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ABSTRACT

Recent developments in structural optimization, when taken
collectively, promise informed practicing engineers a quantum jump in
their design capability. In this paper, the area of structural optimiza-
tion is treated in the broader context of a vehicle design process with a
focus on structural sizing. A basic introduction to a formal approach is
given, and several application examples are illustrated, to lay a back-
ground for the review of recent progress. The main developments
discussed include techniques for reducing computational cost of optimiza-
tion, methods for generating sensitivity information, and the ways to
make the computer implementations more practical. New prospects are
presented for applying optimization to very large problems by formal
decomposition into a number of smaller problems in a manner compatible
with the trend toward distributed computing for the design process
organized into specialty groups. Numerous references are quoted as
points of entry to the vast literature on the subject.

INTRODUCTION

This paper's purpose is to alert engineers to several recent
developments in structural optimization which, collectively, offer a new,
exciting capability that should result in a quantum jump of their produc-
tivity when incorporated in design practice. To that end, we take a
bird's eye view of structural optimization as a tool for the designer,
examine the trends further developments are likely to follow in the near
term, and extrapolate these trends into the future.

To begin with, it may be illuminating to take a broad look at the
entire design process in which optimization may be used. A generic form
of such a process applicable to any engineering product is shown in
figure 1. It begins with a functional definition of the object to be
created, and then moves on through the phase of evaluation of the
external influences (e.g., loads on a structure) to the selection of
design concept, material, overall geometry and internal layout.

Use of trade names or names of manufacturers in this report does not
constitute an official endorsement of such products or manufacturers,
either expressed or implied, by the National Aeronautics and Space
Administration.
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Quantification of the design physical characteristics is next, followed
by a detailed design to be passed on to a shop that will give the object
its material form.

Since the ways in which the product will be fabricated, tested, and
maintained must be considered in its design, the corresponding phases are
shown in figure 1 as integral parts of the entire conception-to-scrap-
heap cycle.

An important part of the process is the feedback (symbolized in
figure 1 by arrows and a bar to the right) which renders the whole
process iterative. In general, the iterations are numerous, may span
various parts of the process, and may be nested in several levels.

The process laid out in figure 1 illustrates a course of action
engineers have been taking successfully for centuries, enjoying its
creative aspects while enduring its drudgery. In recent times, they have
been receiving more and more support from the computer in all phases of
the process as shown in figure 1 by the bar to the left.

Basically, computer support consists of data storage and retrieval,
graphics, fast analysis with multipath logic, and the capability to
interface with external sensors and to drive the external devices (e.g.,
numerical control of production machinery). These various forms of
support are utilized as shown by arrows in figure 1. Consistent with the
nature of man and computer, the creative part of the process tends to
stay with the former while the latter is gradually taking over the
drudgery.

In this whole picture, our initial focus will be on an important but
relatively small part: optimization of the quantitative characteristics
of the design. In that small part, we will concentrate on a still
smaller fragment: the optimization of structural member cross-sectional
dimensions (asterisk in figure 1) to minimize structural mass. This will
serve both as an introduction to the subject and as a basis from which to
review the recent advances and project into the future.

FORMAL OPTIMIZATION IN STRUCTURAL DESIGN

Probably, the earliest method for structural optimization has been a
Fully Stressed Design method which iteratively modifies a cross-sectional
area by the ratio of member stress to allowable stress. This time-
honored method gave rise to a whole body of weight-strength algorithms
(ref. 1)* and, later, to a class of methods known as optimality criteria
methods (ref. 2). Another class of methods useful in structural optimi-
zation originated from the optimal control theory (ref. 3). This report
deliberately excludes these classes of methods in order to focus on the
methods based on nonlinear mathematical programing (NLP).

Introductory Example

A tubular column, figure 2, is a simple example to establish the
basic definitions and concepts. Let's assume that at earlier stages of
design, it was decided that a weight P has to be supported at a height
%L, and that a tubular column is to be used for the support. These were
the qualitative decisions made upstream of the design process. What is
left now is a quantitative decision of sizing the cross-sectional design
variables of R and t for a minimum objective function of the column
mass, achievable within constraints of stress, buckling, and minimum
gages.

