary layer. In the present case, the second term of (10) 

expresses the mass flux which traverses the lateral wall of the 

cylinder inside the shock wave, above the same mass flux relative 

to the outside flow. 

It remains to give an explicit expression for the second term 

of (12) by transforming the curvilinear integral into a surface 

integral. This is an easy calculation in vectorial analysis which 

will be done later on. 

The fundamental concepts and ideas which will be used during 

parts 3 and 4 have now been introduced in paragraphs 1.3 and 1.4. 

We will now give a precise definition of the functions which are 

involved in this work and will discuss a few properties which are 

particularly important for study. 

2. THE CLASS OF NS FUNCTIONS 

2.1. DEFINITIONS 

Now we have to mathematically give an exact definition of the 

functions which represent the various characteristics of a viscous 

fluid flow near a surface which is a shock wave for the flow for 

the perfect fluid model. These functions depend on four variables 

Xl' x 2 ' z, E which have the following meaning: Xl and x
2 

are the 

curvilinear coordinates along the shock waves, z is the third coor­

dinate which is 0 on the shock, ~ is a small parameter which char­

acterizes the dissipati~n mechanisms. In this part, Xl and x 2 
will play the role o~ auxiliary parameters. In most cases, we will 

not use them for writing down these functions. 

The function f(z,E) depends on the parameters Xl and x
2 

for a 

fixed z and small E. It behaves as a regular function of z and E. 

18 
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The two functions f+(z,e) and f-(z,e} obtained in this way for 

z > 0 and z < 0 obviously are not an extension of each other. See 

the discussion (I-I). Also, in the shock zone which is studied by 

introducing the variable s already defined in (I-5) we have 

e s = z. (1) 

Agreement between the upstream and downstream flow has to be imple­

mented with this definition. According to already known results 

about the shock wave structure, this suggests defining the quantity 

as follows. 

DEFINITION 1 (class NS) 

The function f(z,E) may depend on parameters xl and x 2 and 

appears in the class NS (fENS) if f is defined in the range 

and if in this range we 

can write f in the form 

f (z, E:) = tlr+(Z, E:) +r(z, E:) l +; )r (z, E:) - r (z, E:) t tgh t;+c (t;, E:) , (2) 

The functions f+ and f- appear in the class A, f in the class B 
+ - -which are defined above. We say that the functions (f , f , f) 

define f on K. 

DEFINITION 2 (class A) 

A function k (Z,E) belongs to class A if it is defined and 

limited for any value of z when E:~E:o, and which can be developed 

in series of a power of E 

.. 
k (z, E:) =!. E:

D Ita (z). E: < E:o , (3) 
0=0 

The quantities k n (z) are expandable in series of powers of Z in 

the interval /z/ < a, and .are zero outside a finite interval. These 

expansions are assumed to be differentiable an infinite number of 

times with respect to z, xl and x 2 . 

Therefore, for the functions f+ and f- introduced in the 

definition 1 we have 
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-ft. (z, £) = I l ft. (z) , 
Q=O 

r! (z) =-:! (± zt 
p'"O 

DEFINITION 3 (class B) 

I zl < a • 

(4) 

{5} 

A function f (~, £) is defined for any value of 1;; when 0 < £ < £0. 

For small E r allows an asymptotic expansion 

(6) 

For sufficiently large 17;; I , f and f are exponentially 
n 

decreasing (uniformly in E, as far as f is concerned), that is, 

there are two positive constants A and a independent of E such 

that for example 

(7) 

Finally, properties (6) and (7) are also valid for the deri--vatives of f with respect to xl' x 2 7;;. 

Two functions fENS which coincide in a domain K(a, E ) are + _ _ 0 

considered to be identical. If (f , f , f) defines a function, 
+ -(g , g-, g) defines the same function f if 

+ + _ _ rv """ 

g -f,g -f,f-g 

are zero over a domain K(a, E }. It should be noted that (2) 
o 

defines the extension of f for any (0<£<£0) 

Now that we have made these definitions, we will give the 

exact definition of useful properties in the following. Here we 

will not again discuss the proofs in detail. 

2.2. PROPERTIES OF THE FUNCTIONS OF CLASS NS 

f1 

We can immediately verify the following: 

LEMMA 1. If k (z, £) £A, g (~, £) £B , then 

k (£~, £) g (~, £) , tgh ~ k (£1:, £) g (~, £) 

are functions of class B. 
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From this we derive in particular that if f+ and f-EA. fl «(,E) 

CZ (l:. €) €B, then 

t(f+ + f-) + ~ (r - r- ) (tgh ( + fl «(» + 1z «() , (8) 

which defines a function of class NS. 

LEMMA 2. If fl (z, €) and ·fz (z, £) ENS, then there are also exists f1 + 

f 2 , fl f 2 , and derivatives with respect to xl and x 2 of these 

functions. 

The only part of this statement which is not obvious is this 

state for the product of the functions.~ If we write 
f 1 = PI + 0 1 tgh ( + f 1 ' 

fz = P z + Oz tgh (+ fz ' 

f = f f = P + 0 tgh ( + f, 
1 Z 

0=P 1 0 Z +PZ 0 1 • 

f = II fz +~(Pz +OZ tgh () +fz (PI +01 tgh () +0 1 Oz (tgh2 (- 1) , 

and the result appears as a direct consequence of lemma 1. 

LEMMA 3. (Outside development) 

For any z ~ 0 so that \zj < a, we have the following asymptotic 

expansions 

! 
~ €D f; (z) ~ if z > 0, 

f (z, €)~ 0=0 .. 
~ €Dr.,- (z). if z<O, 
D-O 

(9) 

By definition, {9} defines the external expansion of f (Z,E). 

We then have the hypoth~ses that the two series written in (9) are 

convergent within \z\ < a and within them exactly define f+(z,E) 

and f- (z, E) • 
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Then within K(a,~) , we have the uniqueness of the func­

tions f+, r, f which satisfy '<2} for a given function f given of 

class NS. In effect, if f = 0, we find of necessity according to 

the preceding lemma that f+ = r = 0 and consequently f = o. 

LEMMA 4. (interior expansion) 

For any fixed ~, we have the following asymptotic expansion 

( 10) 

and the functions fn are defined by 

~ (~) = ~ (Fa+ (~) +~ (~»)+ ~ (F~,+ (~) -~- (C) ) tghC+f.. (C) , (11) 

p+ and P- are the polynomials in ~ of degree n 
n n 

(12) 

The proof is immediate. 

LEMMA 5. 

