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The Earth's natural radiation environment poses a hazard to manned space
activities directly through biological effects and indirectly through effects
on materials and electronics. A preliminary review of radiation protection
indicates a requirement for Standard Practices that address: (1) environment 	 Ij

models for all radiation species including uncertainties and temporal varia-
tions; (2) upper bound and nominal quality factors for biological radiation
effects that include dose, dose rate, critical organ, and linear energy
transfer variations; (3) particle transport and shielding methodology including 	 r
system and man-modeling and uncertainty analysis; (4) mission planning that
includes active dosimetry, minimizes exposure during extravehicular activities,
subjects every mission to a radiation review, and specifies operational pro-
cedures for forecasting, recognizing, and dealing with large solar flares. The
Space Transportation System and space station missions should be addressing
radiation protection uncertainties and worst case issues now.
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SECTION I

INTRODUCTION

Manned space activities involve a number of unique hazards, e.g.,
launch/landing, micrometeoroids, zero gravity, and the space radiation
environment. Each of the threats to man must be factored into some overall
cost/benefit equation that in some sense minimizes the threat effect.

The radiation hazard has several unique characteristics. First, the
environment for many missions is highly variable, with fluctuations of orders
of magnitude. Second, the degraded environment seen by man depends strongly
upon the protection afforded by the system, i.e., the protection factor can
vary by orders of magnitude from inside the Shuttle or space station to
extravehicular activities (EVA). Finally, radio biological effects for high
specific ionisation particles (cosmic, rays) are often single-event phenomena
that are not adequately addressed by conventional dose criteria.

The radiation environment also poses an indirect hazard to manned
activities through effects in materials and electronics. These effects also
fluctuate with the environment and protection factors. For applications of
microelectronics to manned activities (e.g., microprocessor control of life
support systems), single-event phenomena for high specific ionization
particles are an immediate concern.

Radiation protection of man in space has been the subject of several
major conferences. For example, the Second Symposium on Protection Againstinst
Radiation in Space (Reference 1) and the Proceedings of the National Symposium
on Natural and Man-Made Radiation in Space (Reference 2) indicate the topics
addressed by radiation concerns. 	 J

This review divides radiation protection into four topics: radiation	 u
r	environment, radiation effects, radiation transport, and mission/operation.

Each topic is examined and uncertainties and deficiencies are noted.
Conclusions and recommendations are then given. The appendix contains
quantitative figures and tables.
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SECTION II

RADIATION ENVIRONMENT

The Earth's radiation environment is a complex mixture of neutral and
charged particles. Three mayor categories of the natural environment are
identified: trapped electrons and protons, galactic cosmic rays (protons and
ions), and solar flare particles (protons and ions). Additionally, some
misions must consider neutron and photon radiation from nuclear auxilliary
power systems (radioisotopic thermoelectric generators and nuclear reactors)
or nuclear weapons.

The natural environment varies by orders of magnitude as a function of
orbit altitude, latitude, and longitude. In addition, there are enormous
temporal variations caused by day/night, general solar activity (solar minimum
to solar maximum), specific solar activity (solar flares), and magnetic storms
and substorms.

A.	 TRAPPED, ENVIRONMENT

The low-energy natural environment (plasma) is charged particles with
energies less than 100 keV. 	 This environment must be considered for surface
effects generally and for spacecraft charging specifically. 	 The plasma
environment is potentially harmful to man during EVA because of charging of
spacesuit materials.	 A review of quantitative plasma models has been made by
Garrett (Reference 3), and spacecraft charging phenomena have been discussed
extensively (e.g., Reference 4).

!4

The high-energy natural environment (electrons and protons with energies
rx

above 100 keV) is modeled by the National Space Science Data Center (NSSDC).
1s
4

The models produce integral fluxes that represent averages of missions of 6
months duration or longer. 	 Short-term variations may be very large.	 Electron
levels, for example, can vary by a factor of 20 because of local time effects
at altitudes above 5 Earth radii, and will vary by factors of 100 to 1000
during magnetic storms and substorms at altitudes above 2 Earth radii.

c;

Several models are used, in conjunction with detailed orbit traces, to +
obtain mission specific environments, as shown below:

Ref. 5
Ref. 5

Ref.
°n,

6',
Ref. 7 ,.

Trapped Protons
	

AP8-MAX (solar maximum)
0.1 <_E(MeV) <500
	

AP8-MIN (solar minimum)

Trapped Electrons
	

AE6 (solar maximum, inner zone)
0.1 SE(MeV) <7
	

AE5 (solar minimum, inner zone)
AE17-HI (outer zone)a
AE17-LO (outer zone)a

aDifferent models of flux for E <2 MeV

1

1
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The proton models have an uncertainty of a factor of 2. The electron
models have an uncertainty that varies from a factor of 2 to 10 with a nominal
uncertainty of 5 for the inner zone and 2 for the outer zone.