Under the NLP formalism, the problem is reduced to finding a minimum
of the objective function constrained by the inequality constraints in a

*The references are listed at the end in consecutive order.




design space defined by the design variables. In the simple problem at
hand, the space is two dimensional, and the problem can be graphed in the
R, t coordinates as shown in figure 3. Each curve in the figure
represents a constraint boundary (labeled by the corresponding
constraint, for example: an allowable stress constraint) and divides the
design space into domains which are feasible and infeasible (cross-
“hatched side) with respect to that particular constraint. Superposition
of the objective function contours (the dashed curves) on the constraint
boundaries reveals point C as the constrained minimum of mass.

Simplicity of the Concept

Optimization based on nonlinear mathematical programing (NLP)
clearly separates the analysis from search in the design space and leads
the computer implementation to a scheme shown in figure 4. In that
scheme, the module labeled "optimizer" is a program searching the design
.Space for a constrained minimum following the numerical information on
the objective function and constraints supplied by the "analyzer" which
carries intelligence about the physics of the problem. The iterative
execution of the optimizer and analyzer in an optimization loop is
stopped by the "terminator" when appropriate mathematical and physical
convergence criteria are met. The scheme in figure 4 is the simplest one
possible and, as later discussion will show, it becomes more complex in
large-scale applications.

State-of-the-Art Applications

There have been numerous optimization applications during the past 2
decades. Some recent examples range from components of automotive
structures (refs. 4 and 5) to entire aircraft structure (ref. 6). The
latter is depicted in figure 5 whose inset shows the mass reduction in
the process of optimization. A more general application involving
performance of an entire system describes optimization of a light
aircraft for a minimum cost of ownership (ref. 7).

Recent surveys (refs. 8, 9, 10, 11, 12) present hundreds of similar
examples showing development of optimization methods which is both rapid
and accelerating as attested to by 177 references cited in reference 11
alone. However, reference 11 also revealed that most applications are
test cases carried out to verify methods under development rather than
applications in real design.

In the next section, we will examine the methods and techniques that
have recently become available, to show that a coalescence of these new
capabilities and the needs of industry for increased productivity creates
a new environment in which the application lag indicated in reference 11
may be eliminated.

RECENT DEVELOPMENTS

Each of the particular methods, techniques, and algorithms discussed
in this section has been selected on the basis of their special potential
for making optimization methods more cost effective and easier to apply
from a practicing engineer viewpoint, and as being either at or near the
maturity level required of the tools ready for industrial use.

Search for Constrained Minimum

A recent survey (ref. 13) provides an efficiency rating of 14
algorithms for searching design space for constrained minimum that are
candidates for the "optimizer" function in figure 4. Since it is very
difficult, if not impossible, to distinguish in such efficiency
comparisons between the efficiencies of the optimizer and the associated
problem-dependent analyzer, results of this and other similar surveys
have to be taken with a grain of salt and one has to acknowledge that no




consensus has, as yet, emerged on how to order the list of algorithms.
However, two algorithms known as an Augmented Lagrangian Method and a
Generalized Reduced Gradient Method have gained recognition as leading
contenders for top spots on the list. Both methods, whose mathematics is
explained in the literature (for example, refs. 14 and 15) are credited
with fast convergence and have an important practical advantage of being
able to begin with either feasible or infeasible designs.

Before leaving this subject, one might add a note of caution that
there are problems in constrained minimum search that still can only be
solved for a limited class of applications or that pose enormous
numerical difficulties due to complex and discontinuous shapes of the
constraint boundaries. An example of the former is a multiple minimum
problem (ref. 16) and an example of the latter is optimization of a
structure with dynamic constraints (ref. 17).

Computational Cost Reduction
Most of the cost in large-scale problems, in fact as much as 99

percent of it, stems from repetitive execution of analysis. Radical
reduction of that cost, therefore, can best be achieved by reducing the
use of full analysis in the optimization loop and using an inexpensive
but approximate analysis in the loop as depicted in figure 6. There are
several techniques available that may be used for approximate analyses:
they are grouped in categories in Table 1. All the categories have a
common goal of providing means for rapid (i.e., inexpensive) analysis of
a modified structure.

Extrapolation methods. One of the two main approximation techniques
is a Tinear extrapolation (top of the table) by a Taylor series (refs. 18
and 19) using first derivatives, or by a perturbation technique (ref. 20)
akin to the small parameter method used for the solution of nonlinear
differential equations. The usefulness of linear extrapolation in
optimization (known as a piecewise linear optimization) has been
demonstrated many times; a particularly convincing example is given in
reference 21.

