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ABSTRACT 

The third year of the proposed three year project has now elapsed. 

The computer automated data acquisition system for atmospheric emittance, 

and global solar, dovlnwelled diffuse solar, and direct solar irradiances 

has been fully operational for about two and one-half years. Hourly-

integrated global solar and atmospheric emitted radiances have been measured 

continuously from February 1981 to August 1983. Hourly-integrated diffuse 

solar and direct solar irradiffi1c~s have been measured continuously from 

October 1981 to August 19~3, One-minute integrated data have been made 

available for each of these components from February 1982 to August 1903. 

Atmospheric aerosol and turbidity measurenl8nts for the period February 

1981 through July 1983 have been analyzed and the results are presented here. 

The correlati..on of global insolation with cloud cover fractions for the 

first complete year I s data set was completed. A theoretical modAl was developed 

to parameterize the effects of local aerosols upon insolation received at the 

ground using satellite radiometric data and insolation measurements under clear 

sky conditions. A February data set, composed of one-minute integrated global 

insolahon and direct solar irradiances, cloud cover fractions, meteorological 

data from nearby weather stations, ffi1d GOES East satellite radiometric data 

was collected to test the model and used to calculate the effects of local 

aerosols. 
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INTRODUCTION 

A solar energy measurement station was established at Hampton Institute, 

February 15, 1981. Routine houl'ly integrated measurements w~re made of global, 

diffuse, and direct solar i.rradiances and of atmospheric emittance. After the 

data acquisition was computer automated in February 1982, one-minute int~grated 

radiometric data, as well as one-hour integrated data, were recorded. More 

d~tailed information about the measurement system is presented in Sections I 

and II of this report. Monthly averages for global, diffuse, and direct solar 

irradiance, atmospherlc emittance, and atmospheric aerosol and turbidity 

parameters Wbre calculated and ar<'! presented in Section III. 

Correlation of global insolatio'.'1 with cloud cover fractions were made 

using the ARL model and the results for the first complete year of data are 

presented in Section III. A parameterization method for estimation of the 

effect of aerosols upor insolation has been developed and a data set has been 

accumulated to test this method. Detailed inf.ormation about the parameterization 

method is provided in Section IV. 
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I . SOLAR RADIATIOO MEASliREMENT PROGRAM 

An observation platform for solar and atmospheric radiation measurements 
o 0 • 

was established on the roof of Turner Hall (latitude 37.02 N, longitude 76.34 W, 

and elevation 24 meters) February 15, 1981. A radio tower and a smokestack 

are the only two obstructions greater than ten degrees above the horizon with 

all other obstructions less than five degL~es above the horizon. Routine 

measurements were made of global solar J.rradiance, diffuse solar irradiance, 

direct solar irradiance, and atmospheric emittance. Information (Griffin, 1982) 

about the solar radif.l.tion measurement program was presented at the April 20-23, 1ge2 

meeting of the Virginia Academy of Science held in Blacksburg, Virginia and 

at the June 1-3, 1ge3 meeting of the American Solar Energy Society in MinneapoliS, 

Minnesota (Whitney, 1ge3). The Abstract of the presentations by T. J. Griffin 

are attached as Appendices I and II. A surrrnary of the solar and atmospheric 

data available at the time of this report is provided in TABLE I. 

A. Instrumentatj.on 

Since detailed descriptions of the radiometric instrumentation are 

available in the first Annual Report \v~itney, 1981) for this grant, only a 

summary of our measurement capabili ties is presented here. rfhe global solar 

irradiance on a horizontal surface Vias measur'-ed by an Eppley Precision 

Spectral pyranometer l FSP) v;i th a hemispherical WG7 Schott glass dome. Diffuse 

solar irradiance on a horizuntal surface VIas measured by an Eppley PSP v:i th a viG7 

dome that v:as mounted on an Eppley Solar Tracker and Occul ting Disk System. 

Direct solar irra.diance v;as measured by an Eppley Normal Incidence Pyrheliometer 

(NIP) mounted on a Solar Tracker. An Eppley Hickey-Frieden Absolute Cavity 

F-'yrheliometer was used to calibrate the NIP regularly. Atmospheric emittance 

wc..c, ineasured with an Eppley Precision Infrared Radiometer (PIR). In addition, 

turbidity (Volz, 1974) measurements v:ere made approximately hourly for cle3.!' 
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sky conditions using a Volz Sunphotometer. 

The wavelength l'ange of each of these instrurmmts is listed in Table II. 

Information about the measurement frequency and about the time periods that 

'i.nsolation data are available is presentect in TABLE I. 

B. Calibra.tion 

Each radiometer was calibrated prior to delivery by the manufacturer. 

Subsequent yalibrations have been performed by comparison to secondary or 

primary standards at Hampton lnsti tute or at Eppley Laboratory. Calibratton 

data are presented in TABLE III by listing each instrument, the date and site 

of each calibration and the calculated sensitivity factor. The NIP was 

calibrated by comparison to the Hickey-Frieden Absolute Cavity Pyrheliometer 

which is considered to be a primary standard. There were no adjustments in 

the NIP calibration factor since the calculated sensitivity s:howed no change 

wi thin the sensor accuracy. The pyranometers were compared twiC::f; a year with 

one another by comparison of three-day integrated global irradi~ce totals e£ter 

side-by-side operation. Comparison between the pyranometers indicated a consistent 

difference of about one percent which was within the two pen'Jent accuracy of 

each instrument, thus no adjustment in ei ther calib;'''ation factor was necessary. 

A list of equipment used in these calibrations is attached as Appendix III. 

The pyrgeometer (PIR) and the pyranometars were recalibrated at 'Eppley 

Laboratory twice during the three-year' period of use. A change in calibration 

standards at Eppley Laboratory in October 1981 accounted for a 2.6 percent 

change in sensitivity factor for the ~SP instruments, and l~quired that data 

obtained previous to that date be adjusted to standardize our data set. 

Annual calibrations of both PSP's at Eppley Laboratory showed a sensor 

degradation in each instrument of approximately 0.1% per month. A linear 

correction factor between Eppley calibrations for each instrument has been 
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calculated and used for the monthly average measurements presented in this 

report. Raw data stored on maw~etic tape have not beerl corrected for the 

above change::s in sensor sensi ti vi ty. Monthly correction factor's used to 

adjust all of the raw data on t,upe tlre presented in TABLE IV for each 

radiance component. 

The recorder systems were calibrated every six months by using a staQle 

millivolt source and by adjusting the integrator ru1d strip chart recorder 

gains to obtain the proper readings. The electronic integlators exhibited 

extreme stability with the maximum adjuGtment required for any integratol 

being only 0.4%, while larger e.djustments were occasionally required for the 

chart recorders. 

lJ.'he meter on the Volz Sunphotometer was replaced on April 29, 1983 

Immediately f~ter it became inoperative. Telephone disc~lsions with the 

manufacturer revealed that the change ir) rneter would have a negligible effect 

on the calibration of the instrument. An attempt to verify this by checking 

for linearity of the sensor on a Langley Plot of meter readings versus air 

mass failed due to an inability to obtain enough clear sky measurements on a 

given day over a significant range in air mass. Atmospheric aerosol and 

turbidj 'cy data reported in this report have been calculated us:i.ng the original 

calibration data. 

C. Meteorological Data 

Standard 110urly meteorological observations taken at nearby Langley Air 

Force Base ( LAFB) v,ere pj cked up on a monthly basis from Detachment 7, Third 

Weather Squadron and are on file at Hampton Institute. These data included 

information about cloud height, cloud type, fractional sky cover, preCipitation, 

sea level pressure, and temperature. These data were supplemented by whole-sky 

photographs and visu81 cloud observations at Hampton Institute. Additional 

meteorological, turbidity and ozone data were purchased from the National 
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Climatic Center archiveo in Asheville, North Carolina and the World Ozone Center, 

Environment Canada, Toronto, Canada for use in the data rulalysis. 

D. Cloud Cover Frac~ 

Cloud cover oomposed of cumulifonn clouds were selected for this study 

because of the nearly opaque optical properties, low cloud altitude, distinct 

boundaries, and frequency of occurence. Cloud cover fraction ~as defined for 

the local area as the ratio of c10udy area to the total E\I'ea. There are three 

different sources of cloud cover fractions: 1) satellite data, 2) ground 

based photography, and 3) trained observers. Only a summary of these methods 

is provided here since deta:i,ls about the analysis methods are provided in the 

first Annual Report (Whitney, 1981). These cloud cover fractions were used in 

the ARL regression equation as discussed in Section 111-0 of this report. These 

methods are compared with one another in the first Annual Report. 

1. Satellite Derived Cloud Cover Fractions 

Black and white photoprints of visible imagery provided by GOES-EAST 

were selected on the bases of: 1) frequency (everyone-half hour), 2) range 

of cloudiness (all fractions possible), and 3) convenience (our local 

geography was easily distinguishable in the prints). A distance scale was 

calculated from known landmarks on the photoprints for the east-west and 

north-south directions. Using this infonnation an ellipse corresponding to a 

120 km radius horizon circle was drawn on a clear plastiC overlay. The ellipse 

was further subdivided into grids that corresponded to 24 km x 24 km squares at 

the ground. The central grid was placed over the Hampton Institute measurement 

site and visual estimates of cloud cover fractions made for each grid. These 

fractions were then used to calculate the cloud cover fraction for the locdl 

area. Comparison of the fractions obtained by this method to the other two 

methods indicated that the photoprint method was the least reliable for cumuliform 

clouds and, thus, sateHi te photoprint analysis was only used durlng the first 

year of this program. 

-4-
'I 
" 



2. Ground Based Photograph-Derived Cloud Cover Fractions 

A whole-sky photogrru1ic system was constructed using a 35 mm SLR camera 

body, an Aetna fish-eye adaptor lens, and a camera mount directed toward 

zeni th. The camera system was calibrated by aiming at a large flat surface 

(a classroom wall) and carefully measuring the radial distance on the 

photograph for each known angular position. A linear relationship was 

observed between angular position and radial distance in the photograph as 

indicat(\d in Figure 1 from the center out to 85 degrees. 

The 85.0 degree field of view about the zenith defines the local area 

as a circle of radius from 2 to 50 km depending on cloud altitude. Over 

this limited field of. view the atmospha~~ can be treated as being flat and 

the cloud cover fraction can be calculated independent of clOUd altitude. 

(See the first Annual Report for details). An analysis grid for ground 

based photographs and slides was developed using concentric rings and radial 

sectors. During the first year, black and white photographs were enlarged 

to fit the analYSis grid overlay and a cloud cover fraction de"cermined for 

each grid by visual inspection. Afterwards color slides were directly 

projected onto the analysis grid in order to aid in distinction between dark 

clOUd bottoms and clear sky, and to reduce both proceSSing and analysis Urnes. 

The whole-sky camera system was modified in order to allow computer 

activation of the camera by adding an electronic shutter ru1d an autowind 

system. The camera, system was mounted on the Eppley Shadow Band Stand in 

order to eliminate the need for frequent adjustment of the sunshade, A 

clock and date card were placed on the inSide surface of the shadow band 

to document the time of day and date of each photograph. Whole-sky 

photographs (color slides) were taken everyone-half hour on selected 

weekdays when clouds were present without preCipitation, from August 1981 

through December 19U2. 
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3. Visual Observations of Cloud Cover Fraction 

Visual estimates of cloud cover were made by trained observ~rs at 

nearby Langley Air Force Base every hl.:'ur. 'l'he observat~.ons included the 

cloud cover fraction in tenths and cloud type in code. 'rhese observations 

were screened to eliminate hours wi th predominantly transparent or semi-, 

transparent clouds. Visual observations made at Hampton Institute during 

the first year were used in order to help interpret the photoprint and 

photograph analysis results. 

