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A:SSTRACT

Heat Capacity Mapping Mission (HCMM) dLa of a diversity of terranes and

geologic settings have been examined to eva? , iate their use for detecting and

mapping geologic features in support of energy and mineral rea-)urce si.udies.

Thermal-inertia images were prepared from the day and night H01M digital data

using an algorithm developed previously by us, and analyzed by comparing to

topographic, geologic, and geophysical maps and other available data.

c	 Selected Landsat and digital terrain data sets were also co-registered with

HCMP4 data in order to study the effects of vegetation and topography.

In the Cascade region, general thermal-inertia and reflectance statistics

show differences between several large physiographic units. Analysis for

structural and tectonic features indicates the complementary nature of HCKM

and Landsat images. Two new features were identified and a method was

developed that may be useful for recognizing and characterizing regional 	 I.,

at

geologic terranes from linear features data. 	 v

H('MM data of the Overthrust Belt of Montana ant: Idaho was examined for

expression of the structural framework. Overall structural style of folds and
n

faults of the Overthrust Belt was clearly delineated from surrounding terrain,

and two long northeast-trending linear features wer•2 discovered. One, in the

Butte quadrangle, may be related to a bedrock-alluvium contact and occurs in

an area of great interest for placer deposits. The other lineament extends

southwest from near Frances Lake, Montana, across the Lewis thrust and the 	
i

I
Montana lineament and through the Idaho Batholith. `tap ped faults occur along

segments of the lineament and along its extension to the Idaho-Oregon border a

sharp change in the aeromagnetic patterns coincide with _he extension.

The Colorado Plateau in the Richfield, Utah, area was examined for the

thermal-inertia variations between several rock types. Sedimentary rocks

V1	 i

G

C
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produce the expected relationships, with quartzites and orthoquartzites having

the highest values, followed by dolomites and then shales and limestone.

Granites were found to have higher thermal inertias than other igneous rocks,

and a weak but consistent trend was observed among the other igneous rock

types. Areas of hydrothermal alteration are generall y too small to be

observed on HCMM, although one thermal-inertia high was tentatively :'.dentified

as an area of silicification.

A major lineament crossing the Colorado Plateau and the Southern Rocky

Mountains was detected on several thermal-inertia imases. The existence of a

geologic discontinuity along the lineament 	 is supported by gravity,

aeromagnetic,	 seismic, geologic and topographic data; 	 nowever,	 the nature of

the discontinuity is unknown.	 The lineament extends from southwestern Arizona

to northeastern Colorado and passes through the Hopi 	 Buttes volcanic field,

Arizona, a volcanic plug at Shiprock, New Mexico, 	 *Ae Creede and Cripple Creek

mineral districts and	 the Pikes Peak batholith,	 Colorado.

Studies in the Basin and Range province focused on two 1 0 by 20
r

quadrangles:	 Silver City (Arizona and New Mexico) and Walker Lake (Nevada and

California).	 In the Silver City quadrangle area,	 prominent	 northeast trending

linear features	 and thermal-inertia differences were observed in both

alluvial and bedrock areas.	 Of particular	 interest	 ;as	 the detection of i
4

thermal-inertia differences in vegetation-covered bedrock areas; on landsat

t •

MSS data,	 t`iose areas have relatively uniform reflectance values dominated by

vegetation.	 The observed	 thermal-inertia differences are believ'2d	 to	 be

fassociated with resistant rock masses and, 	 in one case,	 thermal-inertia ^

^ 
r differences correspond wish a mapped lithologic difference. 	 At Walker Lake,

I

the two main linear trends seen on the HCMM data (northeast and northwest)
a

coincide with thi most prominent directions previousl y seen on Landsat data.

Q
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No consist?nt pattern was observed between thermal inertia and altered bedrock

due, we believe, to the competing effects of silicification and leaching in

the altered areas.

Studies in more heavily vegetated terrain of the eastern U.S. confirm

that observed thermal-inertia differences in the Appalachian Mountains

correlate with geologic units. Among a se q uence of sedimentary units,

F'

orthoquartzites were observed to have the highest thermal inertias. On

individual day and night thermal images of the Allegheny Plateau, the

structures detected included two lineaments with expression on gravity and

M
ma-netic maps. Aspects of soil moisture were seen which did not appear to

cc -elate aith the vegetation canopy, and the Piedmont drainages were found to

be better defined than those of the Coastal plains,

The study also considered a number of aspects of the construction of

thermal-inertia images, including an evaluation of the parameters used in the

thermal inertia algorithm, an extension of the algorithm to include slope and

elevation correctic:ns, and an examination of several aspects of image

registration. A model explaining the thermal-inertia behavior of igneous

rocks, based on the components of quartz, glass, and mafic minerals, was

recognized from the HCMM observations and found to fit controlled laboratory

measurements reported in the literature. A study of the effects of vegetation

was conducted, because thermal-inertia differences were observed in vegetated

areas that had relativel , :iniform reflectance on Landsat images. In the

Richfield, Utah, image area, a comparison between vegetation index values

derived from Landsat data and thermal-inertia values yielded a correlation

t-	 coefficient of only 0.08, indicating that observed thermal-inertia variations

are not strongly controlled by vegetation. The method was also tested in

small, cultivated areas, which were probably dominated by the effects of

n o
viii	 ^ i
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ir-igation; and correlations G to 5 times higher were observed.

We ccnclude from these studies that HCMM thermal-inertia images F.ave

attributes similar to bedrock maps. Even in heavily vegetated terrain, where

the bedrock and soil appear obscured on Landsat data, we have developed some

^.	 evidence to suggest tha+: resistant rock masses and, in one case, a lithol(,Ql.c

difference can be observed. Generally, thermal-inertia differences among

sedimentary rock units are as expected, but subtle differences among igneous

rock units ::ere observed that are consistent with a simple three component

t	 model. Little success was achieved in detecting areas of alteration because

of the low ground resolution and the opposing effects of silicification and

leaching on the thermal inertia. Structural studies resulted in the detEar:on

of several lineaments that have not been previously recogni:.ed, illustrating

that the scale, resolution, and thermal aspects of these data provide

information which is complementary to Landsat MSS data in studying the

regional tectonic framework.
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The principal objective of this study was to investigate the ase of HCMM

(Heat Capacity Mapping Mission) data for detecting and mapping geologic

teatures in support of e.=-cgy and mineral resource exploratie.n and

evaluation. Other related objectives involved the development and refinement

of techniques and approaches in thermal modelling and i^:af;e processing.

i	 In our first study (Watson and others, 1981), we investigated the utility

of using HCMM data, as well as thermal-inertia data constructed from the

satellite data, to detect and map geologic features. We demonstrated that

some rock type discrimination is possible among metasedimentary rocks, mafic

rocks, and felsic rocks in the and environment of southwestern Arizona. We

were also able to detect narrow geologic units in the Powder River Basin,

Wyoming, by their thermal-inertia contrast with their surroundings. The most
r

j	 important results involved delineation of tectonic tramework elements, some Df

which were not previously recognized. In that initial study, we gained the

necessary knowledge and understanding of HCMM data to extend o­_ analysis to

other geologic areas with different geologic settings, more extensive

vegetation, and more rugged terrain.

This report focuses on five such areas: the :aacade Range, the Colorado

Plateau, the Basin and Range province, the Allegheny Plateau and App" Chian

`fountains, and the Overthrust Relt in `fcntana and Idaho. "these areas were

selected primarily because ongoing programs of the U.S. Geological Survey

provide a substantial knowledge base from which to draw and unique Oata sets

with which to compare our results. In most cases we were able to readily

address the objecti ves of our investigation. In a few cases we were able to

conduct only rudimentary analysis due to unavailability of required image

products. however, as the investigation progressed, new objectives were

1

Im
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addressed as unexvected new fea.cures were observed and new methods of aiia'vsis

developed.	 These extensions to our study, we feel, greatly enhance the scope

of our investigations and illustrate our belief that HC`^C1 data provide naw

Insight for regional investigation.

This report is intended to define more precisely the role of thermal and

thermal-inertia studies in regional geologic ex;.loration, .,oth independently

and tr, combination with other data, including remote sensing data sets and

conventional geologic, geophysical, and ¢eochemical data. The report contains

both an examination of 40K lata in t.ive d--verse areas and a general analysis

of several aspects that are not site specific and apply generally to various

terrines. For site studies we provide a brief description of the geolcgic

sett.ng and the objectives of the analysis of the HOAM data. Although our

n r

original plan was to use

images, in many cases we

extension of our modelli.

general analysis section

registration, vegetation

igneous rocks that arose

only the NASA-supplied relative thermal-inertia

employed our own registration procedures and an

1g algorithm to produce thermal-inertia images. The

provides a discussi,)n of thermal modellir_g,

and topographic effects, and thermal inertias of

from our collective ex}eriments developed from this

I 	 and the pr^•vious 14CMM investigation.

n (
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2 GEOLOGIC STUDY AREAS

2.1 CASCADE RANGE and VICINITY

The Cascade Range of lashington, Oregon, and northerr, California (Figure

1) is a constructional mountain range built by extensive volcanism beginning

in Tertiary time. The recent phreatic eruptions, seismic activity, and ground

fr
	 swelling at Mt. St. Helens, Washington, testify to the continued volcanic

activity associated with the range. An older series of andesitic volc^nic

f.	
rocks (early and middle Tertiary) are exposed along the western mar-in of the

range (Western Cascades). These rocks are known to be overlapped in places by

Miocene lavas of the Columbia River flood basalts eruvted from sources east of

f:
the present Cascade Range and north of the High Lava Plains. Capping both

rock series is a line of modern andesitic stratovolcanoes (e.g., Mt. Rainier,

Kt. St. Helens, Mt. Hood, Mt. Lassen) that form the backbone of the Cascade

Range (High Cascades). Each of the rock series is a complex of volcanic and

volcanoclastic rocks formed in response to tectonic events associated with
	

f

continued interaction between the North American, Pacific, and Farallon 	 F
G

plates.

1
The High Lava Plains of Oregon is an east—southeast trending belt of

f

Cenozoic volcanic rocks extending from Newberry volcano in Oregon into

southern Idaho (Figure 2). This belt is characterized by basalts with less

voluminous rhyolitic domes, lava flows, and ash flows that decrease in age

n
	 from east to west (Christiansen and `tcKee, 1978). The High Lava Plains mark

the northern extent of the Basin and Range province. In Oregon the Basin and

Range province is characterized by north—northeast trending linear ranges of

Tertiary vo inic and Mesozoic sedimentary rocks, separated b y linear valleys

containing alluvial fill. North of the High Lava Plains is the Blue Mountains

province, a structurally complex area of dominantly Tertiary basalts, with
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abundant exposures of Paleozoic and Mesozoic sedimentary, igneous, and

r	
metamorphic rocks as well. The Columbia Plateau province is a vast, generally

flat area underlain by '.Miocene flood basalts that are incised by the major

drainages.

Detailed analysis of HCTI images in the Pacific Northwest was largely

limited to that portion of the Cascade range south of the Columbia River,

includir; portions of the adjoining Hig'i Lava Plains, Basin and Range, Blue

f	
Mountains, and Columbia Plateau provinces (Figure 2). HCTI data in the

various provinces were studied to determine if differences in thermal inertia

could be detected among ;he main physiographic units and to evaluate the

G
structural geologic content of the individual band images.