For low Earth orbits with inclinations less than 50 deg, the natural
radiation environment is dominant in the South Atlantic Anomaly. At higher
inclinations and similar altitudes, the horn y of the trapped radiation belts
also contribute to the orbit's averaged env ionment. The general character of
low Earth orbit environment is indicated in Reference 8 although the actual
levels presented therein no longer apply.

B. COSMIC RAYS

The cosmic-ray environment consists of protons, alphas, and other heavy
ions with energies from 0.1 MeV to 10 16 MeV per nucleon. Galactic cosmic
rays originate outside the solar system and vary in level by approximately a
factor of 2 over the solar cycle with a maximum at solar minimum. Adams and
others have reviewed the literature on the cosmic-ray environment and have
suggested a model for the galactic cosmic rays (Reference 9) that includes
relative ion abundance and spectra for solar minimum and maximum.

C. SOLAR FLARE PARTICLES

Solar flare particles also include protons, alphas, and other heavy
ions. However, the relative abundance of each ion varies for each flare.
Solar flare particles are emitted during a magnetic disturbance on the Sun's
surface. These particles travel outward from the Sun. However, only specific
flare sites will result in particles intercepting the Earth. The arrival of
the proton component of a flare caused by a solar disturbance has been modeled
by Smart and Shea (Reference 10). The average solar flare environment has
been modeled statistically based on data from prior solar cycles (e.g.,
Deference 11). The model distinguishes between ordinary and anomalously large
events. If an anomalously large flare does occur, it dominates the ordinary
flares. Flare data from the last solar cycle have not been integrated into
the statistical models.

D. GEOMAGN'=TIC SHIELDING

E

Both cosmic-ray and solar flare particle environments are affected by
the Earth's magnetic field. A detailed model of ion trajectories in this
field has been developed by Smart and Shea (Reference 12). This model has	 •'^
been used by Heinrich and Spill (Reference 13) to predict average geomagnetic:'°'
shielding factors for specific orbits. A similar effort has been done by
Adams and Letaw (Reference 14), including a software listing for analyzing
various orbits. In low Earth orbit, cosmic rays and flare particles are 	 ^::.;>
almost entirely shielded at inclinations of 40 deg or less. 	

;4, 4+tlp
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SECTION III

RADIATION EFFECTS

Particulate radiation in space includes both neutral and charged
particles. The dominant species of interest are photons, neutrons, electrons,
and ions (protons, alphas, and higher atomic number nuclei). Some of these
particle species dominate the free space environment. Other species are
produced by complex interactions with space systems and may dominate the
environment inside a system.

Particulate radiation produces many effects in materials, e.g,, energy
deposition, atomic displacements, bond breaking. The effects result from
interactions of radiation with the atomic electrons and/or nuclei of the atoms
comprising the materials. These same interactions complicate the prediction
of effects since interactions may change the direction, energy, and species of
radiation emanating from the interaction.

A fundamental measure of radiation effects is the linear energy transfer
(LET), the mean energy loss per unit pathlength of radiation in a material.
The mean energy loss definition involvf.1 an average of all interactions that a
particle could have, and is a strong function of particle energy and type.
The gray (Gy), corresponding to an absorbed energy (dose) of 1 J/kg, or the
rad (10-2 Gy = 100 ergs/g) is used to express the combined effect of
different particles.

The LET values not only depend upon the particles species and energies
but also vary with composition and other properties of the material. Of
course, the energy lost by a particle is taken up by the recoil electrons or
nuclei of the material constituents and appears as other particles emerging
from the interaction. In many calculations of effects, a detailed accounting
of recoils and other post interaction particles (their interactions with other

r	 atoms of the material) is necessary to fully predict and understand
macroscopic radiation effects.

Other measures of radiation effects in materials are used besides LET.
These measures result when the effect is not proportional to deposited energy
(dose). These measures include current for single-event phenomena, stopping
densities for electrical charging, and equivalent monoenergetic flux for
displacement damage.

Radiation effects in materials generally, and electronics specifically,
are amenable to indepth understanding. The development and testing of effects
models are limited primarily by schedules and budgets. The results of ongoing
research are presented at the annual IEEE Nuclear and Space Radiation Effects
Conference (e.g., Reference 15).