E. Data liandling end Quality Control 

A data storage procedure for the radiation data was devised to 

efficiently handle the data and ensure quality control. The integrated 

radiometric data and times were initially stored on a 1'ektronix 4051 

microcomputer's internal magnetic t,3pe unit. Then on a monthly basis 

these raw data files were transferred via computer ho()kup from the Tektronix 

4051 to the PDP 11/34 minicomputer where the'! data were permanently stored 

on 1600 bpi magnetic tape. All preliminary processing was done on the 

Tektronix 4051, while data ;malysis routines and applicaUon programs were 

performed on the PDP 11/34 system. The data were examined for errors by a 

computer program that located the gaps in the data and identified places 

to be investigated and corrected. 

The automated data acquisi tiofl system for glclbal and direct solar 

irradiances was fully operational from February 1, 1982 through July 31, 1983. 

During that time integrated radiometric data for one-minute intervals were 

obtained directly from the Eppley integrators and stored on magnetic tape. 

Specific data handling procedures and quality control for these data are 

discussed in more detajl in the next section of this report. 
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Prior to the installatlon of the automated drato. acq\,11s1 tion system, only 

one-hour 1nteerated measurements wero recorded on magnetic tape. Printed duto. 

from the integrators were scarnled on a daily basis for missing or problem data 

and incorrect timing caused by power failures or other electrical and mechanical 

malfunctions. Missing data were supplemented by the str';'p chart record when 

available. Approximately once a week these data were manually entered into the 

Tektronix 4051 microcomputer, inspetcted for operator errors, and then transfex'red 

to the PDP 11/34 data storage tape. 
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II. AUT{XIW£ED DA'l'A ACQUISITION f:iYSTEf.1 

One of th(~ major' objuct1ves of tllO (Jocund yeur of' this research proj<.:ct 

was to dovelop tmd implement un automated dato acquisition syst(~m. This 

system reduced the manhoUt' requirmnonts, and the number of operator induced 

errors, involved \l,ith data transferl'al from the integrator-r(~cording system 

to final pcnnanent magnetio tape f;toraee. The har'dwaro requirements, 

operatine procedurcJH I foatureB, and perfonnoJ1ce of the system were provided 

in the second Annual Hepot't UVhitm:y, 19B2) and ure sUTrTJarized below. 

A. System Overvil:!W 

'l'he automated data ucquisi ti on sYE;;tcm connected the radiometric sensor

int('tJpator r'ecordtng sY!:3tem with tile microcomoutf'H' I/O cn.pab111 ties via an 

interfaoe box. 'l;ho microec;;mputer' :cead the intoBr'ated l'acUometrio valuej~ 

from the BCD interface puuds ut fA preset time interval and reoorded these 

data on the lntt:lmal magnetic tupe unit. Whole-sky photographs were triggered 

by computer (!ommand at lJl'e~3et tim~\B and a recc)l"'d of time and pictllI'e number 

were' reoorded on the magnetic tape:. lntrgm,ted o.tmospheri.c emittance, and 

global, dir'ect, tl1ld di ffw,;l~ :':;01 at' i rl:'adl .. trlCt::~ wel'€) recorded at one-minute 

intervalE:) from 04()O E~;fI' to G!O()O Ef)T and at ten-minute intervals for the rest 

of the night. 'l'he data for ~jach month were transferred to separate 1600 bpi 

magnetio tapes for pennanent storage. 

B. System Description 

The' data acqui,si tion system was oomposed of three separate subsystems: 

(1) the radiometrio sensor-integrator system; 

(2) the integrated data fwmpling and recording system j and 

( 3) the data storage system. 

A flow ohart of the data acquisition Ey[.;tem is presented in Figure 2. 

The radiometric serlsor-int€:V',!'ator system is located at the top half of the 

chart and includes the followtng five components: 



(,1) the Eppley !':idiomc tet'~ i 

l2) the Eppley intcgt'ators that surmed the instantnneous readings from 

the radiometers; 

(3) the digitec printers that Pl~ovided a hard eopy printout of one-hout' 

l'adiance values; 

(4) the X-·y strip chwt recordot's that provided a hard copy of instantane-

OUB radiance~: and, 

( 5) the camera system that took the who.Le-sky photographs. 

The integrated datEt sampl tng and recording system located at the 10\",(,:1" 

left-hand side of the chart includes: 

(1) the integrator Si&~a1s that were provided at the BCD interface on 

the Eppley integrators; 

(2) tt,e interface box tl1at centralized the data for computer access; 

(8
1 

-;m.! ROMs that intE~rf':tced the BCD data to the 'l'ektronix 4051 j 

(4) the 'llektronix LIOM microcomputer thFlt read the ROMs and activated 

the magnE'tic tape CEl.l'tl'i(Jge where the computer stored the data. 

1'he data storage system is located ftt the lower right-hand side of the 

chart and consists of three components: 

(1 ) another 'L'ektl"ont x 4Ubl microcomputer w1 th a RS231!~ interface that 

acted as a l'lnk betwl1en the PDP minicomputer and the interna.l tape 

of the 'tektronlx computePj 

(2) tile PDP 11/34 minicomput(;r system that read the data from the 

Tektronix 40bl; [mel 

(3) tht' WOO bp'i, ~~l tl'a0k mHgr w't:Lc tape: for permane11t storage of the 

data. 
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'rhe hardware used in t:'le integraf;cd data acqulsi tion nnd storage system 

are listed in Appendix IV u..: Cll~ with two otl101:' devices that were used in the 

development and te~lting of the int<'H'face box and f:)oftware programs. Detailed 

in1'onnation abOl ~t tl1f~ operation of these devices and about the construction 

of the interface box is kept in a dom.rnentation 1'11e in the Solar Energy 

Mea filU"ement L.:'ll)Ol'utOry, 

C. Operating Procedure 

The datu a.cqulsHion Hystem operated on the 1'ektronix 4051 microcomputer 

using the computer pror,.rnm t501..ArTO wrj tten 1n BAmC IJY D, D, Venable. The 

progl"sm worked by cOmpnl'iHOr'l of t.})(~ time provided by the Heal Time tlock RClv1 

Pc;l;,.~k with tj roos tl1n.t w{'r{' cal eulated from fixed time intervals entered into 

the proerem for each senl:3or or for th(~ CCllllera system. A copy of the program 

listing is kept in the documentation file in the E301ar Energy Measurement 

Laboratory. Basic operation of the data acquisit1.on system was dtscussed in 

some detail in the second Annual Heport. 

The radiometric data W()l"e recorded on the mrl[11et1c tape in '72 character 

records. The first tv:o-digH flag UN!) of tt1e data record indicated the type 

of data string using: 01 for radiometric data, 02 for a photograph record, 

03 for a user message, end 04 fur a system message. The next characters 

indicated the day of the v;eek (tllree letter (1llbreviation) separated by two 

spaces from the date in the fom: day-month-year ~DD-r.t.1l'4-,'.t{). The date was 

represented by two digits each for tile day and for the year? and by the three 

letter abbrevj.ati()n for the month. The next set of numbers (J-ni:MM:SS) in the 

data string were the ti.me' (m:;'l') rt~pref1enteci by two (ii-p,its each for :~he hour, 

minute, and second r cmd the l'cmain 1.nr. characters 't/ore eHher a message or 

data. A radiometric datn. record had the form: 

01, DDD DD-MMfv1-YY HH:MM: S~), mil ,NNNNN ,UFII ,NNNNN, IHII,NNNNN ,DRt/,NNNNN 

-lU-
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The radlometric data were r<~corded as integrated totals starting from zero 

at midnight using the two letter abbreviation for each radiation component, 

a single digit activation code (1 for on, ¢ for off), and five digits for 

each re&ding (NNNNN). Global solar irradiance was abbreviated by GL: 

diffuse solar by DF: infrared (atmospheric emi ttance) by IR: and direct 

solar by DR. 

D. System Performance 

The performance of the computer automated data acquisition system v!as 

maosured by calculation of the amount of data lost in comparison with the 

data recovered on magnetic tape. The performance record of the previous 

data acquisition system was also considered since both systems had some of 

the same causes for loss of data. For example, diffuse solar radiometric 

data were not collected during calibration periods for either pyranometer in 

1982. Intercomparison of the pyranometers was made only for the horizontal 

global solar orientation. Electrical storms interfered with corrputer program 

execution and occasionally stopped data collection until the system was restored 

to normal operation. Severe storms reset the printer times and the integrator 

count values, an effect that destroyed the printer data until the system could 

be restored to normal operation. The strip chart recorders were used to 

retrieve lIiost of the hourly integrated data lost by computer failure. Mechanical 

solar tracking failures sometimes caused the loss of the direct and diffuse 

solar data. 

The hourly integrated-data recovery record js presented in TABLE V for 

the full period of the insolation measurement program at Hampton Institute. 

TABLE VI contains one and ten minute integrated data recovery information 

for the firls't five months of automated data acquisition. The measurement 

interval for global and direct solar jrradiances was set at one.-.minute 

starting at 0942 ES'r Fubruary 1, 1982. One-minute integrated data sampling 
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for the diffuse solar and atmospheric emittance began at 2038 EST, 

March 1, 1982 when the second half o£ ~he interface box was completed. On 

Ma"\"Ch 13, 1982 the sampling interval at night was changed to ten minLltes 

(from 2000 EST to 0400 EST) in order to reduce computer tape storage 

requirements. One Tektronix Data Tape Cartridge is used to store approximately 

six and one-half (6~) days of insolation data. 

Two parameters used to measure the performance of the automated data 

acquisition sy~t:em were the average time period between failures and the 

average length of time lost for each error. These parameters were referred 

to as Meantime to Fail and Dolt.ntimc per Error, respectively. The Mean Time 

to Fail was calculated by dividing the total possible number of data records 

by the number of failures and by the data record sampling T'ate (while the 

sampling rate was constant). The Do\'.ntime per Error was calculated by 

dividing tho number of data records lost by the number of errors and by the 

sampling rate. The results of these measures of performance ",;ere reported 

(Blakey, 1982) at the 39th Joint AnnUal Meeting of the National Institute of 

Science and Beta Kappa Chi Scientific Society held in Washington, DC, 

March 17-2u, hlfi2. Rody Blakey, an undergraduate assistant on this project, 

used the data obtained during the first month of computer automated data 

acquisition to calculate the Meantime to Fail and Dov,ntime per Error. The 

resul ts of his analYSis were an average of 8.7 days between failures and an 

average of 6.7 hours dOlt.ntime per error. The large dm'mtime per error was 

caused by the two nighttime failures that stopped program execution for 

several hours until the system could be returned to normal the following 

warking d~ty. (Mr. Blakey received a Third Place Award for his paper in the 

Mathematics and Computer Science Section of the Meeting and one of two general 

awards given.) A copy of the abstract of his papel"' i 
~tached to this report 

as Appendix'll. 
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PAGE \$ 
ORlGlNA1.. QUAl.rrt 
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Ill. RADlor.m'l'!UC AND lllETEOROLOG.1CAL DATA ANALYSIS 

Sevel~a1 types of data analysis have been completed us:!..ng the radiomctl"'io 

and meteorological data collected at Hampton 111Sti tute • The first type of 

analysis completed was the ca, culatiol1 of avel~age values for the vru"ious 

rneasUl"ements. A secor.d type of analysis v,as l'-equired to treat the raw 

turbidi ty meUSUl'E'ments in clt'der to obtain useful pru"('m1(:'ter's such os opticc.1 

depths and preeipi table water. C'Clrrelntion of data witl) empirical fOl1l1ulae 

v,as a third type of analysis perfonned. Analyses il:volving satelli te-deri ved 

radiometric data ru'e disCT1SSt'd in SE'cticn IV as part of the parametl'rization 

r.1<:-thcd. The resul ts of tl1e othel' analysis metl10ds used are disCllSS€'d below. 

by comparison of the average:: hOlll'ly \'alut;~s 1'01' afternoons \'.'i th values for 

and direct solm~ irl'':Kiianl.'ee, .:md atmo~plx l'h' \;'ml ~tnn('e nr€' plottt:"'d fer each 

variOOi11 ty ls indi.:-at\:?d by t:ht~ lad.: ,-~f S~'lnnletry in these L~Papi1S. Sensonal 

minutes \. 