Day (NASA scene ID AA0164-21270-2) and night (NASA scene ID AA0402-09360-3)

HCTI thermal images covering the central and southern Cascade Range were

0
examined for geologic structure; unfortunately, the companion HCMM visible

data contained abundant s ystem noise and were not usable in the study. The

computer-enhanced HCMIM images were interpreted for linear features, which are
C

distinct linear elements observable on the images (Figures 3 and 4); no

attempt was made to define more diffusely expressed, broad-scale lineaments.

C
	 The linear feature data were digitized and the length- and strike-frequency

distributions were determined for a subset of the HCMM data that coincides

with a linear features data set previously mapped on computer-enhanced Landsat

t,	 images (Figure 5). Fewer 1'.near features were mapped on the HO M images than

on the Landsat images, and the HCTI linear features are longer on the

average. The linear feature data from both the day and the night HCMM images

have prominent northwest and east-northeast trends (Figure 6), similar to the

Landsat linear feature data, but a distinct north-south trend in the Landsat

linear feature data is conspicuously missing fern both HCTIM data sets; in

fact, this trend is a p-.-ominent minimum on the HC?fM data.

6
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Because the resolutions of the Landsat and HC`M systems are quite

different, we wanted to develop some means to compare linear feature data

derived from analysis of these images. The method we decided to employ had

been previously developed to examine crater distributions on planetary

surfaces (Shoemaker and others, 1962). The cumulative frequency at specified

lengths (i.e., the number of features with lengths greater than that length)

were computed and displayed on a log-log plot. A number of such plots were

zonstructed for data from HCMM, Landsat, and fault maps, and all were found to

have the same characteristic shape: a linear slope in the middle, an

asymptotic flattening at short lengths, and a falloff from the linear

projection at long lengths. The linear section was then least-squares fitted

to compute a slope value.

Even though different azimuthal trends are present in the Landsat and

HCIIM linear features data sets and the number and lengths of the linear

features are quite different, it is interesting that the straight-line portion

of the respective plots have similar slopes (Figures 7). The asymptotic

portion on the left (short length) side of each curve is probably a function

of t`ie s ystem resolution and image scale, while the falloff portion on the

right (tong length) end is a complex function of several factors including the

individual interpreter, the size of the imag =_, and the discreteness of the

process. The straight-line portion of each curve may be indicative of the

particular study area, its structure, lithology, and general geologic

environment, and may provide a means of semi-quantitatively characterizing

terranes.

Although nunerous structural patterns can be seen on the HC`4 images and

the linear feature data, two deserve special mention. The first is a roughly

circular feature (45 km diameter) surrounding Newberry Caldera, Oregon, on the

11
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night thermal image (Figure 3) that has no obvious counterpart on the T.andsat

it
	

image. Ir roughly coir:cides with the 5,000 ft (1,667 m) contcur on the

Crescent topographic ;nap and correlates, in a very general sense, with the

distribution of the volcanic flows. It is expressed in places by topographic

changes and changes in vegetation pattern. The feature includes the main

field of cinder cones, which are north and northwest of the caldera, and also

the most highly dissected terrain. The pattern may be related to subsidence

f C7	 during outflu-,7 from th,- main magma chamber, which acted to limit the

distribution of the lava flows.

On a broader scale, a second pattern is defined on the HC`IM images by an

L.	
absence of linear features in a region roughly bounded by The Three Sisters

t

	 Volcanics, Newberry Caldera, and Crater Lake (Figures 3 and 4). The region is

centered about 50 km to the west of Newberry Caldera and has a diameter of

roughly 80 km. The linear features on the periphery are generally either

radial or tan;ential to the boundary. This conspicuous lack of linear

features may be due to a youthful, unfractured volcanic cover that masks the

regional distribution of linear features with sufficient length to be seen on

the HCMPi images. Alternatively, this region may be anomalously devoid of

fractures. Magnetic data have been interpreted as implying a shallowing of

the Curie isotherm in this region (Connard and others, 1983); this suggests

that perhaps the rocks might be more ductile in this region and that frictur^

development at depth, with subsequent propagation to the surface, may indeed

be retarded.

Apparent thermal-inertia and reflectivity statistics constructed from the

Tune 2, 1979, image (AA0402-09360-3, AA0402-20310-1,2) for areas within

several of the major lithologic/physiographic provinces in the Pacific

Northwest were computed to determine whether important differences exist

13
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(Figure 9). In general, the thermal-inertia statistics are in three

cloisters: (1) the Cascades, (2) the Blue Mountains, and (3) a grouping of the

High Lava Plains, the Columbia Plateau, and the Basin and Range provinces. In

the Cascade Range cluster, there is some sepa ration of the mean values for

i

areas in the High Cascades and the Western Cascades, but there is a

considerable overlap in the two distributions. An insert in the figure shows

the statistics for the Mt. Hood volcano (High Cascades), which is anomalous

t

because of the snow cover present when the HCMM data were acquired. Two

separate areas were analyzed in the Blue Mountains province to determine

whether a statistical difference could be observed on opposite sides of an

^ J
't	

apparent discontinuity seen on the thermal-inertia image. The difference

appears slight. Thti third cluster, including the High Lava Plains, Columbia

Plateau, and Basin and Range data, has the highest reflectivities and lowest

apparent thermal inertias. The mean apparent thermal inertias are not greatly

different; however, the ranges of reflectivity are quire broad.

This study has illustrated that therm!-inertia differences exist among

large physiographic units of the Cascade region and that thermal data can

supply structural information which is additional to and thus complementary to

Landsat data. A new technique has been used in this study to compare

lineament data acquired from systems with different resolutions, and it may

have broad application to the interpretation of linear feature data.

2.2 OVERTHRUST BELT

The "!ontana/Idaho part of the western Overthrust Belt (Figure 1) is

characterized by the presence of numer,ius northerly trending imbricate thrust

plates. These plates, consisting ;vainly of Precambrian and Paleozoic

sedimentary rocks, have been intruded by plutons of 'Mesozoic and Tertiary

age. Relatively non-resistant Cretaceous and Tertiary sedim e ntary rocks are

C,
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present in the northeastern part of the study area. A major west-northwest

trending zone of right-lateral strike-slip c'isplacement, including the Osburn,

Ninemile, and St. Re faults, transects the area. South of this zone,

crystalline rocks are more widespread, the thrust plates are fragmented by

	

f ^	 numerous faults, and irregularly shaped basins are filled with complex

i
depositional patterns of alluvium of Cenozoic age. The northern part of the

Overthrust Belt has high potential for precious and base-metal and petroleum

products. the metal deposits in the area include stratabound sulfide, vein

and replacement, and placer deposits.

Our studies were primarily directed towards gaining an understanding of

the expression of structural framework in HCMM thermal-inertia data. We were

also interested in evaluating the use of these data to study the development

of the drainage network and the deposition of alluvial deposits in the basins

cacause of their potential for p lacer deposits. For the analysis, a relative

thermal-inertia image was constructed (Figure 10a) using HCMM data acquired

October 9, 1978 (AA0166-09370-3 and AA0166-20340-1,2).

A pronounced structural feature (Figure 10a and 10b) which can be seen on

the thermal-inertia image is the '^ewis and Clark "line" (often referred to as

the Montana lineament), a west-northwest trending zone of large high-angle

faults (Wallace and others, 1960). Linear features which match the Osborn and

Placer Creek faults are clearly visible. The Osoorn Fault has many associated

faults, some of which are mineralized, end igneous activity and mineralization

in the Coeur d'Alene coining district were localized along its course

(A:luerson. 1948) .

	Bil l	 In the northeastern part of the image is located the Lewis thrust and an

intense hand of overthrust faults, east_ of Flathead Lake (Figure 11).

Crossing these thrusts can he seen a number of generally northeast-trending

Mc

I
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linear features. The most prominent one extends from Francis Lake, Montana,

through the Idaho Batholith fir about 300 km (Figures 10a and 11). No

continuous expression of this feature can be found on the 1:2,500,000 scale

geologic and tectonic maps of the United States. At its southwestern end it

i
coincide• with the Bargamin Creek fault (Cater and others, 1973) within the

Idaho batholi^h, where it is expressed by several drainages. The lineament

crosses the Montana lineament just north of Missoula and appears to coincide

with a short mapped fault, breaks in topography, and northeast-trending

drainages. The Montana lineament zone is quite diffuse and locally may be as

wide as 50 km 04cMannis, 1959). In the general vicinity of Missoula, where

the linear feature crosses the zone, the Montana lineament changes both in

character and direction (Weidman, 1965).

We examined a number of detailed geologic and gravity and magnetic

anomaly maps to evaluate this feature.	 In the north part of

!I

the Choteau 20

quadrangle	 (Figure 12),	 a set of secondary lineaments that are subparallel

r
^t
I;

with the main lineament extend into the Pendroy Fault zone (Figure 11),	 and

the north-trr.-.uing continental divide bends sharply to the east-northeast

y^F where the main lineament crosses	 the divide	 (lat 47 0 55'N., long 113°W.).

Further to the southwest, the main lineament roughly coincides with an

indentation in the trace of a northwest-trending fault, and further southwest

with a ;napped	 fault	 (lat 470 	15'N.,	 long	 113 0 ,	 45'W.).

Continuing southwest, into the Hamilton 2 0 q uadrangle (Figure 12),	 the

lineament coincides with a zone of short (<5 km)	 faults in a region 20 km

°	 southwest of Missoula. Further southwest is a region where no evidence for

t''-1e lineament is found on the existing geologic mapping. However, much of the

mapping is incomplete due to the extremely rugged terrain in the Selway

Bitterroot Wilderness area.
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The southwestward extension of the feature, in the Elk City 2 0 quadrangle

(Figure 12), provides the most convincing evidence for a geologic origin for

the lineament. There the lineament is roughly coincident with a geologic

contact and then coincides with the northeast-trending Bargamin Creek fault,

which the Salmon River drainage follows for about 50 km (Figure 11).

Gravity (Figure 13) and magnetic (Figure 14) maps provide some supportive

evidence for geologic expression along the lineament in the form of truncation

of patterns, coincidences with small local anomalies, and some parallelism of

trends. The Idaho State aeromagnetic man also suggests structural control of

this feature. A projection of this trend southwest to the Idaho-Oregon border

passes through a region where there is a sharp break in the spatial frequency

character of the anomalies. The patterns to the north have high spatial

frequencies associated with shallow sources, and those to the south have much

lower frequencies suggesting a fundamentally different geologic character.

The trend can be projected westward on the basis of regional gravity data.

The proposed lineament appears to have two bends in its trend. One occurs

near Missoula, Montana, where the lineament crosses the Montana lineament; the

other bend, in the vicinity of the Clearwater Mountains (about 150 km to the

southwest), is near a pronounced northwestern trend on the aeromagnetic map.

The sense of deflection is sinstral. The lineament roughly parallels the

Great Falls lineament (O'Neill and Lopez, 1983) and two other unnamed

lineaments (Ruppel, 1982) which lie about 100 km, 200 km, and 300 km,

respectively, to the southeast.