Dimensionality reduction. The other main approximation technique is
a dimensionality reduction which reduces the number of unknowns in the
equations to be solved repetitively in the optimization loop. There are
several techniques in this major category. The lumping technique results
in two finite-element models: a highly refined one used in the full
analyis (loop $$ in figure 6) and a simplified model, used in the
approximate analysis (loop ¢¢) and periodically adjusted to correlate its
characteristics with the results from the refined model. This approach
proved to be useful for thin-walled structures such as a delta wing case
(ref. 22) where large built-up subassemblies may be represented
effectively by stiffness- and mass-equivalent plates and beams. The
well-known method of substructuring, e.g., (ref. 23) has the same effect
of simplifying the finite-element model. A particularly useful form of
szbstructuring, called a superelement method is described in references
24 and 25.

The reduction of the number of unknowns in the analysis can also be
obtained by formal condensation, e.g. (ref. 23), or by a Rayleigh-Ritz
method using appropriate base functions. It has been shown in reference
26 that the resulting condensed stiffness and mass matrices can be very
inexpensively updated in the optimization by a linear extrapolation, if
the base functions can be regarded as constant. Dimensionality reduction
in analysis can also be carried out by an incomplete modeling (ref. 27)
and by multigrid techniques (ref. 28). In response to a similar need for
reduction of the repetitive analysis cost in nonlinear structural




analysis, a number of useful techniques have been developed as reviewed
in reference 29.

Dimensionality reduction in optimization is not limited to just the
reduction of the number of unknowns in analysis; it also entails
reduction of the number of design variables (ref. 30) and repetitively
evaluated constraints (ref. 19). The design variables can be reduced in
number by making them dependent on a smaller number of judiciously chosen
"master" variables. By means of such variable linking, designers can
effect their judgment (as they do now) as to the way cross-sectional
dimensions should be distributed over the structure.
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. Primal-dual approach. Another approach to the analysis cost
reduction which now appears to be developing into an entirely distinctive
body of techniques, is known as primal-dual method whose comprehensive
exposition can be found in references 31 and 32. The method maps the
original structural optimization problem (primal problem) from its design
space of many physical design variables into a space defined by the
problem's Lagrange multipliers. The substitute problem (dual problem) in
that space has a relatively much smaller number of variables because the
Jumber of Lagrange multipliers is equal to the number of active
constraints, which is usually much less than the number of physical
design variables. In addition, the only constraints in the dual problem
are arithmetically very simple requirements of non-negativity of the
Lagrange multipliers. The optimum solution of the dual problem is mapped
back into the space of the physical design variables to obtain the
original problem solution. The three-phase operation of mapping from
primal to dual space, dual problem optimization and reverse mapping is
iterated because the mapping relies on approximate explicit relations
based on derivatives of the objective function and constraints with
respect to the physical design variables, and these derivatives need
updating as the design moves away from the point where they were
evaluated. Besides good convergence, the method offers a very important
benefit of being able to handle discrete design variables (e.g., standard
thicknesses of sheetmetal) as well as continuous ones within the same
problem (ref. 33). It also has a theoretical significance of unifying
the optimality criteria and NLP methods as shown in reference 34.

Computation of derivatives. Most of the previously discussed
techniques depend on derivatives (gradients) of the objective function
and constraints with respect to the design variables. In many practical
applications, the cost of computing these derivatives by finite
differences may become prohibitive, despite placing the computation
outside the optimization loop, therefore, analytical techniques for
derivative calculation are preferred.

As a general principle, the derivatives of a numerical solution can
be obtained analytically by differentiating the governing equations of
the problem in order to construct equations which contain the derivatives
as unknowns. For example, differentiation of the load-deflection
equations Ku = L with respect to a design variable x yields the
equation K(3u/ax) = (-3K/ax) u, for aP/ax = 0, that can be economically
solved for 3u/ax at a cost similar to that of another loading case by
reusing the decomposed matrix K and the vector u saved from the
solution of Ku = L. The derivative 3K/ax can be inexpensively
obtained, either analytically, if K is a linear function of x (e.g., x
being a membrane element thickness), or by finite differences. Use of
the latter in the analytical equation for au/3K is referred to as a
semianalytical technique for computing 3u/3x.