, . 
-j ....... -
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B. Abnospheric Aerosol Extinction and Turbidity Data Results 

Indivldual measurements obtained with the Volz Sunphotometer (serial number 

492) were used to calculate aerosol optical depths and turbidity parameters 

using the formulation outlined in the second AnnUBl Repo~t and by Volz (1974). 

Monthly average aerosol extinction coefficients at 380 nm, 500 nm and 875 nm, 

along with turbidity coefficient ~o and wavelength exponent a o are listed in 

TABLE VIII for the measurement period-March 1981 through June 1983. The number 

of days on which measurements were obtained for each month are listed also. 
o 

The annual pattern of the Angstr8m turbidity coefficient, ao is graphically 

illustrated in Figure 11. As shown in the figure, a 0 values peaked in the 

midsunmer. A high value of a represents a high aerosol concentration in the 
o 

local air mass. Atmospheric aerosols include dust, smoke, sea salts and other 

suspended particles. The aerosol concentration decreased in the autumn through 

the spr~.lg season as represented by the 1981 through May 1982 data on Figure 11, 

however, in November 1982, a values sharply increased instead of decreasing 
o 

as expected. This ir.crease is due to the effect of volcanic particles released 

into the stratosphere from the eruptions of El Chichon in April 1982. The 

global spreading of this volcanic dust cloud appears to have reached the 

Hampton Institute study region (37 ON, 76 OW) during the month of November 1982. 

A slight reduction in aerosol concentration occurred in December 1982 and in 

January 1983, but the normal annual over.all reduction in aerosol concentration 

indicated by the September 1981 to May 1982 data did not materialize. In 1983 

the monthly average a 0 values generally increased through June. Aerosol 

extinction data at 380 nm, 500 nm and 875 nm showed a pattern similar to that 

illustrated by a throughout the measurement period. o 

The ~gstr~m exponent, a ,is a measure of aerosol size distribution. o 

A large a means that small particles dominateche aerosol population, while 
o 

a small a means that large particles dominate. ~gstr~mtstates that a typical 
o 

t in :1.961 
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value of Qo is 1.3. At Hampton Institute the daily average value of Q rar.ges 
o 

from 1.73 to - 1.39 and the monthly average data do not follow any consistent 

annual pattern. The equation used to calculate Q 0 is: 

Qo = 1.3 - 4.07 log (13-875 /13-500), 

where 13-875 is the turbidity QC"lef'ficient at 875 run, and 13-500 is the turbidity 

coefficient at' 500 nm. From this equation it is apparent that Q 0 is detennined 

by this beta ratio and that ao is equal to 1.3 only when the 
13-875 / 13-500 

ratio is uni ty • Nega':i ve values of a 0 are obtained when the beta ratio is 

greater than 2.087 which occurs when the local aerosol concentration measured 

at 875 run is much greater than that measured 'at 500 nm. 

C. Global/Direct and Diffuse/Direct Relationship with Atmof;lpheric Turbidi t;y; 

Monthly mean solar irradiance values listed in TABLE VII were used to 

calculate the average daily Global to Direct ratio for each month during 1982. 

The annual variation followed a pattern similru-' to that of the turbidity 

coefficient 13 0 , In Figure 12 both the Global to Direct ratio and turbidity 

coefficient 13 0 are plotted versus time of year using the 1982 data. When the 

local aerosol concentration increased, the direct solal'" irradiance contribution 

to global irradiance decreased and the Global to Direct ratio :.:.ncreased. 

Under clear sky condi tions, direct solar radiation j.n the earth I s 

atmosphere is only affected by scattering and absorption due to aerosol 

particles and atmospheric gases such as water vapor and ozone. If t.he concentration 

of aerosols increases, the amount of radiation scattered out of the direct beam 

to form diffuse radiation also increases. The relationship between the Diffuse 

to Direct rat.lo and aerosol concentrations, indicated by the coefficient B , 
o 

was investigated by plotting the average hourly diffuse to direct irradiance 

ratio and a versus time of day. On certain days, as illustrated for May 18, o 

1983 in Figure 13, the two parameters were nearly equal and followed a very 

similar variation throughout the day. 
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For the year 1982, 166 individual tU:c'bidi ty r;'oefficient B measurements 
o 

were plotted versus the diffuse to direct irradiance ratio calculated for the 

hour of each turbidity measurement. As shown in Figure 14 values of eo varied 

by as much as a factor of two for a given Diffuse to Direct .. -atio value at the 

low end of the graph. A least squares linear regression was completed to 

obtain the relationship: 

eo = 0.5302 ( DF I DR ) + 0.074, where, 

DF/DR is the ratio of the average hourly solar diffuse to direct solar irradtance 

values. The line represented by the equation above is also plotted on Figure 14. 

The correlation factor of 0.919 obtained indicated a close linear dependence 

between a 0 and the average hourly diffuse to direot irradiance ratio inspi te 

of the large variation discussed above. 

Turbidity coefficient 13 0 data were plotted versus average ten-minute 

diffuse to direct irradiance dat~ for each month. The linear regression ffi1alysis 

for eaoh month resulted in a wide range of agreement with the assumed linear 

relationship. The Novembe~ 1982 data set of five measurements was used to 

caloulate a linear correlation of 0.989. However, the May 1983 data set of 

44 measurements produoed a correlation coefficient of only 0.062, implying 

that for this month a linear relationship between t3 0 and the diffuse to direct 

irradiance ratio does not exist. These results suggest that under the proper 

conditions the turbidity coefficient So is linearly related to the ratio of 

the diffuse solar irradianoe to the direct solar ipradiance, but do not identify 

the other important variables. 

D. Correlations with ClOUd Cover F'ractj.on 

An empirical model (NOAA, 1979) developed by the Air Resources Laboratory 

(ARL) of the National Oceanic and Atmospheric Administration was selected for 

correlation of the global solar irradiance data with clOUd cover fractions. 

The two equations that relate global insolation to solar zenith angle and 
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opaque \.:loud cover fraction are: 

SRe ~ AO + Ai cos ZA + A2 cos 2ZA + A3 cos 3ZA (1) 

and; 

SR = SRC ~BO + 81 OPQ + B2 OPQ2 + B3 OPQ3 
+B4 RN). 

(2) 

SRC is the solar radiation hourly value for clear sky conditions. SR is the 

solar radiation hourly value for cloudy sky conditions. ZA is the zenith angle 

at the midpoint of each one-hour interval. OPQ ib the average opaque cloud 

cover fraction. RN is a rr..t:!n term that is equal to one if some form of 

precipitation is reported, othbrwise it is zero. 

The coefficients for clear sky condi tions \I:ere calculated separately for 

mornings and for afternoons each month of the year in order to partially 

account for diurnal and seasonal variations in atmospheric turbidity, water 

Vapor, and other such factors. The first and last partial hours of daylight 

were not included in the regreSSion calculation. The coefficients for the 

second equation were calculated for mornings and afternoons combined using the 

data for the first full year of insolation measurements. 

1. Clear Sky ARL Model Results 

The clear sky data had to be analyzed before the cloudy sky data could 

be normalized by the expected clear sky values. Determination of clear sky 

hours was made using the Langley Air Force Base (LAFB) cloud cover observation 

data set. The number of totally clear sky hours was insufficient for meaningful 

determination of the coefficients of equation 1 for most months and, therefore, 

these data were suppleh;ented with "nearly clear sky" data for which the strip 

chart trace showed no indication of clouds and for which the cloud cover 

fraction was less than two-tenths. These nearly clear sky data were selected 

from hours which wex'e coded as clear at either the begiming or the end of the 

hour, or wer'e coded as having low fractions of transparent, or semi transparent 
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clouds. Thes~ data were added in order to increase tile nunber of pOints 1n 

the data set, and also to extend the meaningful rru1ge of the curve fit to 

zeni th angles for which totally clear sky data were not available. This was 

consistent with the original use of the ARL model in the rehabilitation of 

SOIMET data. 

The results of the application of this regression formula to our clear 

sky data are presented in TABLE IX for each month and in TABLE X for the first 

full year of global insolation measurements. The clear sky data are plotted 

in Figure 15 to shcw the extent of the agreement of the data with equation 1 

for the one-year data set from March 1, 1981 through February 28, 1982. Most 

of the scatter in the data was caused by seasonal variations of the various 

atmospheric constituents. The individual regression coefficients for each month 

have relatively large probable statistical errors associated with them and cannot 

be compared easily with other coeffiCients for a different month or measurement 

site. The coefficient Ai is the most accurate term and, for the one-year data 

set, .it has only about a two percent probable error while even the algebraic 

sign of A2 and A3 is in doubt. The relative accuracy of the fit is demonstrated 

in the figure and, also, by comparison of the standard deviation to the data 

which gives a five to ten percent uncertainty in the midday insolation values. 

2. Cloudy Sky ARL Model Results 

rhe regression coefficients for clear sky mornings and for clear sky . 
afternoons were used in equation 1 to determine the expected clear sky 

irradj.ance for each one-hour interval. The cloudy sky data were then normalized 

by the expected clear sky values and fit to equation 2 by using a nonlinear 

least-squares method. The clOUd cover fractions were obtained from three 

different sources: 1) visual observations by trained observers (provided by 

the 3D Weather Squadron at nearby Langley Air Force Base-LAFB)j 2) analysis 

of ground-based whole-sky photographs; and 3) analYSis of GOES-EAST satellite 

photoprints. 
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Cloud cover 1'ructions were cf.llculated from thu LAFB obscl"vationlJ by 

averaging the value obtained five minutes beforo tho hour began with the value 

at five minutes before the end of eoch hoW.:' (Eastern Standard Time). Hours 

with predominantly cirrus cloud cover were not used and thus ol1ly 2,926 one-hour 

averages were selected for use during the first one-year period. The data EJrld 

curve plotted in F'igure 16 are for dry conditions: RN~O. In order to satisfy 

computer space requirements, this large number of data was further reduced by 

the calculation of the mean value j the mean value plus, and minus, one standard 

deviation for each 0.05 step in cloud cover fractl~n from clear sky-O to overcast 

sky-1 (21 steps plus overcast with precipitation times three values each for a 

total of 06 values). The results of the analy~is of these LAJ'B derived fractions, 

which arc presented in TABLE X and in Figure 16, reflect the use of these 66 

values along with 26 values of partly cloudy skies with precipitation during the 

one-hour period. 