A linear features map of the Dillon 20 quadrangle (Montana-Idaho) was

also constructed from the HCMM thermal-inertia data (Figu r e 15b). The data

were compared with the geologic *nap (Ruppel and others, 1982) for

corresponding faults and lithologic contacts. Because of scale and projection
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	 contours on 25 mgal contours from the U.S. Gravity anomaly

map (Society of Exploration Geophysicists, 1982). The linear

feats,:..i to'.lows general trends in the Iiaho batholith and
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	 appears :.o be expressed locally in the intermediate 5 mgal

contours shown in the vicinity of thi linear feature.
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differences, a detailed comparison was aot feasible, however, many of the

features identified are mapped faults (F) and others appear to be lithologic

contrasts (L). The HCMM linear features map was also comnared with a linear

features map constructed from the Landsat MSS band 7 mosaic at 1:2,500,000

scale (Figure 15a). Obviously, there are many more features on the Landsat

scene due to the higher resolution. Some of these lineaments are very long

and, we believe, -epresent fracture zones, especially the very long northeast-

trending feature across the central part of the quadrangle. On the other

hand, many of the faults and lithologic contacts observed in the HCMM image

are not evident on the Landsat mosaic and irdicate the additional and

complementary aspects of these rata. Another difference in the two linear

features maps is that the HC'-LM map is dominated by northwest trends whereas

northeast-trending lineaments are more prominent on the Landsat map.

The thermal-inertia HCMM image (Figure 10a) coverage of the Butte 20

quadrangle, Montana, was examined to study possible geologic relationr- to the

placer gold deposit at Carpenter Creek. Carpenter Creek is 4 km east of AvDn,

Montana, and flows 8 km south-southwest to join the Blackfoot River just west

of the Continental Divide. The placer deposits of Carpenter Creek ,re sore of

the richest in the area, 'laving yielded over 250,000 oz of gold (7775 kg) fror•

bench and creek placers following the first four years of discovery in 1865

(Lyden, 1948). One of the unresolved geologic problems concerning the deposit

as stated by Lyden (1948, p. 127) is that:

"For its full length the terrace placers on Carpenter Creek are found only

on the west bank, the benches on the east bank being virtually barren."

Recent detailed mapping (M. R. Waters, 1982, oral commun.) has confirmed this

observation and has furthermore suggested that the gold is probably of local

origin, being reworked from the Tertiary alluvial fan deposits and gold

L
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occurrences to the north associated with the Blackfoot City granodiorite stock

(Wallace and others, 1981).

The HC'Vl thermal-inertia image howl a lineament trending N. 18 0 E. from

the east side of Deerlodge Valley, through Avin Valley, to Canyon Creek Valley

northwest of Helena, Xotitana, a distance of approximately 100 km (Fi ;ure 10,

11). It transects Avon Valley ant' is coincident with Carpenter Creek. The

lineament aligns with an asymmetric northeast-trending gravity low along the

eastern side of r•nerlodgt: Valley (Konizeski and others, 1968). One of the

more interesting aspects of the lineament is that in Deerlodge Valley the

terrain shows a sense of normal displacement, down to the west, along the

C
eastern escarpment of Deerlodge Valley. There are at least two possible

mechanisms whereby a northeast-trending normal structure could affect the

concentration of placer gold on t'-.e west side of Carpenter Creek. If the

structure wa, present in the Tertiary, the initial concentration of placer

gold in the alluvial fans may have been preferentially concentrated on the

west side. Alternatively, if a small topographic low resulted from a
r'

northeast-trending structure during the Quaternary period when the bench and

creek terraces were being deposited, the gold may have been preferentially

concentrated on the west side of Carpenter Creek. The RTfM images provide

Information that iE relevant to this geologic problem, but additional analysis

is needed.

Our results for this area suggest that HCTI thermal-inertia data contain

new information which can complement and--for certain directions, geologic

settings, and length of features--supplement Landsat data for study of

regional structural framework.
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2.3 COLORADO PLATEAU

2.3.1 Richfield Quadrangle in Utah

The Richfield, Utah, 1 c' by 20 quadrangle (Figure 1) contains i relatively

diverse range of igneous and sedimentary rocks. The eastern third of the

quadrangle, ircluding the Sevier Plateau and the Tushar Range, lies within the

High Plat,-au section of the Colorado Plateaus province (Figure 16a). These

physiographic entities form a transition zone between the flat-lying rocks of

the Colorado Plateaus province to the east, and the Rasin and Range province,

which occupies the western two-thirds of the quadrangle. The geolofy of the

quadrangle is quite complex and is difficv't to portray on a ;nap at small

scale. The northern half of the quadrangle is underlain principally by

dolomites, l inestones, .nd shales of Paleozoic age in the west (Confusion,

House, and Cricket Ranges) and by Paleozoic and Mesozoic carbonates and

clastic rocks in the east (Pavant Range). The few igneous rocks that occur in

the northern area are primarily Late Tertiary to Quaternary basaltic and

rhyolitic volcanics in the sedimentary basin fill of the Sevier Desert. South

of a west-northwest oriented line (Figure 16a) defined by the Junctions of the

Pavant and Tushar Ranges on the east and the Confusion and Wah Wah Ranges on

the west, exposed rocks are predominately igneous, except for the northern

part of the Needle and Wah Wah Ranges, which are composed primarily of

Paleozoic sedimentary carbonates. The igneous rocks are predominantly

volcanic, consisting of Tertiary volcanic vent complexes and extensive

regional ashfall unit:;. The only exceptions are the central part of the

Mineral Mou,itains, which contains a Tertiary granitic batholith, and several

small Tertiary stocks scattered throughout the ranges. 'lost of the southern

and central ranges are extensively mineralized and contain many exposures of

rocks that have been hydrothermally altered to argillic, advanced argillic,
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and sericitic stages. Altered areas occur in the Shauntie Hills, Wah f4ah,

Needle and Tushar Ranges. The Sevier Plateau contains mostly Mesozoic clastic

sedimentary rocks with some Tertiary volcanic vent and flow facies.

The sedimentary rocks for most of the region have been affected by large-

scale eastward thrusting during the Mesozoic. Late Tertiary Basin and Range

normal faulting oriented mainly north-south has affected both the igneous and

sedimentary rocks.

Heavy vegetation (>40% cover) typically is found in the uplands at

elevations treater than 1830 m (6,000 ft). It consists mostly of stands of

pi:iyon pine and Utah juniper with ponderosa pine, as pen, and mountain mahogany

at the higher levels where :he rainfall is greater. Lowland vegetation tends

to be more sparse, except in irrigated cropland areas, and consists of

scattered grasses, sagebrush, rabbitbrush and some s&l: dese:t shrubs in more

alkaline soils. Hence, some of the better areas tc examine for lithologic

r-
discrimination withost the confounding aspect of heavy vegetation on the

thermal-i,,ertia image are the rhyolites and basalts of the Black Rock Desert

and the dolomites, limestones and quartzites at the lower elevations in the

House Range and Cricket '4ountains. Other areas that are relatively barren of

thick vegetation cover include the lower elevations of the Wah Wah and Black

*fountains, where intermediate to acidic volcanic rocks are predominant.

•	 t

An analysis was conducted of the thermal inertia and reflectance for	 i

several igneous and sedimentary units in the Richfield, Utah, quadrangle. For

Fthis study a thermal-inertia image was constructed from images acquired
i
r

September 23, 1978, (AA0150-09410-3 amd AA0 1 50-203 50-1,2). These H,fM images 	 tl

were registered to digital terrain data (Defense Mapping :agency), and a 	 i

topographically corrected thermal-inertia image (Figure 16b) was generated

(see section 3.1) on a color plotter at a scale of 1:250,000 to match other

32	
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geologic, geophysical, and topographic maps. Statistics for several igneous

and sedimentary rock types werr: computed using the geologic map (Steven and

Morris, 1983) as d base to locate units. Rock type values were obtained by

combining the statistics for several similar units (Figure 17).

Although the reflectivity v,.1-iPs for the sedimentary rocks show complete

overlap, some separation can be seen in the thermal-inertia values (Figure

17), In order of increasing thermal inertia they rank: shale (Sh) and

limestone (Ls), dolomite (D), and quartzite-sandstone (Qz, Ss). The sandstone

is considered together with the quartzite L,cause thz values were determined

for the :Navajo Sandstone, and this is closer to an orthoquartzite, being

described as "locally converted to hard quartzite" (Steven and Morris,

1983). The ranking agrees with thermal inertias computed from literature

values (Miller and Watson, 1977). The statistics for the igneous rock units,

however, show considerable overlap and little discriminability (Figure 18).

Generally the granites (G) are distinguishable from the other igneous rock

types by their higher thermal inertias, but there appears to be a large

overlap among the remaining igneous rock types. There is a trend, however,

among the mean values of the thermal inertias: granite (G) > basalt (B) >

andesite (A) and rhyolite (R) > quartz latite (QL). Although the statistical

ranges overlap each other, indicating that classification schemes are unlikely

to be successful, a model has been proposed (see section 3.3) that provides a

basis for interpretation of observable thermal-inertia differences in igneous

rock terrane.

Silicified hydrothertmally altered volcanic rocks might be expected to

show an increased thermal inertia compared to the unaltered parent rock due to

the high thermal inertia of quart. One relatively small area (approximately

1 km 2 ) of dominantly silicified volcanic rocks is presen t_ about 5 km west of

It
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White Mountain in the southern Shauntie Hills of the Richfield quadrangle. A

small thermal-inertia high can be located in the scene within this area,

however, uncertainties in the exact registration of the image to the map base

preclude an unequivocal relationship between the anomaly and the --,ilicified

area. Larger exposures of t.:e sedimentary Prospect Mountain Quartzite, a rock

of equivalent silica content, do show high thermal-inertia values and support

our hypothesis. In general the altered areas in this quadrangle are too small

to be analyzed (registered and sampled) with the 500 m resolution HCMM data.

Several important general aspects have resulted from our analysis of co-

registered data sets of the Richfield quadrangle area. A model of the

thermal-inertia behavior of igneous rocks has been developed (section 3.3)
1

and this arose, to a significant degree, from the analysis of these co-

registered data. A method for topographicall y correcting thermal data for

elevation and slope effects was developed using these Richfield data (section

3.1), and one additional result from this area has been the development of a

method to form simulated AC`M thermal images at any time in the diurnal

cycle. This result has been presented at an international collo quium (Watson,

1933). Also we have also used these data to conduct a study of the

relationship between vegetation cover and thermal inertia using co-registered

topography, 1HC',1V, and Landsat digital data (section 3.2). The study indicates

that thermal data may be useful for geologic studies even where dense

vegetation masks the spectral reflectance of rocks and soils.

2.3.2 A Maior Linear Feature Transecting the Colorado Plateau

As part of our previous RC`M investigation (Watson and others, 1981), we
i

had produced a thermal-inertia image (April 3/4, 1979, data AA0342-09150-3 and

AA0343-20230-1,2) of an area within the Basin and Range province of
	

t^

1
southwestern Arizona to examine the thermal-inertia variation of igneous

i
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rocks.	 During the present contract study, we were able to acquire additional

HCMM data of	 that area (May 25/28, 	 1978, data AA0029-13330-8), and, although

not part of our proposed wo rk plan, these data provided an opportunity to

examine two thermal-inertia images nearly one year apart. 	 Because the area is

f.
quite arid, a detailed examination of meteorological data from weather

stations in the area indicated that during the overpasses, and for several

days prior,	 there had been clear skies with no rainfall. 	 We decided to
r

register the two thermal-inertia images and compute a difference image.