For any function f (z, E) ENS, we can write down the identity 

f (6, e:) - f (-6, e:) = i 6
P [f~ ..... , 6 ) 

(e:) +gi€"' e: , (13) 
p-o 

if 0< 6 < a In this identity g(C, e:) is exponentially decreasing 

in e(C > 0) and 

00 

[ ] '\.... n f~ i-f P (e:) =.:... e: (n,p - n,p ) • 

(14 ) 

n-o 

Proof is simple. In effect, we have 

f (6, e:) - f (- 6, e:) '" f+ ( 6. e:) - n - 6. e:) + g ( ~ , e:) , 

if 

g(C,e:) =+ )~(C,e:) - I(C,e:)\ (tgh C - 1) + 

+t- ~f+{-C,e:) - rc-c.e:) I (tgh C - 1) +f (I:;,e:) - f(-C,e:). 
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The result is a a consequence of (4) and (5) and also of the 

reasoning given under lemma 1. 

LEMMA 6. 

If 0 is a positive number less than a, any function fENS can 
* be associated with a function f (E) such that 

1+8 .. 6P + "" () 
f (z,E)dz = E r* (E) + ~ - [F]P_1(E) + h (-,E) , 

_8 P-1 P E 

where h cr;, £) decreases exponentially in C (c > 0) and 

[ F r (E) = ~ En (f + + f" ) P-'! ~ n,p-1 n,p-1. 
0-0 

In order to prove this lemma, we can introduce a 

f (z,E) ENS defined as the derivative with respect to z 

; iFf (Z,E) + F-(z,£) f +t ~F+ - F- {tgh r;, 

This is a formula in which 

F+ (z, £) = jZ f+ (t, £) dt, F"" (z, £) = JZf- (t, £) dt • 
o 0 

Consequently, 

(15) 

(16) 

function 

of 

( 17) 

(18) 

.,) r+S( A) (+8 A .£ f (Z, €) dz = J..
5 

fez, £) - f (z, £) dz + J..
s 

f (z, £) dz· 

But we can write 

~A ~ 6 
i f (z, £) dz = F"" (6,£) - F-(-6, £}+ hI (-, £) , 

3 £ 

(+0 I A I f+"" A """ 6 
.1..3 (f(z, £) - fez, €) jdz = _00 (f - f) dz + h2 (-;, £) , 

hI «, £) an::3. h2 (c, €) are two functions of r; (r; > 0) which decrease 
exponentially. 

The results (15) and (16) are derived directly 
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With 

£f-c£) =L-)f (Z, E) - fez, E) i dz = 

Er)r (E~,E) - f(€<.£): d~ • - . 

We can complete this result by stating that 

LEMMA 7. 

* 

(19) 

The function f (E) which corresponds linearly with f(Z,E) has 

the following asymptotic expansion for small E 

r* (€) .... ! En r; • (20) 
n-o 

with 

dt • ( 21) 

This result is obtained by writing formula (19) explicitly 

and taking into account the properties of functions of class A 
+ - * for F and F and of B for f. We find that f can be calculated n 

from the n + 1 first terms of the internal expansion of f. 

In all the preceding definitions, the variables xl and x 2 
are introduced as parameters. In particular, [r]p (lemma 5), 

[F Jp • f*, (lemma 6) are functions of E and the parameters xl and 

x 2 • 

2.3. SHOCK CONDITIONS 

We _~an nqw indicate how. the preceding concepts can be used in 

order to obtain the shock conditions which relate the functions of 

class NS which satisfy a relationship of the following form 

T* _________________________ r 

(1) Let us recall that f can be considered defined for any value 
of z when O';€<€o by (2). ~'~e can also verify that f*(f:} only 
depends on values of f within K(a.~) 
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(Aft! + bgdz = O· i
zz 

z1 1 
( 22) 

Here f and gENS, A and B are linear independent operators, 

independent of z which leave the class NS invariant. We find 

that the Navier-Stokes equations easily lead to relationships of 

type (22). 

The results of lemmas 5 and 6 then lead one to write (O<6<a) 

"p( 1[ + ~"'6 [Af] (e:) + e:(bg)" + ~ () [Afl (e:) +- bgJ 1(e:) = h (-.e:). o ...., l ;, p p- e: 
P-l ! 

(23) 

The second term has an asymptotic expansion in E which is 
n identically at zero for the asymptotic sequence of the E. This 

is the same for the first one and consequently if we set (bg)~l = 0 : 

(24) 

The first term of (24) represents an expansion into a whole 

series of 0 which are identically zero. Therefore, all of the 

coefficients are zero. 

From this we derive that 

and that 

"" .. L eD (bgt =-~ e" [Afn J = - [Ai] (e) = e (bg)* (e) 
_ n-l -- 0 0 
n-o n-o 

We therefore can formulate the following theorem: 

THEOREM: If the functions f and g for class NS satisfy (22) for 

any pair of values zl and z2' then 

[Af] (e:) + e: (bg)* (e:) = 0 
o 

(25 ) 

and 

~ 

[Af]p (e:) + ~ [b g ]:-1 (e)= 0 
(26) 

By definition (25) represents the shock conditions at z = 0 

which relate the quantities f and g which satisfy (22). 
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We find that in this case, the asymptotic expansion of type 

* (20) of the quantity (bg) is a series expansion which is whole 

and convergent. 

The shock conditions of rank 0, l ••• n .•. are the conditions 

obtained by making the coefficients of power 0, 1 ••• n in E in 

equation (25). 

3.1 ~;OTATION 

[AIo] = 0 o rank 0 

rank 

rank n 

3. DETERMINATION OF THE SHOCK CONDITIONS 

USING THE GLOBAL METHOD 

~he surface of the shock wave, a discontinuity surface of 

the perfect fluid model, is called (I). On the surface we will 

consicer a system of curvilinear coordinates xl' x 2 for which the 

coordinate lines are the lines of curvature. By adding the dis­

tance z to (r)measured along the normal perpendicular to it, we 

obtai~ a system of orthogonal curvilinear coordinates (xl ,x2 ,z). 