The cloud cover fractions obtained from whole-sky photographs were plotted 

in Figure 17 for the one-year period. Most of the fractions were averages of 

the results of the analysis of two .or three photographs and differ from the 

LAFB i'raci'i..('Ios in several respects. Only the first 70-75 degree field of view 

about the zenith in each photograph was used to measure cloud cover fraction 

as opposed to the standard 90 degree visual observation. Thin cloud cover and 

high clouds were not weighed heavily in the photographic analysis and thus this 

method provided a better measure of opaque cloud cover fraction. The curve 

obtained from the LAFB data is dra\\n in F'i[,rure 17 for comparison with the 

photograph derived frac tions . 

A number of cloud cover fractions were obtained by analysis of GOES-EAST, 

black and Mlite, visual image, photoprints of the local area by using an overlay 

grid. The results are plotted in Fi&rure 18 along ',1;1 th the LAFB curve. 

Photoprint derived fractions less than 0.25 appear' to fit better than data 

from the other methods. Very small, low lying, clouds can dominate a ground-
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photoprint, lJf]('uw)' uf tJiP Ilmi tpd l't'cpluti, n. Vt·):','; ;:rmdl Udn clolldu ;,ro 

crm appear lru'r;cr in tilt) I)lmtopl'int. 'l'hl:j Lhkhlit,t;:i I'fi'eut; tll1iftFi cloud cover 

fructiorm derived from photopl'int nnalyuL; l'Ciftt1V(J t.p t~r()UIld-lJiJc(Jd fractions and 

for individual paints, !Jut none uf UIU point~i ubtaimJei fr,(Jm pllotoernplw or 

photoprints are significantly n!Jovt' tilt! clptll' sky valu,! irl Fi~.~Ul'l' 1'1 or 18, 

while several points in Finul't.: 10 urn tNt:!' t,v;enty {Jt'rceut ullQVC tho expocted 

clear sky valuG. 

The partly cloudy ho'lT':~ wi th p!'I)(!lpi tnti()l1 dati.! pr'()vi<i(! on interesting 

test of the treatmellt of pl'udpi tatiPti in l'quatioll ,J. 'rhel:3t: data are plotted 

in Figure 19 with the overC'[mt data rp!Jrc'flpnt~~d by a rTI{;CU1 value plus and minus 

one standard deviation. 'rlw lower' ~llr'Vf.' T'('PI't'~;('flt!3 th(~ ~)tJrne cOGfficients as 

the other plots, but with Hnd. 'nl~! Ill'I;('1' .:1 U'W IXi('!3 tll!;.) ~mml' coefficients but 

changes the prt~ci.pi tat10n turlll ill L'lplat.ion L' to W,.j.' 01 '(~'HN) wI deh qU(.tJ:'antees 

no effect at OPQ = U (clear I·,ky) und 11~dllCOfi tu f.~{jll<lti(Jtl " ft)r the nonnru. 

overcast (OPQ = 1) precipi tution condi tion. 
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developcd by E.1li~~ <.lnd Vuncicp Haul' II ~l'lt',) 

I 1 
hg = (1 - ('J.) (I. - 1 -.1) V.Ii(·l't': u l' :;1 
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on boru~d Nimtl\,Ui 'I tUld l".'r'()l't.((i II;" Hld.,y, .'1. rtl. (lIth,'), 'I'h,' term 11' "'w~ 

culculat(!d from Ule' ucttd!.iLt, fill :,l:lil'dl 1.1' ,llfH!;~;. c1' Ull' lillt· "ll'nlt'nt~j tinct on 

developed by HOJ3cllkc:, et. a1. 11 (}';:.n • 

cl'he portion of la (hJ(' Lo :t1wr'l'ptlUlt by \'::!tl!l' vorJO!' 't.nr; {':;timated uBing 

total proclpi t,filile watm:' 1'1'( 1m n"iU'by 1,'t~WIIJ: 'OiJll!'; Int ,{~ntJr( 'm( ,nt~; of the verUcal 

model prescntc!d by Burch I (' L. al. (1 ~Jf( I) tttld by YnmnIrl(ll (J (1 (jf,;~) • 

The absorption of lirhL lJY nVl'(tf;ulii \1:11;; '~(JrnIJllt(~d W~ a nnrldunl from the 

meooured four-minute glolmi im.ulat,jeAl cj;lta alld tll(' (!rdt'lliatud :lIx"c;>rpUon and 

the column-m(;an rC!lativu r1l1rnidl ty f, til; fo!md from a HAWIH:j()IJlJE sOlUidinn. 

The weiehting was dono u8l11[~ a mL'tUJ Yurt k{~l dh;tl'ibllti.(Jn (If fK:rosolEJ in the 

low leve:.s solect~d from fjgur'l' 11lH' pf ~:lJC'tti(~ tlrtfl h!l1!l (HYII) F.l(:cordlnr, to 
o ,. 

the Angstrom turb1(JJ ty pttl'[1[nf;t(>r, l;l!itl. 

A fourth absorpti.on P()l'UOIJ of I, iu CntlHl'd by cluud:3 (Uld 't,w:~ m~t to 
d. 

zero for this eloar sky data [iit't,. 

B. Data Bets 

The meteorological data nuceied for' t.hiF, rnodf~l v,nrc pLU'chru:;ed from various 

sources. Most of thQ airwnYB rqlort:; [llld ','(:rlht.'l' dnta \liOr£' purchased through 



c. Data Array (;o()l"'(HllHt~.m: 

; :att:l11 ttf 
tH(Jrninal ) 

Point 1 inl) x (.J l(JmHl t, 
Center - /t)ll(, x '/4U;J 
NW Cornur - ,)\ ),1' x '114 t 1 
! 'f, C(lr'rlt).t:' ; '!J.l' x 'I' t '/ 

~'jl~ Co rill ,.!:, - ~;( J4£, X 'I!!. " 
~M Comer - 3(141, x 1,1' 1 

24, 1,9H(~ j 

2. Meteorological 

a. Im.;Jo lati<m: 
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(:1 '(lf~ri~fJ11 i (::tl 

1 atl tude x lungitl.ldu 
: fl. 01 qUN .>: 'It, • ;',~3~~oW 
:0. urllfJ x 'If., f~W.t°W 
,r/.~ bl(IU X 'II .Hell Ow 
:~f" 11'l(l{lIJ x 'I! ,'1!l~~°t:! 
')L,lj'I;Pn x 'II ~I fPv' '. "'¥',; '( 

ii. Fn~quf:ncy: t:cm-minqU' Lulul:: ec:nU')', .. (j Oil flrtLpllltEl Bonn timn (C;MT). 

iii. ~iOUrCl!: Eppl('y 1'::1' onf'-rrdnutl~ inLq~r[lt(~(1 data at Hnmptorl lnstl tute. 

b. Ilurnidl ty 
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c. Cloud Ptu'(lJT)C'tm't:; (not used in tllu eleHr sky ru)(\ly~;(.'f3) 

i. Cloud fraction: H£'~npton Innti tutt' phoLogr£1.plm iUld Bntc.» 1 i t(l 

airports. 

iv. Cloud top tcmperaLurt.': IITfx'nl'(.'d B:rL(~l]1tl' (\nt,n. 

d. Ozone and Aerosoh: 

1. Turbidity r(![ldil1r,n at Ibrnpton Imil.i llllt' (01' fl'OIll a I'wt.v;orl, of 

North Carollnn, for tllo~ll' ('m;('f] wilel1 t.lIrl)ltll Ly l't'ntllngs won' 

not tnlWll al. llrunpt.oll I miLilllt.(') . 

Nnf3lwUll', 'l"'llflCW3l'(:', 'l'ullnl\m3IJv(.', 1'1oplcir,l, WlllloPB lnl1Ulci, 

Virginia, und Wl.luhlngton, fl.C. ()llL:lll1C'd from UK' World 07.01lt' 

Datn Centor, Env J rOllmollt Cnnadtl, 1'oron Lo, CUI1f1dn. 

:;. Mi see llflner' .. 8 

b. Elnvntion: mont, [l(linL~; 'IIlt.hin [.he' fil.lIdy l'{'I~l(1n nr(' t.r('flLpd nfl l)"ing 



C. Re~ 

A computer p.rogrom "ABSOR.BAS", which solves tho (mergy balance equation 

to estimate the absorption of v;ide-band short-wave radiation (hereafter called 

sola1~ radiation) by aerosols was run for the Hampton Institute Solar ME'asure

ment Site (hereafter called SMS). The results for each case, including all 

of the tems in the enerBY' balance equation, are presented in Table XI. The 

fractional absorption (the absorption by aerosols, estimated from energy 

balance, and divided by the incident solar flux beneath the ozone layer), 

as well as the parameters llsed in each least-squares fit, are presented in 

Table XII for each case. These results are also pr.::Jsented in Figures 21 through 

23, where variables not explici tly named are aBsigned their mean values. 

One very salient feature of the absorptions by aerosols in both of the 

tables is that these are predominantly nCflative in value. This indicates a 

systematic overestimation of one or more of the tenns of the energy balance 

equation; possibly the measured horizontal global insolation tem (more on 

this later) or the gaseous [ilisorption tenn, but most likely in the upwelling 

reflection tenn owing to defects in the bi-directiono.l reflectance modE'l alid 

in the image calibration. For this reason, the relative sun-satelUte 

azimuth, Kasten's (1966) relative opti':aJ. air mFlSS (hereafter called 

ROAM, which. is directly associated with the solar zenith angle) and the 

hours after 0000 GMT, January 1, 19~2 were included in the leC4st-squdres

fi t analyses. The sun-satclli te azimuth and the ROAM were included to 

account for shortcomings in the bi-directional reflectance model and the 

hours parameter was included to account for time-related "drifts" in the 

calibrations of the eight visual channels. 

Two of the tabulated cases were not used in any of the statistical 

analyses. Case No.2 was omitted because of the presence of clouds 
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coverinn part of the l~)l line x 101 element display sector ollcgedly 

containing the Hampton Institute SMS. Because of the high reflecti vi ty of 

these clouds, the contrast of the non-cloudy portion of this sector \I,';3S 

greatly reduced (the contrast of this display is made by dividing the range 

of brightness in the displayed sector into eight equal intervals and assigning 

a symbol to each interval) making the act of locating flampton InstItute very 

difficul t and uncertain. Case No. 14 was omi tted because, owing to the late 

hour of this image, the solar zenith angle was very la~ge requiring an 

unreasonable extrapolation of the bi-directional reflectance model. Also, 

because of the late hour, the visual image was very dark causing great 

difficulty in locating Hamrtnn Institute. 

A third case, No. 19, hov:ever, could not be omitted on any such physical 

grounds t even though the fractional absorption for this case is lower than 

any of the others and much lov:er thi:ll1 any least-squares-fi t formula prediction 

on this case, In fact, the inclusion or omission of this particular point 

made a great difference in the very nature and course of the least-squares-

fit analysis and in the fcnnula found from such an analysis. NJ a result, 

tv;o sets of analyses, with and without case No. 19, v;ere made. 

1. Case No. 19 included (tv.o excluded cases): 

i. For turbidity related parameters excluded*: 

iAAii (-2) :: CJ. 09322:4 - (1.00057340: e 
ss 

- O.0635SGS f 

where iAA = fractional absorption bJ atmospheric aerosols; 

ii(-2) = two independent parameters with tv:o cases excluded; 

ass = relative 81m-satellite azimuth (degrees) using the 

convention of Raschke et al. (1973) \':hich defines 

*This was done to create a predictive formula v,bich could be used in those 
large regions of the Earth's surface far from any Volz Sunphotometer 
observation sites. 
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thi6 angle as the horizontDl projection of the deflection of 

a photon from its incident direction (or the absolute value 

of 180 degrees minus the difference betWE>en the solar and 

viewing azimuths) rather than the absolute value of the 

simple difference between the solar and viewing azimuths; and, 

f = the mean relative humidity and is included as a "non-

turbidity related parameter" since it can still be estimated 

without ~, albeit less accurately, by weighing with a mean 

(~-independent) aerosol profile. 