Computer enhancement of this difference image (Figure 18) lead to the

recognition of a feature shown as a very subtle thermal-inertia change.	 The

southern boundary of the feature is very straight and forms an acute angle

with the Gila River.	 No coincident structure is indicated on geologic maps of

this region and the feature cannot be seen on Skylab photography (Figure 19),

Landsat MSS data, or X band radar images (Figure 20). 	 The feature does cross

the exposed bedrock ridges of this part of the Basin and Range province, where

geologic contacts occur.	 DetailE_ examination of several HCMM images along

the feature has	 led to the distinct identification of two additional segments

of the proposed	 feature (Figure 21), one in the Hopi Buttes area of

northeastern Arizona (AA0170-09160-3, AA0170-20240-1,2) and the other

northeast of	 the Creede mineral district in southwestern Colorado (AA0017-

j
20560-2).	 A further examination of regional geological and geophysical

information of the southwestern U.S. has led to the interpretation a possible

major lineament with a length of over 1,400 km extending from southwestern

Arizona, across the Colorado Plateau and the Southern Rocky Mountains and into

C the plains of northeastern Colorado (Figure 22). 	 The most direct evidence for

the feature can be found on the aeromagnetic maps of the states of Arizona

` s (Figure 23a)	 and Colorado	 (Figure 23b), where a	 linear element urith bilateral

L
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Figure 19.--Skylab photograph of southwestern Arizona area. There appears
4

to be nu expression of the linear feature which is described

in the text and whose location is indicated by the facing

arrows.	 !
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X band radar	 , 1 5 _km -

Figure 20.--Landsat and X bard radar image of southwestern. Arizona. The

linear feature of Figure 18 does not appear to be expressed

on the Landsat image, but where it crossed the exposed bedr ck,

there appears to be geomorphic expression on the radar image.
Letters on the radar image apply only to the original reference

(Goodyear AeroGpace, 1973).
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symmetry in the aeromaFnetie patterns is evident (Sauck and Sumner, 1970).

7.ietz and Kirby, 1972. The feature is also present in spatially filteren

regional gravity data (Hildenbrand and others, 1982), wavelengths less than

1,000 km (Figure 24). Peripheral evidence includes coincidence with

significant topographic breaks, drainage divides, other proposed lineaments

(Cordell, 1978; Titley, 1981, Kitepper, 1982), and parallelism to prominent

lineament, joint (Badgley, 1962), and mineral district trends. The

distribution of hot s prings in the southwestern U.S. (Figure 22) has a primary

trend that follows the general outline of the Colorado Plateaus province, but

there are sporadic coincidences of hot springs along the lineament in

southwestern Arizona and soutlweste rn Colorado. Seismic refraction data

(Warren, 1969) in the vicinity of where the feature passes from the Bas'_., anc

Range to the Colorado Plateau indicate a crustal thickening and can be

interpreted as evidence for a "keel" in the crust along the proposed structure.

2.4 BASIN and RANGE PROVINCE

2.4.1 Silver City Quadrangle in Arizona/New 4exico

.fie Silver City quadrangle of the Basin and Range (Figure 1) is at the

southern edge of the Colorado Plateau province and the western edge of the Rio

Grande rift zone. Rocks of Precambrian to Tertiary age crop out in the

quadrangle, and geologic structures associated with both the Sevier orogeny

(Laramide) and Rio Grande rift (middle to late Cenozoic) are present. In

C.
	 addition, the southern edge of the middle to late Cenozoic Datil-"iogollon

volcanic field extends into the extreme northern part of the quadrangle.

The area is a mineral producer and is currently being studied by the U.S.

C	 Geological Si.-rvey as part of the CUSMAP (Conterminous U.S. Mineral Appraisal

Program) program. Economic interest in the quadrangle is centered around

copper, and to some extent gold and silver. (;^_ld and silver are present in

f,

+

r
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^I
tte quadrangle in,a wide variety of vein and replacement deposits. Gold is

also found in a number of small placer deposits and both metals are very

significant secondary commodities in porphyry Cu('Ao) deposits. The gold and

silver resource in the quadrangle is limited almost entirely to the latter

deposits (Richter and others, in press).

The copper porphyry deposits can be divided into two types: a Safford

type, which occurs high in the crust within the volcanic p ile, and a Santa

I
Rita-Tyrone type, which occurs deeper and is confined to the source pluton.

The Safford type is characterized by classlcsl clay and sericite dominated 	

I
alteration zones, and the Santa Rita type by massive replacement deposits in 	 t

the Paleozoic carbonate rocks peripheral to the source pluton. Roth deposit

types are cut by pronounced northeast- to east-northeast-trending fault-

fracture zones. At Santa Rita, the stock occurs at the intersection of a

northeast-trending zone with a less pronounced north- to northwest-trending

zone.

For this phabe of the investigation .. we decided to examine the use of

thermal-inertia mapping both to detect structural control, particularly north-

east trends, and also to discriminate geologic materials and, if possible, to

correlate them with limonitic materials that had been detected previously

using Landsat MSS data. A tiier:nai-inertia image (Figure 25a) of the Silver

City quadrangle area (location map, Figure 25b) was constructed using data

I C	 acquired on October 13/14, 1978 (AA0170-09160-3 and AA0171-20240-1,2), and

plotted at a scale of 1:250,000 using an ink jet color plotter. This is

somewhat enlarged for HC`,Ct data (i pixel is 2mm x 2mm), but it is a convenient

Ic.
	

scale for comparison with existing geologic, geophysical, and topographic

maps.
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Figure 25a.--Thermal-inertia image of the Silver Cit y 2 0 quadrangle
(Nvw Mexico and Arizona). Tick marks indicate the
corners of the quadrangle.
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i-	 Figure 25h.--location map of physiographic features in the Silver City 20

quadrangle (New Mexico and Arizona).
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Generally, the thermal-inertia lows coincide with the valleys and the

highs with the exposed bedrock. A linear featu^-es map (Figure 26) was

constructed largely on the `oasis of evident thermal-inertia contrasts seen in

the valleys. In some cases, the linear features were extended into the

bedrock areas, and in a few cases, linear features were drawn in vegetated

areas where they arpear to coincide with resistant ridges. The pervasive

northeast direction is the recognized 3asin and Range trend in this area. The

northeast direction is quite prominent on the map, and several long features

were detected, including seve •-al that: coincide '_n part with 30-kilometer-long

straight segments of the Gila River (Figures 26 and 27) and a third that

roughly coincides with the Santa Rita Trend and the New Mexico mineral belt

line (Jerome and Gook, 1967).

The thermal-inertia contrasts within the alluvial valleys and within the

exposed bedrock suggest possibilities for discrimination that ma y be

geologically useful. The color thermal-inertia display shows three distinct

units within the alluvium. The lowest thermal-inertia unit was found within

the Wilcox Playa (Figure 28). It is contained within an area of high albed.o

as seer, on Landsat data and suggests tha: a finer level of discrimination can

be achieved ty combining Landsat data with thermal-inertia data. The

intermediate thermal-inertia unit within the alluvium was generally confined

to the axes of the valleys or, where the regional slope is low, to the lowest

elevEtions. In two areas this the rmil-inertia unit, which we believe is

associated with the finest grain materials, appears to be offset from the

valley axis. One is in the northern Sulphur Springs Valley, where the

thermal-inertia patterns are disrupted by cultivated fields. The other is in

the southern San Simon Valley between. the Chiracahua Mountains and the

southern Peloncillo `fountains, where the thermal-inertia unit is offset

towards the west, closer to the most mountainous area in the re gion. The

47	
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4	 Figure 26.--Linear features map of the Silver City 2° quadrangle (New Mexico
-'

	

	 and Arizona) drawn from the black and white thermal-inertia image.
Scale and boundaries are the same as on Figure 25b. Tick marks
indicate the corners of the quadrangle.
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Figure 27.--Landsat color infrared composite (June 16, 1976) of the

Silver City 2
0
 quadrangle (New Mexico and Arizona).

Vegetated areas appear red.
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offset may be related to the previous position of the drainage.

We next examined a large anomalous limonitic area that Raines and others

(in press) previously identified in Quaternary and Tertiary gravels on

Lordsburg Mesa from Landsat data and interpreted, using geophysical and

geochemical data, as the surface expression of a chemical trap that may

contain uranium concentrations similar to calcrete-uranium deposits. They

speculate that ground water would be higher near the surface of a buried

bedrock ridge. The thermal-inertia image of this feature (Figure 29) shows a

northwest-trending zone (light-blue) of moderately higher thermal inertia.

V	 The western side of the limonite anomaly is roughly coincident with a

disruption in the trend of both the thermal-inertia patterns and the

topographic contours. Generally, lower thermal-inertia values bound the

feature on the northeast, northwest and southwest sides. Although there is

some local correlation between t':ermal inertia and topography, the topographic

contours only show a bend in the vicinity of the anomaly and t.1 _ z north

thermal-inertia contrasts cross topographic contours. Possibly the subtle

thermal-inertia changes reflect surface material differences or changes

related to the ground water flow pat ,--erns across a buried bedrock ridge.

TI
he thermal-inertia patterns within the bedrock units are not well

I! 

understood at this time. In general, we believe that the highs correlate with

!	 the more resistan: rock masses. Because these occur at higher elevations in

this region, which is also vegetation covered (Figure 27), it is necessary to

consider the effects of vegetation cover and elevation on the thermal-inertia
I

map. Our main support for assuming these effects are not dominant is based on

y	 I
the analysis conducted using co-registered digital data sets for the Richfield

quadrangle, Utah. There, we determined that, in the tree-covered bedrock

I	 ;
areas above 2000 m, the correlation coefficient for thermal inertia versus

r
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vegetation was .08 and that for thermal inertia versus elevation was .009. We

C	 concluded that in terrain somewhat similar to that of the Silver Ci^y

quadrangle, the thermal-inertia changes were not caused primarily by elevation 	 I

or vegetation cover. We then examined the local correlations between the 	 1

C	 thermal-inertia image and the geologic and topographic maps within the areas

of bedrock.

In the Big Rurro Mountains, in the northeastern part of the quadrangle,

the highest thermal-inertia values lie within an unfaulted zone of Precambrian

granitic rocks. The south and southeastern boundaries of the zone appear to

coincide with faults rather than topographic contours (Figure 30). Other

thermal-inertia highs in the area occur at lower elevations. Southwest of

this area, near Juniper Springs, ?1 anomaly is located on rocks that are about

700 m lower than the granitic roc..., and lie roughly along a ridge. Northwest

of the main area, near Bullard Peak, thermal-inertia highs occur within the

Precambrian metasedimentary and metaigneous rocks, about 300 m lower than the

main area. The areas adjacent to this anomaly are at similar elevations and

appear to have similar vegetation cover. About 7 km northwest of Bullard teak

i3 another zone of thermal-inertia highs within the Precambrian

metasedimentary and metaigneous unit that appears to be fault bounded in

several places. Accurate registration to the base maps and precise feature

identification of all anomalies is not possible at the resolution of the HCMM

d	 system, but, in general, the anomalous patterns do seem to correlate with

resistant ridges, knolls, and peaks.