. Algorithmic details for analytical and semianalytical technique are
given in many sources (e.g., refs. 5, 26, 35, 36), and, recently, a
method has been proposed in.reference 3 for bypassing the stiffness




matrix derivatives in calculation of derivatives with respect to the
overall shape variables. Some examples of the efficiency of analytical
and semianalytical techniques in application to aircraft type, built-up
structures are given in figure 7 taken from reference 37.

The general principle underlying the analytical derivative
calculation is also valid, if the governing equations are solved
iteratively and, therefore, it applies in dynamic and buckling analysis
for derivatives of eigenvalues and eigenmodes (refs. 5, 38, 39). It also
generalizes to the higher order derivatives (refs. 40, 41, 42).

As pointed out in reference 5, the sensitivity information in the
form of derivatives is useful to designers as a quantitative guide and an
answer to the "what if" type of questions, even if it is not used in an
optimization algorithm. As evidenced by references 35, 37, and 43, one
may expect that sensitivity information will soon become an output option
routinely available in major structural analysis programs.

Design-Oriented Analysis

Developments discussed in the preceding subsections have evolved
collectively into a new capability that can be called design-oriented
amalysis. Its basic features over and above regular analysis are a
capability for gradient generation, means to trade the computational cost
for accuracy (e.g., selection of techniques from Table 1), and a modular
implementation that keeps outside the optimization loop those parts of
the analysis that remain unaffected by the design variable changes.
Experience to date indicates that by use of design-oriented analysis, the
computational cost of structural optimization can be well controlled and
kept below 30, and in many cases below 10, times the cost of the ordinary
analysis of the structure at hand.

Once the optimization cost is under control, it is possible to
compare that cost with the benefits of the reduced manpower cost,
shortened task calendar time, and increased design quality. In this
manner, one can rationally assess the optimization cost effectiveness in
a particular application at hand.

Optimization in Structural Dynamics

Applicaticns to structures under dynamic loads which are
particularly important to automotive design have been impeded by the
phenomenon of resonance which splits the designf space into disjoint
subspaces. Since most of the search algorithms require continuity of the
functions and their derivatives, these algorithms can not search across
the disjoint subspace boundaries, and because the number of subspaces
grows rapidly with the number of eigenvalues it is impractical in most
cases to perform a separate search within each subspace.

An innovative solution to that difficulty has been recently offered
in reference 44. Under the proposed approach, the problem is divided
into a continuous optimization performed within the resonance bounds in
one subspace at a time, followed by a transfer to a subspace inexpen-
sively selected from the neighboring subspaces on the basis of having the
greatest potential for further structural mass reduction.

Sensitivity of Optimum Designs to Problem Parameters

From a designer's viewpoint, existing optimization techniques have a
deficiency of providing single point information, when compared with the
traditional parametric studies that clearly present "what if" type of
information in a graphical form. That deficiency can be eliminated by
analyzing an optimum solution for its sensitivity to those physical quan-
tities that were kept constant (problem parameters) in the optimization.
For example, assume that the cantilever truss shown in figure 8 was

optimized to obtain minimum structural_mass and optimum cross-sectional
areas subject to stress constraints. The truss dimensions H and




were among the constants of the problem. Now we want to know how the
mass and cross-sectional areas change when the dimension H is increased
by, say 10 percent. Intuition fails to give the answer because there are
two conflicting trends: mass of the horizontal rods can be reduced as
the truss depth increases, but the upright and diagonal rods gain mass
since they become longer. The answer can be obtained without the "brute
force" parametric approach of repeating the optimization for an
-incremented H by means of an algorithm described in reference 45.