The least squares fit analysis produced a multiple correlation 

coefficient, R = 0.44145 and an adjusted multiple correlation 

coefficient, R' ;: 0.3248G5. 

ii. For turbidity-related parameters included, the parameterization 

depends on the minimum acceptable value of p (=P[F ~ FpJ (OstlE:, 

1963; Bevington, 1969) chosen in finding the F-statistic: 

a. If P is chosen to be ~ 68%, only one parameter qualifies as 

an acceptable predictor and the result is: 
,i(-2) 
1AA = -0.0544005 + 0.138264 145 

where i (-2) = one independent parameter wi th two cases included 

and, 

145 = aerosol optical depth at A = 0.4::' ,PD' 

) -a 145 = mkp ~0.45 , 

where ~p = mk p~po, 

mk = Kasten's (1966) ROAM, 

p' = atmospheric surface pressure (kPa) at the point of 

interest (in this case, the Hampton Institute 3MS) , 
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and 

~ and ex :::: Volz-J~ngstr~m tUl·bldi ty coefficient and exponent, 

respectively. 

The analysis produc.ed a multiple Gorrelation coefficient, 

R ::: 0.541201 and an adjus\;ed multiple correlation coefficient 

:::: 0.50565; 

b. If, however, p = 67%, almost all of the analysed predictors 

become valid in a stepwise leastMsquares process. In fact, 

the number of predictors used was limited to sev~n, not 

because of the computed F-statistic for predictors beyond 

the seventll, but because seven is the maximum number of 

independent variables which the multiple regression program 

("COSAF" statistical package) could handle: 

i~i(-2) ::: -0.065407 + 0.367642 1'45 - 0.000443137 

- 0.0325417 mkp (3 (A max (ct» - Cl+ 0 . 008633S3 m
kp 

- 0.157439 f + (9.87231 x 10-5) H - 0.00381737 Cl 

where 

e 
ss 

A (Cl) = wavelength of maximum aerosol attenuation of solar max 

radiation found by setting the partial derivative with 

-Cl respect to A of the product of the Planck function and SA , 

equal to zero. Af'ter eliminating the zero and infinite 

roots, the resulting equation: 

exp (e'/A; = (Cl+ 5) 1./( (Cl+ 5)1. -e') 

where 

e' = heikT ::: 2.4~067/um, 

-27 h = Planck constant = 6.62~6 x 10 erg s, 

10 e = speed of light in vacuo = 2.99725 x 10 em/s, 
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and 

k :;: UoltzmMn constant :::: 1.3~()54 x 10 E.!rg K, and -16 / 

T ::: mean effective solt,U' radiative temperature::: 5800 K 

(Glasstone, 1965), was numorically solved for). as a 

function of 0 (very tricky, a~ there is a very sharp _~ 

to +~ singularity very close to the solution, especially 

at the larger values of 0). This function is approximated 

to within 0.3% by: 

). (0) = 0.0864642 - 0.006221490 + 1.75525/(0 + 4.25) max 

H :::: Hours since 0000 GMT, January 1, 19~2. 

The analysis produced a multiple c~~relat1on coefficient, 

R = O. 82E,926 and an adjusted multiple correlation coefficient, 

R' = 0.71492. 

2. Case No. 19 excluded (total of three excluded cases): 

i. For turbidity-related parameters excluded: 

i11(-3) = 0.13~)772 - 0.00079723t e
ss 

- (2.4183£; x 10-5)H 

multiple correlation coefficient, R = 0.642801 and an adjusted 

multiple correlation coefficient, R' = 0.586281. 

ii. For turbidity-related parameters included: 

i11
i

(-3) = 0.0485699 - 0.000488838 e
ss 

+ 0.0229239 a 

- 0.0064694(; 02 

The results were a multiple correlation coefficient, R = 0.84393 

and an adjusted mul tiple correlation coefHcient, R' :::: 0.811331. 

The results of all these lea.st-squares fits are presented in Figures 24 
thrOUgh 28. 

One rather surprishlg feature of all of these l'esults is that wherever 

f appears, it has a negative coeffiCient whereas one would expect the 

opposi te (e. g. Mtszaros, 1971; H1:lnel, H)72, 1976; Covert et al., 1972; Nair 

and Vorha, 1975; Fitzgerald, 1975; Fitzgerald et a1., 1982). One Possible 

, . 



cxplnna.tion of thhl if:) that there is (). systemati.c overest'lmation of the 

absorption of solar radiation by water vapor, since the radiatively 

effective water va.por column on which the water vapor absorption estimation 

is based is strongly associated with r. Three possible sources of this are: 

1. The progrGllTl "WA'l'AIH.BM?" that: estimates the radiatively effective 

water vapor column, w, from a sounding; 

2. The program "O?'ONAL.BAS" which fits a function of the form: 

Z = c1 + c2 L + c3 E + c4 LE 

where z is the quantity being fitted, L is the negative of the line 

number, E is the element number and c1 , ... , c4 are coefficients 

determined from the input data, using water vopor column observations 

from four upper-level stations just outside the study region. This 

function was lU3Cd to obtain the radiatively effective water vapor 

column over Hampton Instituto given Hampton Institute's line and 

element numbers in nominal GOES-cast coordinates; and 

3. In the formula of Lacis and Hansen (1974) which est.imated the 

absorption of solar radiation by water vapor given the local 

radiatively effective water vapor column and the relative optical 

air mass. 

One. predictor which was applied to this analysis, but without success, 

was the formula modified from Hoyt (19'78,1979) which purported to estimate 

the absorption of solar energy by aerosols: 

iXA = (1 - oos )(l _ g(~) mkP ) 

where 

oos = albedo of single scattering by aerosols = 0.95 and 

g(~) = 0.937 - 1.044 13 + O.00575/(~ + 0.J.08) (which gives an 

acceptable fit to the tabulations of g(~) by Hoyt (1978,J.9'79». 

It is not known why this formula fared so poorly as a predictor of the 

absorption of solar radiatioj'"l by aerosols. It may well be that the fault 
-30-



lies with the modification of Hoyt t s formula. which W1.1S or:ieinally i M ;; 
(1 - ws ) g(~) ITkP. Numerous a.ttempts since last October to contact Mr. Hoyt 

for guidance on this matter have failed. Al ternati vely, this failure may be 

from errors in the ~stimation of absorption by aerosols from energy balance. 
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V. m.1MMAHY AND CONcLtmON~; 

O.(itJu;~nil... Pnr,::~~ G~ 
OF POOR Qt/\Li1V 

Energy balance is a superb, fundom~mtul1y t,ound method, both for 

estimating the insolation at the Earth I ~j sLtrfat~e and for investieatine 

residual effects, such as the absorption of liel1t lJy cloudl;;i or aerosols nnd 

errors resulting from dC'f(~uts in thE~ bi-dlreetjunal rcd'lectmlt'(! models mid 

in the calibration of the .imaging deviu€. In the C[.lS() of tllis study, ener~~ 

balance was used to investigate the absorption of solar radiation by aerosols 

and defects in the bi-di.t'Octional refh;ctance model (Rnschkp (}\.; <11., 1973) 

and in the calibration of the eight visual channels of the C;OF.S-east satellite 

(Norton et al., 1980). 

The results of this study are somewhat equivocI11 since t11ey are 

excessively sensittve to the inclusion or' exclusion of a single case (No. H). 

Obviously, a much larger data base is needed before some decisive conclusj,ons 

may be reached, even for one location and during ()lie month. 

Some facts about the results, howevE.~r, arl" not so uqui vO~Hl . For one 

thing, there is a decided negati vo depencienee of' the fl'[tc t Lonul absorption 

by aerosols on the relati vo sun-satell1 te relative azimuth angle, ass' with 

or without case No. 19. The coefficient on ass is small in mHr.;nitude 

because ass was given in degrees in this study. This strong dependence on 

a ss indicates a systematic error in the bi-directional reflectance model 

used in this study. This is also indicated by the dependence on the pressure-

correlated relative optical air mass, m
kP 

(directly associated with tne solar 

zenith angle), in the );Jredictive formula for p = 67% with case No. 19 and 

turbidity-related parameters included. The dependence on the viewing zenith 

angle was not investigated in this study because of a l.imitation inherent in 

any view of a single Earth-surface point from a sh1g1e geostationary sateHi te; 

namely, the viewing zenith angle varies very lJ.tth~, if at ull. In fact, in 

this study, the range of this angle was les~3 than two degrees. 



Other strong dependencico found 1n thh3 I3tl)dy M.?,ro on t!K: computed 

o II optical depth a.t A;:;: O. 4b ;t..m und on tho VolJ::-AnEfji,rom turb j '11 ty exponent, 

a, especially on the squaro of (x, in th() predic.~tive formulae tncludine 

turbidi ty-related pox'ameters. 

Other, weaker depefldencios wore found on: tho aerOlSol profile (selected 

by 13) weighted column meon relo.ti vo humidi ty, r; (,[lQ aeroeol opti~al depth 

at the Ct-depem'ient wavc;lc:ngth of muxlrnum [llJsOrption, m
kp

f3 ( \nox( a) )_Cl; 

and the number of hours, H, since 0000 GMT, Janw.1rY 1, 1982 which indicates 

a time dependence in the response (hence, in the calibration) of the satellite's 

visual channels. However, only a very weak dependence was found on a 

modification of the Hoyt (19'18,19'19) prediction, (l _ W,) (1 _ g( 13) Ilkp ). 
i:;) 

This parameter will, however, be retained as a l:'(~gressive parameter to be 

investigated in future studies on a different or expanded data base. 

It has also been found that there may be a large uncertainty, as much 

as 30";6, in the estimation of the radiation reflected spaceward by the Earth-

atmosphere system. Of this, 2CYtf; may be due to problems in the Calibration 

of the digitised visual images from geostat:ionary satellites (Muench, 1981; 

how this figure of 2CY;6 w~ arrived at will be discussed in Appendix IV. ) 

The remaining approximate 200;6 (in a pythagorian sum) is an educated guess 

on the uncertainty inherent in a bi-directional reflectance model and j,s 

comparable to the standard deviations which Davis and Cox (1981) found in 

their own bi-directional reflectance model. 

Another uncertainty arises from using four-m1nute totals from an 

integrator to obtain the measured mean horizontal elobal insolation at the 

Earth's surface. An integrator yields accepts.bIe accuracy for totals of 

thirty minutes or more, but for shorter period totals, a diffF';."'ent type 

of digi tising deVice, or even an average of point measurements from the 
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analog trace, should be used, e~;;pecially under 1mv 1 ENC If:j of dayliBllt, 

1l1uminati;.)n (e.g., under cloud cover or near fJunl'is<? or sunset). This 

stands as a recommendation for future research !llo1 f,h~)l"\t-rmriod averages are 

necessary :tn a h1gh-resolution (in this co,Se, tllO A-scale or O. 9km x 0.0 kIn, 

the highest nadir-point resolution availllble from on f3MS/GOES EJiltelli to) 

study to ensure that cloud cover 01:' il1urnination condi timlf;; do not 

appreciably change during the measurement. 

Anothf'r' recorrmendation regards the bi-directional reflectancp. model. 

The model of Raschke ~:1 &. (1973) was chosen only because it was "tried 

and true", having been in the literature for a long time and used by 

numerous investigators in solar radiation and Earth x'adiation budget studies. 