On the western side of the quadrangle, within the Pinaleno Mountains,

northeast- and east-trending thermal-inertia highs also correlate with ridges

and knells (Figure 31). In addition, a themal-inertia anomaly seeT:s to match

an inlier of yc-nger Precambrian granitic rocks within older Precambrian

IC
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terrain. In the Mogollon Mountains, north of Silver City, New Mexico,

G	 prominent thermal-inertia anomalies trending northwest and west can also be
r

observed (Figure 25a). These are believed to be expressions of resistant

units and may be related to regional structural fabric.

Analysis of the thermal-inertia image of the Silver City quadrangle

indicates that geologically useful discriminations can be achieved. Several

thermal-inertia units were discriminated within unconsolidated materials at

lower elevations, and a contrast was detected that correlates with an area

previou=ly identified as a chemical trap possibly containing uranium

concentrates. In the bedrock are-s, which are generally obscured on the

Landsat images due to vegetation cover, thermal-inertia anomalies have been

detected that we believe correlate with resistant rock masses, and in one

identified case, with a lithologic change. We tentatively conclude from these

results, tempered somewhat by the resolution limits of the HC`L system, that

thermal-inertia mapping may have significant value for geologic studies in

moderately-well vegetated areas.
_

2.4.2 Walker Lake Quadrangle in California/'Nevada

The other portion of the Basin and Range province studied was ?4alker Lake

quadrangle, California and `.evada (Figure 1). The eastern three-fourths of

f	 this area is in the Great Basin, and the western one-fourth is in the Sierra
t

Nevada Mountains. The Great Basin part is transected by the Walker Lane, a

L	
major northwest-trending zone of right-lateral, strike-slip faulting.

Cenuzoic volcanic and related intrusive rocks ranging in composition from

rhyolitic to basaltic dominate this part of the area, but Mesozuic

r.	 granodioritic plutonic, metasedimentary, and metavolcanic rocks are scattered

throughout the area. Paleozoic metasedimentary rocks are locally exposed.

'	 Broad pediments form the transition from the rang pq to the basins, which are

f ^"

4	
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the sites of playas and, locally, salt marshes. Most of the known mineral

deposits in the quadrangle are associated with Cenozoic epithermal veins and

Mesozoic skarns formed at the contacts of the granodioritic plutons. The

Yeiring )n, Nevada, porphyry copper depo p it is an exception.

The Sierra Nevada part of the study area consists mainly of Mesozoic

granodioritic rocks with scattered roof pendants of metasedimentary rocks and

metavolcanics and locally extensive remnants of Cenozoic volcanic rocks,

chiefly andesite. Alpine glaciation carved deep canyons and provided

excellent fresh exposures throughcut most of this uplift block, but deeply

weathered granodioritic rocks are present in the southwestern corner of the

area. Although the volcanic rocks arE extensively altered in some places,

mineralization is much less extensive than in the Great Basin section.

A thermal-inertia image (Figure 32) wi--; constructed of the Walker Lake

quadrangle area from MOO data a

^A0082-21090-1,2). The area was

whether HCMM data would show any

hydrothermally altered rock that

and extensively field checked by

1?83).

:squired July 17, 1979 (AA0082-10160-3 and

selected for study in order to ascertain

expression of lineaments dnd areas of

had been interpreted from Landsat MSS data

T. L. Purdy and L. C. Rowan (written commun.,

The twn main lin aamenL directions seen on the hCMt1 data (Figure 33)

correspond in direction to two prominent lineament systems detected on Landsat

images (Rowan and :Jetlaufer, 1981): the northeast-trending `iidas system and

the northwest-trending walker Lane system. In general, it apnears that the

linear features detected on the theme!-inertia image do not coincide with the

mapped Landsat lineaments and ma y represent different aspects of the tectonic

expression.

A superficial correlation between the thermal-inertia highs and areas of
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Figure 32.--Thermal-inertia irIage of the Walker Lake quadrangle (California

and Nevada). Tick marks indicate the quadrangle cornc;s. Mono

lake is to the south, Walker Iakr to the north, and the Sierra

'lountains to the west. The color bar chart shows thermal inertia

increasing to the top.
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1: 4ure 33.--Selected linear features of the Walker lake 20 quadrangle
(Ca Ifornfit and Nevada) drawn from the black and »-.ite
thermal -inertia image. Two prominem ltneament directions
(northwest and northeast) can be seen.
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alteration can be seen in several areas, but this seems to be largely the

result of the generally higher :hermal inertia in areas of bedrock.	 To

consider this aspect of the problem, we examined in more detail one zone of

alteration,	 the Walker Lane Alteration Belt (Figure 34).	 As described by

C' Rowan and Purdy (1982), the belt is a zone roughly 20 km aide and at least 65

km long in the northeastern. part of the quadrangle, co.aring most of the C..bbs

Valley Range.	 The bLlt coincides with the northwest-trending [talker Lane

t C fault zone, and the rocks are rhyolitic ash-flow tuffs and flows and

1 associated intrusive rocks.	 Those areas of altered rocks that are large

enough to be resolved on HCMM data are: 	 silicified	 (S), silicified and

c
argillized,	 silicified dominant (SAg), argillized and silicified, argillized

dominant (AgS), argillized (Ag) and altered undifferentiated (A). 	 A bedrock

map at HCMM resolution was drawn by generalizing from the surficial geologic

(L
map of the quadrangles (Dohrenwend, 	 1982).	 There is a striking similarity

between the higher thermal-inertia values (yellows and light green) and the

areas of bedrock.	 The correlation with altered areas is much less.	 In
r

between parts of the alteration boundary and the thermal-inertia contours, and

in a general sense,	 the altered areas tend to be associated with somewhat

higher thermal-inertia values. 	 However, most areas of high thermal inertia do

r_
not coinzide with mapped alteration.

i
We then k :amined the remaining larger areas of alteration in the

quadrangle as identified by T.	 L.	 Purdy and L.	 C. Rowan (written commun.,

IC
1983) to determine if any general relationship could be observed in thermal

inertia between altered rocks and their surroundings and among the different

types of alteration.
C.

r."

Markleeville Alteration Belt

Of the three major areas of alteration (Figure 35), the silicified unit

C	
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I (
(S) roughly coincides with increased thermal inertia (bright yellow), the more

northerly argillized silicified unit (AgS) with a reduced thermal inertia

zontrast (green), and the southerly unit (AgS) is indistinguishable from its

surroundings.

Sweetwater Mountains-Garfield Flat Alteration Belt

The main area of alteration (AgS) in the Sweetwater 'fountains (Figure

36a) has lower thermal inertia (green) to the west and higher thermal inertia

(yellow) to the east. The main area, in Garfield Flat (Figure 36b), is

distinguishable only because it is partially bounded by a bedrock-alluvium

contact. A smaller silicified unit (S) and an argillized unit (Ag) both are

associated with higher thermal inertia (bright yellow). 	 I

Aurora-Bodie Hills Alteration ee'_t

1	 'In this area (Figure 37) north of Mono Like, the most wes, :crly argillized

unit (Ag) is associated with lower thermal inertia, a smaller unit (_°.g) to the

east with higher rhermal inertia, and the largest unit (AgS) is

indistinguishable from its surroundings.

Summary of observations in the Walker IaKe quadrangle:

1. Areas of bedrock have high thermal inertia; unconsolidated materials

have low thermal inertias. In a test area in the northeastern corner of

the quadrangle, the bedrock alluvium contact was found to coincide quite

well with the thermal-inertia contact between the light and dark green colors

corresponding to a thermal-inertia value of approximately 2100 TIU's.

2. No clear example was found of a thermal-inertia anomaly matching an

altered bedrock area. Many instantces were found of a partical match

0	 between a thermal-inertia color pattern and an alter^d area. This result

may express both the heterogeneity of the thermal-inertia variations of

altered areas and the variable nature of the boundary between altered and

unaltered bedrock.	 i
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3. No obvious correlation was found between the thermal inertia of

altered areas and their surroundings, and no consistent thermal-inertia

behavior was observed among the various types of alteration.

In these areas the altered silic­ ,xv •^ctks have undergone extensive

cation leaching, generall y produrinj 3 ,_rous, fine-grained mass (T. L. Purdy

and L. C. Powan, :!ritten commun., 	 A). We conclude that the increased

El C
	 thermal inertia that occurs due to silicification is offset by the reduced

thermal inertia associated with the highly porous, low density altered

rocks. Thus, no consistent pattern of either high or low thermal inertias can

be expected. The competing effects can be illustrated with a numerical model.

Assume that the material surrounding an altered area has the thermal

inertia of an "average" rock. The primary effect of silicification is to

increase the thermal conductivity to a value of quartz, while thri primary

effect of leaching is to remove mass and thus reduce the density.

P	 K.p.c

Using differentials dP - .5[ K.c/p dp + 	 p.c/K dK] _ .5P(dp/p + dK/K)

where P is thermal inertia, K is conductivity, c is specific heat capacity,

and p is bulk density. Thus, little or no change in thermal inertia will

occur if the proportional decrease in density roughly equals the proportional

increase in conductivity. lie can estimate the conductivity increase at about

a factor of 2 using literature values (Roy and others, 1981) for quartzites

versus igneous (volcanics, intrssives) and iaetasedimentary rocks, and, thus,

we require that the density decreases by a roughly similar factor. A density

decrease of this magnitude is not unlikely for rocks described as having

undergone extensive cation leaching to form a poro —, mass. This result

illustrates a restriction in the use and interpretation of thermal-inertia

data. Where density variation effects are large they can significantly change
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^a



or even nssk iariations due to rock composition.

Density variations are also an important factor (the other being moisture

content) in controlling the thermal inertias of unconsolidated materials. In

the thermal-inertia image of the Walker Lake quadrangle (Figure 32), the

lowest values are primarily in the area northeast of Mono Lake, and there and

elsewhere in the quadrangle the lows coincide largely with Quaternary eolian

deposits (Dohrenwend, 1982).

In gentral, we can detect fairly directly bedrock and linear features,

and we can discriminate some surficial units on the thermal-inertia image of

It_	 the Walker Lake quadrangle. The study has also indicated that within altered

bedrock material the increased thermal inertia associated with silicification

can he masked by reduced density induced by leaching. The result is highly

variable, unpredictable patterns between altered and unaltered terranes.

2.5 ALLEGHENY PLATEAU and APPALACHIAN  XOUNTAINS

2.5.1 Allegheny Plateau and Valley and Ridge provinces of north-central

Pennsylvania

The Valley and Ridge province is characterized by moderately to intensely

folded siltstones, sandstores, and limestones of Cambrian through Devonian

age. At the surface, these rocks are cut by numerous faults, most of which

strike parallel to the trend of bedding. A few faults are at an oblique angle

or are normal to the strike of the beds. The Alleghen y Plateau (Figure 1)

province is characterized by gently folded siltstone and sandstones of

Devonian through Pennsylvanian age. The plateau rocks are cut by occasional

faults both parallel and oblique to the strike of the beds. The transition

between the Valley and Ridge and the Allegheny Plateau provinces is

characterized by gently tilted to intensely folded siltstones and sandstones

of Devonian age that are unfaultEd to highly faulted.