We wi~l assume that the lengths are measured with a certain unit L 

so that xl' x 2 ' z have no dimensions. In the same way, the pressure 

p, the specific mass p, the velocity V, the specific enthalpy hand 

the viscosity coefficient A,~ and the conductivity coefficient k 

are assumed to be measured using the units Po = Pc, vo2, Pc, ,\{"ho ,Ao ,ll o,ko : 

We assume that p, p,h, Jl, A, ~, k are dimensionless. The small 

parameter E which we have discussed will be 

( 1) 
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The unit vectors tangent to the coordinate lines will be called 

~.e2.e3 and the elementary' displacement will be called 

(2) 

the square of the linear element is 

(3) 

The partial derivatives with respect to xl and x 2 will be 

called 

or 
-,. -= f' 2 uX 2 

(4) 

If we use N=e3 for the unit vector normal to (E) directed 

towards positive z, we have 

(5) 

are the principal curvatures of (E) so that if 

an arbitrary point in space is written in the form 

M=m+zN. 

the formulas (2), (5) and (6) give 

hi :; HI + KI Z • h z = Hz + Kz z. 

(6) 

(7) 

Hl and H2 , which do not depend on Xl and x 2 ' are the coefficients /23 

of the first quadratic form of (E): 

(8) 

The velocity vector V is written in the form 

(9) 

3.2 NAVIER-STOKES EQUATIONS 

The unit tensor is designated by 1 and the viscous stress 

tensor is called ~t. ~e unit heat flux density is Eq; (S) 

is an arbitrary surface with an external normalN. Then the 

Navier-Stokes equations can be written in the form 
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", 

if pV.N dS=O, .1:S ) 

IF (pl+ p VV+"d).Nds=o, (10) 
-(S) 

.!~ ) ~ ( h + ~Z) P V + € (t • V + q ) i· N dS = 0 • 

In the case of stationary flow, this notation directly 

tnmslates the laws of conservation of mass, momentum and energy. 

If D is the deformation tensor with a trace 9 = V . V 
we have 

an! one often sets 

t =-2J-l D - >"9 1 

q=-k grad T, 

2 
>.. = J-lv - 3" JJ , 

(11) 

(12) 

w~e ~ is the volume viscosity coefficient which is zero if one v 
u~ the Stokes hypothesis. 

Later on we will explain the calculations in the system of 

s~cted coordinates. But we will determine the shock conditions 

by using the dyad form shown above. 

3.1. SELECTION OF A CONTROL SURFACE. SYMBOLIC FORM OF THE 

SHOCK CONDITIONS 

The control surface (S) of equations (10) is selected in the 

f~ of a cylindrical surface as shown in Figure 7. The terminal 

bates are (As) and (A-B). The lateral surface is formed by the 

g~rators of length 20 perpendicular to eE). They are supported 

atthe centers by a closed curve (r) which delimits an area (Ao) 
on ([) . 
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Figure 7 

Using the preceding notation, and when da designates the arc 

element of (r), dS, the area element of (A±o) or of (Ao) as the 

case may be, n is the normal to (r), any of the formulas can be 

written in the form 

f{ A· N dS - jl' A . N dS + J do n· f+a b dz = 0 , (12) 
• (A+a ) (A_a) (r)-a 

where A and bare either tensors or vectors. 

Equation (12) is of the form (2-22), so that the shock condi­

tions are as follows in the symbolic notation and in integral form: 

iT [A]. N dS + € r b. n do = 0 • 
(Ao) '(rJ . 

(13) 

In order to obtain the local shock conditions from (13), it is 

sufficient to transform the curvilinear integral into a surface 

integral, so that the first term in (13) can be written as a single 

integral taken over (A ). Application of a classical analysis 
o 

theorem allows one then to conclude, since (A ) is arbitrary, that o 
the quantity to be integrated is identically 0 and it is conti-

nuous in xl' x
2 

accordi~g to hypotheses. In order to perform this 

transformation, it is useful to distinguish the case where b is a 

vector or where b is a tensor. 
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First case: b is a vector: 

We can set 

1 
e'. • • N o = b 1 e1 + b z ez + b3 ' 

A = A1 e1 + A z ez + AJ N , 
(14) 

and also 

therefore 

(15) 

For these conditions, (13) leads to the shock equation 

= 0 •• (16) 

Second case: b is a tensor: 

Using the summation convention for silent indices, we can 

here set 
L" = b~. e. "'" e· • A = A·. e· ~ e· . o 1, 1 '01 , 1, 1 " (17) 

Formula (15) must therefore be replaced by the following: 

Let us recall that with the present notation, the expressions 

for the first derivatives of the vectors are as follows: 

=0 = 0 • 
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Under these conditions, (13) leads to the scalar shock equa-

tions 

€ 

+ b:1 Hz Kl - b:z H Z,l t [Au] +-- ~ (b 1•1 Hz) + (b:z HI) + b~l Hl,z • 0 • 
H1H z 

• 1 .z 

(19) 
€ 

+b;zHz,l ~ [Az3 ] +-. - j (b;l Hz) + (b;z HI) - b;l Ht. 1 + b~ H1Kz = 0 • 
H 1Hz 

• 1 .2 

€ • 1 
[An] +-- ~ (b:1 Hz) + (b;z HI) - b;1 Hz K 1- bzz HI Kz \ ,. 0 • 

H 1H z 
' I , Z 

3.4. SHOCK CONDITIONS 

It is only necessary to use the preceding results (16) and 

(19) in the Navier-Stokes equations written down as (10). We will 

now examine the case of the mass equation, the momentum equation 

and finally the energy equation. 

3.4.1. Mass equation 

This case is particularly simple because A and bare 

vectors 

A =pV 

and (16) shows that, considering (9), that 

(20) 

This is a general equation. If we set £ = 0, this gives the 

zero order condition [pw] = 0 which relates the values of p w in 

the external approximation of order zero. This is one of the 

usual shock conditions of Rankine-Hugoniot in a perfect fluid . 
• If as we have done here, one retains the terms of order £, the 

first term has to be evaluated with the two first terms of the 

external expansion of p w. The expression in : then only in-

volves the first term of the expansion of each of the starred 

quantities, that is, the term which is independent of £ in the 
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expansion mentioned. According to lemma 7 of part 2, this term 

can be determined from the first term of the internal expansion 

of the corresponding quantity. The classical theory [2,6,7,9] 

of the shock wave structure has exactly the intent of calculating 

the first term of the internal expansion. In particular, we can 

see that (ul)o and (u2)o are independent of ~ and respectively 

equal to Ul and U2 , which are tangential velocity components of 

the flow evaluated on (E) in a perfect fluid. Consequently, the 

shock condition translates the mass conservation as follows for 

the degree of approximation considered: 

( 21) 

In order to remove any possible ambiguity, let us discuss 

this equation in detail. The comments given for this simple case 

are also valid for other shock conditions which will be obtained 

in the following two paragraphs. The external expansions of p 

and ware 

=} p(o)+ + € p(ll+ + .... z > 0 
P 

(0)' ( 1). 
'. p + € P + z < 0 ( 22) 