The only other extensive model that was available at that time, Davis and 

Cox (1981)t was rejected because the "bugeye" device used in that study 

sampled at only three nadir viewing angles (00 , 300 and 60°) whereas the 

nadir viewing angle in this study never strayed from the 400 - 430 range. 

Another model (Stowe €it a1. I 1980) has be%~n urought to our attention which 

may be superior to ei thor previously identified model. 

Ideally, one should hire an aircraft and, usine a photometric device 

as similar as possible in its spectral characteristics to that in tl"'e SMS/ 

GOES VISSR, to make one's own survey of the an@Jlar (bi-directional) 

reflectance of the solar measurement site under os wide and as complete a 

range of solar zenith angles as possible during the study period. A 

further refinement would be to account for the angular reflectance of the 

overlying cloud-free atmosphere, incl~dine the changes of this angular 

reflectance with aerosol loading (e. g., Braslau and Dave, 1973). Both of 

these refinements would greatly improve the accuraoy and reli~ili ty of 

the estimates of the solar radiation refl(~cted spaceward by the Earth

atmosphere system" However, one consideral::>] e obstacle remains to complete 
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visual chonnols. Al thour,h nUllfJl'OUG inveuf;l eatorn k. [~., BaUf!l' and I.iemmc:h, 

1975; Hinton, Appendix 1 in Norton at .!&., 19uOj Hllcn\~ll, lOut) haw' been 

working on this very thorny p:t"oblem, nono haY'(' yf,~t fOlAnd a Lrue colution. 

Another recorrrnendution would 1m to \I!,i() a cnlm:' m(?n:JU1~{jm('nt site fl.') close 

as possible to u loctltiun whore tut'hidity, tlllP('l' If'vcl HAW1Nf:Qr'JnE nnd nurfnco 

thereby minimizing erX'Ors arising i'n)m extrapolating values of meteorological 

variables in space to the solar melIDlI:t:'Cment 81 tG. Also, if the investieator 

has any control over Ctlch matterfl, tho tlU'1Jidi ty mot:mUI'omEluts GhQuld b(~ made 

as close as possible in time to the expected satolli te .§QQn time (the time 

a.t which the VISSH on borod LLe ~3pim1ing or.ttclli to actuully O::loans the 

measurement si te as opposed to th~? nQminnl or actual image r.;tnrt time) I 

thereby minimizing errors due to time extrnpolation. Such extrapolations, 

both in time and space, can produco npprec.'i':.lblu orrol'S in tho 1;urbidi.ty 

parameters, especially in oninllornogencOW5 ntmmjphcre. 

A more complete ~.1tudy of the Ul"l"()l'S ,met tl'll'!j 1" propLlgat:l,on 1n trw 

computations in this study will be mu,do by I4r. l'or(;!mf.:ll'l in hi::) Ph.D. thesis 

a.t the University of Michigan. TMs thesjr3 is nov: in pr(~pt.;\l"ation. 
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TABLE I 

HAMPTON INSTITUTE SOLAR ENERGY MEASUREMENT SUMMILny 

Measurement Instrunentation Data Freguency Start End 

SOLAR IRRADIANCES 

G10bal Eppley PSP vv"i th 1;IG7 One-hour integrated and Feb. 17, 1981 clear glass dane continuous chart 
One-minute integrated*" Feb. 1, 1982 Jul. 31, 1983 

Direct Eppley NIP with quartz One-hour integrated ana Oct. 1, 1981 glass and solar tracker continuous chart 
One-minute integrated*" Feb. 1, 1982 Jul. 31, 1953 

Diffuse Eppley PSP with "IIG7 One-hour integrated and Oct. 1, 1981 clear glass acme continuous chart 
One-minute integrated*" 1viar. 1, 1982 July 31, 1983 

ATMOSPHERIC llITTTANCE Eppley P1R One-hour integrated a"1d ¥..ar. 18, 1981 
continuous chart 

One-minute integrated*" Mar. 1, 1982 Jul. 31, 1983 
ATMOSPHERIC PROPERTIES 

Aerosol Extinction Volz Sun photometer Approximately one hour ¥..ar. 24, 1981 @ 380 and 875 nm 
intervals for clear sky Turbidity @ 500 nrn 

Precipitable Water 

*Mter March 13, 1982 the computer autanated radiometric data SaTpling rate was set at one-minute from 0400 EST 
to 2000 EST and at ten-minutes from 2000 EST to 0400 EST. 



'I'ABI.E 11 

RADIOME'I'RIC INf3TRUM1lNTATION WAVELENG'llJf CHARACTlmISTICS 

rnstrumen~ 

Eppley Precision Spectral Pyranometer 

Eppley Precision Infrared Radiometer 

Eppley Nonnal Incidence PyrheU.:'meter 

Eppley Hickey-Frieden Absolute Cavity 
Pyrheliometer 

Additional Wavelength Ranges for the 
Pyrenometers and Pyrheliometers 

Volz Sunphotomster 

Normal Observation .Wavelcngt~ Ranee 

0.285 to 2.8 microns 

4.0 to 50.0 microns 

0.285 to 4.5 microns 

0.2 to 50 microns 

0.53 to 2.8 microns 

0.63 to 2.8 microns 

0.70 to 2.8 microns 

Center Qf ~ - Halfwidth 

380 nm - U nm 

500 nm - 40 nm 

875 nm - 17 nm 

940 nm - 16 nm 



Radiometer 

Precis~ .. Spectral Pyranorneter 

Eppley PSP #20022F3 

Eppley PSP # 20613F3 

Eppley PSP # 22046F3 

Normal Incidence Pyrheliorneter 

Eppley NIP # 20254E6 

Precision Infrared Radiometer 

Eppley PIR # 20078F3 

TABlE III 

Date 

10/1/80 
4/30/81 
6/24/81 
6/21/82 
7/8/82 
9/6/82 
7/7/83 
7/18/83 

2/28/81 
7/1':..)/82 
8/19/82 
7/7/83 

9/9/83 

10/13/82 

3/4/81 
5/12/82 
5/5/83 

10/6/80 
7/7/82 
8/1/83 

RADI<l1ETER CALIBRATIOO SlJMMA.l=(Y 

Calibration Information 

Comparison \vi th: 

Standard References 
FSP # 20613F3 
PSP # 20613F3 
PSP # 20613F3 
Standard References 
PSP # 20(;13F3 
PSP # 22046F3 
Standard References 

Standard References 
PSP # 20022F3 
Standard References 
PSP # 22046F3 
Standard References 
Standard References 

Sta~dard References 

Standard References 
H-F Pyrheliometer 
H-F Pyrheliometer 

Standarn References 
Standaru References 
Standard References 

Performed By: 

Eppley Laboratory 
Hampton Institute 
Hampton Institute 
Hampton Institute 
Eppley Laboratory 
Hampton Institute 
Hampton Institute 
Eppley Laboratory 

Eppley Laboratory 
Hampton Institute 
Eppley Laboratory 
Hampton Institute 
Eppley Laboratory 
Epplpy Laboratory 

Eppley Laboratory 

Eppley Laboratory 
Hampton Institute 
Hampton Institute 

Eppley Laboratory 
Eppley Laboratory 
Eppley Laboratory 

Sensi tivi ty 2 .. 
-.1.) Factor (J.l1rm ~.: 

10.55 
* 
* 
* 

10. ClOt 
* 
* 

9.82 

11.10 
10.62t 
10.67 

'I; 

10.52 

10.47 

9.21 
** 
** 

4.95 
4.86 
4.90 

00 
-n on 
"tiD 
O~ 
~ ---W,;, 
:~ t~ 

c:J 
.. ? 
:c..::> , j) 

, ."1 
~_ .. "II. 

~f:l 

* 'Lhese sensitivity factors are unchanged within the ± 2% accuracy of the inst":''L..~ents. 
** The sensitivity factor was unchanged 1tlithin the accuracy of the calibration instruuents ( 1.5%). 

t Eppley Laboratory changed calibration standards October 1981 by 2.6%. 

~ ... ,.. ":~--, .. " .. 



TABLE IV ppnlQ~TRIC DATA CORRECTION F~CTORS 

Month Year Global Direct Diffuse Atmospheric 

Irradiance Irradiance Radiance Einittance 

March 1981 1.033 1.000 
Apr.n " 1.034 II 1.0012 
Ma.) " 1.035 II 1.0024 
Jun~ II 1.036 " 1.0036 
July " 1.029 " 1.0049 
August " 1.030 II 1.0061 
September " 1.031 " 1.0073 
October- II 1.031 " 1.0413 1.0085 
November " 1.032 " 1.0426 1.0098 
December " 1.033 " 1.0439 1.0110 
January 1982 1.034 " 1.0452 1.0123 
February " 1.034 " 1.0464 1.0135 
March " 1.035 " 1.0475 1.0148 
April " 1.036 if 1 .. 0488 1.0160 
May " 1.036 II 1.0499 1.0173 

!l June " 1.037 " 1.0510 1.0185 " ~ 
" July II 1.038 " 1.0550 1.0185 n 

August " 1.057 " 1.0178 
September " 1.040 " 1.0582 1.0170 
October " 1.043 " 1.0598 1.0162 
November " 1.040 " 1.0614 1.0155 
December " 1.0Ll8 " 1.0630 1.0147 
January 1983 1.0f,1 " 1.0646 1.0140 
February " 1.013 " 1.0106 0.9948 
March II 1.015 " 1.0121 0.9940 
April " 1.018 " 1.0137 0.9933 
May " 1.020 " 1.0152 0.9926 , ' .. 
JUfle " 1.023 " 1.0168 0.9918 ~, 

,\ 

July " 1.025 " 0.£1551* 1.0183 " ~ 
1" 
It" 

r.l' " 'J 

*Required for one-minute integrated data only for July 1983. ~ 

1 , 



TABLE V 

DATA RECOVERY RECOrill: HOURLY INTEGRATED IRRADIANCES 

Year Month Nunber of Hour-Values Stored on Magnetic Tape 

Global Solar - Dir~I"'t Solar - Diffuse Solar - Atmospheric Emitted 

1981 
February 300 120 
March 744 664 
April 720 718 
May 744 744 
June 719 37 720 
July 741 117 741 
August 740 0 741 
September 720 13 43 720 
October 743 529 712 742 
November 720 615 716 720 
December 742 611 732 740 

1982 
January 744 676 639 722 
February 672 668 672 67? 
March 743 738 744 658 
April 720 692 716 720 
May 740 715 721 7M 
June 720 720 479 512 
July 744 744 279 406 
August 741 741 198 742 
September 720 720 567 720 
October 742 742 74L1 744 
November 720 719 720 720 
December 744 740 744 7L14 

1983 
January 742 742 738 693 
February 670 671 667 665 
March 744 711 742 744 
April 744 699 729 744 
May 744 734 744 744 
June 720 690 718 711 
July 744 650 744 249 



TABLE VI DATA RECOVERY RECORD FOR AUTcw\'TID DATA ACQL'TSITION SYSTEf.1 
ONE AND TEN MINUTE INTEGRATED IRRADIANCES 

Month-Insolation Maximum Possible A'TIount Recovered Number of ~fissing Data Records Component Number of by Computer t:ser System System Data Records Number - Percent Interrupt Crash Calibration 

February - 1982 

Global* 40,320 36,326 - 90.1 2,205 1,190 Direct* " 35,163 - 87.2 3,358 1,200 
March 

Global 36,648 35,369 - 96.5 446 678 Direct " 35,381 - 96.5 433 679 Diffuse** " 34,434 - 94.0 263 679 lnfrared** " 26,470 - 72.2 257 679 
April 

Global 30,240 29,673 - 98.1 61 407 Direct " 29,708 - 98.2 26 4G7 Diffuse " 29,708 - 98.2 26 407 Inf'rared II 29,708 - 98.2 26 407 
May 

Global 31,248 29,519 - 94.5 17 1,712 Direct II 29,519 - 94.5 17 1,712 Diffuse " 29,519 - 94.5 17 1,712 Infrared " 29,:19 - 94.5 17 1,712 
June 

Global 30,240 2t,,232 - 93.4 181 1,827 Direct " 28,232 - 93.4 181 1,827 Diffuse " 16,112 - 53.3 181 1,827 12,120 Inf'rared " 19,453 - 64.3 181 1,827 8,779 

Other 

=99 
=99 

15E 
~z:t:: 
~_v 

1,272 
9,242 

99 
9~ 
99 
99 

*One-rninute readings only from 0942 February 1 J 1982 to 2000 EST r...rarch 13, 1982 and ten-minute readings at 
night after March 13. 