Biological radiation effects have the same underlying particle
interactions as other material effects. The understanding of these effects is
made difficult, however, by the structure and replicative nature of biological
materials. It becomes necessary to consider cell death, damage, repair, and,

3-1
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if a cell is damaged, how and in what form the damage is propagated to
subsequent generations.	 some effects are not apparent until tens of
years after radiation exposure and because the same effects can be initiated
by other causes, the measure of biological radiation effects is often inferred
statistically with low accuracy.

The fundamental measure of biological radiation effects is also linear
energy transfer but modified by a multiplicative quality factor. The quality
factor expresses the experimental fact that, for the same dose (deposited
energy), high microscopic LET particles produce more biological damage than
low microscopic LET particles. The LET is qualified as microscopic because it
is necessary to look at fundamental interactions and post interaction
particles to see the true picture of dose on the geometric scale of biological
cells.

The quality factor is a legislated quantity - a consensus of opinion on
perceived relative biological effects. For LETS of 35 MeV/cm (3.5 keV/u m) or
less in water, the quality factor is unity. For more than 35 MeV/cm, the
quality factor increases with LETS to a value of 20 at 1750 MeV/cm. The LETs
more than 1750 MeV/cm are given a quality factor of 20.

These quality factors apply to charged particles, where the dominant
term of the LET is energy loss to electrons, i.e., creation of ion pairs. For
neutrons the quality factor is applied to the recoil nuclei (charged ions)
that emerge from neutron collisions: Photon interactions yield electrons,
positrons, and other photons so that quality factors for electrons apply.
Electrons generally have LETS less than 35 MeV/cm so that a quality factor of
unity applies.

Biological radiation effects are expressed in sieverts (Sv) (J/kg) or
rem (10 -2 Sv).	 The numerical value of the biological dose i ,^: Sv (rem) is
the physical dose in grays (rad) of low LET (C35 MeV/cm) radiation required to
produce the same biological effect, provided that the quality factor is
indicative of the true relative biological effectiveness of the radiation.

Some biological effects are not expressed well in dose equivalence
(Reference 16).	 For example, individual energetic ions cause opacities in the

G lens of the eye, a "single-event" phenomenon.	 Finally, cause and effect data
on humans are extracted from populations exposed to specific levels and

µ
particle species and energies, a difficult and speculative process.

Benton and Henke (Reference 17) have reviewed the dose received by

.. astronauts on various Gemini, Apollo, Vostok, Soyuz Skylab, Apollo-Soyuz Test
Project, and Space Transportation System (STS) missions.	 The physical dose
rates vary from 6 mrad/day for STS No. 3 (240-km altitude, 38-deg inclination)
to 90 mrad/day for Skylab 4 (435-km altitude, 50-deg inclination) based on
thermoluminescent dosimetry.	 `''•
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SECTION IV

RADIATION TRANSPORT AND SHIELDING

Radiation transport and shielding calculations are one of the better
understood elements of radiation protection. However, even this topic has
several areas of uncertainty.

Transport and shielding relate to the penetration of energetic particles
through spacecraft and man, including materials used to reduce radiation
levels. Two levels of analysis are employed:

(1) The simpler analysis level employs one-dimensional geometries,
usually slabs	 spheres, so that radiation levels are under-
standable functions of the interactions that occur in materials.

(2) The more complicated analyses use three-dimensional geometry
mockups and either approximate transport models or Monte Carlo
methods.

A.	 PROTONS AND HEAVY IONS

The transport of protons and heavier ions is adequately modeled by
straight-ahead continuous slowing down. Angular deflections of individual
particles Ir1s,}? important for energies less than about 1 MeV/nucleon. These

'	 deflec-.tionv vi important for monoenergetic sources because they distribute
parti.;Ies 4 out the mean range. However, the continuous energy dependence of
the natural environment obscures the importance of individual particle ranges.

For the nominal thicknesses encountered in most spacecraft, 2 to
10 g/cm 2 , the physical dose (energy deposition) from ions (protons and
heavier) can be determined quite accurately by ignoring all interactions
except ionization. However, for biological effects where the quality factors
emphasize high LET particles, an explicit treatment of secondaries (neutrons
and nuclei fragments) is necessary. For portions of the proton energy range
less than 10 Me V, elastic recoil nuclei have marginal importance.

Secondary production cross sections are the weakest link in ion
transport. At present, the semi-empirical formula of Tsau and Silberburg
(Reference 18) is being used, for example, by Heinrich (Reference 19), while
McNulty (Reference 20) and others rely on intranuclear cascade models. The
improvement of cross sections is the subject of several efforts including
those of Townsend and Wilson (Reference 21).