, w(o)+ + € W(l)+ + 
Z > 0 

w = \ 
( w(o). + € w(1)· + z < 0 

from which we find the external expansion of p w: 

~ p(o)+ w(o)+ + € (p(o)+ w(t)++p(l)+ w(o)+ ) + •••• • z > 0 

pw = w(o)' I p(o). w(o)' + € (p(o)- w(1)- + p(l). ) + •••• • z < 0 

and we have 

[ ] 
(0)+ w(o)+ _ p(o). w(ol- + 

pw = p 

\ (0)+ (1)+ (0)' (ll-+p(1)+w(o)+ p(ll- W(ol-!+ + € j P WT - P W - \ • • •• • 

The various expressions which appear in this relationship are 

functions of Xl and x 2 . In this way, we have explicitly written 

down the first term of (21). We will now explicitly determine 

/27 



* the second term, that is essentially p (x1 ,x2). According to the 

second part, we have 

p(x
l

, x:) = p(o) (Xl' X:) + 0 (€) 

=1+
00 ~ p(o) ( C) _ ~ (p(o)+ + p(ol-) - ~ (p(ol+ - p(ol-) (tghC + Ch~e) ~ de + 0 (€) , 

-00 

where pO (e) is the first term of the internal expansion of p 

defined by 

( 23) 

The function p(o) (C) is precisely the one given by the classical 

studies on the internal structure [2,6,7,9]. Since it satisfies 

the condition 

the integral of (23) certainly is convergent. 

With this precise discussion, formula (21) is written 

explicitly in the following form 

p(ol+ w(o)+ _ p(o)- w(o)- = 0 

H1H
z 
I p(ol+wCll +_p(o)-w(1)-+p(1)+w(o)+_p(ll- w (ol- = 

(24 ) 

and the various expressions in this formula are obviously functions 

of Xl and x 2 but not of z and of E. 

3.4.2. Momentum equation 

It is_ now convenient to apply (19) with 

A = p 1 + pV V + € t , b = A . (~: e 1 ~ e l + ~ ~ ez ® ez ) (25 ) 

but before giving the explicit form of these equations, one must 

determine how t depends on the derivatives of the velocity compo­
• 

nents. In this system of coordinates which we are using, we have 

according to (11) 
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I
t: tij ei ® e j , 

t .. = - 2J1Dij - >..06;; , I, (26) 

with 

U z• Z U 1 hz., 1 K Z W 

D
ZZ 
:- + +-, 

h
Z 

h 1hZ h Z 

ow 
=--

oz 

U Z,I U1,Z u 1 h 1Z U Z hz. 1 ( 27) . 
2D21 = 2 D

1Z 
=-- +---

hi h z h 1hz h1hz 

oUz w,z Kzu z 
2 D Z3 

2 D 3Z 
=- +- ---, 

oz hz . hz 

OU I W 1 K 1u 1 

= 2 D 13 = - + -' - - -- , 
oz hi hi 

e = Dll + D zz + D33 • 

If we only consider terms of order E in the shock conditions 

as we will do here, then in order to calculate the term in E in 

[Et), it is appropriate to only consider in (26) and (27) the 

terms which are independent of E, that is to calculate (26) and 

(27) with the values of u l ' u 2 ' w (and possibly T if we assume 

that A and p depend on temperature) in a perfect fluid flow. with 

this rule we can explicitly w;ite down the [Ai3 ) in (19). It is 

still necessary to find·(b .. ) explicitly and it is sufficient to 
~J 

do this with the approximation of order zero. There are three 

categories of terms: p*6ij.(PUiUj)·. (Etij)" The terms of the first 

category can be immediately written down. Among the terms of the 



-.- - , - ___ a 

second category, one can distinguish three types: 

(pu!)*=pu! • (pUl~S"' pU1U Z 

luations are based on the 

the internal structure of 

E,'inally, (pWU 1)· = U 1 (pwt=o (these eva­

fact that u l ' u 2 ' p ware constant in 

order zero). Among the terms of the 

third category, it is only necessary to retain those of order zero. 

For this purpose, one writes down the internal expression Etij 

of €tij - and one only retains terms which are independent of £. 

We then find: 

€i u 
- ow 

Et :tz = - A..- + 0 (E) = ot: • 

E1"33 
- "FW = - (A..+2ji) at: + 0 (E) 

E:i"23 
_ ou: 

o (E) E~2 = I" ~+ 0 (E) = ( 28) 

Et13 = - OUI 
- I" -+ 0 (E) ot: = o (E) = Et31 

Et12 = 0 (E) . 

Therefore, one only has to retain 

) 

(£t
11

)* (0) = (€tzz)*(ol =-(A.. ~~y 

o )* (€t
3
J*(ol =-(A+21") o~ 

(29) 

ow In these expressions ~ designates the derivative of w 

expressed as a function of S, that is, the derivative of the func­

tion which gives the velocity profile in the classical internal 

structure of the shock wave [2,6,7,9]. 

Considering this, the shock conditions are easily written 
* as follows : 

* There is a sign error in formula (7) of reference [1]. This 
error is corrected in the present formula (30). 
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i)w 

+ - (A - - p)-
H, i)( ,1 

i)w 

+-(A--pt 
HZ i)( ,z 

(30) 

Let us repeat that the first terms have to be calculated 

with the external expansions for the approximation of order 1. 

The second terms have to be calculated with the internal expan­

sions at the approximation of order zero if these are terms with 

asterisks. This has to be done with external expansions of the 

approximation of the order zero also for the terms [ ]. In order 

to remove any ambiguity, let us state that 

ow * J+-( ) ow(o)(e) 

( A ~) = -00 i 0 (e) oe de , ( 31) 

which corresponds to the general model (23) considering the fact 

that 

3.4.3. Energy equation 
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This time one has to apply (16) with 
z 

A= (h + V2 ) P V + € (t. V + q) • b =' A. (~: e1 ~ e1 + ~: e J ~ ez ) • (32) 

but since the mechanism is now well known, we can proceed very 

rapidly. Let us only say that the term €q gives a contribution 

of order £ to the discontinuity terms (term between [ ]). This 

contribution is calculated using the perfect fluid values. Con­

versely, there is no contribution to be retained in (£q)* because 
* €q1 = 0 (€) and €qz = 0 (€) according to (11) and because (b3) does 

not occur in (16). Without any difficulty, one obtains the fol­

lowing result: 