**One-minute readings only from 2038 EST March 1, 1982 to 2000 EST March 13, 1982 and ten-minute readings at 
night after March 13. 

T-:~ ___ :~ .. 
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TABLE VII 

Month Year 

March 1981 
April " May It 

JlU1e " July " August It 

September " October " November " December It 

AVERAGE - 19F;1 

January 1982 
February " March It 

April II 

May " June " July " August " September " October " November II 

December " 
AVERAGE - 1982 

January 1983 
February II 

March " April II 

May " June " July " 

ORIGiNAL PIl.Grt i9 
OF POOR QUALITY 

AVERAGE DAILY TO'rAL IRRADIANCE SVMMAHY 

Global Diffuse Direct 
Irradiance I rradiance 1 rradifmce 

-" O<Jm ... ) (kJm-2) (kJm-2) 

15,610 
19,(314 
19,~l1D 
2~:, b04 
21,971 
18,457 
18,378 
12 , 8:'2 E"lSf) 
8,29cl 3,838 
0,426 2,808 

16,S3:? 

7,(:;9'1 3,899 10, b~}2 
9,9Gb 4,G37 10,G34 

14, H38 5,911 13,219 
19,174 7,110 15,095 
22,997 10,105 17,708 
21,303. 11, 22~ 12,B48 
21,629 14,OB7 
19,199 13,4f;0 
15, ~)66 '/,'/98 12,866 
11,63b G,50B 12,013 
8,831 4,396 10,300 
6,131 3,2:?2 7,[38 

14,893 6,3£31 12,526 

8,017 3,783 9,990 
10,539 4,828 10,958 
13,150 (i,190 10,163 
17,605 8,uSl 12,2S4 
22,624 10,OB3 16,330 
24,421 10,787 17,395 
25,027 10,577 19,6B1 

Atmospheric 
Emittance 

(kJm-2) 

19,?42 
30,773 
32,42S 
37,285 
37,746 
35,701 
33,264 
30,114 
27,288 
25,567 

30,940 

24,379 
26, GOO 
26,896 
28,458 
33,757 
3G,169 

32,742 
31,086 
28,087 
26,532 
25,286 

29,090 

22,961 
22,945 
25,954 
26,9G2 
27,515 
31,648 
33,880 



TABLE VIII 

AVERAGE ATMOSPHERIC AEROSOL EXTINCTION AND T{;'RBIDITY PARAf.1ETERS 

# of Aerosol Extinction Parameter - Tau Turbidity Parameters 
Month/Year Days 380 run 500 run 875 run Br,6 at;6 

Feb 1981 3 0.527 0.127 0.073 0.064 1.004 
Mar 8 0.353 0.172 0.856 0.073 1.176 
.Apr 6 0.378 0.172 0.114 0.105 O.!:.7E 
May 3 0.455 0.217 0.144 0.131 0.643 
June 5 0.914 0.547 0.262 0.220 1.30 
July 7 0.871 0.653 0.353 0.306 0.9":;2 
Aug 7 1.055 0.667 0.307 0.256 1.264 
Sept 10 0.612 0.345 0.173 0.151 C.C88 
Oct 3 0.304 0.107 0.108 0.109 -O.OC4 
Nov 2 0.284 0.105 0.088 0.085 0.291 
Dec 2 0.273 0.129 0.067 0.058 1.156 00 
Jan 1982 5 0.356 0.146 0.103 0.096 O.~(;7 ~::o 

Feb 1 0.327 0.081 0.105 0.112 -C'.490 "1]G) 
O~ I-,lar 7 0.477 0.182 Q.146 0.139 0.37£1 O~ 

.Apr 4 0.332 0.123 0.133 0.137 -G.2!:::: ~r--

May 2 0.635 0.254 0.234 0.230 C.C4~ ,0.., 

June 6 0.940 0.5,11 0.323 0.298 C.596 c> 
j::>G) 

July 5 1.475 0.925 0.481 0.414 G O"':<::!' r-r.1 ---- :!Ii Aug 9 1.402 0.893 0.482 0.417 0.943 
Sept 2 0.654 0.253 0.158 0.141 0.8:29 
Oct 4 0.420 0.171 0.140 0.135 0.304-
Nov 2 0.625 C.295 0.198 0.182 0.523 
Dec 2 0.446 0.235 0.174 0.162 0.543 
Jan 1983 5 0.403 0.:1.94 0.172 0.167 0.194 
Feb 4 0.556 0.292 0.214 0.199 0.5·08 
Jliar 2 0.S50 0.233 0.217 0.214 0.093 
A,.Dr 2 0.670 0.313 0.270 0.261 0.244 
May 7 0.643 0.151 0.230 0.258 -0.868 
June 4 1.021 0.436 0.318 0.298 0.408 

",;~:".:~:.,"~- -. ~-



TABLE IX ARL REGRESSION COEFFICIENTS FOR CLEAR Sh.Y GLOBAL SOLAR IRRADIMJCE 

Time of Day - Month Nunber of Hours 
Clear Nearly 

.,. 
Regression Coefficients (kJ -.:::, m f 

Only Clear AO A1 A2 A3 

Nornin~ 

r<Iarch, 1981 10 0 - 212 3366 12~6 - E48 
April 8 11 - 104 2.729 2081 -90 
May 9 '23 43 1422 39~2 -E)l~ 

- 101 2174 1141 3(C June c: 8 ~ 

- 94 2423 1022 144 July 6 c: 
~ 

August 20 E - 428 4784 -4Qft' 3337 
- 86 2268 2797 -1:;23 September 3S c: 

~ 

October 9 0 -400 :60~ -:£:2 :~CS 
November 10 10 -~44 2830 IFll - --it2 
December 1 18 - 17E 37~·n 1E t<71 
January, 1982 11 1 22 173~ 69Ef -f2E:? 

144 3424 He.=. - ,...- OC .t February 1 6 
on;:: 

IE7 38!:6 - 839 "" - ,...,~ "C .J..i~L 0::"-
:;0 2419 :::740 -13c4 Of:,:-

173 ~98 Ef3c -3b34 ;0 r' 

Afternoons 
March, 1981 14 0 
April 5 12 
I-1ay 0 12 

D"'~ 7 1184 t4C7 -3143 ,< 
C 7') 

86 1699 3161 -ECE l:=> IL=" 

61 €I:; ::238 ""J-r:'1 Cft:'! 
-.-:~_.L 

:j~ ~4 7~C !:-731: -.2~tC~ ..... L 

June 5 .2 
July 0 6 
August 4 2 
September 17 4 
October 1 b - 32 173: 618!: -::4C4 

- 270 3949 191 140 November 8 .... :::. 
December 5 4 - 486 (.163 -6£74 734b 
January, 1982 12 2 54 936 87£6 -t,973 
February 1 b - 11 2160 3766 -1897 



TABLE X 

Clear Sky Global 
(Fit to Equation 1) 

Mornings 

Clear Sky Only 
Clear & Nearly Clear 

Afternoons 

Clear Sky Only 
Clear & Nearly Cl:;ar 

Cloudy S~ Global 
(Fit to Equation 2) 

Reduced LAFB Data Set 
Satellite Photoprints 
1:J1ole-Sky Photographs 

...... - .. :.. 

ARL COEFFIC.I.Ei'lTS FOR THE FIRST YEAR DATA SET 
(March 1, 1981 through February 28, 1982) 

No~ of 
Points 

Regression Coe~ficients (kJ m-2) 

12!:. 
217 

72 
135 

No. of 
Points 

92 
62 

104 

AO ~ A2 A3 

-140 
-209 

-252 
-130 

BO 

1.004 
1.017 
o oc:c:. 

3049 1138 
3708 - 302 

3920 - 454 
27::.4 2336 

- 616 
310 

::54 
-1328 

Regression Coefficients 
B1 B 2 B3 

-0.353 0.789 -1.089 
-0.468 -C). 182 0.033 
-O.61~ 0.975 -0.850 

B4 

-O~215 

-0.253 
-0.319 

Standard Deviation 
-?) (in kJ m-

162 
1::8 

133 
122 

Standard DeviatiDn 

0.14 
0.13 
0.14 

00 
""::0 
'tJ a-3 
O~ 

0 2 
~~ 
10-0 C:::. 
l>Q .m 
~UJ 



TABLE XI PARAr·1ETERlZATIOlJ llJPlT SU·Jr:1ARl 

Date Surface Extraterrestrial Cpv:e11 ed Aerosol GaseOl:s Case (Feb. Time Insola;ion Horizontal ~so- ReflectijDce Absorpt~on Absorpt~cn No. 1982) ( a·IT) (vJh/m~) lation (i-,h/m ) (vJh/m~) (\oJh/m~ ) (\',h!m ) 
4 7 1407 356.7 !:Ol.3 91.19 3.12 81.24 
5 7 1607 620.4 bOS.S 15=-.19 -22.47 106.54 
6 7 1b07 635.9 b33.4 1~3.92' -9.(9 107.8£ 
7 7 2007 41&.8 507: .• 8 108.9:: -1.71 £6.17 
9 E 140t 32!:.7 :'02.9 113.73 0.74 90.99 

10 8 1606 b04.9 010.0 ~£:';:.lb -18.C~ 123.43 
11 c 1bO( (04.9 840.":: 156.36 4.4~1 1.27.Gf 
13 11 200c 41b.t: ((3.3 124. !::4 -7.f.3 1(3.£6 
E 13 2207 f.2 .C' 1·40.~ 4:.(4- -O.7t. 140.77 

00 17 14 ItOt. t (;4.9 (:'47.9 157.1:: -4.34 142.72 -n~ 

"'C 1,'" 19 20 14Gl 4G:~.3 ~6~} .. "'; 149.(,4 -49.19 lOC·.(E 0" o c: t~ 1~ 23 14(>( 403.3 :8.2.4 11t.OO -7.94 lC>E.13 ;Or .::~ 

,0" 24 23 llU~ CU;.9 b97. :: 1(,3.74 -15.4:' 140.17 C;:;. 
l"'~ .', 
~ ~, 2:: 2~ 1:C,l 60.:1.9 783.(; 139.0 -2~_lt 116.16 !.,. .. 