The attenuation of ions by materials depends critically upon the high
energy content of the ion environment. For example, soft flare spectra
(enhanced low energy content) attenuate rapidly. Hard flare spectra (enhanced
high energy content) may require tens of g/cm2 for a factor of 10 decrease

in dose. The dose from geomagnetically shielded cosmic rays can actually
increase for material thicknesses ,f conceivable interest for radiation
protection (geomagnetic shielding eliminates low energy/high LET particles,
which are then replenished by s,.jwing of high energy particles in thel
spacecraft materials).
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Because straight-ahead transport models can be applied to continuous
energy spectrum ion sources, the effects of man and spacecraft geometry are
readily calculated. For instance, slab shields attenuate dose more rapidly
than spherical shields because of the longer paths that are encountered in the
slab shield. The understanding of geometric effects in more complicated
geometries, e.g., the Shuttle and 'man, uses solid angle weighting of typical
particle paths each modeled by straight-ahead continuous slowing down.

B.	 ELECTRONS AND BREMSSTRAHLUNG

The transport of electrons and bremsstrahlung requires explicit
treatment of the electron angular deflections because these deflections are
substantial over the entire energy range of the natural environment. Because
of these deflections, the use of the straight-a,iead continuous slowing down
approximation is not adequate for electrons since it underpredicts the
relative attenuation of materials.

The cross sections employed for electron and secondary bremsstrahlung
photons yield excellent agreement between experimentally measured and
calculated quantities such as physical dose. Minor discrepancies occur for
detailed quantities such as energy and angular flux with monoenergetic
sources. However, the continuous (in energy and direction) character of the
natural electron environment negate these discrepancies.

An understanding of electron transport characteristics is also provided
by one-dimensional calculations. it has been shown (Reference 22) that the
doses behind slab and solid sphere shields are related as if :straight-ahead
transport models were applied. However, the dose at the center of a spherical
shell shield has attenuation more like a slab shield than a solid sphere
shield until the primary electron dose is dominated by the secondary
bremsstrahlung dose.

This differcn,_e in spherical shield attenuation, shell or solid, does
not occur for ions. The difference between solid and shell sphere dose for
electrons can be greater than a factor of 10. However, the bremsstrahlung
dose finally dominates the primary electron dose effectively, limiting the
difference for solid and shell spheres to less than a factor of 10. The

r	 difference in solid and shell sphere dose for electrons means that the solid
angle weighting-type analysis in spacecraft and man can err substantially
unless primary electrons are completely shielded.

Two methods have been devised to address electron transport in
three-dimensional geometries and were used extensively for the Voyager and
Galileo Projects:

(1) An approximate method that determines upper and lower hounds on
dose using solid angle weighting of slab and sphere attenuation
models.

(2) The more accurate method employs adjoint Monte Carlo (Reference 23)
for efficient computations of radiation doses at points in three-
dimensional spacecraft mockups.
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SECTION V

MISSION OPERATIONS

Radiation protection of astronauts must address the environment,
effects, and shield issues concurrently. Primary inputs are the mission
(orbit, launch date, duration), models of the spacecraft and man, and criteria
on maximum radiation levels deemed acceptable. Given the mission, nominal
environmental modals are constructed with uncertainty factors and temporal
variations. Transport/shielding calculations using the environment then
determine the expected radiation levels received by the astronauts. For new
missions and spacecraft, there is feedback, based on the environment and
transport/shielding calculations, that can modif y the spacecraft design and/or
the mission parameters. For existing spacecraft, mission parameters are the
major variation allowed. Solar flare particles are the major environmental
variable for high-inclination low Earth orbits or geostationary missions.

'r'he National Aeronautics and Space Administration - Johnson Space Center
(NASA-JSC) flight rules have procedures to be followed for major solar flares,
dose limit violation, and enhanced environment indications. These procedures
include contact with the National Oceanic and Atmospheric Administration -
Space Environment Service Center (NOAAA-SESC).

Co-located with the NOAA-SESC is a branch of the U.S. Air Force's Global
Weather Central [(AFGWC), which is headquartered at Offutt Air Force Base in
Nebraska]. These two organizations serve as the clearinghouses for real-time
observations, predictions, alerts, and, in a more-restricted sense, archival
data concerning solar flares. Table 5-1 lists the principle data sources
available to NOAA-SESC and AFGWC. These data and the predictions made from
them (Table 5-2) are disseminated by a variety of techniques, including (as
for the first Shuttle flight) a telephone call (Table 5-3). Unfortunately,
current predictive techniques are considered speculative. On the time scales
of months or longer, predictions are based on statistical fits to previous
observations. In the absence of accurate physical models of the processes
associated with the propagation of solar flare particles to the Earth,
short-term predictions such as would be appropriate for the Shuttle are based
primarily on "experience". Even so, current practices could be significantly
improved with incorporation of the latest flare warning techniques and
improvements in data transferal between NASA-JSC and NOAA-SESC.