[ 
oT ow 

k -+ (,>,,+21l) w- + 
OZ 0 Z 

H,H, [l (p (h<) -<:) U,H, ! " + 

+ \ ( P(h<) -<:) U,H, ( , ] 

( 33) 

................. 
' .. T ..-.:-;, ",.,.~.-:- .... -

C" .,~-~~ ......... . 
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3.5. CONCLUSION /31 

The formulas (21), (30) and (33) translate the shock condi­

tions when one takes into the account the terms of order E and 

only those, and the higher order terms are ignored. Let us recall 

their interpretation. If E is assumed to be zero, one finds the 

usual Rankine-Hugoniot conditions. 

mulas, therefore, give a correction 
1 

correction which is of order £ = Re • 

culated with a length related to the 

If E is not zero, these for-

to the R-H conditions, a 

The Reynolds number is cal­

average radius of curvature 

of the shock wave. The first terms contain the discontinuities 

of certain expressions which have to be evaluated with the terms 

of the external expansions up to order E inclusive. In the 

second terms, we have, with a factor of E, on the one hand the 

discontinuities (terms in [ ]) which have to be evaluated up to 

the approximation of order zero for the external flow (liquid 

fluid), and on the other hand, the terms with asterisks which are 

calculated from the results of the study of the classical internal 

structure [ ] (first term of order zero of the internal expansions). 

More precisely, there are four such terms with asterisks: 

(34) 

which have to be evaluated as a function of Xl and x 2 ' as integrals 

iOn 1:; over the interva2. _00, +00, of functions of xl' x
2

' 1:;. The 

general calculation formula is 

(35 ) 
dC. 

and we find that for (A ~) the terms f(o)t become zero •. 

38 



The formulation (21), (~O) and (33) of the shock conditions 

is essentially related to the selected system of coordinates. The 

symbolic formulation (13) is intrinsic on the other hand. If it 

is advantageous for other reasons, there is no disadvantage for 

performing calculations in another system of coordinates on (L). 

For this purpose, one will write (13) by taking an elementary dS 

for (A ), for example, limited by an infinitesimally small paral1el-o 
ogram which is constructed using coordinate lines on the surface. 

The term [A]. N dS is immediately interpreted as the variation of 

the flux of a mechanical quantity (mass flux, momentum 

flux, energy flux) through the area element dS. This is the var­

iation which is experienced when one passes through the shock waves, 

more precisely the discontinuity surface (E). The term (Ao) 

obviously translates what escapes along the edges of the 

area (A ) within the thickness of the shock wave, beyond what 
o 

escapes if one were to use the values of the perfect fluid model 

to either side of it. This excess is precisely translated by the 
* operation. In the calculation of this term we have all of the 

terms involved in the Navier-Stokes equation and the curvilinear 

integral expresses an average value with respect to z of the 

various contributions of the flux through a cylinder with a base 

(r) and with a height € perpendicular to (E). From this we obtain 

the following intrinsic rule: 
€j b* . n 

(rl 

The variation of the flux density of a mechanical quantity 

(mass, momentum, energy) when passing through the shock wave (E) 

is equal to the sum of the two contributions if one ignores the 

terms of order equal to or greater than 2 in €. The first contri­

bution is the one from viscous stresses and the heat flux which is 

adjacent to the shock wave on either side, and which is evaluated 

in the immediate vicini~ to either side of the shock wave with 

the data supplied by the perfect fluid model relative to surface 

elements along the two faces of (E). This first contribution auto- /32 

matically is of order €. The second contribution can be evaluated 

formally by proceeding just like when one establishes the Navier-
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Stokes equations from the integral form using the method of 

elementary parallelepiped volume- elements limited by coordinate 

surfaces. This contribution corresponds to the lateral part of 

the elementary volume surface. This lateral portion is a cylinder 

perpendicular to (E) and has the height E. However, the follow­

ing precautions have to be observed. 

1. In the stress terms and the heat flux terms, only those 

have to be retained which are associated with a gradient perpen­

dicular to (E) by dividing them by E; 

2. replace the integration along the generator of the cylinder 

by an integration of an average value obtained by first performing 
* the operation In other words, one uses the product of this 

average value and E, and the contribution obtained in this way is 

of order E. In this calculation, it should not be forgotten 

that the operation * has no effect on the tangential velocity com­

ponents. This rule is the natural extension of the corresponding 

rule which is applied when one establishes the Rankine-Hugoniot 

conditions using the method which can be "physical" and which is 

used in all elementary courses. This is a rule which was used by 

Sedov, Mikhailova and Chernii [8], but only the first contribution 

is shown there which gives an erroneous result. Probstein and 

Kemp [5] were not successful in giving a satisfactory form to the 

second contribution. 
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4. STUDY OF THE INTERNAL STRUCTURE 

The results given before show that for determining the shock 

conditions of order 1, it is necessary to know the internal struc­

ture of order zero and also the shock conditions of order n 

assume that the structure is known up to order n - 1, even though 

explicit calculations have not been made. In this part, we will 

show how one can form differential system~ which allow one to 

study the various approximations. In order to simplify the anal­

ysis, we will only give the explicit calculation in the case of 

the order 1 structure. We will discuss the main properties of 

the differential system formed in this way and we will show that 

the internal flow "agrees" well with the external flow. One of the 

consequences of this study is to provide a new method, independent 

of the one which was discussed in the third part, and which gives 

the shock conditions of order 1. 

4.1. EQUATIONS OF THE INTERNAL STRUCTURE OF ORDER 0 AND 1 

The Navier-Stokes equations can be written in the form 

.. 
div (p V ) = 0 , ( 1) 

grad p + d i v (p V V + d) = 0 , 

div ( } h + ~2 \ P V + € ) tV +q( ) o • 

This involves the derivation operator (nabla) which is given 

by the following using internal variables: 

(2) 

so that symbolically, each equation (1) can be written in the form: 

(3 ) 
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I ~ 
A designateavector or a tensor of order 2, A is the same 

vector or te~ with internal variables. 