.:'(. 2:: 1637 760.0 94t..9 17E..:E -~2.94 129.2~ 
:~~ 

27 2:: 170(, 775.5 963.8 2('2.34 -74.6.::' 127.93 
2t: 25 1807 744.: 943.6 168.44 -29.19 ;24.48 
29 2:: 1907 6S1.4 849.6 145.20 -5.3( 114.92 
30 28 1807 729.0 960.3 164.:1 -14.7C 144.79 
31 28 2007 496.3 702.9 133.16 O.U 11::. £14 
32 ",8 2207 108.6 225.5 62.04 6.62 t~.E6 



TABLE XII PARAIvlETERILATION Ol"'£PVT AND RESCLTS 

Fractional Kasten's Optical Relative Turbidity Average Case Absorption Relative Depth T Hoyt's Su,"1 Satellite Alpha Beta Relative No. by Aerosols Air r,lass (0.45 /~m) Prediction Azimuth ( 0
) Hunidity 

4 0.00647 2.850 0.3760 0.01067 131.8 2.309 O.O!:~~ 0.299 
5 -0.02872 1.781 0.3616 0.00676 161.3 2.303 0.0::7:: 0.282 
6 -0.01123 1.719 0.3177 0.00622 168.2 2.210 O.C::44 0.270 
7 -0.00307 2.477 0.2029 0.00882 141.7 1.631 0.G~E2 0.263 
9 0.001::4 2.830 0.332(1 0.01001 131.4 2.240 O.C::::E 0.331 

10 -0.02294 1.765 0.3334 0.00[::2 160.5 2.239 O.c~!:b 0.318 
11 0.00:'42 1.699 0.3334 0.00631 167.(, 2.236 O.C:::!':9 0.308 
13 -0.0134(; 2.354 0.3553 0.014E6 142.0 1.491 0.10ee O.:OE 
I!: -O.OOE,11 9.2£( 0.3696 0.03686 11£.3 1.::90 0.1(-39 0.3(2 
17 -O.OOS2c 1.67!: 0.3819 0.01041 158.8 1.67:: C.l003 D.:03 00 

"'11:0 
1~ -0.05997 2.4!:7 0.2326 0.004::7 129.2 2.708 O.C2{,f< 0.:21 "tJ5 

0-
0 2 23 -0.01422 2.414 0.30£3 G.OOSEI 128.2 2.750 0.C341 C.50t:- ;o~ 

24 -0.0177E 1.~71 (;.3095 C.OC3:t IS€.4 2.823 O.C.3'::: O.4t:1 to"'tl 
C"> 

25 -0.03312 1.814 0.0832 C.01141 140.7 -0.264 0.10':::& 0.::13 )::» ~"; 
rrGl 

26 -0.0::745 1.::03 G.061E 0.01091 164.2 -0.817 0.1183 O.4E8 ~;z] 
27 -0.07944 1.477 C.U:63 0.01177 17.2.4 -1.062 0.1314 0.462 
28 -0.03175 1.509 0.0894 0.01075 170.4 -0.324 0.11E9 0.426 
29 -0.00649 1.67!:. 0.0918 0.01100 1::4.6 -0.191 0.1069 0.410 
30 -0.01570 1.477 0.3019 0.00396 170.3 2.569 O~Q3c8 0.636 
31 0.00090 2.014 0.3018 0.00531 139.2 2.E71 0.C387 0.315 
32 0.04053 6.083 0.3019 0.0:'438 108.6 2.573 0.0387 0.E67 
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APPENDIX I 

,ABSTRACT - VIRGINIA ACADEMY OF SCIENCE PRESENTATION 

ENVIRONMENTAL SCIENCES 

DEVELOPMEN'l' OF A SOLAR ENERGY MEASUREMENT LABORATORY FOR THE STUDY OF 
INSOLATION VARIATIONS AT lWIlPTON, VIRGINIA. T. J. Griffin*, D. A. Wni tney , 
and D. D. Venable. Dept. of Physics ~ld Engineering Studies, Hampton Institute, 
Hampton, Virginia 23668. 

The purpose of this three-year study is to investigate the cloud 
dependence of incident solar radiation at H@]pton, Virginia. Solar 
irradiance at the Earth's surface is related to the extraterrestrial solar 
irradi.ance, to radiation absorbed and emitted by the atmosphere and clouds, 
and to radiation reflected by the Earth-atmosphere system. A ground-based 
measurement station has been established at Hampton Institute to monitor 
sol~ radiation, atmospheric emitted radiation, local cloud cover, and 
atmospheric turbidity. Continuous measurements of global, direct and diffuse 
solar radiation, and atmospheric infrared radiation are made and stored by 
computer. NOAA GOES-EAST satellite data are used to obtain albedo and cloud 
cover information. 

Interim analyses performed on the data include monthly averages of 
global insolation, infrared radiation, and atmospheric turbidity. Global 
insolation has been correlated with fractional cloud cover from March 1, 1981 
through February 1, 1982 using the ARL empirical model. 
(Supported by l'TASA grant No. NAG-1-87) , . , 
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APPENDIX II 

ABSTHAc'r - AMERICAN SOLAR ENERGY SOCIETY PRESENTATION 

SOLAR ENERGY MEASUREMENT PROGRAM AT HAMPTON, VIRGINIA 

D. A. Whitney, T. J. Griffin and D. D. Venable 

A global, diffuse and direct solar irradiance and atmospheri:;: emi ttence 
measurement program was initiated in February 19B1 at Hampton Institute, 
Hampton, Virginia. Begirming March 1, 1982 the integrated irradiance and 
emi ttance data were sampled on a one-minute basis and stored on magnetic tape 
by a microcomputer. Whole-sky photographs are used to document local cloud 
cover and at'e obtained on a regular basis. Atmospheric turbidity measurements 
are performed for clear-sky conditions with a Volz-type Sunphotometer. 

Several types of analysis have been performed with the radiometric data. 

• I 

Hourly globEll insolation has been correlated with opaque cloud cover fraction 
using the Air Resources Laboratory empirical model l . The cloud cover fractions 
were obtained from three different sources: 1) analysiS of satellite photoprintsj 
2) analysis of ground-based whole-sky photographsj and, 3) visual observations 
made by trained observers at nearby Langley Air Force Base2 Hesults of the 
comparisons for the first complete year of measurements will be presented. 

Mean hourly and daily total integrated irradiance will be presented for 
each month since February 1981. Atmospheric turbidity data have been analyzed 
in terms of the Rngstrgm turbidity parameters3 and aerosol optical depths at 
390 nm, 500 nm, and 875 nm. The results of the data analysis will be presented 
for the time period February 1981 through Januru~ 1983. 

This research was supported through the NASA Grant # NAG 1-87. 

1. NOM, 1979: SOLMF;T Vol. £., Hnal Report, Ashville, NC. USDOC/NOM National 
Climatic Center. 

2. We gratefully acknowledge the assistance of the personnel of Detachment 7, 
3D Weather Squadron, Langley Air Force Base. 

3. ~gstrgm, A., 1961, "Techniques of Determining the Tur.bidity of the Atmosphere," 
Tellus XIIII 2, pp. 214-222. 
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APPENDIX III 

CALIBRATION INSTRUMENTATION USED AT HAMPTON INSTITUTE 

1. Calibration of Eppley NIP#20254E6 

Standard Sensor- .~ tJpley Model IFF Self-calibrating Cavity Pyrheliometer 
Serial Number 18752 

H-F Control Unit- Eppley Model 40o, Serial Number 6621 

NIP Output Monitor- Keithley digital multimeter, model 179-20A, 
Serial Number 27764 

2. Calibration of Eppley Electronic Integrators 

Standard Mil:ivolt Source- }{oneywell Rubicon Potentiometer, Model #2730 
Serial Number "NASA-Langley 103291" 

Standard Source Monitor- Fluke Digital Voltmeter, Model #8300A 
Serial Nlmber 307 
calibrated 9-10-81 

Integrator Voltage/frequency monitor
Hewlett-Packard Timer/Counter, 
Serial Number 1120A00231 
calibrated 12/83 

Model 5327A 

Integrator Amplifier Gain and analog output moni tor-
Keithley digHal multimeter, Model 179-20A 
Rerial Number 27764 



APPENDIX IV 

DATA ACQUISITION .AND STORAGE HARDWARE 

ITEM DESCRIPTION 

Integrator with BCD Interface 

IvIicrocomputer System with 
RS232 lnterface 

Mlcroconputer ROM Expander 

Real Time Clock ROM Pack 

Binary/BCD I/O Interfaces 
- Interconnected 
- User Supplied Interface Box 

l'4inicomputer \In th 9 Track Tape Dri ve 

Interface Box \I.d. th lED Photo Count Display 

2 Char~~el - 12 Bit D/A Converter * 

QUM'TI7Y 

4 

2 

1 

1 

5 

1 

1 

1 

12 Bit 16 Channel Data Acquisition System * 1 

* These two devices were used in the design and testing stages. 

~.: .. r;.._~"'->c~ 

MANUFACTURER & MODEL Nt.iMBER 

Eppley Laboratory, Model 411-6140 

Tektronix, Inc., .f.1odel 4051 

Tektronix, Inc., Model 4051E01 

Trans Era, Model 641-RTC 

Trans Era, fllodel 632 BCD 
with Options 1 and 2 

Digi tal E.quipment, PDP 11/34 

Designed and Built by D. D. Venable 
& R. W. Blakey 

Trans Era, 1-1odel 620 DAC 

Trans Era, Model 652 me 00 
":tI 
"G5 0-
0 2 
::o~ 
to"tJ 
c)::. »G) 
,1\1 
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APPENDIX V 

ABS'l'HACT - BETA KAPPA CHI PRESENTATION 

COMPUT1·;J ~ AUTOMATION OF A SOLAR RADIATION 
LABORA'PORY. R. W. Blakey* and D. D. Venable, 
PhYAjcn Department, Hampton Institute, 
Hamptol1, VA 23668 

A solar r;adiation meF.lf)ltrement laboratory that includes two 

precision spectra pyranometers, a precision infrared radiometer, a 

nonnal incidence pyrheliomecer and an all sky camera has been automated 

to allow direct computer acquisition of i.nsolation data. Signals from 

the solar instruments aJ.'C III tegrated and displayed on fi vo digit light-

emi tting-diode displays. 'J'h(~ integrated signals are transferred via a 

general purpose interface car'd to a microcomputer. We have designed, 

constructed and implemented ha"dware and software configurations that 

pennit data acquisition, st;or'age, transfer, and display. System 

reliabili ty tests have beml performed and mean time between failure and 

systeo. down time have beE 11 dlaracterized. 
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An uncertainty of ..!(J;;, I in the callbl'Htion and digi tiu!tion of full-

resoluLlon vl:~juol imar,cl'Y, VlrlfJ ulJtuinud u~3ing the following roo,,'?c..ming: 

Assume that the b x ~, image aJ:'ray used in estimating the spaceward 

reflectanoe of tile Earth-atmusphere system is about 3/E:. land (reflectance 

: 0.15) and 2/S water (reflf:.lctence : 0.04) for the local solar measurement 

site geography using 'l'c.ilile 7 in Muench (1981) j the net random error, aft~r 

mul tiplying the land and OCE~an reflecti vi ties by th~ 'tidghts just given, 

for this ill'ray is 9.8% for 1 mi X 1 rni resolution. Assuming that the 

inverse proportionali ty bc,tween th<:· net random error and the nadir-point 

resolution holds lJetv:otm ~ mi x Yz mi and 1. rni x 1. mi as it does between 

1 mi x 1 ml and t~ m.l x ,~ rni, thi s tl'ulsl utes to a ne t random error of 19.6% 

for Yz rni x Yz rni. The py Lh[;(gore8Jl [,um of this with the 5% systematic 

calibratj.on errors for tIl(' \!cu"iable model of Muench (1981) ylelds 20.2% 

which should be roulded to 2U~. 

. . . , 
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