The algorithm is based on the same approach of differentiation of
the governing equations that was discussed in the section on computation
of derivatives. For a constrained minimum, the governing equations are
the Lagrange multiplier equations whose differentiation with respect to
the parameter leads to a set of simultaneous algebraic equations. In
these equations, the coefficients are functions of the objective function
and active constraint derivatives evaluated at the constrained minimum,
and the unknowns are the derivatives of the optimum design variables with
respect to the parameter. Solution of the equations, produces the
derivatives which are then used to calculate the total derivative of the
objective function.,

’ In the truss example, the optimum sensitivity derivatives with
respect to H can be used to extrapolate as shown in figure 9 to find
that the mass actually decreased to 0.97 of the reference minimum mass
for. 10 percent increment of H. Reoptimization confirms the above result
and indicates (continuous line in figure 9) that in this case the linear
extrapolation's accuracy is reasonably good for up to 20 percent change
of H for structural mass and for cross-sectional area of rod 1 (taken
as an example of a design variable). Although introduced in the context
of structural optimization, the algorithm is entirely general. It could
be used, as well, to evaluate the sensitivity of the maximum payload to
the aircraft range assumed as a problem parameter during the optimization
of the aircraft. A similar application in automotive design might be the
sensitivity of the minimized fuel consumption per unit of distance to the
parameter of a minimum required acceleration.

Adaptability of Software to Variety of Design Applications

The task of deveToping an optimization program system equipped with
the search and analysis capabilities suitable for the present and future
needs of a large number of users is more difficult than development of a
specific analysis program. The reason is that design, in contrast to
analysis, is to a large extend an art and we want it to remain that way
least we loose its vital ingredients of creativity and inventiveness.
This puts an optimization software developer in the situation of not
knowing, precisely, what will be the objective function, design
variables, and constraints in each potential application and what will be
the preferred procedure. The use of a number of prewired options,
similar to the NASTRAN (ref. 46) "rigid formats," does not allow for the
required flexibility, and past attempts to use this approach resulted in
optimization programs that were often disappointing to the users.

One solution lies in a programing system concept whereby the problem
dependent parts of the procedure are left for the user to code in the
form of programs (usually simple and short) to be inserted in the system
when the optimization. problem is formulated. An example of such a system
is PROSSS (for Programing System for Structural Synthesis), which is
described in references 47, 48, and 49. In PROSSS, the problem-dependent
codes connect the analyzer and optimizer as seen in figure 10. The
Optimization-to-Analysis (0-A) processor is a code that embodies the
design variable definition. It converts the numbers the optimizer
manipulates as design variables to the structural input parameters

recognized by the analyzer. A1l sorts of judgmenta] devices such as
design variable linking (ref. 30) can be coded into this processor. The
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Analysis-to-Optimization (A-0) processor on the opposite side of the
analyzer incorporates the objective function and constraint definition.
It selects from the analyzer's output the quantities needed to calculate
the objective function and constraint values in a manner decided by the
user. The flowchart in figure 10 is the simplest of the PROSSS
procedural options and corresponds to figure 4. Other options include
combinations of an analytical generation of gradients and a piecewise-
linear optimization.

The programing system approach permits a common core of programs,
termed a skeleton form in figure 11, to be shared by many forms
specialized for applications (right hand side of figure 11). Each
specialized form has its own 0-A and A-0 processors which, once prepared
for a certain class of applications, can be assembled with the skeleton
modules for execution using executive software generally available on
most computers in the form of utilities embedded in the operating
system. If he so desires, a designer can limit his view of the
programing system prepared for a specific application to see it as a
black box into which he feeds input to obtain optimum solutions. The
details of setting up the specialized forms for the variety of company
applications can be left to staff specialists who can replicate the
system into an array of specialized tools.

Two examples of very different applications of one programing system
from reference 48 are shown in figures 12 and 13. The former illustrates
a minimum mass optimization of a fuselage segment under stress,
displacement, and buckling constraints with the inset showing the
resulting cross-sectional material distribution. The latter depicts a
shape optimization that starts with a portal framework and ends with a
significantly lighter truss.

Large-Scale Problems

Many practical structural design problems are so complex and contain
such a large number of design variables and constraints that it is
impractical to try to optimize them as single problems. There are also
organizational difficulties. If the problem is large, it is certain that
a design organization is, or will be, created to allow many engineers
and, prefereably, many computers to work on various parts of the problem
concurrently. This is the sound management principle of developing a
broad work front in the organization. The concept of folding that work
front into a single stream within an optimization procedure does not
appear to be a very practical proposition. However, an optimization
procedure can be developed that allows for a systematic decomposition of
the problem into several parts to cover the widely developed organiza-
tional work front. In operations research, there are mathematical means
to carry out such decomposition (ref. 50), primarily in application to
economic systems. A formulation of decomposition for engineering systems
is given in reference 51 which shows how to preserve the couplings
between the parts of the decomposed problem by means of the optimum
sensitivity derivatives discussed previously. A special case of
decomposition of a large structural optimization problem leads to an
optimization procedure that parallels the process of analysis by
substructuring. One particular form of such decomposition has been
proposed in reference 52. A somewhat different implementation is shown
in reference 53.