U	 66
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Two experiments were originally envisioned using the TKIDt data

(AA0153-07160-4,5,6,8 - September 26, 1978). The first, which met with

limited success, was to identify zones of faulting in the Valley and Ridge.

Although the individual folds are readily recognized on all the images, the

individual faults or groups of faults are clearly too narrow to be resolved.

Even faults with thousands of meters of displacement in the subsurface are

seen at the surface as zones which are only a few meters to tens of meters

r,	 wide. We had anticipated that a large contrast in moisture in these zones

might produce a concomitant high thermal-inertia difference, which might be

detected due to the contrast and the length of features. Unfortunately, a

condition where the surrounding region was dry, with high moisture confined to

fault zones, did not occur during the overpass.

Of greater success was the discrimination of lithologic units by the HC'MIM

system. At least four different groups of lithologies can be easily (but not

always uniquely) discriminated using the HCMH thermal-inertia data (Figure

38a).

The most conspicuous lithology portrayed is the Tuscarora Formation (T),

(Figure 38b) which is predominantly composed of orthoquartzite. The unit is a

conspicuous ridge-former throughout the Valley and Ridge province due to its

high resistance to weathering. Where the Tuscarora Formation is weathered, it

produces scree slopes composed of meter- to house-sized blocks that have much

the same thermal properties as the unweathered forma ion. The thermal inertia

of such an orthoquartzite ought to be quite high and, in fact, the outcrops of

Tuscarora Formation are by far the brightest (highest thermal inertia) rocks

in the imag	 The next most conspicuous lithologies are the combined

Gatesburg Formation and Warrior Limestone (G) of Cambrian age, the Pocono

Formation (Pc) of Mississippian age, and the Pottsville Group (Pv) of

Pennsylvanian age. The Warrior and Gatesburg are limestones, the Pocono

n t
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Figure 38a. --Thermal-inertia image of the Allegheny Plateau and Valley
and Ridge.	 The lithologies labeled are the. combined Gates-

t" burg Formation. and Warrior Limestone (C) of Cambrian ;age, ^	 I

the Tuscarora Formation (T) of Silurian age, Devonian

6iltstones	 (S),	 Devonian,	 Mississippian, and Pennsylvanian
sandstones and conglomerates	 (D),	 the Pocono Formation (c)

of Mississippian age,	 and	 the .-l ottsviilt- Group (Pv)	 of
Pennsylvanian aue.
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Formation is sandstone, and the Pottsville Group varies from sandstcne to

conglomerate. All of the units have approximately the same apparent thermal

inert'..a. This is not unreasonable considering that the sandstones and

conglomerates are moderately well-cemented and might easily have similar

thermal inertias similar to the limestones.

The fourth gi oup of lithologies involves the Devonian, Mississippian, and

?ennsylvanian sandstones and conglomerates (D) that cap the synclines in the

Appalachian Pla'eau of central Pennsylvania (Figure 38c). These rocks are

less bright in the thermal-inertia image than the p reviously mentioned units,

but they are of higher thermal inertia than the Devonian siltstones (S) of the

C'	 intervening anticlines that are conspicuous in the thermal-inertia image.

It is interesting to note that thermal-inertia values of all of the

previously mentioned units have the same relative ranking as the literature-

computed values (Miller and Watson, 1977).

We have conducted preliminary analyses and found that there is not a

strong correlation between the nature of the tree canopies of the dominant

vegetation types and various lithologic units. This conclusion supports the

hypothesis developed in ether geographic areas (see section 3.2) that

vege^Ation type and extent does not seem to correlate with thermal inertia

i

and, hence, thermal-inertia variations are not likely to be controlled by

variations in vegetation.

2.5.2 Eastern Appalachian Mountains

The other part of Chis eastern test area encompasses the Appalachian

Mountains in central Virginia, and lies totally within the ?iedmont and Coastal

Plain geologic provinces. The Piedmont is a complex sequence of metamorahosed

Paleozoic clastic and igneous rocks, and may be t ^trely allochthor.ous

according to recent studies in the eastern Overthrust 3elt. The Coastal Plain

C	
is a sequence of flat-lying, loosely consolidated Cenozoic clastic
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sediments. Interspersed in the Piedmont and huried beneath the Coastal Plain

are several small rift basins associated with igneous intrusives forme., during

Triassic and Jurassic time. An east-west zone of seismicity and the discovery

of several young reverse faults are evidence of recent tectonic activity in an

area that is not well understood.

In conjunction with our HCMM study, a-her remote sensing studies in the

eastern Appalachians have been conducted to observe geobotanical relations, ►ips

of the forest canopy to strLctural and lithologic features in the Piedmont and

Coastal Plain. Single band HC7*1 images were compared to existing remote

sensing data sets to determine whether common or st,pplementary geobotanical

features are being observed. Only two of the six available images were

suitable for evaluation, primarily because of less cloud cover. The two

images analyzed were a day/night pair from October 22/23, 1978

(AA0179-07050-3 and AA0180-18150-2). The dijcussiun Will he divided into two

parts: (1) comparison of HC`N to SIR-A (Shuttle Imaging Radar) data in

coastal areas of North Carolina, and (2) comparison of HCMM to enhanced

Landsat Mu_tispectral Scanner ('MSS) data in the Virginia Piedrroat.

In the coastal area, the HCMM daytime thermal gage of October 23, 1978,

(Figure 39a) seems to show good differentiation of wetland areas, particularly	 I

47

in the vicinity of Pamlico and A.'oemarle Sounds in North Carolina (location

map, Figure 39b). The wetland Areas appear darker, hence cooler, than the

surrounding land masses, but not as dark as the ocean. T.ie HC`iM data show
t

more extensive wetland areas than either SIR-A or `1SS Band 7 Landsat images.

i^

As the SIR-A radar generally shows areas of standing water, the HC`LM appears
	

i

0
	 to be indicating some type of moist soil environment in between standing water

and dry upland soil. Comparison of HTLM images to aer=al F-hotography does no

show a direct c.o:respondenc(± to the vegetation canopy. The HC'14 i:,,a ges appear

:o define areas of moist soil under both marsh and forest canopies in the areaI	 72
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I	 ..
around Take 'lattamuskeet, North Carolina, and show a close, but not an exact

correspondence to the mapped distribution of Pocosin wetland areas

(Richardson, 1981). The tiCMM image appears to be a useful supplement to radar

and Landsat images for vegetated wetland mapping, for it appears to be

distinguishing a different physical phenomenon than the other two sensors.

The second part of our study was an examination of the Virginia Piedmont

using the nighttime thermal image of October 22, 1978 (Figure 40a). This

image is 90% cloud-free and shows the stream drainages as darker (cooler) and

the mountainous areas as lighter (warmer). Stream drainages are well-defined

in the Piedmont area, but onl y a few major drainages are distinguishable in

the Coastal 'lain. North of Lake Gaston, the divide between the Piedmont and

the Coastal Plain drainages can be seen on the night image, trending N. 50

E. This approximates the Fall Line rather than the mapped lithologic contact

(Figure 40a and 40b). The lithologic contact between Miocene and Paleozoic

units is sinuous due to erosion of the Coastal Plain sedimentary cover.

Recent o •stcrop evidence for a zone of reverse faults along the Fall Line

(Mixon and Newell, 1982) supports it as the contact between the Coastal Plain

and Piedmont.

The reason why Piedmont drainages appear better defined on the HCM21

images than do the Coastal Plain drainages is not explainab'.e at this rime.

The lowland vegetation along the stream banks is fairly similar between the

Coastal Plain and Piedmont; the 'Largest differences are between lowland and

upland vegetation. Water temperature does not appear to be the reason since
C

the inland lakes appear warmer than the surrounding land areas. Topography

may be involved in the explanation as the Piedmont drairages are generally

more incised than Coastal Plain drainages. The `teherrin River (Figure 40b),

an east -wPSL trending river in southern Virginia just north of the North

Carolina border, is particularly %,ell expressed on the image. The 'teherrin

k.
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River is incised approximately 20 m below the level of surrounding Piedmont

upland near Lawrenceville, Virginia.

Two lineaments are seen in the HCMM image that are not apparent in a 	 A

Landsat MSS Band 7 mosaic (Trask and others, 1977). A prominent east-west

lineament that cuts across the general trend of the Piedmont foliation is

observed north of the connected Lake Gaston and John Kerr Reservoir. The

northern boundary of the lineament is defined by the shErp boundary of the

+ C;
Meherrin River. The lineament appears to extend to the Blue Riage to the west

and almost to Albemarle Sound to the east, a distance of 300 km. The
.,.

lineament is also expressed as a bending and truncation of highs in the

horizontal-gradient gravity map of the United States (Simpson and others,

1982). The V.750W.-trending lineament is subparallel to another lineament

further north along the James River (Krohn and Phillips, 1982), which is

apparent on enhanced Landsat images, onshore gravity maps, and offshore

aeromagnetic maps.

A second HCMM Lineament is parallel to the orientation of the Piedmont
^J

metamorphic foliation. The lineament originates at one of the projecting arms of

Lake Anna, Virginia, continues south-southwest past one of the big bends of the

James River near Arvonia, Virginia, and can be traced in segments at least as far
.0

south as the lineament	 just described.	 The lineament	 is expressed as an i

'
alignment of the generally dark stream drainages in the Piedmont and seems to

I

correspond to a feature observed in the aeromagnetic mao of "irginia called the

Spotsylvania lineament	 (Pavlides,	 1981).	 The HCMM counterpart to the

Spotsylvania lineament does not appear 	 ,-rth of Lake .^nna,	 the area where the

ppp
C aeromagnetic Spotsylvania lineament was Initially defined. 	 The small scale and

1

emphasis of the drainages of the HC'M images helps to enhance the lineament while I

only portions of	 it are obs_rved oa Landsat `ISS ?sand 7 mosaics.
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This evaluati3n of thermal data in the eastern Appalachians shows that

' the HC`M images display some features also observed elsewhere in other remote

sensing (spectral reflectance,	 radar) data sets,	 but,	 in addition, gives

evidence for new,	 larger geologic features, only portions of which were

observed previously.
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3 GENERAL ANALYSIS

This section will examine some of those general aspects of our study that

are not site specific. They cover: estimation of the heating flux terms used

in the thermal model to map thermal inertias, examination of vegetation

effects, development of a thermal-inertia model for igneous rocks, and a

discussion of the registration of images. In all these aspects of the

analysis we have adopted a "simplest is best" philosophy. In modelling the

hating fluxes, we assume a simple time varying function, spatial invariance

of the coefficients, and linear :orrections for topography. A more detailed

model, which might employ ground station data, field measurements, and complex

analytical expressions, would -be more accurate for a limited set of

circumstances, but would run the risk of introducing unintended correlations

that could bias our anal ysis of the thermal-inertia variations. For the

registration of images and maps, we use a simple bilinear form, which has

computational advantages. We have also found, in some cases, that the

residuals have a parabolic variation along the scaniine. In these cases the

1 -

"simplest" solution is thus somewhat more complex.