If in Aone separates the terms which contain £ as a factor 

from those w~ do not contain, by writing 

A = B + £l . (4) 

and if we noi!that e
1

• e e are independent of r we can inte-Z • 3 .,. 

grate this egaaon and we find that 

B (C) = - €.e (A). (5) 

with 

f 'l + e z • 11 
• z 

(6) 

Equati~~) is the symbolic equation of the internal struc­

ture. From~ equation, we formally derive the equations of 

the internal~cture of the various ranks by setting 

.. -en) 

A= ~ En A 
- .. -en) 

B ~ EO B = ~ 
n=o 0=0 .. _ (0) 

I = ~ En l 
.. _(0) 

.e = ~ €n .e 
n=o 0=0 

and by equa~the coefficients of the various powers of £ we 

find 

-en) (0-1) 

e3 • B = - .e (
-1) ) .e = 0 . ( 7) 

We mus~ give the explicit form of the calculations. We 

will only do~s for the terms of rank 0 and 1. 

4 . 1.1 Yes equa ti<1n 

In this:3se A and the vector p V and l is zero. Con­

sequently, m:is written as 
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p w + £ Co ,. o. (a) 

Co designates a primitive with respect to ~ 

(~l 
a ez ~) .(PIUS eJ ) Co = +=- el + p.Uz ez +pw 

hi ClX I h z' axz 

1 I (h,u,P)., + (h,u,P )., I (K' K.) s-- + pw =- +-=- ; 
hlhz . hi h z 

(9) 

as one can see by carrying out the calculation by taking into 

account the expressions for the derivatives of the unit vectors 

ei given in 3. 3 ., or by app 1y ing the formula :which gives the 

divergence of a vector field in curvilinear coordinates. The 

equations which correspond to (7) with ranks of 0 and 1 respective­

ly are given in (17a) and (lBa). 

4.1.2. Momentum equation 

Here A is a tensor of second order 

A = pl + pVV + d , 

and in order to separate Band l , it is first useful to expli­

citly write down the components of the dissipative terms. The 

formulas (3-26) show that using the internal variables we have 
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(lw 
- €-t = .... - + €' 11 A I\. 

(It: 

+ 2 €jJ 

OU I 
- d' = - €t13 = j:i -+ €fl 31 

Ot: 

- €t3Z = - €tZ3 

OU Z 
= jj - + €j:i 

Ot: 

With this, we then have 

44 

( ~'I 
' hi 

(~,z 
h Z 

U I ' 

K -) I _ 

hi 

Uz ) -K -z _ 
h Z 

(10) 

.=~ ..... ...;!~~ 
" 
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, -. 

e3 • L = D e + D 
lIZ ez + D e 

3 3 

( 11) 

The C. and V. are primitives of the expressions, which are 
~ ~ 

easy to write down explicitly in general, but here we will only 

give them for order zero, using a property which will be esta­

blished in paragraph 4.2, that -is that u
l 

(0) and U
2 

(0) are 

independent of ~ and equal to Ul and U2 , the values of u l and u 2 
Qn the shock wave for a perfect fluid. 

Then we find: 
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(H U U p-(o» + (H UZp-(o» 
Z 1 Z , liZ ,Z _ (0) _-=-____ ..:..... _______ + 

C z .. 

+ p(0)U
1 

-aw(0) 

'1
3
(0)= 2 /J -­

at: 

-(O)U + 
pW 1 

( 
K1 K z ) 
-+2-
H1 Hz 

_(0) 

-(O)U + 
pW Z 

P, z 
+--, 

Hz 

-(0) 
pW Z -

( 12) 
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We find that in (12), considering the properties of the inter­

nal structure of order zero which will be discussed in paragraph 

4.2, 1>W(ol is independent of l; and equal to the value taken 

on by p w on the shock wave in a perfect fluid. 

The equations corresponding to (7) with respective ranks of 

o and 1 are given by (17b, c,d) and (18b,c,d). 

4.1.3. Energy equation 

In this case, A is a vector 

A = (h + VZ) P V + € ( t • V + q ) • 
2 

(14) 

q is given by an expression in terms of internal variables as 
follows 

We now have: 

aT 
- €q = k - e

3 

aC 

V2 ow 
e

l
• B = (ii + - ) pw - (X+2jl) W -. -

2 oC 

J!-e.l=c -v l 4 4 

(15 ) 
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l' 

and C4 , V4 are the primitives·with respect to ~ of the expression /3B 

which is easily written down explicitly in general. However, we 

will only give it here up to order zero, always taking into 

account that uio ) = Ul and u~o) = U2 , Ul and U2 are independent 

of ~: 

-Co) 
c. = 

-Co) 
v. = 

() 

Co) 

+ ~ + .!S. (h + Vz) 
H H pw ·2 

1 Z 

( 

- ___ - Co) 

U H A ow 
1 Z 0 ~ 

(16) 

( ) (

-Co) 0 Co) \ 

+ ~ + ~ k ~~ + (A + 2iJ) w o~ ) . 

The equations corresponding to (7) with respective ranks 0 

and 1 are given by (17e) and (lBe). 

4.2. STUDY OF THE INTERNAL STRUCTURES OF ORDER 0 AND: 

According to the preceding results, the internal structure 

of order 0 is defined by the nonlinear system. 

-Co) 
QU

1 
M -(0) -Co) = p(o) 

oU 1 - I-' -- 1 

oC 
-Co) ou z 

11./1" - Co) - Co) = p(o) •• ...,u z - iJ - z 
o~ 

__ -Co) Co) 

p + P W Z - (A + 2 1-') = pCo) 
3 

-ou-/o
) _O_U_z Co) ow Co) Wo) 

a) 

!:l) 

c) 

d) 

---(0) 

(h + vz) 
2 

-Co) C) 
-I-'u z -- - (A+21-') W

O 
-k- =Eo,e) 

o~ 0 ~ o~ oC 

( 17) 



!' 

in which M pOp 0 pOE designates the constants. o. l' 2' 3,' 0 
According 

to the lemma of the second-part, the unknown functions 
-(0) -(0) - (0) P ,w , U t 

have to strive towards the finite limits when 

s increases indefinitely in, absolute value. This condition, 

considering (17b) and (17c) , implies that uiO
) and u~o) remain 

constant: the tango-rr'l!i'al components remain invariant and equal 

to Ul and U2 in the internal structure of order O. The problem 

is then reduced to solving a system of two equations, eseentially 
-0 -0 (17b) and (17c) , with .~wo unknowns, for example, p , T. The 

other thermodynamic quanti ties pO, jjO, "X0, are derived from them 

.. it:- ~~.-~.i 
. :i;.. :.: .. '.:,;, , 

using the state equation and the law of variation of dissipative /39 

coefficients as a function of temperature. WO is derived from 

(17a). This problem is a classical one [2]. One finds that for 

a system of values of the constants (M, P, E) which insure the 

possibility of a shock wave, there is one solution and only one 

solution (naturally defined up to a translation in s) and that 

the various values of the dynamic and thermodynamic quantities 

for s = +00 and s = _00 will satisfy the zero order shock conditions. 