Two-level decomposition. The basic concepts of the decomposition
process can be presented 1n a simplified manner by considering a two-
level approach. A minimum mass optimization of the simple framework
shown in figure 14 (ref. 53) will serve as an example. Without decom-
position that optimization could be carried out with the 18 cross-
sectional dimensions depicted in figure 14 (inset) as design variables




and with constraints imposed on the displacements, and on stresses due to
the material limits and local buckling. In optimization by decomposi-
tion, this problem is divided into a set of three separate subproblems
for each beam and a coordination problem for the assembled structure. In
a beam subproblem, the beam is regarded as loaded by the invariant end-
forces obtained from the assembled structure analysis, and the design
variables are six detailed cross-sectional dimensions. The objective
function is not the beam mass. Instead, it is a cumulative measure of
the stress and local buckling constraint violations in the beam which is
being minimized subject to inequality constraints in form of the bounds
on the dimensions, and the equality constraints that make the beam cross-
section area, A, and moment of inertia, I, equal to the values set in the
coordination problem.

In the coordination problem, the framework structure is optimized
for minimum mass subject to constraints on the framework displacements
and the cumulative measures of constraint violations in each beam using
the beam A's and moments of inertia I's as six higher level design
variables. In this optimization, the cumulative measures of constraint
violation are linearly extrapolated for each beam using their optimum
sensitivity derivatives with respect to the end-forces and the beam A's
and I's which are parameters in the beam optimization subproblem. The
coordination problem (which includes the assembled structure analysis),
and the beam subproblems (which can be worked on concurrently), are
repeated iteratively until the objective function is minimized and all
constraints are satisfied. The two-level approach is illustrated in
figure 15 which shows the decomposition tree and the information
exchanged between the structure and substructure levels. Transmitted
downward are the values of A, I, and the end-forces for each beam.
Returned upward are the derivatives of the cumulative measures of
constraint violations to convey to the system level the coupling
information how the beam constraints will react to changes in the values
of A and I. The result is a conversion of a problem of 18 design
variables into 3 problems of 6 local variables each and 1 problem of 6
higher level variables. Comparison of the approach with the optimization
without decomposition reported in reference 53 showed good correlation of
the results and promising overall effectiveness of the decomposition
method.

Multilevel decomposition. Considering structural assemblies much
larger than the framework example, we can envision figure 15 expaned to a
tree of more than two levels as shown in figure 16 for an aircraft
structure. Each of the elements or nodes of this scheme could be
occupied by groups of people and computers working concurrently on their
parts of the problem. In other words, we see the decomposition scheme
blending with the familiar organization of a design office into a wide
work front for people and machines.

Computer Power

Recent computer trends toward cheaper hardware, and distributed
computing replacing centralized processing support very well the
optimization developments presented herein. Already available are
electronic work stations interconnected in a network (ref. 54) that give
an engineer the desk-side power of a large computer, an access to
computing and data handling capability of any computer in the network,
and, what is most important, a direct access to data generated by other
members of the design team. High-level programing languages are also
available for executing major computer codes in logically complex
sequences, as if they were subroutines called from a main program, even
though they may run on different computers. A step in that direction was
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taken by dispersing the programing system from reference 48 between a
minicomputer and a mainframe computer (ref. 55).

Optimization procedures tend to generate voluminous data and,
therefore, can benefit from the new software for efficient data handling
that have recently been developed especially for engineering purposes
(ref. 56). That software addresses the data management problem at two
levels. The lower level program (ref. 57), an equivalent of a file
cabinet, has already been used with excellent results in major
applications (ref. 58). The higher level program (ref. 56), an
equivalent of a reference library, is in testing.

It is apparent that these computer technology developments not only
form a base on which to operate the organization shown in figure 16 but
they actually require such organization if their full potential is to
materialize.