3.1 REGIONAL FLUXES

Interpretation of thermal images as well as their use in therr ►al—inertia

mapping is complicated by the various types of natural heating and o.00ling
I

processes which influence surface temperature variations. Of necessity, the

interpretation of thermal infrared data has been based on theoretical models

that involve assumptions about these regional fluxes. The focus of our

research has been to determine the simplest. -,ralid expressions for these

processes and to develop techniques for estimating their magnitude based
I

solely on remote sensing data.

For example, our method of estimating the effective regional atmospheric

80
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parameters for thermal-inertia mapping (Watson and Hummer-Miller, 1981)

assumes that the atmospheric fluxes are spatially--but not temporally--

invariant and that the solar, sky, and sensible heat fluxes can be

approximated by a simple mathematical form. Coefficients can then be

determined from a least-squares method by fitting observational data to our

thermal model. The technique permits analysis of data such as HCMM for which

few or no meteorological data exist and examination of subareas to test the

homogeneity of the effective regional atmospheric parameters. Additionally,

the method is less susceptible to distortions produced by local meteorological

anomalies that may influence a single gro l.md-obser-xation station.

Most recently, we have examined HCMM data, acquired over a period of 17

months, which included a variety of geologic sites in the western United

States. In addition to our study of the geologic expression discussed

elsewhere in this report (section 2.4.2), large statistical samples of

temperature (day/night) and reflectance data were obtL 4 ned to estimate the

fluxes t hat heat the ground on a regional scale. Trends could thus be

examined for developing more detailed thermal models and identifying anomalous

meteorological conditions, so that appropriate care is exercised in the

interpretation of thermal-inertia image:..

Temporal variations in the incident solar flux due to changing

atmospheric conditions can be examined by monitoring the reflectance

statistics of the same area at different times. A simple model can be

developed by assuming that the surface albedo and the satellite detector

response are invariant, that the reflectance function is governed by Lambert's

Law, and that t.,e atmospheric backscattering is negligible. In this case, the

reflectance (R) is given by

R=A- Tau( z) • COS( z)

81
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where Tau(z) is the atmospheric transmission at zenith angle z, and

COS(z)-COS(Lat) • COS(Dec)-COS(Wt)+SIN(Lat) • SIN(Dec), where Lat is the site

latitude, Dec is the solar declination, and wt is the product of diurnal

frequency and solar time.

`	 This model was applied to reflectance data acquired at 12 different solar

declinations from May 1978 to September 1979 in two adjacent areas located in

Nevada between lake Tahoe and Walker Lake. The statistics for each area are
i

based on 33,000 pixels. Area 1 covers part of the Sierra Nevada Range and

part of the Basin and Range Province and has a significant vegetation

	

`-	 component; area 2 is east of area 1 and falls antirely within the Basin and

Range Province. The mean, deviation, and modal values nor the two areas are

plotted versus the zenith angle in Figure 41. The dashed line shows the

simple theoretical form used in our thermal modelling studies. The general

fit seems quite good and most of the mean values are within one or two Dn of

	

i

	 the theoretical curve. Two mean values are several Dn above the curve and are

indicated on the figure by month and year. All values are for 1978 data

unless indicated otherwise.

A further illustration of the method to examine variation of the heating

fluxes was made by examining day/night pairs of data. We can estimate

r
variations in the regional flur.Ps by modelling the heating flux as a half wave

of specified amplitude (A) ane offset (3 ) (Watson, 1982a), compute the values

of A and B by employing our thermal model algorithm based on a Laplace

L
transform solution (Watson, 1982b), and match the observed temperatures.

A and B values for various sites were plotted ve r sus latitude and solar

declinations in Figure 42. In general, the offset or constant parameter B

C
remains fairly invariant with both latitude and solar declination, but the

amplitude term, A, varies considerably, reflecting anomalous transient
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conditions superimposed on a general trend. As with the reflectance analysis,

the method assumes that the thermal properties of a site and the detector

	

I I	 responses are invariant. Although anomalous conditions can be identified by

this method, their causes are often complex an.i difficult to diagnose.

I
Rainfall will substantially affect the thermal properties of Lhe surface as

well as introduce an additional heat loss term dire to evaporation. Wind

	

1	 t	 p	 y

condiLions will appreciably increase the sensible heat slur, term and produce a

spacial variability within the site depending on such factors as the 	 4

vegetation canopy and the terrain topography.

As pa-*_ of our mod-lling studies, we investigated a technique for 	 +

correcting Lhermal-inertia data for topographic effects. To perform this we

assumed a simple linear relationship between temperature and topographic slope

components and elevation. 4e determined tie coefficients by using a least-

t,
squares fit. The method was evaluated using the registered HCM and digital

terrain data for the Richfield, Utah, quadrangle. For these data we found

that the elevation term for the day data roughly matches the theoretical

adiabatic lapse rate. The night ;:ene indicated that the slope effects were

negligible and the elevation term was quite low. We also determined that the

topographic effects were only observable above 1.83 km, so the topographic

correction was only applied above this elevation. The resulting correction to

the day-night temperature difference :s:

DTcorr ' DT
obs '. 7.2 (E - 1.83) + 9.8 d cos q + 1.99 d sin q 	 j

where DTobs i p the observed temperature difference, F. is the elevation in

kilometers, d :s the dip in radians, and q is the azimuth ,,,gle. This

f

"simple" linear correction to our thermal-inertia image has the advantage

than, although it cannot prevent some inflVence of geology on the correction

Q	
85
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(higher thermal-inertia materials will often be exposed ar the highest

-levations), it does average out most geologic variations, agrees with the

expected adiabatic lal.se rate, and mutes some of the more obvious topographic

effects that mask thermal-inertia variations. This is also a necessary first

t
step in analyzing the effects of vegetation.

3.2 VEGETATION STUDY
r

'	 In our past HCMM studies, we have been concerned with the possible

e f fects of vegetation masking the thermal inertia of the unc_erlying

material. In this study, our concern arose following a visual comparison of a

the thermal-inertia image with a topographic map of Richfield, Utah,

quadrangle. The gre!n areas of the topographic map, indicating vegetation

(trees-brushwood), appear to have a high coincidence with areas of high

thermal inertia. For this particular site most of the vegetation cover occurs

at high elevations where resistant rocks having high thermal inertias art.

exposed. Thus, we need to address the effect on our t.her-mal-inertia images of

vegetation cover.
C_

A previous study by Siegal and Goetz (1977) found that vegetation can

significantly affect	 the observed spectra l. reflectance of rocks.	 They

^ C. observed that low albedo materials were the most strongly affected and could
i

be completely unrecognizable with only 107. vegetation .:over. 	 D:y or dead

vegetation,	 however,	 did not greatly affect the spectral reflectance but

1

1
rather changed only the albedo.

-
i .
1 We decided	 to	 ir:ve:;tigatc	 the possible effects of	 vegetation on the

i

! observed thermal inertia using a variety of data s ­ t-	 ^f the Richfield

quadrangle.	 This	 site has ac, arid climate, and t:	 egetation ranges	 from

sparse	 in the we:,L.:rn	 lowlands	 to more dense in the eastern, higher elevation

areas.	 Typically in lowlands,	 which are not cultivared or	 irrigated,	 the i

4
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vegetation consists primarily of several species of rabbitbrush, sa,-ebrush,

and scattered grasses. Some salt desert shrubs are in the more alkaline soils

in the lowlands. The uplands and flanks of the hills (higher than 1830 m)

support stands of pinyon pine and Utah juniper, with ponderosa pine and

mountain mahogany occurring at higher elevations where rainfall is greater.

Gambel oak, bigtooth maple, and quaking aspen are predominately found at high

elevations.

The data used in this vegetation study is of a unique set of co-

registered data. The following products were all registered to a topographic

base: HCIM reflectance, HCMIM day and night thermal, the four Landsat bands,

and eigital el-:vation data. These data were used to form a topographically-

correcLed thermal-inertia image, a Landsat "albedo" image (a combination of

the four ban,...), and a vegetation index image.

The Landsat data were acquired on June 22, 1974 (Figure 43). Since the

HC?4t data of Rich'-ieLd were acquired four years inter during a different

growing season, the validity of using such a data set had to be tested. We

constructed a Landsat "albedo" image using a ,weighted sum of the four bands

and cross-plotted this value against the RCT.4 reflectance (Figure 44). The

correlation coefficient of 0.83 (for 58,512 samples) between the two data sets

is a measure of (1) the registration accuracy, (2) the adequacy of the albedo

model, and (3) the general similarity of the vegetation state of the two

images. Seasonal differences between the two images do not appear to be

highly significant. We also examined the effects of illumination differences

on the correlation by topographically correcting both HCM.M reflectance and

Landsat bands. The correlation coefficient increased by less than one

percent, indicating that illumination effects were not significant in the

vegetated areas and that a topographic correction was not necessary.
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The vegetation index used in this study was formed as a ratio of the

difference between the infrared and red Landsat bands :o their sums (MSS7 -

MSS5)/(MSS7 + MSS 'J). The ratio was first developed b7 Rouse and others, 1973;

1974) using Landsat MSS data, and was shown to be "sensitive primarily to the

green leaf area or green leaf biomass", and "can be employed to monitor the

photosynthetically active biomass of plant canopies" (Tucker, 1979).

A plot of the vegetation index with the thermal inertia showed ro

apparent trend and a correlation coefficient of only 0.08 (Figure 45). Even

though this coefficient is low, it does not preclude a weak correlation. To

evaluate the significance of the correlation coefficient and to test our

assumption that the Landsat image reflected the state of the vegetation at the

time of tiic HCMM data acquisition, we extended our study. A plot of

reflectance versus vegetation index (Figure 46a) was made. This graph shows

two populations with separate reflectivity groupings and an overlapping range

in vegetation index. These two data sets were cross-plotted for various

elevations and it was determined that the two distributions occur at different

elevations (Figure 46 b,c) One population occurs below roughly 2000 n, where

the vegetation is primarily rabbitbrush, sagebrush, scattered grasses, and

isolated, irrigated crops and is associated with low thermal inertia. The

other population occurs above 2000 m, where the ve getation consists of

coniferous and deciduous forests and the thermal-inertia values are high and

vary over a large range (Figure 47).

Having established that the vegetation separates into two classes, we

examined each class individually. Two local areas (about 25 ''Km 2 each) at

elevations below 2000 m were chosen to test the correlation for irrigated

sites, where the correlation should be high. One of the sites was in Beaver

Valley and the other near Upton Siding. The resulting correlation 	 i
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coefficients of 0.33 and 0.40 indicate a detectabl.y higher correlation between

(	 thermal inertia and vegetation--most probably due to the irrigation. In

general, higher moisture content is expec,.ed to increase both thermal inertia

and vegetation index and, thus, produce a detectable correlation.