At low Earth orbit and low inclinations, the flare hazard is negligible
because of geomagnetic shielding. For a space Shuttle polar orbit, where a
substantial fraction of the orbit is over the polar caps and geomagnetic
shielding is minimal, it is possible to hypothesize a prohibitive dose,
particularly during EVA, before maneuvers could reduce the environment. For
intermediate inclinations, analysis is needed to bracket the maximum credible
incident, i.e., considering flare size, rise time, spectrum, type of activity,
geomagnetic shielding, etc. At an inclination of 50 deg, the fraction of time
per orbit spent at the latitude extremes (least geomagnetic shielding) may be
small enough so that any credible flare onset can be handled by present
pro<,edures .
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Table 5-1. Data Sourcesa

Wavelength or Time Primary
Type Energy Range Resolution Sources

Solar Patrol

X-rays 1-8 X, 0.5-4 1-minute averages GOES
Optical Hydrogen Alpha Continuous Several
Radio 202-15, 400 MHz 1 minute Several

Solar Synoptic
Hydrogen Alpha Images Several daily Boulder
White Light Images Several daily Boulder
Ca K Images Daily Sac Peak
He 10830 Images Daily Kitt Peak
Magnetograms (Full Daily Kitt Peak,

Disk and Regional) Huntsville
Sunspot Magnetic Fields Daily Mt. Wilson,

Boulder
Ca K Scaled Reports Daily McMath
Sunspot Reports Several daily Several
Solar Mean Field Daily Stanford
10.7 cm Radio Flux 2800 MHz 3 times daily Ottawa (Algonquin)
East-West Radio 2800 MHz Daily Ottawa (Algonquin)
Drift Scan

Energetic Particle Patrol
Synchronous Orbit Protons: 06-500 MeV 1-minute averages GOES

Alphas: 4.0-329 MeV
Electrons: ?2 MeV

Polar Orbit Protons 30 keV-850 MeV TIROS-N

Magnetometer Patrol f
Synchronous Orbit 3 Components 1-minute averages GOES

"	 Terrestrial 3 Components 10 seconds IMS North Amercian
Chain

10 seconds Boulder
15 minutes Air Force Real

Time Chain j

15 minutes Thule
15 minutes Vostok

Miscellaneous
Neutron Monitor 15 minutes Thule
High Latitude Riometers 30 MHz 15 minutes Alaskan Chain,

Thule
Auroral Backscatter 50 MHz 15 minutes Anchorage

Radar
Interplanetary 74 MHz Daily UCSD

Scintillation t^f

Io'nosondes f0F2, M3000, Fmin / hour or 6 hours Several

a Source:	 Reference 24.
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Table 5-2. Observed Indices and Activity Summariesa

Solar Active Region Summary Report

Sunspot Number

Flare (and Other Event) Lists

Solar Neutral Line Analysis and Synoptic Maps

10-cm Flux

Solar Proton Events and Proton Flux

SST Radiation Levels

Geomagnetic A- and X-indices

Substorm Log

Section Boundaries (at 1 AU)

Table 5-3. Distribution Systemsa

Telephone:

FTS (Federal Telephone Service)

WATS (Wide-Area Telephone Service)

Commercial Telephone Service

Dedicated Telephone Lines (Hot Lines)

Recorded Information Numbers

Teletype:

ATN (Astro-Geophysical Teletype Network)

AUTODIN (U.S. Government Teletype Service)

Commercial Teletype Services

Secondary Networks

Computer Links:

Space Environment Laboratory Data Acquisiton and

Display System (SELDADS) Public User Access

Dedicated Data Links

WWV Shortwave Broadcast

Mail

a Source: Reference 24.
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Several concerns arise as orbits are pushed to higher altitudes and
inclinations. Simple altitude increases at low inclinations intercept more
intensive trapped radiation belts. The dose increase, or protection factcr
requirement, is related to the environment increase in a roughly proportional
way. The major concern for these higher doses is how far to push astronauts
on their daily, quarterly, and lifetime exposure tables while c.lso addressing
the costs of training and/or recycling.