This is as it has to be according to the theorem of the second part, 

section 2.3. One also can show that the functionsp-{o) (s), 

T{o) (s) obtained in this way have the properties of the first term 

of the internal expansion of a function of class NS (lemma 4-­

formula 2-11). 

\~e will now propose to study the internal structure of rank 1. 

The equations which govern this are written in the following form 

according to the preceding results: 

• 
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pwu (1) 1 _ + C(o) + D (0) - V(o) = 
1 1 1 

o , 

OW(I) 
--'---." (1) -(0) -(0) -(0) 
P + P W Z - (A + 2 1-') -- + C 3 + D3 - V3 = 0, 

ac 
~W(ll 

- (1..+21-') w­
oC 

( 

~ (ll oUz(l) ) 
-(0) U + U -I-' 1- z-

o C 0 C 
+ c(o) + lYo) - v(o) = 0 

'" '" '" J 

a) 

b) 

c) 

(18) 

d) 

e) 

These are formulas in 

of the functions c~o) 
~ 

which the 

and v~o) , 
J 

c~o) and the v~o) are primitives 
~ J 

whose explici t expressions v,"ere 

written down in (9), (12), (13), (16). Because of the proper-

ties which result from solving (17) and which were discussed 

above, these are functions of S. For large values of S, they 

have the behavior of polynomials with a degree which is at least 

equal to one. In contrast to (17), this system (18) is linear, 

because a quantity like a b c(l) is linear with respect to 
-(1) -(1) -(1) 
a ,b ,c : 

~(1) -b(o) -(ll _(0) -,::(ll -=:(0) _(1) 
aD c = a c + c a u + uC a 

In order to simplify the notation, we will write down the 

system in the form 

tl U) +(1) = 0, (19) 

where a designates a linear operator which operates on the flow 

~ defined by W(Il, p(1), p(l)... and (1") which is a vector with the 

components 
-(0) 

- Vi 
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4.2.1. The associated homogeneous linear system 

Now we must study the homogeneous linear system associated 

with (18). According to lemma (4) of the second part, 

;;;;;(1 " p( Jl , p( 1).... is limited by polynomials of the first degree 

at the most in ~ for large values of ~ which are positive or 

negative. Consequently, only the solutions of the homogeneous 

system which satisfy this property have to be retained. 

Let w, p, ii ... be a solution of a ( E) = o. 

Of necessity 

u = 0 
1 

-(0) 
OW ow 

~~.(ol ~ 0 P + Mo W - (A + 2 "') - - (X + 2 ,J) -- = , 
o z: or: 

OW 
----.,....ow-(o) 

_~-:--;:,--:-(o) 
M ° d~ + ;;;;; (0) w} - (>.. + 2 J.l) w -(>"+2",)- w-

---ow (0) 

w­
oC 

oz: 
OT(O) 01' 

_ k _ - lio)-
o C 0 z: 

oz: 

= 0, 

and consequently the system to be studied is of the form 

ow .. oT 
Fe = a Vi + f3 T , 'FC = y Vi + ~T , 

( 20) 

( 21) 

where a, S, y, 0 are functions of ~ defined and limited for all 

v.alues of ~. 

Any solution of (21) is defined for any value of~. We assume 

here, which can be verified rigorously, that its behavior for 

values of ~ with a large absolute value is obtained by consider­

ing the behavior of the solutions of the linear homogeneous systems 

with constant coefficients formed from (21), by replacing a, S, 

y, 0 by their values ta~n on respectively for ~ =+00 and ~ =_00. 

If one considers (20), it is clear that the systems with constant 

coefficients are precisely those which one would obtain when one 

would study the behavior of the integrals of (17) for ~ =+00 and 
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In the classical theory of the internal structure of order 

0, one establishes that for s =_00 all of the solutions are expon­

entially decreasing. For s =+00, the solutions in general are 

exponentially increasing with the exception of the single family . 
! of solutions which are exponentially decreasing, up to a multi-

plication factor. We therefore can state the following: 

Lemma 1. The system (20) has a solution (~), defined up to 

a multiplication constant which decreases exponentially at infinity. 

Any other solution is exponentially increasing. 

4.2.2. Solution of the nonhomogeneous system (19) 

Considering the previous result, it is sufficient here to 

study a particular solution. Each of the components :f"i of the 

vector (!J) can be written in the form 

:Ti = ~ (p+ (:f"i) + P- ('i) ) + 1- (p+ (:r;) - P- (!Jd ) tgh C + ?i' ( 22) 

.-~- . . . . ~;- . 

p+(~) and P-(~) are polynomials of degree 1 and ~ is an expon- /41 

entially decreasing function of s. Let a+ and ~c be the differ-

ential operators with constant coefficients obtained by setting 

s =+00 and s=_oo in the coefficients of a 
that the systems 

One then insures 

a+ ( !) = p+ ( !J) , a - ( G) = P- ( !J) , ( 23) 

have solutions whose components w, P, p ... are polynomials of degree 

1 in s. We will call these solutions p+ ( G) and P- (E) which are 
* obtained by substitution and identification. If we now set 

Gi =t(P+(Gi) + P- (Gi») +t(P+(Ci) - P- (Ei») tgh C + Ei (24) 

"-

the system of the Gi satisfies the symbolic equation 

a(E)+~ = 0 (25) 

and it is easy to see t~at ~ is a function of s which is exponen­

tially decreasing at infinity. Here we will assume without a 

* One is led to linear systems whose determinants a.re not zero 
when the velocity is not sonic, a condition which is obviously 
excluded. 
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proof the following lemma: 

L~n-1A 2. The system (25), in which ~ is a given function which 

decreases exponentially at infinity, itself has at least one 

ex?onentially decreasing solution at infinity. 

We can now collect the preceding results and state the fol­

lowing: 

THEOREM. The differential system which defines the internal struc­

ture of rank 1 has a family of solutions which depend on an arbi­

trary constant. These are solutions which behave like polynomials 

of degree 1 in s for large values of positive and negative s. 

We should note that the preceding statement assumes that (~) 

is well determined. In fact, we have seen that each component ~ 

of (~) is only defined up to an additive constant. Therefore, the 

most general solution of the internal structure of rank 1 corres­

po~ding to a given zero order structure depends on 6 constants. 