CONCLUDING REMARKS

Recent developments in structural optimization techniques and
increases in computer power have been reviewed. The picture emerging
from the review can be summarized as shown in figure 17. Several devel-
opments, each corresponding to a section in this paper, have a great
potential to reinforce each other with a synergistic result of a quantum
Jjump in practical usefulness of optimization in design. The improved
optimization capability coincides with a steadily increasing need for
formal methods to support design of structures in which new technology,
such as composite materials, or new functional requirements, such as a
significantly lower vehicle mass for improved fuel efficiency, reduce the
reliability of previous experience in guiding the design decisions,
especially the quantitative ones. It is apparent that all ingredients
now exist to spur the expansion of optimization methods from their
present limited position in figure 1 both upstream and downstream of the
design process. Upstream, the challenge of muitidisciplinary optimiza-
tion will immediately be encountered and the rewards will be magnified
because each discipline will have an opportunity to influence the design
earlier than is now feasible. Downstream, the role of optimization as a
mathematical organizational framework for a large team wil be
increasingly important bringing benefits commensurate with the large
resources committed during the final stages of the design process.

However, the synergistic use of all the methodology reviewed in this
presentation in everyday design practice is unlikely to materialize soon
unless a concentrated effort is made by practitioners, managers, and
researchers who are motivated by an awareness of the opportunities and
potential gains offered by the evolving state of the art. If this
presentation contributed to that awareness, its purpose will be
fulfilled.
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Fig. 1.- A design process.
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Fig. 2.- Compressed column as an example of structural optimization.

INFEASIBLE —

A=27nR; | = mR7t

-

/—P=Tl

3

CONST.; THIN-WALL GEOMETRY LIMIT

FEASIBLE

2£1/45.2; EULER COLUMN BUCKLING

-—~~£PDESIGN POINT
oa: STRESS LIMIT oa

— CONSTANT OBJECTIVE FUNCTION CONTOURS

min

S 5= cE(§): cvunDer waL
\7w\/ LOCAL BUCKLING
Lo CONSTRAINT
— BOUNDARIES

R DESIGN VARIABLE

Fig. 3.~ The column design in a constrained design space.

16




+

INITIALIZATION
FEW TIMES MANY TIMES
Y ‘ 1
FULL ANALYSIS| $3% ¢¢
CONVERGED INEXPENSIVE
A f Y APPROXIMATE
TERMINATOR =1 OPTIMIZER ANALYSIS

/

NOT CONVERGED

Y

Fig. 6.- Flow chart of an optimization procedure with the full
analysis placed outside the optimization loop.

SWEPT WING

¢ 160D.0.F.

® 194 ELEMENTS

® 32 DESIGN VARIABLES
® 2 LOAD CASES

ou/oV

FINITE

DIFFERENCE | 700

161

SEM| -
ANALYTICAL

BOX BEAM

*122D.0.F.

® 75 ELEMENTS

* 9 DESIGN VARIABLES
* 1 LOAD CASE

SOLUTION TIMES IN CPU sec

STIFFENED CYLINDER

®337D.0.F.

* 190 ELEMENTS
* 3 DESIGN VARIABLES
* 1 LOAD CASE
*2 VIBRATION MODES

ouoV| ag/oVv {dw/oV,
ou/oV 0d/dV
FINITE FINITE
DIFFERENCE| 141 DIFFERENCE| 222 230 423
SEMI- SEMI -
ANALYTICAL| 61 ANALYTICAL| 175 186 190

Fig. 7.- Examples of results of a sensitivity analysis.

17




START

[ _INITIALIZAT.ION'J

| opmizer |

o OPTIMIZATION
| TERMINATOR | Loop
N ]

IR
-’ [ _avavvzer |
FLOW CHART SYMBOLOGY:

opr_m_lzmo / [ PROGRAM

__RESULTS PROBLEM

] DEPENDENT

PROGRAM

f ,—’ BLOCK OF DATA

Fig. 4.- Generic components and basic flow organization of an
optimization procedure.

A
250 - (b)
240 -+
o
> 230 -
220 A
210 1
P>
T TTY T YT
1 2 3 4
Iter.

18
Fig. 5.- Optimization of a complete airframe.




-
N

6 (H

(o.°]
[a—
o

ALETTRWL RN

(WS
o

L L

ot —————— 3

Fig. 8.- A cantilever truss optimized for minimum mass under
stress constraints.