At high inclinations and at ge^synchronous altitudes, bol,,h galactic
cosmic rays and solar cosmic rays (solar flares) can partially or totally
penetrate the Earth's magnetic field. For both sources of cosmic rays, there
is an immediate question of assessing the relative effect of these particles.
These particles have high, specific ionization and quality factors that Nary
from 1 to 20. Unfortunately, there are indications that the quality factor at
high LET may exceed 20 for some biological effects, and the high LET particles
should be treated as single--event phenomena for which protection criteria do
not exist.
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SECTION VI

CONCLUSIONS AND RECOMMENDATIONS

The elements of radiation protection for man in space have uncertainties
that are potentially catastrophic. The dominant concern for the natural
environment is the occurrence of a large solar ,article event, which
incorporates most of the major uncertainties, i.e., recognition of onset, rise
time and duration, spectrum, magnitude, geomagnetic shielding versus orbit
position, ion composition, relative biological effectiveness of high LET
particles, nuclei fragmentation in the spacecraft and man, unambiguous and
unattended activz dosimetry of the event, temporary loss of communications
with the control center, and practiced procedures for mission changes to
minimize radiation effects.

Missions at low Earth orbits and nominal inclinations are protected from
the large solar particle events by geomagnetic shielding. However, low Earth
orbit missions at inclinations above 50 deg, and potential missions such as a
geostationary space station, must explicitly consider the impact of a major
flare.

There is a major uncertainty in the electron dose received during EVA
where spacesuits do not stop the electrons. This uncertainty must be
addressed for Shuttle missions that intercept the horns of the belts, i.e.,
inclinations above 45 deg, and other missions that encounter trapped electrons
during EVA.

Microprocessors are being employed in life-support systems such as the
manned maneuvering unit. These applications must be reviewed to verify
immunity to single-event latchup and upset.

An engineering standard is recommended for the radiation protection of
man in space. This standard should be subject to periodic reviews by NASA
Centers and should contain sections on environmental models, zadiation
effects, transport/shielding, and mission planning and contingencies. Each
section should address standard practices, temporal effects, and worst case as
well as nominal, suggested, and legislated standards. During the drafting,
the standard should be applied to a detailed evaluation of a Shuttle
mission(s) at high inclination, and to a "typical" space station concept.
This application would clarify the strengths and weaknesses of the standard
while providing a definitive assessment of radiation protection for current
STS and near-term space station missions.
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APPENDIX

Figures A-1 and A-2 (Reference A-1) show typical electron and proton
flux contours at an altitude of 400 km. Figures A-3 and A-4 (Reference A-2)
indicate the electron and proton flux variation, with altitude and inclination.
Figures A-5, A-6 1 and A-7 (Reference A-3) indicate daily electron flux averages
and experimental/model comparisons, respectively. Figures A-8 and A-9
(Reference A-4) show geomagnetic shielding factors and the effect of the
spectrum of cosmic-ray iron nuclei.

Figure A-10 (Reference A-5) shows the solar electromagnetic spectrum and
perturbations that accompany flares. Figure A-11 (Reference A-5) indicates
solar flare events relative to solar cycles. Figures A-12 through A-15
(Reference A-6) indicate dose for various altitudes and shield thicknesses.
Figure A-16 (Reference A-7) shows the different attenuation character of
one-dimensional shield geometries for electrons.

Table A-1 (Reference A-6) lists the effects of whole-body dose. Table
A-21 gives the flight rules for radiation control on Shuttle flights. Table
A-3 (Reference A-8) summarizes the dose received on various United States
manned spaceflights.
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Figure A-3.	 Electron Distribution in the Earth's Field
(Source:	 Reference A-2)
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Table A-1. Expected Effects of Acute Whole-Body Radiation Doses
(Source: Reference A-6)

ACUTE DOSE
(REM)	 PROBABLE EFFECT

01050 	 NO OBVIOUS EFFECT, EXCEPT POSSIBLE MINOR BLOOD CHANGES

80 TO 120	 VOMITING AND NAUSEA FOR ABOUT 1 DAY IN 5 TO 10 PERCENT OF EXPOSED PERSONNEL,
FATIGUE BUT NO SERIOUS DISABILITY

130 TO 170	 VOMITING AND NAUSEA FOR ABOUT I DAY, FOLLOWED BY OTHER SYMPTOMS OF RADIATION
SICKNESS IN ABOUT 25 PERCENT OF PERSONNEL. NO DEATHS ANTICIPATED

180 TO 220	 VOMITING AND NAUSEA FOR ABOUT I DAY, FOLLOWED BY OTHER SYMPTOMS OF RADIATION
SICKNESS IN ABOUT 50 PERCENT OF PERSONNEL. NO DEATHS ANTICIPATED