4.3. RELATIONSHIP WITH THE EXTERNAL FLOK--SHOCK CONDITIONS 

In order to provide coherence of the results, it is necessary 

that the solution found in this way has t~e properties of the 

te~ms of rank 1 of the internal structure of a system of NS func­

ti~ns. For this purpose, it is necessary to verify that the coeffi­

cients of 1',; in each of the components W~l ). 1f(1). P<1). de p+ ( !) 

an5. p- (! 'J- are identical to the derivatives Clw(o) ~(o) Clp(o) 3z . Clz • Tz 
taken for z = + 0 and z = - 0 of the corres-

po~ding quantities w(o) • p(o) P(o) 
• • in ?erfect fluid flow. This 

proof results immediately because the equations of perfect fluids 

are the following in sy~bolic form 

) . (26) 
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In succession A(o) 

( ( h + ~2 ) P V yO); But the values of the second terms of (26) for 

z = +0 are precisely the values of -~i~J for t= +00. One can easily 

see that the first terms of (26) are identical with the product of 

the coefficients w(l), p(l), pel), ••• in at IG) and the coefficients of 

t in the polynomial part of the same weI) p(.1) , pel) for z = +0. 

This result follows from the fact that the coefficients of the com­

ponents of p! (!) in (26) are precisely the ci(o) for t ± 00 Thus, 

for the mass conservation equation (26) leads to the following 

(p
(O) ow(o) (0) op(o) ) 

OZ + w ~z 
z~±o 

and (23) leads to 

( 

,,-(1) ,,-(1) ) 
p(o) ~ + w(o) ~ + (co (0» 

oC oC (=±.. (=t .. 

naturally we find that (p(o»Z=io=(P(o»,=±oo as well 

similar to w(o). 

= 0 , 
(26' ) 

= 0, (23·') 

as the relationship 

/42 

If we are now interested in the constant terms in each of the 

components W(ll,... of p+ ( !) and P- ( !) ,we are led to finding the 

shock conditions using a different method than the one used in the 

third part, that is, one which agrees with the hypothesis used in 

this third part. The various functions which characterize the 

characteristics of the flow are NS functions and this is not contra­

dictory, and this is true up to at least order of 1. We have veri­

fied the fact that the same thing holds true up to order n for arbi­

trary n. Here we will be content with giving this proof for the 

fourth equation (18) only for the terms of rank 1. The procedure is 

simple: the first term of the equation is uniformly limited in t 

if one isolates a term of the form t (a + b tht) and the form of a 

and b is exactly the one which we have discussed. Once we have , 
subtracted this, let us then subtract the values of the two first 

terms for t = + 00 and t = -oo.for each term. It is clear that 

p+pw 2 (1) 

[p+pw 2 (1) ] 

in this way gives a result which is none other than 
OW(l) h . . As for the term (A + 2 EJ) - , t e cond~ t~ons are not as 
oC 

clear but if we write 
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---~ow-'l1 ) ( 0) r( 1 ) (1) Ow (0) 

( ~+2) "(A+2 1t )..:!! +(A+2J.1) -,.. J.I ~ r Ot: ClC 
-(0) 

and note that Ow is zero at infinity and also what we have 
i) C (owUl) = (ow(O)) said about the terms in ~ in p±(~), we find that ----......ow-(l) at: t;.t.. a Z z.i 0 

We see that the term (A+2J.1)~ gives a result 

equal to [(A + 2 JJ) ~\~ L ' using the rule defined at the beginning 

of this paragraph. The term 03 (0) obviously gives [03]0' and we 

only have to examine what the result from C3 (0) and V3 (0) is. The 
" (0) d (0) "t' f (0) d (0) It quant~ t~es C, an V, are pr~m~ ~ves 0 c, an v, 

~ ~ * * ~ ~ 
is clear that the result has to be c and v. If we refer to 

(12) and (13) taking into account that p w(o) is independent of ~ 
* and, therefore, gives zero contribution due to the operation we 

find that 

- c~ + v; = 

when we use (17d). 

If we collect these various results, we find the third condi­

tion (3.30). 

In summary, the solutions discussed when explaining theorem 

4.2 satisfy all of the desired matching and coherence conditions 

with results obtained up to the order considered. 

4.4. CONCLUSION AND FINAL REMARKS 

By specifying a perfect fluid flow, which allows the presence 

of shock wave (E), one c~n determine the internal structure of 
* order zero. From this result, it is possible to then without 

* difficulty write down the shock conditions of rank 1. If one 

knows the external flow of rank 1, the quantities which define 
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this flow on (L) will verify the rank 1 shock conditions. It is 

then possible to find a solution of the internal structure of rank 

1 which is compatible with the given external flow. But this solu­

tion is not unique. It depends on an arbitrary constant. The 

difference between the two solutions decreases exponentially in ~. 

It is then clear that the shock conditions of rank 2 depend on this 

constant, even though the explicit calculations were not given here. 

This allows one to assume that this indetermination of the 

internal structure of rank 1 is undoubtedly limited to an over­

determination of the external flow of rank 2. But this is a sug­

gestion which seems difficult to prove. The verification will then 

involve the properties of a global problem and goes beyond the 

scope of this article in which we only consider the local problem. 

This does not affect the essential point of the results 

obtained nor their coherence. The shock conditions and the equa­

tions for the shock structure for any rank n, at least in principle, 

have been developed. The complete results were given explicitly 
** for rank 1 

NOTES ADDED UPON CORRECTING THE PROOFS 

* The internal structure of order 0 is in fact determined up 

to a translation in ~ (see system 4.17). The effect of this trans­
* lation obviously affects the evaluation of quantities such as p , 

* p ., • . . • Therefore, there isan indeterminancy (depending on the para-

meter) in writing down the order 1 shock conditions. This indeter­

minancy comes from the fact that we have specified the position 

of the shock at z = O. In the global problem, the position of the 

shock is not arbitrary .• When writing down the shock conditions, it 

is usual to find an indeterminancy which corresponds to the over­

abundance of conditions relative to the boundary problems which 

govern the ext·ernal development. 
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** Since writing this manuscript in December 1960, the results 

of this work have been expanded to the case of non-steady flow 

and shock conditions were given explicitly using intrinsic nota-

tions (C.R.A. Sci. t.252, p. 1101-1103, February 20, 1961). Since /44 

this time, we have become aware of the memoir by R. R. Chow and 

L. Ting: Higher order theory of curved shock, JAS 1961, p. 428, 

which discussed the same problem using methods which areiVery 

close in their technical details. 

Manuscript shipped December 1, 1960 
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