1.0¢ —A—EXTRAPOLATION
——REQOPTIMIZATION
F/F,
Al/Al oL
AN

"\
Sl

L 1 I i J

0 5 10 15 20

AH, %

Fig. 9.- Cantilever truss: objective function and one cross section
as functions of parameter H.

19



20

: OPTIMIZATION LOOP
(F )< .. RS ".,. p e et

(e )/ wui ~/

(a)

START Y
AR [ 0-A PROCESSOR ]
/w7 e s

I P
- ‘Qf S T T ANALYZER '
[ ortmizir | (ANALYTICAL

, GRADIENT CAPABILITY)]

- v
r—[ TERMINATOR J‘“’(E BEHAVIOR VARIABLES

(THEIR GRADIENTS)

= PRQCESSORTJ

OBJECTIVE FIJNCTION o)

l
| AND CONSTRAINTS

{THEIR GRADIENTS) l

Fig. 10.- Adaptable programing system.

ADAPTABLE VERSATILE SYSTEM AND A SIMPLE TO OPERATE BLACK BOX

SKELETON FORM MANY SPECIALIZED FORMS
[ ['sTRuCTURE TYPE 1
(E.G., WING)
—={ | NONREPEATABLE PART
CONMIN OUTPUT DATA
0-A, A-O PROCESSORS
CONTROL —
PROGRAMS REPEATABLE PART
SPECIALIST - AND OPTIMIZATION
INPUT DATA
P??%%-EI\:)%??E ([ STRUCTURE TYPE 2
(E.G., FUSELAGE) DESIGN
FILES ENGINEER
L_»{ | NONREPEATABLE PART "BLACK BOX
OUTPUT DATA
EXECUTION VIEW)
CONTROL DECKS 0-A, A-0 PROCESSORS
OF FIVE OPTIONS .
(+ FSD) WITH REPEATABLE PART
STANDARD FILE AND OPTIMIZATION
NAMES INPUT DATA

OPEN ENDED

Fig. 11.- Skeleton and specialized forms of a programing system.




/— LOADING DISTRIBUTED ON ALL JOINTS WITH A SECTIONAL AREAS OF
SN

. RESULTANT TORQUE = 156 M Ncm FRAMES AND TRANSVERSE
( N RESULTANT UPWARD THRUST = 98 kN < FLOOR BEAMS
— Xl H
EDGE :
SUBJECT |
10 LOAD ©
X SKIN THICKNESS \

(MINIMUM GAGE)\

/ ALLOTHER STRINGERS X

CLAMPED ALL OTHER FRAMES x,
EDGE .
HEIGHT OF BARS P ~
I 10 CROSS SECRTSEONRAOLPS,?&%NAL _—SECTIONAL AREAS OF STRINGERS

“\\_AND LONGITUDINAL FLOOR BEAMS

* MEMBERS BORDERING THE CUTOUT

Fig. 12.- Stiffened cylindrical shell optimized for minimum mass.

P
J I,
L 1
<
<-X2 xz T—
. 7177777777777 77777777 77777777777
ORIGINAL AFTER 1ST FINAL TRUSS
FRAMEWORK ITERATION AFTER
4TH ITERATION
MASS 100% MASS 60%
STRESS 188% ALLOWABLE STRESS 68%
DISPLACEMENT 200% ALLOWABLE DISPLACEMENT 100 %
Fig. 13.- Transformation of a framework to a truss by optimization 21

with geometrical variables.




22

- 1000cm - M= 20x10® N-cm
2
N - ‘\ P=50000N 5.
A} 7N ] NOT 10
SCALE
500cm 1 yh
1 |
M 4T A LA bl I ,L,.:x b2
g { ' -, | t31-—| t
7 ’A'/ f t1—> - e ?
|
- ! 1000 cm
N 3
- |
.
|
TSI ITIIIIT ]

Fig. 14.- Framework as a test case for a two-level optimization
procedure. .

WHOLE FRAMEWORK

BEAM

Fig. 15.- Decomposition of a framework into a hierarchy of optimization
subproblems.




16.- Groups of people and computers working concurrently on a
large, decomposed design problem.
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Fig. 17.- Coalescence of the stimuli for further intensified development
and use of optimization methods.
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