710 TO 330 VOMITING AND NAUSEA IN NEARLY ALL PERSONNEL ON FIRST DAY, FOLLOWED BY OTHER
SYMPTOMS OF RADIATION SICKNESS. ABOUT 20 PERCENT DEATHS WITHIN 2 TO 6 WEEKS
AFTER EXPOSURE: SURVIVORS CONVALESCENT FOR ABOUT 3 MONTHS

400 YO 500	 VOMITING AND NAUSEA IN ALL PERSONNEL ON FIRST DAY, FOLLMYED BY OTHER SYMPTOMS
OF RADIATION SICKNESS. ABOUT 50 PERCENT DEATHS WITHIN I MONTH. SURVIVORS

CONVALESCENT FOR ABOUT 6 MONTHS

500 TO 750	 VOMITING AND NAUSEA IN ALL PERSONNEL WITHIN 4 HOURS FROM EXPOSURE, FOLLOWED
BY OTHER SYMPTOMS OF RADIATION SICKNESS. UP TO 100 PERCENT DEATHS: FEW

SURVIVORS CONVALESCENT FOR ABOUT 6 MONTHS

1000	 VOMITING AND NAUSEA IN All PERSONNEL WITHIN 1 TO 2 HOURS. PROBABLY NO
SURVIVORS FROM RADIATION SICKNESS

5000	 INCAPACITATION ALMOST IMMEDIATELY, ALL PERSONNEL WILL BE FATALITIES WITHIN
I WEEK
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Table A-2. NASA-Johnson Space Center Flight Rulesa
R ITEM

SECTION 14 - SPACE ENVIRONMENT

GENERAL

14-1 DEFINITIONS:

A.	 IMPENDING ARTIFICIAL EVENT - AN ARTIFICIAL EVENT THAT IS PREDICTED BY
ANY SOURCE.

B.	 UNCONFIRMED ARTIFICIAL EVENT - AN ARTIFICIAL EVENT NOT CONFIRMED BY THE
PROPER SUPPORT DATA	 QURC w

C.	 CONFIRMED ARTIFICIAL EVENT - AN ARTIFICIAL EVENT THAT IS REPORTED BY THE
ROPER SUPPORT DATA SOURCE AND THAT MEETS THE PREDETERMINED CRITERIA FOR
DETONATION MAGNITUDE, ALTITUDE, AND GEOGRAPHIC POSITION.

0.	 PROJECTED OPERATIONAL 005E LIMIT VIOLATION - A DOSE EXTRAPOLATION THAT
VI OLATES	 N 0	 RA ION	 LIMIT	 0 UPON ANALYTICAL PROJECTIONS WITH
ACCUMULATION RATES CONFIRMED BY ONBOARD DOSIMETRY READOUT).

E.	 MAJOR SOLAR FLARE - A RADIO NOISE LEVEL > 500 FLUX UNITS ABOVE BACKGROUND
R A FLARE AREA > 15 SQUARE DEGREES. 	 —

F.	 ENHANCED RADIATION - WHEN THE OBSERVED RADIATION RATES ARE HIGHER THAN THE
NOMINAL EXPECTED	 RTES.

RULES 14-2 THRU 14-5 ARE RESERVED.

STS-2 BASIC 7/1/81 14 SPACE
ENVIRONMENT GENERAL 14-1

MISSION REV GATE SECTION GROUP PAGE N0.

aSource: Hardy, A.C. personal communication, October 1982.
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Table A-2. NASA-Johnson Space Center Flight Rules (Cont'd)
t ITEM

.............
MANAGEMENT

	

14-6	 ALL CREW SAFETY DECISIONS WILL BE BASED ON CONFIRMED MEASUREMENTS AND/OR
EVENTS AND PROJECTIONS BASED ON CONFIRMED EVENTS. A CONFIRMED EVENT IS DE-
FINED AS AN EVENT THAT HAS BEEN MEASURED BY TWO OR MORE INDEPENDENT SOURCES.
A CONFIRMED ARTIFICIAL EVENT IS BY DEFINITION CONFIRMED.

	

14-7	 THE EXISTING AND PROJECTED DOSE WILL BE ASSESSED PRIOR TO THE FOLLOWING
GO/NO-GO DECISIONS AS RADIATION CONDITIONS DICTATE.