Two other areas at elevations above 2000 m, which also appeared irrigated

on the June Landsat image, showed a low correlation with the September

I
	 thermal-inertia image: 0.08 and 0.09 for 100 samples. We suspect, based on

common practice in these areas at higher elevations, that they were not being

irrigated by late September, the time of the HDN data acquisition, and thus

-3	 no correlation would result. We also examined other vegetation covered areas

in non-cultivated areas of similar size at higher eleNation. They showed a

very low correlation coefficient,	 0.04, again providing supporting evidence

for our hypothesis that vegetation does not correlate with thermal inertia

when irrigation is not a controlling factor. This has important implications

regarding the detection of thermal-inertia differences in vegetated terrain

and the effect of vegetation on the observed thermal-inertia variati_.-. of

geologic materials. We still cannot pick out an effect of vegetation 	 indeed

it must play a role in modifying the heat fluxes, but the effect must be much

more uniform than we had previously axpected.

3.3 THERMAL-INERT Lk VARIATION OF IGNEO[ TS ROCKS

We have observed that the thermal inertias of igneous rocks in both
• M

i
	 Cabeza Prieta, Arizona (Watson and others, 1981) and Richfield, Utah, (this

study) exhibit variations which, although having considerable overlap,

nevertheless follow a consistent pattern. Tne granites have the highest

thermal inertias, basalts are intermediate, and rhyolites, andesites and

quartz latites have the lowest thermal inertias. A study of the thermal

ine..'is of igneous rocks, computed from literature th f_rnal property values,
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generally shows no discernable trend (Watson, 1981), in part due to tl-!
i

incompleteness of the data sets needed to compute the values. To compute

thermal inertia it is necessary to have thermal conductivity and either

thermal diffusivity or density and specific heat capacity. Because there does

aot seem to be any significant or recognizable variation of heat capacity with

igneous rock type, thermal-inertia values can be approximated using thermal

conductivity and density values. In most cases in the literature, however,

only thermal conductivity values are provided, and estimates of thermal

inertia using assumed density values can lead to errors which are comparaole

to the variations that we have observed in the satellite data.

A simple estimate of the type of thermal-inertia variation to be expected

among igneous rocks can be provided by considering the thermal inertias of

quartz, olivine, and fused silica glass (Figure 48). For comparison the
I

thermal inertias of a granite, a basalt, a gabbro, and a rhyolite are plotted;

they exhibit somewhat similar• characteristics. Th.'Z suggests that the thermal

inertias of igneous rocks can be characterized, to a large degree, by three

variables: quartz, mafic minerals, and glass content. Felsic intrusives,

being high in quartz, would have the highest thermal inertias, mafic rocks

would ha-!e intermediate values, and felsic extrusive rocks the lowest

values. This model is useful for predicting the thermai inertias of the end

member rock types and is in agreement with the satellite observations. For

rocks of intermediate composition, we can use empirical models of thermal

conductivity and density to estimate the shape of the thermal-inertia

variation. A linear f'.t of the anal conductivity versus quartz content based

on 100 samples of granites and quartz monzonites (Roy and others, 1981) was

combined with a correlation fit of density versus a felsic-mafic index (Young

and Olhoeft, 1976). The thermal inertia was then determined assuming a

a ^1	
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constant specific heat capacity, and the, results were plotted (Figure 49)

assuming a proportiot.al relationship between the felsic —irafic index and quartz

content. The curve indicates that a minimum is likely to occur at an

intermediate composition, its exact position being somewhat dependent on the

relationship between the felsic —mafic index and quartz content. This

variation then is the behavior we would predict for intermediate composition

intrusive rocks, and we might expect a somewhat similar behavior for extrusive

rocks. This latter behavior will be complicated, however, not only by the

presence of glass, which has a lower thermal conductivity than quartz, but

also by the effects of higher (and variable) porosities, whicA will reduce the

thermal inertia, and by devitrification (cryst^ilizat_'on . )f the glass), which

will increase the thermal inertia.

Glasses result from extreme undercooling and high viscosities of

magmas. Because magmas that are rich in silica and alkalies tend to be more

viscous than those poor in silica and rich in lime and iron, the glass content

is generally much higher in felsic than mafic lavas (Williams and others,

1954). As glasses have a thermal inertia much lower than quartz, the thermal

inertias of felsic rocks, such as rhyolites, dacites, and trachytes, would be

expected to be lower than those of granites, and the thermal—inertia

differences between extrusive and intrusive rock types should diminish for

more rnafic rocks due to both ?aw-!r quartz and glass content. ;3ecause glass is

"metastable", however, and tends to crystallize or devitrify, the glass

content of extrusive rocks will diminish with increasing gcologiz age and

cause the thermal inertia to rise. The age factor is illustrated by the

observation that ancient glasses are very rare, particles of volcanic glass

are rarely found in pre—Tertiary rocks, and no ancient glasses have been found

of pre—Carboniferous age (Williams and others, 1954; Tyrrell, 1929).
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An il.ustration of the proposed model of the thermal-inertia behavior of

igneous rocks is shown in Figure 50,

1.4 REGISTP M ON

One of the major tasks in processing HCM data is to co-register images

acquired at differert times. Thermal images, however, have some unique

I

characteristics which make this registration process more complex than

registration of standard photographs and I,andsat images. The diurnal surface

	

! I 	 temperature variations, which depend primarily on topography (slope,

elevation) and thermal inertia and secondarily on a variety of effects

including vegetation and emissivity, make day images appear substantially

different than the night images. Texture and topography often are portrayed

in an entii2ly different manner on thermal images acquired at different solar

time, (Sabins, 1969; 'Rowan and others, 1970; Offi ,?id, 1975), and features that

might be easily identified on one image appear quite different on imageE

acquired 12 hours later. The selection of reproducible control points

associated with various featlAres can thus be a difficult task and one subject

to substantial error. HCMM data also present an additional problem because

the 500 m digital resolution masks many distinct;ve features--primarily

cultural--that can be seen on the 80 m resolution Landsat data.

'.de have experimented with several potentially promising techniques

this has led to our selection of a fairly simple scheme for registration

f (!datson and others, 1982). We discovered that a satisfactory registrationIC
I	 '

could be accomplished by careful selection of control points and a single

aff.ine transformation. This method is somewhat similar to the scheme employed

	

I r	 by NASA (Price, 1982), which involves creating triangular regions with Che

control points at the vertices and an affine transformation applied to each

region. Because the coefficients of t*.ie transformation of each triangle are
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independent, this method minimizes the propagation of errors. It does have

the disadvantage, though, that errors caused by inaccurate control points

cause non--inear distortions which the user cannot correct without the

original data set. In our scheme inaccurate control point effects are

minimized because of the least squares fitting employed. In addition any

errors that are introduced are linear and thus can be corrected by applying

another affine transformation to the data without having access to the

!	 original data set.

We are now using an interactive image display system with four image

planes in our registration procedure. This system allows us not only to

improve the quality of our registrations, but also to significantly reduce the

time required to produce them. The procedure employed is to first "rough

register" the night to the day image. This is done quickly with a minimum of
r.

points (6-8) selected from the images. A simple affine transformation is then

applied to the nighttime data, resulting in an image that is approximately in

registration with the daytime data. The three "rough registered" images, day

visible, day thermal; and night thermal, can then be viewed on our image

display system. We then enlarge a selected portion of each image using a

magnification of four. The nighttime image is translated using a "roam"

capability until the day scene and the night scene do not seem to move when we

alternately view the images on the screen. We are not limited to isolated

features for control in this method but employ the entire pa--tern. Even in

areas lacking distinct features, control can still be obtained by "matching 	 i

^	 I

shapes" (a sort of visual cross—correlatio<i), and a single control point is

^J	 then selected - )m the area to represent this optimum match. Another

advantage of our displa- s ystem is that it can be used to obtain the

coordinates of any point using an illuminated cursor, thus eliminating 	 I
	

I
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inaccuracies from mechanical scale measurements. Because of the capabilities

of zooming and roaming images and cursor digitizing, we can--with little

difficulty—obtain a fairly evenly spaced grid of control points over an

entire image. These control points are used to determine the coefficients of

the Final transformation, which is then directly applied to the "roughly

registered" nighttime data.

The technique appears to be fairly successful. In many cases the

residual errors are a pixel or less and our processing time has been reduced

to a fourth that of the old technique. We have successfully employed this

technique to register HCM images to digital terrain data and the Landsat

data. We have also discovere' in some cases the need for a quadratic

correction along scanlines from examination of residual plots.

f
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4 CONCLUSIONS

In a somewhat general sense we have found that a thermal-inertia image

provides an approximate "outcrop" map. This applies to vegetation covered

terrain as well, where we observe resistant ridges, peaks and knolls to have

characteristically higher thermal inertias. In outcrop areas where the

vegetation cover is not too extensive, we see substantive differences among

the thermal inertias of some sedimentary rock types, ranking from hi L iest to

r. 
k	 lowest values: quartzites and orthoquartzites > dolomites > limestones and

shales. This is in agreement with predictions based on laboratory thermal

property values (Miller and Watson, 1977). The thermal inertias of igneous

rock outcrops are more closely grou ped,-with granites having the highest

values. We have developed a model of the behavior of igneous rocks that is

consistent with the observed satellite thermal inertias and selected

62	 laboratory data based on three constituents: quartz, glass and mafic

minerals.

The lower elevation, non-bedrock areas examined in our western test sites

in the Basin and Range have little vegetation cover and appear to display

thermal-inertia differences which we believe are primarily due to density

and/or moisture content differences, a conclusion based largely on literature

daLa (Watson, 1981). We have noted tFat the lowest thermal-inertia values

observed are generally associated with the lowesr ei ­ :Lions except where

l
	 anomalies due to surface water occur. In some areas we have found that the

low therma?-inertia areas have a higher sand content, which will cause a lower

density and a higher permeability (to aid in water run off). We also see

thermal-inertia contrasts in alluvium that suggest relationships to deeper

features, such as pediments and faults.



F ()

In terms of the potential for obtaining new geologic information, the

if G	
HC!-e4 images have been more useful in detecting linear features than in

discrimination of materials. We have now discovered three long (>100 km),

previously unrecognized linear features in the Powder River Basin, the

U (
Colorado Plateau-Basin and Range, and the Overthrust: Belt. These are features

that were initially detected on HCMM data and not identified on geologic

maps. Supporting evidence for geologic control was found on a variety of

^^^ l r

other maps, such as gravity, magnetic, topographic, and detailed geologic. In

addition, lineament studies in the several regions indicate that HCMM data are

complementary to Landsat data, providing a more synoptic look, emphasizing

different azimuthal directions, and sensing geologic aspects in vegetated

terrain that are obscured in Landsat data.

w;

11 f

A number of techniques have been developed or refined from previous

studies. A simplified thermal model, employing a half wave heating

approximation, has been extended to include the effects of topogra phic scope

and elevation. A lineament distribution plot has been developed which has

general application to the analysis of linear features, including fault maps,

and aircraft and space images. Registration procedures to match HCMM,

Landsat, digital terrains, a1LU various geologic and geophysical maps have been

refined and the limitations identified for several diverse areas of complex

geology and terrain. This has curnt ,i out to be an essential element in

support of the HCMM studies because wf: have discovered that interpretation of

the thermal-inertia images and, in particular, the evaluation of new features

has required 7ross comparisons with many types of data at widely varying

scales.
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