• LAUNCH

	

14-8	 THE FOLLOWING OPERATIONAL CREW EXPOSURE LIMITS WILL BE ADHERED TO:

EXPOSURE LIMITS (REM)

t

BONE MARROW SKIN EYE
CONSTRAINT S CM 0.1 MM 3 MM

30 DAY MAX 25 75 37

QUARTERLY MAX 35 105 52

YEARLY MAX 75 225 112

CAREER LIMIT 400 1200 600

14-9 1 IF A POCKET CHAMBER DOSIMETER READING DIFFERS FROM EXPECTED VALUES IN AN
INCONSISTENT MANNER FOR MORE THAN 3 CONSECUTIVE READOUTS, DISCONTINUE CREW
READOUT FROM THAT FAILED POCKET CHAMBER DOSIMETER.

	

STS-2	 BASIC 7/1/81	 14 1	 SPACE
ENVIRONMENT	 MGMT	 14-2

	

MISSION	 REV	 DATE	 SECTION	 GROUP	 PAGE NO.
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Table A-2. NASA-Johnson Space Center Flight Rules (Cont 1d)

R REM

SPECIFIC

FLIGHT PHASE

RADIATION CONDITION

PRELAUNCH ORBITAL EVA

AN IMPENDING ARTIFICIAL EVENT Qi Ui

AN UNCONFIRMED ARTIFICIAL EVENT HAS BEEN
REPORTED

A CONFIRMED ARTIFICIAL EVENT HAS OCCURRED Q os ^, Q

PROJECT OPERATIONAL DOSE LIMIT VIOLATION Q Q Q

CONFIRMED MAJOR SOLAR FLARE

CONFIRMED ENHANCED RADIATION ENVIRONMENT
INDICATED FROM ONBOARD UOSIMETRY

N/A O

NOTES: Q PURSUE CONFIRMATION FROM ALL DATA SOURCES

Qi	 HOLD LAUNCH

PURSUE MAXIMUM DATA RECOVERY FROM SPACECRAFT INSTRUMENTATION AND/OR
OTHER SOURCES

Q CONSIDER MISSION CHANGE TO LONER DOSE WITHOUT INCREASING TOTAL
RISK TO CREW (LONER ALTITUDE, AVOID HIGH RATE CREW STATIONS, ETC)

NASA MANAGEMENT RISK VS GAIN DECISION REQUIRED

STS-2 BASF 7/1/81 14 SPACE
ENVIRONMENT SPECIFIC 14-3

MISSION REV DATE SECTION GROUP PAGE NO.
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Table A-3. Dosimetry Data from United States *canned S,paceflights*
(Source: reference A-8)

Flight
Duration

(hr)
Inclination

(deg)
Apogee-ieriget

(km)
Average Dose

(mrad)

Average
Dose Rate

(mrad%day)

Gemini 4 97.25 32.5 296 - 166 46 11

Gemini 6 25.25 28.9 311 - 283 25 23

Apollo 7* 260.1 160 15

Apollo 8* 147 lunar orbital flight 160 26

Apollo 9* 241 200 20

Apollo 10* 192 lunar orbital flight 480 60

Apollo 11* 194 lunar orbital flight 180 22

Apollo 12* 244.5 lunar orbital flight 580 57

Apollo 13* 142.9 lunar orbital flight 240 40

Apollo 14* 216 lunar orbital flight 1140 127

Apollo 15* 295 lunar orbital flight 300 24

Apollo 16* 265.8 lunar orbital flight 510 46

Apollo 17* 301.8 lunar orbital flight 550 44

Skylab 2**	 28 days	 50	 alt = 435 1396 57 = 3

Skylab 3**	 59 days	 50	 alt = 435 3835 65 ! 5

Skylab 4**	 90 days	 50	 alt = 435 7740 86 { 9

ASTP	 9 days	 SO	 alt = 220 106 12

STS-1	 54 hrs	 40.3	 alt `^ 280 -20 8.9

STS-2	 57.5 hrs	 38	 alt = 240 11.8 ! 1.6 6.0

STS-3	 194.5 hrs	 38	 alt = 240 46.1 * 2.6 5.7

M Doses quoted for the Apollo flights are skin doses. The doses to the blood-forming
orgais are approximately 40% lower than the values measured at the body surface.

w
Mean thermoluminescent dosimeter (TLD) dose rates from crew dosimeters.

For orbital flights about the Earth, the dose rates vary from about 6 mrad/day for Space Trans-
portation System No. 3 up to nearly 90 mrad/day for higher altitude and greater orbital incli-
nation in Skylab 4. However,	 the exact, :: ielding of
dosimeters on STS-3 is not known. The average dose rate inside the heavily shied film vault
drawers 8 (16-30 g/sm 2 )and F (30-50 g/cn2 ) of Skylab 2 and 3 were 39.5 and 33.5 mrad/day res-
pectively, suggesting that even very heavy shielding Is ineffective in reducing the dose rate.
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